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Abstract. Grassland management type (grazed or mown) and intensity (intensive or extensive) play a 

crucial role in the GHG balance and surface energy budget of this biome, both at field scale and at 

large spatial scale. Yet, global gridded historical information on grassland management intensity is not 

available. Combining modelled grass biomass productivity with statistics of the grass-biomass demand 

by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. 5	
These maps include the minimum area of managed vs. maximum area of un-managed grasslands, and 

the fraction of mown versus grazed area at a resolution of 0.5° by 0.5°. The grass-biomass demand is 

derived from a livestock dataset for 2000, extended to cover the period 1901 – 2012. The nature of 

grass-biomass supply (i.e., forage grass from mown grassland and biomass grazed) is simulated by the 

process based model ORCHIDEE-GM driven by historical climate change, rising CO2 concentration, 10	
and changes in nitrogen fertilization. The global area of managed grassland obtained in this study is 

simulated to increase from 5.1 × 106 km2 in 1901 to 11 × 106 km2 in 2000, although the expansion 

pathway varies between different regions. The gridded grassland management intensity maps are 

model-dependent because they depend on Net Primary Productivity (NPP), which is the reason why 

specific attention is given to the evaluation of NPP. Namely, ORCHIDEE-GM is calibrated for C3 and 15	
C4 grass functional traits, and then evaluated against a series of observations from site-level NPP 

measurements to two global satellite products of Gross Primary Productivity (GPP) (MODIS-GPP and 

SIF data). The distribution of GPP and NPP with and without management, are evaluated against 

observations at different spatial and temporal scales. Generally, ORCHIDEE-GM captures the spatial 

pattern, seasonal cycle and interannual variability of grassland productivity at global scale well, and 20	
thus appears to be appropriate for global applications.  

 

 

1 Introduction 

 25	
The rising concentrations of greenhouse gases (GHGs), such as carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N2O) are driving climate change, through increased radiative forcing (IPCC, 2013). 

It is estimated that over the whole globe, livestock production (including crop-based and pasture-based) 

currently accounts for 37% of the anthropogenic CH4 (Martin et al., 2010) and 65% of the 

anthropogenic N2O emissions (FAO, 2006). Grassland ecosystems support most of the world’s 30	
livestock production, thus contributing indirectly a significant share of global CH4 and N2O emissions. 

For CO2 fluxes however, grassland can be either a sink or a source with respect to the atmosphere. The 

net annual carbon storage of managed grassland ecosystems in Europe (here, net biome productivity, 

NBP) was found to be correlated with carbon removed by grazing and/or mowing (Soussana et al., 

2007). Thus, knowledge of management type (grazed or mown) and intensity (intensive or extensive) is 35	
crucial for simulating the carbon stocks and GHG fluxes of grasslands. 

 

The HYDE 3.1 land-use dataset (Klein Goldewijk et al., 2011) provides reconstructed gridded changes 

of pasture area over the past 12,000 years. Here, pasture represents managed grassland providing grass 

biomass to livestock. This reconstruction is based on population density data and country-level per 40	
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capita use of pasture land derived from FAO statistics (FAO, 2008) for the post-1961 period or 

assumed by those authors for the pre-1960 period. It defined land used as pasture but does not provide 

information about management intensity. To our knowledge, global maps of grassland management 

intensity are not available. Chang et al. (2015a) constructed such a map for European grasslands at 25 

km spatial resolution based on livestock numbers from statistics, and the grass-fed livestock numbers 5	
supported by the net primary productivity (NPP) of the ORCHIDEE-GM model. The main result of 

that study is that soil carbon accumulation is accelerating in European grassland, with a net increase of 

soil carbon of 384 ± 141 g C m-2 over the period 1991- 2010 (Chang et al., 2015a). The increasing soil 

carbon accumulation rate was attributed separately to climate change, CO2 trends, nitrogen addition, 

and land-cover and management intensity changes. The observation-driven trends of management 10	
intensity were found to be the dominant driver explaining the positive trend of NBP across Europe (36 

- 43% of the total trend with all drivers; Chang et al., 2015c). That study confirmed the importance of 

management intensity in drawing up a grassland carbon balance. Despite being carbon sinks, the 

European grassland was found to be a net GHG source of 50 g C-CO2 equiv. m-2yr-1 because CH4 and 

N2O emissions, and CO2 released by animals (Chang et al., 2015a) offset soil carbon accumulation. 15	
This study illustrated the importance of accounting for not only the ecosystem GHG fluxes, but also the 

livestock-related fluxes, when estimating the GHG balance of grassland. 

