

Abstract

 The land surface provides a boundary condition to atmospheric forward and flux inversion 21 models. These models require prior estimates of $CO₂$ fluxes at relatively high temporal resolutions (e.g., 3-hourly) because of the high frequency of atmospheric mixing and wind 23 heterogeneity. However, land surface model $CO₂$ fluxes are often provided at monthly time steps, typically because the land surface modeling community focuses more on time steps associated with plant phenology (e.g., seasonal) than on sub-daily phenomena. Here, we describe a new dataset created from 15 global land surface models and 4 ensemble products in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), temporally downscaled from monthly to 3-hourly output. We provide 3-hourly output for each individual model over 7 years (2004-2010), as well as an ensemble mean, a weighted ensemble mean, and the multi- model standard deviation. Output is provided in three different spatial resolutions for user preferences: 0.5° x 0.5°, 2.0° x 2.5°, and 4.0° x 5.0° (latitude/longitude). These data are publicly

available from: ftp://daac.ornl.gov/data/cms/CMS_NEE_CO2_Fluxes_TBMO/data.

 $\frac{33}{34}$

Keywords: CO2 flux; downscale; land surface; NEE; sub-daily; hourly

 This technical note describes the methodological approach employed with temporally downscaling monthly terrestrial biosphere model (TBM) net ecosystem exchange (*NEE*) (i.e., net $37 \quad \text{CO}_2$ flux between the land and atmosphere) output to 3-hourly time steps (Fisher et al., 2014). These data were created initially for NASA's Carbon Monitoring System (CMS), and are useful to the broader land surface and atmospheric scientific community (Fisher et al., 2011; Fisher et al., 2012). The general downscaling approach follows Olsen and Randerson (2004) with modifications. The logic takes the components of *NEE*, i.e., gross primary production (*GPP*) and ecosystem respiration (*Re*), and links them with incident shortwave solar radiation (*I*) and near surface (2 m) air temperature (*Ta*), respectively. *I* and *Ta* are provided at 6-hourly time steps from CRU-NCEP (Wei et al., 2014a; Wei et al., 2014b), which we interpolated to 3-hourly time steps following cosines of solar zenith angle for *I* and linear interpolation for *Ta*. Hence, *GPP* and *Re* are temporally downscaled to 3-hourly, and re-combined to form *NEE* at 3-hourly time steps.

47

48 The 6-hourly to two 3-hourly time steps from the solar zenith angle cosine interpolation follows 49 this equation:

$$
I_{t1} = \frac{I_t \times \cos z_{t1}}{\left(\frac{\cos z_{t1} + \cos z_{t-t1}}{2}\right)}, I_{t-t1} = \frac{I_t \times \cos z_{t-t1}}{\left(\frac{\cos z_{t1} + \cos z_{t-t1}}{2}\right)}
$$
(1)

50 where *z* is solar zenith angle and I_t is in units of W m⁻². As an example, if the 0-6 hour I_t was 100

- 51 W m⁻², and the 0-3 hour z_{t1} was 0 (i.e., $cos(z_{t1}) = 1$) and the 4-6 hour z_{t-t1} was 60 (i.e., $cos(z_{t-t1}) = 1$)
- 52 0.5), then the 0-3 hour I_{t1} would be 133.3 W m⁻², and the 4-6 hour I_{t-1} would be 66.7 W m⁻².
- 53

54 To scale *GPP* and *Re* to 3-hourly time steps, we followed Olsen and Randerson (2004) with 55 modifications starting first with the calculation of scale factors based on *I* and *Ta*:

$$
Q10_{3hr} = 1.5^{\frac{T_{a,3hr} - 30}{10}} \tag{2a}
$$

$$
T_{scale} = Q10_{3hr} / \sum_{30day} Q10_{3hr}
$$
 (2b)

$$
I_{scale} = I_{3hr} / \sum_{30day}^{souay} I_{3hr}
$$
 (3)

 where *Q*10 is the temperature dependency of *Re*, and *Ta* is in degrees Celsius (converted from Kelvin, as provided by CRU-NCEP). Note that Olsen and Randerson (2004) originally used time integral periods of calendar months, but we observed that this caused unrealistic distinct shifts between months. Instead, we modified the integral period to a 30-day moving window (Figure 1). For the first 15 days of January of the record and the last 15 days of December of the record, we used the last 15 days of December and the first 15 days of January, respectively, within the first (2004) and last (2010) years to complete the 30-day window.

