Supplementary Online Information

Chemodiversity of Dissolved Organic Matter in the Amazon Basin

Michael Gonsior1, Juliana Valle2, Philippe Schmitt-Kopplin3,4, Norbert Hertkorn4, David Bastviken5, Jenna Luek1, Mourad Harir4, Wanderley Bastos6, and Alex Enrich-Prast2,5

1Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD20688, USA
2Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
3Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, 85354, Germany
4Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, Neuherberg, 85764, Germany
5Department of Thematic Studies - Environmental Change, Linköping University, Linköping, 581 83, Sweden
6Laboratory of Environmental Biogeochemistry, Universidade Federal do Rondônia, Rodovia, 76801-974, Brazil

Correspondence to: Michael Gonsior (gonsior@umces.edu)
Figure S1: Maps of sampling locations.
Figure S2: Typical EEM spectra of SPE-DOM of Rio Negro (A), Rio Madeira (B) and Rio Tapajos (C) waters.
Figure S3: EEM-PARAFAC components of all SPE-DOM samples collected in the Amazon Basin.
Figure S4: Split-half validation of the 6 splits of the 5 component EEM-PARAFAC model.
Figure S5: Hierarchical cluster of the EEM-PARAFAC components Fmax1-5.
Figure S6: Heat maps of the Spearman Rank correlations between molecular ions and their intensities and Fmax values separated into the dissolved organic carbon (CHO), nitrogen (CHNO) and sulfur (CHOS) pools. Hierarchical clusters that contained the Fmax values were highlighted to emphasize all molecular ions that co-varied with specific molecular ions and their intensities. The van Krevelen diagrams highlighted in grey correspond to the molecular signatures that co-varied with specific EEM-PARAFAC Fmax values.