 

Recently, Herrero et al. (2013) garnered a global livestock data to create a dataset with grass biomass 

use information for year 2000. In this dataset, grass used for grazing or silage is separated from grain 20	
feeds, occasional feeds and stovers (fibrous crop residues). A variety of constraints have been taken 

into account in creating this global dataset, including the specific metabolisable energy requirements 

for each animal species, and regional differences in animal diet composition, feed quality and feed 

availability.  This grass-biomass use dataset provides a starting point for constraining the amount of 

carbon removed by grazing and mowing, and is suitable for adoption by global vegetation models to 25	
account for livestock-related fluxes. 

 

The major objective of this study is to produce global gridded maps of grassland management intensity 

since 1901 for global vegetation model applications. These maps combine historical NPP changes from 

the process-based global vegetation model ORCHIDEE-GM (Chang et al., 2013; 2015b) with grass 30	
biomass use extrapolated from Herrero et al. (2013). First, ORCHIDEE-GM is calibrated to simulate 

the distribution of potential (maximal) harvested biomass from mown and grazed grasslands. Second, 

the calibrated model is evaluated against both a new set of site-level NPP measurements, and satellite-

based models of NPP and GPP. In a third step, the modelled NPP maps are used in combination with 

livestock data in each country since 1961 and in 18 large regions of the globe for 1901-1960 for 35	
reconstructing annual maps of grassland management intensity at a spatial resolution of 0.5° by 0.5°. 

The reconstructed management intensity defines the fraction of mown, grazed and unmanaged 

grasslands in each grid-cell. In Sect. 2, we describe the ORCHIDEE-GM model, the adjustment of its 

parameters for the C4 grassland biome, the data used for evaluation, and the method proposed to 

reconstruct grassland management intensity. The management intensity maps and the comparison 40	
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between modelled and observed productivity are presented in Sect. 3 and discussed in Sect. 4. 

Concluding remarks are made in Sect. 5. 

 

2 Material and Methods 

 5	
2.1 Model description 

 

ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) is a process-based 

ecosystem model developed for simulating carbon fluxes, and water and energy fluxes in ecosystems, 

from site-level to global scale (Krinner et al., 2005; Ciais et al., 2005; Piao et al., 2007). ORCHIDEE-10	
GM (Chang et al., 2013) is a version of ORCHIDEE that includes the grassland management module 

from PaSim (Reido et al., 1998; Vuichard et al., 2007a,b; Graux et al., 2011), a grassland model for 

field-scale applications. ORCHIDEE-GM v1 was evaluated and some of its parameters calibrated, at 11 

European grassland sites representative of a range of management practices, with eddy-covariance net 

ecosystem exchange (NEE) and biomass measurements. The model successfully simulated the NBP of 15	
these managed grasslands (Chang et al., 2013). At continental scale, ORCHIDEE-GM version 2.1 was 

applied over Europe to calculate the spatial pattern, interannual variability (IAV) and the trends of 

potential productivity, i.e., the productivity of an optimal management system that maximizes 

simulated livestock densities in each grid-cell (Chang et al., 2015b). Chang et al. (2015b) then added a 

parameterization of adaptive management through which farmers react to a climate-driven change of 20	
previous-year productivity. Though a full nitrogen cycle is not included in ORCHIDEE-GM, the 

positive effect of nitrogen fertilizers on grass photosynthesis rates, and thus on subsequent ecosystem 

productivity and carbon storage, are parameterized with an empirical function calibrated from literature 

estimates (Chang et al., 2015b). ORCHIDEE-GM v2.1 was used to simulate NBP and NBP trends over 

European grasslands during the last five decades at a spatial resolution of 25 km and a 30-minute time-25	
step.  