63

64 The 3-hourly resolution scale factors are then multiplied by *GPP* and *Re*, respectively, for each 65 3-hourly time step each month:

$$
Re_{3hr} = T_{scale} \times Re_{month}
$$

GPP_{3hr} = I_{scale} \times GPP_{month} (5)

 We modified *Remonth* and *GPPmonth* from Olsen and Randerson (2004) to be given at a 3-hourly time step, linearly interpolated to 3-hourly time steps based on the present, previous, and 68 subsequent month, maintaining the original units ($g \text{ C m}^{-2} \text{ mo}^{-1}$). *Re_{3hr}* and *GPP_{3hr}* are in units of \pm g C m⁻² 3hr⁻¹. This modification avoided using the same monthly value for the multiplier for all

70 3-hourly time steps per month as per Olsen and Randerson (2004), and instead provided a

 smooth transition from one month to the next. The result of this modification was to eliminate a "ramping" effect whereby values would, for example, increase steadily within a month, then suddenly shift to a new starting point at the beginning of the next month (Figure 1). Note that the 74 original nomenclature of Olsen and Randerson (2004) used $[(2 \times NPP_{month}) - NEP_{month}]$ in 75 place of Re_{month} , and $(2\times NPP_{month})$ in place of GPP_{month} , where NPP is net primary production (*GPP* minus autotrophic respiration) and *NEP* is net ecosystem production (approximately equivalent to the inverse sign of *NEE*, with caveats (Hayes and Turner, 2012)). The assumption 78 here, therefore, is that $GPP = 2 \times NPP$ and $Re = (2 \times NPP) - NEP$. The *Re* assumption misses 79 CO_2 emissions other than respiration, e.g., fire, which we correct for at a later step.

The initial *NEE* calculation simply subtracts *GPP* from *Re*:

$$
NEE_{3hr} = Re_{3hr} - GPP_{3hr}
$$
 (4)

82 where *NEE_{3hr}* is calculated in units of $g \text{ C m}^{-2}$ 3hr⁻¹. However, we applied an additional units 83 conversion for the publicly available data to kg C $km⁻² s⁻¹$, as these units are more readily ingestible by atmospheric inversion models (Deng et al., 2014).

 Because the downscaling approach uses *Re* (e.g., autotrophic plus heterotrophic respiration) as 87 the primary CO_2 efflux term, other ecosystem CO_2 loss components, such as fire and other disturbances (Hayes and Turner, 2012), are excluded in the downscale. Hence, the sum of the downscaled 3-hourly *NEE* fluxes in a given month did not necessarily equal the original monthly *NEE* flux. So, we included a per-pixel correction whereby we: I) calculated the difference between the sum of the downscaled 3-hourly *NEE* in a given month and the original monthly *NEE*; II) divided that difference by the total 3-hourly time steps in the month, and III) added that difference to each 3-hourly *NEE* flux. In so doing, the sum of the downscaled 3-hourly *NEE* fluxes subsequently summed exactly to the original monthly *NEE*. Nonetheless, this assumption smooths what could otherwise be punctuated fire or disturbance effluxes, so caution should be given when assessing these effluxes at 3-hourly time steps (e.g., relative to observations).

 All input data were given in a spatial resolution of 0.5° x 0.5° (latitude/longitude); hence, we provide the 3-hourly *NEE* output in 0.5° x 0.5° (Figure 2). We also provide two additional sets of spatially upscaled *NEE* output in 2.0° x 2.5° and 4.0° x 5.0°. These resolutions are used by the 101 atmospheric modeling community, i.e., the GEOS-Chem atmospheric $CO₂$ transport model in the NASA CMS (Liu et al., 2014). To generate the coarser resolution data we: I) multiplied each pixel value by the land area of that pixel; II) summed the flux from all pixels that represent one 104 pixel in coarser resolution (e.g., 8 x 10 pixels from 0.5° x 0.5° comprise 1 pixel in 4.0° x 5.0°); III) calculated the total area covered by the pixels summed in step II; and, IV) divided the value in step II by the value in step III. The regridding preserved the total sum flux of the finer grid cells as well as the total global flux. We provide a file containing the land area contained in each latitudinal band for each of the 3 resolutions (folder name: 'latitude_area'). We provide two versions of the 2.0° x 2.5° and 4.0° x 5.0° resolution products—one version with consistent global resolution, and another that conforms to the GEOS-Chem setup whereby the northern and 111 southern most latitudinal bands for the 2.0° x 2.5° resolution are 1.0° x 2.5°, and for the 4.0° x 112 5.0° they are 2.0° x 5.0°. The orientation of the global grid in the NetCDF files is transposed (i.e., 90°S x 180°W at top-left). The time vector represents the mid-point of each 3-hourly period.