 

ORCHIDEE-GM v1 and v2.1 were developed based on ORCHIDEE v1.9.6. To benefit from recent 

developments and bug-corrections in the ORCHIDEE model, ORCHIDEE-GM v2.1 is updated in this 

study with ORCHIDEE Trunk.rev2425 (available at: 30	
https://forge.ipsl.jussieu.fr/orchidee/browser/trunk#ORCHIDEE). The updated model is referred to 

here as ORCHIDEE-GM v3.1.  

 

2.2 Model parameter settings 

 35	
Two sensitive parameters representing photosynthetic activity (the maximum rate of Rubisco 

carboxylase activity at a reference temperature of 25°C; Vcmax25) and the morphological plant traits 

(the maximum specific leaf area; SLAmax) were reported by Chang et al. (2015a) for simulating 

grassland NPP. The Vcmax25 = 55 µmol m-2 s-1 and SLAmax = 0.048 m2 per g C in ORCHIDEE-GM were 

previously defined from observations and indirectly evaluated against eddy-flux tower measurements 40	
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of GPP for temperate C3 grasslands in Europe (Chang et al., 2013, 2015b). For C4 grasslands, we set 

the value of SLAmax = 0.044 m2 per g C for C4 grasses in ORCHIDEE-GM to fit the mean value from 

the TRY TRY global plant trait database (0.0403 m2 per g C) as we did previously for C3 grasses 

(Chang et al., 2013). Vcmax25 for C4 grasses is set to be 25 µmol m-2 s-1 (Feng and Dietze, 2013; 

Verheijen et al., 2013). These values of Vcmax25 represent an average for different nitrogen, phosphorus 5	
conditions between locations, and for different species of C4 grasses possibly adapted to specific long-

term climate conditions at each location, They are within the range of observations made under 

different conditions, and consistent with values used by other terrestrial ecosystem models (Table S1).  

 

2.3 Simulation set-up 10	
 

ORCHIDEE-GM v3.1 was run on a global grid over the globe using the CRU+NCEP reconstructed 

climate data for the period 1901–2012 (http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm). 

The fields used as input of the model are temperature, precipitation, specific humidity, solar radiation, 

wind speed, pressure and long wave radiation at a 6-hourly time-step. The CRU+NCEP climate is a 15	
combination of CRU TS.3.21 0.5° × 0.5° monthly climate fields covering the period 1901–2012 

(http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276), and the US 

National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 

Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis 1° × 1° 6-hourly 

climatology covering the period 1948 to the present-day (Kanamitsu et al., 2002). 20	
 

Other input data are: 1) yearly grazing-ruminant stocking density maps, 2) wild-herbivores population 

density maps, 3) nitrogen (N) fertilizer application maps including manure-N and mineral-N fertilizers, 

and 4) atmospheric N deposition maps. These input maps all cover the period from 1901 to 2012 and 

are briefly described below (see Supplementary Information Text S2 – S8). 25	
 

Grazing livestock density maps. These maps are established from animal density, and grassland land-

use area data (see Supplementary Information Text S1, S2, and S3). The ruminant livestock density 

distribution for year 2006 is from the Gridded Livestock of the World v2.0 dataset (GLW v2.0). 

Domestic ruminant stocking densities including cattle, sheep and goats (Robinson et al., 2014) are 30	
converted to Livestock Units (LU) and aggregated to the resolution of 0.5o × 0.5o. This gridded 

ruminant density is then back-casted from 2012 to 1901 assuming that it has changed in each grid-cell 

proportionally with country-scale metabolisable energy requirement (ME) from all ruminants 

(Supplementary Information Text S2 and S3). ME requirement is the amount of energy (MJ day-1) an 

animal needs for maintenance, lactation, and pregnancy (IPCC, 2006 Vol 4, Chapter 10, Eqs. 10.3 to 35	
10.13). The evolution of ME requirement by ruminants was calculated from FAO ruminant population 

statistics during the period 1961-2012 (FAOSTAT, 2013) and from Mitchell (1993, 1998a, b) during 

the period 1901-1960 (http://themasites.pbl.nl/tridion/en/themasites/hyde/landusedata/livestock/index-

2.html) using the method given in the Supporting information Text S1 of Chang et al. (2015b). 

 40	
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Wild herbivore density maps. The gridded population of wild herbivores is derived from the literature 

data, and from Bouwman et al. (1997) (see Table S2). The population of these herbivores was first 

converted to LU according to the ME requirement calculated from their mean weight (Table S2), and 

then distributed to non-managed grasslands based on grassland aboveground (consumable) NPP 

simulated from ORCHIDEE-GM v3.1 (Supplementary Information Text S8). The wild herbivores 5	
density was assumed to remain constant during the period of 1901-2012, because no gridded 

worldwide wild-animals population information was available. 

 

Nitrogen application rates from mineral fertilizers and manure. For grasslands in the EU-27 

countries, gridded mineral fertilizer and manure nitrogen application rates for grasslands are available 10	
from the CAPRI model (Leip et al., 2011, 2014) based on information from official and harmonized 

data sources such as Eurostat, FAOstat and OECD, which are spatially disaggregated using the 

methodology described by Leip et al. (2008). The rules used to rebuild the temporal evolution of 

gridded nitrogen fertilization from 1901 to 2010 were described by Chang et al., 2015b, namely: 1) no 

mineral-N fertilizer is applied over grasslands before 1950, and 2) for the period of 1951-1961, the rate 15	
of application is assumed to increase linearly from zero to the level of 1961 in each 0.5° grid-cell. The 

application rate in 2011 and 2012 was assumed to be constant and the same as that in 2010. For 

countries/region outside the EU-27, the following data and methods were used (see Supplementary 

Information Text S4 and S5 for details).  The regional amount of manure-N fertilizer from Bouwman et 

al. (2002a, b) was downscaled to a 0.5° × 0.5° grid according to ruminant density of each grid-cell, 20	
which implies that locally higher ruminant density produces more manure. In each grid-cell, historical 

changes of manure-N fertilization were assumed to follow the same evolution as the ruminant density 

(Supplementary Information Text S2). 

 

For mineral-N fertilizers, country-scale average application rates and the grassland areas where 25	
mineral-N fertilizers have been applied from 1999 to 2000 are taken from FAO/IFA (2002). National 

application rates are downscaled at 0.5° × 0.5° resolution assuming that only grid-cells with a ruminant 

density above a certain threshold are fertilized with mineral fertilizers. The value of this threshold is 

determined for each country so that the total grassland area of fertilized grids is identical to the national 

fertilized grassland area reported by FAO/IFA (2002). The application rate of mineral-N fertilizers is 30	
extrapolated using country-scale total nitrogenous mineral fertilizers consumption data (TNF) from 

FAOSTAT (2013) during the period 1961-2002. The mineral-N fertilization rate after 2002 is assumed 

to be constant as the 2002 rate. For the period 1901-1960, the same set of rules that were applied for 

the EU-27 (see section ‘Simulation set-up’ in Chang et al., 2015a for details) is used.  

 35	
Atmospheric-nitrogen deposition maps. The historical atmospheric N deposition maps were 

simulated by the LMDz-INCA-ORCHIDEE global chemistry-aerosol-climate model which couples on-

line the LMDz (Laboratoire de Météorologie Dynamique, version-4) General Circulation Model, the 

INCA (INteraction with Chemistry and Aerosols, version-3) chemistry transport model and 

ORCHIDEE v9 dynamical vegetation model. A description of the model components is given by 40	
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Hauglustaine et al. (2014). Hindcast simulations for the years 1850, 1960, 1970, 1980, 1990, and 2000, 

have been performed using anthropogenic emissions from Lamarque et al. (2010). Based on these 

simulations, the LMDz-INCA total nitrogen deposition fields (wet and dry ; NHx and NOy) of all 

nitrogen-containing gas phase and aerosol species have been simulated at a spatial resolution of 1.9o in 

latitude and 3.75o in longitude. These deposition fields have been evaluated against measurements from 5	
the EMEP network over Europe (emep.int), from the NADP network over North America (http: 

//nadp.sws.uiuc.edu/NTN) and from the EANET network over eastern Asia (http://www.eanet.cc/). 