- Processing time in R, un-parallelized, on a standard PC for a single year for the forcing data was as follows:
- 117 Interpolation of 6-hourly *I* and T_a to 3-hourly time step: 1 hr per variable
- 30-day moving window for *I*: 48 hr
- 119 30-day moving window for T_a : 68 hr
- *Total time to process forcing data for 7 years: 7*(1*2+48+68) = 826 hr*
-

 Processing time for the application of the modified Olsen and Randerson (2004) downscaling approach for a single model for a single year was:

- Monthly interpolation to 3-hourly time steps for *GPP*: 1 hr
- Monthly interpolation to 3-hourly time steps for *Re*: 1 hr
- *GPP* and *Re* downscaling: 2 hr
- 127 Monthly *NEE* closure correction: 1 hr
- 128 NetCDF generation with additional spatial resolutions: 2 hr
- *Total time to process all 19 products for 7 years: 7*19*(1+1+2+1+2) = 931 hr*
-

 The total storage size of the final NetCDF data products for all 19 products (15 models + 4 ensemble products) for all 7 years is: 374 GB at 0.5° x 0.5°, 38 GB at 2.0° x 2.5°, and 10 GB at 4.0° x 5.0°.

- We provide the data in NetCDF with a separate file for each day per product at ftp://daac.ornl.gov/data/cms/CMS_NEE_CO2_Fluxes_TBMO/data (Fisher et al., 2016). Each file contains the global gridded data with the eight 3-hourly intervals in the day. Open water pixels are set to 0, as this was desired by the atmospheric modeling community. However, we realize that *NEE* values can conceivably be 0 (though unlikely as our precision is to 16 decimal places); nonetheless, there are some pixels over land that are calculated as 0, but this is due to missing forcing data (e.g., *I* in the high latitudes during winter). Our code is set up that we can easily provide a different file output structure and missing value mask by request (contact the 143 corresponding author: $ibfisher@ipl. nasa.gov$.
-

 Model output (*GPP*, *Re*, and *NEE*) was from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013; Huntzinger et al., 2016), version 1. 15 models were included: 1) BIOME_BGC, 2) CLM, 3) CLM4VIC, 4) CLASS_CTEM, 5) DLEM, 6) GTEC, 7) ISAM, 8) LPJ-wsl, 9) ORCHIDEE, 10) SIB3, 11) SIBCASA, 12) TEM6, 13) TRIPLEX-GHG, 14) VEGAS2.1, and 15) VISIT (Table 1). All models were driven by CRU- NCEP meteorological forcing data, hence our use of the same data source for the downscaling approach applied here. We note that there are other meteorological forcing datasets also available at 3-hourly time steps for those interested in applying our downscaling approach with different data (Sheffield et al., 2006; Weedon et al., 2011; Weedon et al., 2014). Although some models are capable of output at sub-monthly time steps, the standard MsTMIP output is at the monthly time step. Additionally, 4 ensemble products were included: 1) un-weighted (naïve) ensemble mean, 2) un-weighted (naïve) ensemble standard deviation, 3) weighted (optimal) ensemble mean, and 4) weighted (optimal) ensemble standard deviation. Weights for model ensemble integration were derived based on model skill in reproducing *GPP* and biomass (Schwalm et al., 159 2015). Model output was obtained from: ftp://nacp.ornl.gov/synthesis/2009/reutlingen/CMS/20141006/

 To test and confirm that our downscaling approach was applied correctly, we tested our method on a set of ground-truth data of measured *NEE* (and forcing variables) from the FLUXNET database (Baldocchi et al., 2001). We show, for example, a single year for a single site (3-hourly in background with daily-moving window overlaid) (Figure 3) and the scatterplot of calculated versus observed *NEE* values at the 3-hourly time step for that site and year (Figure 4). A full uncertainty analysis of the approach is beyond the scope of this technical note intended to describe the methodological detail of the downscaling.

Acknowledgements

 Funding for this work was provided by NASA's Carbon Monitoring System (CMS) and NASA's Carbon Cycle Science (CARBON) programs. We thank the MsTMIP modeling teams for providing the model output. Access and information about MsTMIP model output can be found at http://nacp.ornl.gov/mstmipdata/, along with model and model team participant information. Funding for the MsTMIP activity was provided through NASA ROSES Grant #NNX10AGO01A. Data management support for preparing, documenting, and distributing MsTMIP model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory with funding through NASA ROSES Grant #NNH10AN681. We thank Dennis Baldocchi and Siyan Ma for providing the Tonzi Ranch AmeriFlux/FLUXNET data; funding for AmeriFlux data resources and core site data was provided by the U.S. Department of Energy's Office of Science. Two reviewers provided useful suggestions to improving the paper. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. Copyright 2016. All rights reserved.