They show a generally good agreement with observations (Hauglustaine et al., 2014). Linear 

interpolation was performed between the hindcasts years to produce temporally variable atmospheric-N 

deposition maps. 10	
 

In this study, we first model the productivity of grasslands at global scale by ORCHIDEE-GM v3.1, 

and evaluate that its distribution is realistic using local and satellite observations. Then, we derive 

historical maps of management intensity from productivity maps. Thus, we do not use a land-cover 

map in the simulations, but rather consider that grasslands are distributed all over the world. 15	
Considering different photosynthetic pathways and management types, six grassland plant functional 

types (PFTs) are separately defined:  C3 natural (unmanaged) grassland, C3 mown grassland, C3 

grazed grassland, C4 natural (unmanaged) grassland, C4 mown grassland, and C4 grazed grassland. 

ORCHIDEE-GM v3.1 is run over the globe during the period 1901-2012 with those six PFTs being 

present in each grid-cell, forced by increasing CO2, variable climate and variable nitrogen deposition. 20	
For each grassland PFT, specific forcing and management strategies are used (summarized in Table 1). 

Unmanaged grasslands are forced by wild herbivore density maps and grazing rates, which consider 

both green biomass grazing in the growing season and dead biomass grazing in the non-growing season 

(Supplementary Information Text S8 for detail). Both mown and grazed grassland are forced by the 

historical N fertilizer maps described above, which include manure and mineral fertilizers. In the mown 25	
grassland, the frequency and magnitude of regular harvests of forage in each grid-cell during the 

growing season is simulated internally in the model as a function of grown biomass (Vuichard et al., 

2007). The annual production of forage from the mown grassland fraction of a grid-cell is defined as 

the potential biomass that can be cut (Chang et al., 2015b). Grazed grassland is forced in each grid-cell 

by the prescribed N fertilizer application density and the historical gridded grazing-ruminant density. 30	
Stocking rate variability, starting, stopping and resumption of grazing periods during the growing 

season are simulated by ORCHIDEE-GM v3.1 (Vuichard et al., 2007; Chang et al., 2015b). 

 

2.4 Grassland management intensity and historical changes 

 35	
Herrero et al. (2013) established a global livestock production dataset containing a high-resolution (8 

km × 8 km) gridded map of grass-biomass use for the year 2000. In this study, this dataset is 

extrapolated backwards in time from 2012 to 1901 to constrain the grass-biomass consumption in 

ORCHIDEE GM v3.1 in order to establish historical changes in the spatial distribution of grassland 

management intensity.  Assuming that grass-biomass use for grid cell k in country j and year m 40	
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(GBUm,j,k in kg dry matter (DM) per year) varies proportionally with the total ME requirement of 

domestic ruminants in each country, GBUm,j,k can be calculated from its value during the year 2000 

given by Herrero et al. (2013), according to : 

GBUm, j ,k =GBU2000, j ,k ×
Im, j
I2000, j   (1)

 

where Im.j and I2000,j are ME index (unitless) values for country j in year m and year 2000 respectively 5	
and given by:

  
Im, j =

MEm, j
MEref , j    (2)

 

where MEm,j is the total ME requirement by all ruminant (including cattle, sheep and goats) in country j 

in year m; and MEref,j is the total ME requirement by all ruminants in country j in the reference year 

2000 (see in Supplementary Information Text S3 for details).  10	
 

ORCHIDEE-GM v3.1 simulates the potential (maximal) cut biomass from mown grasslands (Ymown, 

unit: kg DM m-2 yr-1 from mown grassland) and the potential grazed biomass per unit area (Ygrazed, unit: 

kg DM m-2 yr-1 from grazed grassland) in each grid-cell. Ygrazed is calculated as being driven by the 

historical maps of grazing-ruminant density (see above and Supplementary Information Text S3). To 15	
avoid economically implausible stocking rates, we set a minimum grazing-ruminant density of 0.2 LU 

ha-1.  Ygrazed is usually lower than Ymown in temperate grasslands, due to the lower herbage-use efficiency 

of grazing simulated by ORCHIDEE-GM (Chang et al., 2015b). However, in some arid regions, the 

grass biomass does not grow enough during the season to trigger harvest, i.e., it does not reach the 

threshold in the model at which farmers are assumed to decide to cut grass for feeding forage to 20	
animals (see Chang et al., 2015b), so that Ygrazed can become larger than Ymown (Fig. S1). The following 

set of rules was used to reconstruct historical changes in grassland management intensity, based on 

NPP simulated by ORCHIDEE-GM v3.1: 

 

Rule-1: for each grid-cell and year, the total biomass removed by either grazing and cutting must be 25	
equal to the grass-biomass use, GBUm,j,k ; 

 

Rule-2: grazing management prioritizes fulfilling GBUm,j,k; 

 

Rule-3: if the potential biomass consumption from grazing (Ygrazed) is not high enough to fulfil GBUm,j,k, 30	
a combination of grazing and mowing management is undertaken. 

 

Thus, for grid-cell k in year m, the minimum fraction of grazed (fgrazed,m,k), the minimum fraction of 

mown (fmown,m,k) and the maximum fraction of unmanaged grassland (funmanaged,m,k) are calculated with 

the following equations (definitions of minimum and maximum in this context are given below). 35	
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If Agrass ,m,k ×Ygrazed ,m,k >GBUm, j ,k ,	then:  

fgrazed ,m,k =
GBUm, j ,k

Agrass ,m,k ×Ygrazed ,m,k
    (3) 

fmown,m,k =0
      (4) 

funmanaged ,m,k =1− fgrazed ,m,k
      

(5) 

 5	
where Agrass,m,k (unit: m2) is the grassland area for grid-cell k in year m of the series of historic land-

cover change maps (Supplementary Information Text S3).  

 

If	 Agrass ,m,k ×Ygrazed ,m,k <GBUm, j ,k
, and 

Agrass ,m,k ×Ymown,m,k >GBUm, j ,k
, then: 

fgrazed ,m,k × Agrass ,m,k ×Ygrazed ,m,k + fmown,m,k × Agrass ,m,k ×Ymown,m,k =GBUm, j ,k  (6) 10	

fgrazed ,m,k + fmown,m,k =1      (7)  

funmanaged ,m,k =0      (8) 

 

If GBUm,j,k cannot be fulfilled by any combination of modelled Ygrazed and Ymown, we diagnose a 

modelled grass-biomass production deficit and apply the following equations : 15	
 

if  Ygrazed > Ymown, then fgrazed,m,k = 1, fmown,m,k = 0, and funmanaged,m,k = 0 (9) 

 

if Ygrazed < Ymown, then fmown,m,k = 1, fgrazed,m,k = 0, and funmanaged,m,k = 0 (10) 

 20	
This set of equations is valid for a mosaic of different types of grasslands in each grid-cell, some 

managed (grazed and/or mown) and some remaining unmanaged. In reality 1) farm owners could 

increase the mown fraction to produce more forage which corresponds approximately to the mixed and 

landless systems of Bouwman et al., (2005); and 2) animals could migrate a long way across grazed 

and unmanaged fractions (as they do in real rangelands) and only select the most digestible grass in 25	
pastoral systems, which corresponds to  extensively grazed grasslands. Yet, given the approximations 

made in this study, fgrazed,m,k  and fmown,m,k represent the minimum fractions of grazed/mown grasslands 

rather than the actual fractions, and on the other hand funmanaged,m,k corresponds to a maximum fraction of 

unmanaged grasslands since both mixed and land less and extensive grazing are not modelled. 