References

- Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res.,
- 113, G00B01, 2008.
-
- Baldocchi, D., Falge, E., Gu, L. H., Olson, R. J., Hollinger, D., Running, S. W., Anthoni, P. M., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B. E., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. C.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society, 82, 2415-2434, 2001.
-
- Baldocchi, D. and Ma, S.: How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA, Tellus B, 65, 2013.
-
- Deng, F., Jones, D., Henze, D., Bousserez, N., Bowman, K., Fisher, J., Nassar, R., O'Dell, C., Wunch, D., and Wennberg, P.: Inferring regional sources and sinks of atmospheric CO 2 from GOSAT XCO 2 data, Atmospheric Chemistry and Physics, 14, 3703-3727, 2014.
-
- Fisher, J. B., Huntzinger, D. N., Schwalm, C. R., and Sitch, S.: Modeling the terrestrial biosphere, Annual Review of Environment and Resources, 39, 91-123, 2014.
-
- Fisher, J. B., Polhamus, A., Bowman, K. W., Liu, J., Lee, M., Jung, M., Reichstein, M., Collatz, G. J., and Potter, C.: Evaluation of NASA's Carbon Monitoring System Flux Pilot: terrestrial 210 CO₂ fluxes, San Francisco, CA2011.
-
- Fisher, J. B., Sikka, M., Bowman, K. W., Liu, J., Lee, M., Collatz, G. J., Pawson, S., Gunson, M., CMS Flux Team, TRENDY Modelers, and NACP Regional Synthesis Modelers: The NASA Carbon Monitoring System (CMS) Flux Pilot Project as a means to evaluate global land surface models, American Geophysical Union Fall Meeting, San Francisco, 2012.
-
- Fisher, J. B., Sikka, M., Huntzinger, D. N., Schwalm, C. R., Liu, J., Wei, Y., Cook, R. B., Michalak, A. M., Schaefer, K., Jacobson, A. R., Arain, M. A., Ciais, P., El-Masri, B., Hayes, D. J., Huang, M., Huang, S., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J., Parazoo, N., Peng, C., Peng, S., Poulter, B., Ricciuto, D. M., Tian, H., Shi, X., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: CMS: Modeled Net Ecosystem Exchange at 3-hourly Time Steps, 2004-2010. ORNL DAAC, Oak Ridge, Tennessee, USA, 2016.
-
- 224 Hayes, D. and Turner, D.: The need for "apples to apples" comparisons of carbon dioxide source and sink estimates, Eos, Transactions American Geophysical Union, 93, 404-405, 2012.
- Hayes, D. J., McGuire, A. D., Kicklighter, D. W., Gurney, K. R., Burnside, T. J., and Melillo, J.
- 228 M.: Is the northern high-latitude land-based $CO₂$ sink weakening?, Global Biogeochemical
- Cycles, 25, 2011.
-
- Huang, S., Arain, M. A., Arora, V. K., Yuan, F., Brodeur, J., and Peichl, M.: Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS-CTEM N+ model, Ecological Modelling, 222, 3743-3760, 2011.
-

 Huntzinger, D., Schwalm, C., Michalak, A., Schaefer, K., King, A., Wei, Y., Jacobson, A., Liu, S., Cook, R., Post, W., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project–Part 1: Overview and experimental design, Geoscientific Model Development, 6, 2121-2133, 2013.

 Huntzinger, D. N., Schwalm, C. R., Wei, Y., Cook, R. B., Michalak, A. M., Schaefer, K., Jacobson, A. R., Arain, M. A., Ciais, P., Fisher, J. B., Hayes, D. J., Huang, M., Huang, S., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan, F., Mao, J., Parazoo, N., Peng, C., Peng, S., Poulter, B., Ricciuto, D. M., Tian, H., Shi, X., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: NACP MsTMIP: Global 0.5-deg Terrestrial Biosphere Model Outputs (version 1) in Standard Format. DAAC, O. (Ed.), Oak Ridge, Tennessee, USA, 2016.

 Ito, A.: Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model, Journal of plant research, 123, 577-588, 2010.

 Jain, A. K. and Yang, X.: Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change, Global Biogeochem. Cycles, 19, GB2015, 2005.

- Krinner, G., Viovy, N., de Noblet-DucoudrÈ, N., OgÈe, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, 2005.
-

 Lei, H., Huang, M., Leung, L. R., Yang, D., Shi, X., Mao, J., Hayes, D. J., Schwalm, C. R., Wei, Y., and Liu, S.: Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations, Journal of Advances in Modeling Earth Systems, 6, 658-679, 2014.

 Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Bousserez, N., Brix, H., Collatz, G. J., Menemenlis, D., Ott, L., and Pawson, S.: Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT X CO 2 sampling on the inference of terrestrial biospheric sources and sinks, Tellus B, 66, 2014.

 Mao, J., Thornton, P. E., Shi, X., Zhao, M., and Post, W. M.: Remote Sensing Evaluation of CLM4 GPP for the Period 2000-09*, Journal of Climate, 25, 5327-5342, 2012.

 Olsen, S. C. and Randerson, J. T.: Differences between surface and column atmospheric CO2 and implications for carbon cycle research, Journal of Geophysical Research: Atmospheres (1984–2012), 109, 2004.

-
- Peng, C., Liu, J., Dang, Q., Apps, M. J., and Jiang, H.: TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics, Ecological Modelling, 153, 109-130, 2002.
-
- Ricciuto, D. M., King, A. W., Dragoni, D., and Post, W. M.: Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length, Journal of Geophysical Research: Biogeosciences (2005–2012), 116, 2011.
-

 Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., Prihodko, L., Suits, N., and Philpott, A.: Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model, Journal of Geophysical Research, 113, G03034, 2008.

-
- Schwalm, C. R., Huntzinger, D. N., Fisher, J. B., Michalak, A. M., Bowman, K., Ciais, P., Cook, R., El‐Masri, B., Hayes, D., and Huang, M.: Toward "optimal" integration of terrestrial biosphere models, Geophysical Research Letters, 42, 4418-4428, 2015.
-
- Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, Journal of Climate, 19, 3088-3111, 2006.
- Sitch, S., Smith, B., Prentice, C. I., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, 9, 161-185, 2003.
-
- Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S., Goldstein, A. H., Monson, R. K., Hollinger, D., Paw U, J. C., and Sparks, J. P.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agricultural and Forest Meteorology, 113, 185-222, 2002.
-
- Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C., and Pan, S.: Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States, Ecosystems, 15, 674-694, 2012.
-
- Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W., Blyth, E., Österle, H., Adam, J., Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century, Journal of
- Hydrometeorology, 12, 823-848, 2011.
-
- Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI 318 meteorological forcing data set: WATCH Forcing Data methodology applied to ERA - Interim reanalysis data, Water Resources Research, 50, 7505-7514, 2014.
-
- Wei, Y., Liu, S., Huntzinger, D., Michalak, A., Viovy, N., Post, W., Schwalm, C., Schaefer, K., Jacobson, A., and Lu, C.: NACP MsTMIP: Global and North American Driver Data for Multi-
- Model Intercomparison. Data set. Available on-line [http://daac.ornl.gov/] from Oak Ridge
- National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 2014a.
- Wei, Y., Liu, S., Huntzinger, D., Michalak, A., Viovy, N., Post, W., Schwalm, C., Schaefer, K., Jacobson, A., and Lu, C.: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project–Part 2: Environmental driver data, Geoscientific Model Development, 7, 2875-2893, 2014b.
-
- Zeng, N., Qian, H., Roedenbeck, C., and Heimann, M.: Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle, Geophys. Res. Lett., 32,
- L22709, 2005.
-
-

336 Table 1. Global terrestrial biosphere models from the Multi-scale Synthesis and Terrestrial

337 Model Intercomparison Project (MsTMIP) downscaled in this activity.

338
339 339 Figure 1.The original downscaling approach of Olsen and Randerson (2004) used monthly fixed 340 values, which led to a "stair-stepping" behavior between months (red). This was eliminated by using a 30-day moving window and interpolating monthly input values to 3-hourly time steps

using a 30-day moving window and interpolating monthly input values to 3-hourly time steps

342 (black). Example shown for LPJ model global mean year 2005.

343 Figure 2. Vegetation productivity (e.g., blues/greens) follows the course of the sun for a single 344 day of net ecosystem exchange (NEE or net CO_2 flux; g C m⁻² 3hr⁻¹) for each 3-hourly period. 345 Shown here, for example, is July 1, 2007 for the weighted ensemble mean product.

346
347

¹ Figure 3. The observed net ecosystem exchange (NEE) (blue) and reproduced NEE (red) shown
348 at the 3-hourly time step with daily moving window overlaid for a single year from the Tonzi 348 at the 3-hourly time step with daily moving window overlaid for a single year from the Tonzi
349 Ranch AmeriFlux/FLUXNET site (Baldocchi and Ma, 2013).

Ranch AmeriFlux/FLUXNET site (Baldocchi and Ma, 2013).

for a single year at the Tonzi Ranch AmeriFlux/FLUXNET site (Baldocchi and Ma, 2013).