 30	
2.5 Modelled productivity  
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Two simulation experiments were performed to simulate the global distribution of grassland 

productivity from 1901 to 2012. The experimental design aims to compare GPP and NPP of managed 

and unmanaged grasslands, with observation derived datasets. The unmanaged simulation is hereafter 

expressed as Sim-GU, and the managed one is Sim-GM: it includes all forcing data and Eqss (3-8) to 

calculate the variable fractions of grazed, mown and unmanaged grassland in each grid-cell.   5	
 

2.6 Datasets for model evaluation 

 

2.6.1 Grassland NPP observation database 

 10	
Net primary productivity (NPP), including aboveground and belowground plant organs, represents the 

net flux of carbon from the atmosphere into live plant tissues (over one year in this study). NPP is a 

crucial variable in vegetation models and it is essential that this variable is properly validated. High 

quality measurements of grassland NPP are scarse, partly due to the difficulty of measuring some NPP 

components such as fine-root production (Scurlock et al., 1999, 2002). An updated version of the 15	
Luyssaert et al. (2007) database comprising non-forest biomes (Campioli et al., 2015) was used here. 

This database attributes a flag indicating managed or un-managed to each site, and provides mean 

annual temperature, annual precipitation and downwelling solar radiation based on site measurements 

from the literature, CRU database (Mitchell and Jones, 2005), MARS database 

(http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/Data-distribution/AGRI4CAST-20	
Interpolated-Meteorological-Data) or WorldClim database (Hijmans et al., 2005). Two additional 

datasets used in this study present NPP measurements from 30 sites across China (Zeng et al., 2015; Y. 

Bai, personal communication, 2015). These data include aboveground and belowground NPP 

observations at fenced (i.e., unmanaged) and unfenced (i.e., managed) grassland for each site. In total, 

we selected 257 NPP observations (NPP of whole plant) with separated aboveground and belowground 25	
NPP from 113 sites all over the world (including grassland, and savanna; Fig. S2). Duplicate 

observations from the same site-year were averaged and considered as a single observation. NPP 

measurements with different management (managed or un-managed) at the same site were considered 

as two identical observations. In total, 214 grassland NPP measurements were compared to the 

simulation of ORCHIDEE-GM v3.1 for the grid-cell corresponding to each site and for the time period 30	
of observation.  

 

2.6.2 Grassland GPP from MODIS products 

 

The MOD17A3 dataset (version 55; Zhao et al., 2005; 2010) — a MODIS (the Moderate Resolution 35	
Imaging Spectroradiometer) product on vegetation production — provides the seasonal and annual 

GPP data at a spatial resolution of 1 km from 2000 to 2013. The MOD17 algorithm (Heinsch et al., 

2003) uses the MODIS Land Cover Type product (MOD12Q1) as input employing Boston University’s 

UMD classification scheme. To obtain the grassland GPP from the MOD17 dataset, we first extract the 

MOD17 GPP at 1 km resolution over grassland grids in the MOD12Q1 dataset. Here, the grassland in 40	
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the MOD12Q1 dataset includes the ‘open shrubland’, ‘savanna’, and ‘grassland’ in the UMD 

classification scheme. The extracted annual and seasonal MOD17 GPP was then averaged and 

aggregated to 0.5o × 0.5o spatial resolution to be comparable to model output. The grassland GPP 

simulated by ORCHIDEE-GM v3.1 was evaluated against the MOD17 GPP for the spatial pattern 

(annual mean GPP), the seasonal cycle, and the interannual variability (IAV)  (detrended time-series 5	
from 2000 to 2013). 

 

2.6.3 Sun-induced chlorophyll fluorescence (SIF) data  

 

Space-based observations of sun-induced chlorophyll fluorescence (SIF) provide a time-resolved 10	
measurement of a proxy of photosynthesis (Guanter et al., 2014). Similar to the MPI-BGC data-driven 

GPP product (Jung et al., 2011), SIF values exhibit a linear relationship (r2 = 0.79) with monthly tower 

GPP at grassland sites in western Europe (Guanter et al., 2014). Compared to MODIS EVI (MOD13C2 

products), SIF observations drop to zero during the non-growing season, thus providing a less clear 

signal of photosynthetic activity (Guanter et al., 2014) than other vegetation indices based on visible 15	
and near-infrared reflectances. SIF also provides a better seasonal agreement with GPP from flux 

towers as compared to vegetation indices (Joiner et al., 2014). Guanter et al. (2014) showed that SIF 

data tend to better capture spatial hotspots of GPP (e.g., the US corn belt) than MODIS products.  

  

A global SIF dataset was produced using spectra from the Global Ozone Monitoring Experiment-2 20	
(GOME-2) instrument onboard the MetOp-A platform (Joiner et al., 2013). In this study, daily SIF 

retrievals from 2007 to 2012 are aggregated to monthly values (Version 26 (V26), Level 3 products 

with the spatial resolution of 0.5° × 0.5°) and averaged for each month to produce a mean seasonal 

variation related to photosynthetic activity. The seasonal variation of SIF is normalized (with the mean 

value = 1) to evaluate the seasonality of grassland GPP simulated by ORCHIDEE-GM v3.1. In the 25	
GOME-2 SIF pixels that have a ground footprint of ~40km by 80km at nadir view during the time 

period examined, different PFTs can co-exist in the same grid-cell with different phenologies — this 

could bias the seasonality of grassland GPP. To reduce the contamination of SIF by non-grassland 

PFTs, we restrict the model-data comparison to grassland-dominated grid-cells, defined as those with 

grassland cover in the MOD12Q1 dataset (Sect. 2.5.2) is larger than 50%.  30	
 

Furthermore, SIF-GPP is calculated by SIF-GPP = −0.10 + 3.72 × SIF (V14) as given by Guanter et al. 

(2014) based on comparisons with cropland and grassland flux tower sites in the northern hemisphere 

at middle latitudes.	 	 However, SIF data V26 used in this study differs somewhat in magnitude from 

V14 used by Guanter et al. (2014). To obtain the SIF-GPP linear model for SIF V26, we performed a 35	
linear regression between SIF V26 and SIF V14 monthly data over the fourteen gridcells that 

encompass the flux towers used in Table S1 of Guanter et al. (2014) and for the same time period. The 

resultant relationship obtained, is SIF-V14 = 1.25 × SIF-V26 (r = 0.96). The linear model SIF-GPP = -

0.1 + 4.65 × SIF (V26) is used to calculate SIF-GPP in this study. 

 40	
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2.7 Model-data agreement metrics 

 

Model-data agreement of NPP (modelled NPP vs. NPPobs) and GPP (modelled GPP vs. MODIS-GPP) 

was assessed using Pearson’s product-moment correlation coefficients and root mean squared errors 

(RMSE). The Pearson’s product-moment correlation coefficient (r) describes the proportion of the total 5	
variance in the observed data that can be explained by the model, given by: 

r =
(Pi −P)(Oi −O)

i=1

n

∑

(Pi −P)2
i=1

n

∑ (Oi −O)2
i=1

n

∑
  (11) 

Where Pi is modelled data, Oi is observed data, is modelled mean,  is observed mean, and n is the 

sample size. The RMSE is a measure of model accuracy reporting the mean difference between the 

modelled and observed fluxes, expressed as: 10	

RMSE =
(Pi −Oi )2

i=1

n

∑
n

  (12) 

where Pi is modelled data, Oi is observed data, and n is the sample size. 

r is used to assess the model-data agreement of GPP for the spatial pattern and the IAV (modelled GPP 

vs. MODIS-GPP), and seasonality (modelled GPP vs. MODIS-GPP and SIF data).  

 15	
3 Results 

 

3.1 Maps of grassland management intensity 

 

Figure 1 shows the minimum fractions of mown and grazed grasslands, and the maximum fraction of 20	
unmanaged out of total grassland (fmown, fgrazed, and funmanaged respectively; Sect. 2.4) in the year 2000. 

Grazed grasslands comprise most of the managed grasslands in the maps (Fig. 1b). Significant fractions 

of mown grasslands are only found in regions with high ruminant stocking density such as eastern 

China, India, eastern Europe and eastern United States, where Ygrazed cannot fulfil the grass-biomass 

demand (Fig. 1a). Using the FAO-defined regions (see caption to Fig. 3),  the largest fractions of 25	
managed grasslands are modelled in regions of high ruminant density (Fig. S3) such as in Eastern 

Europe with a mean fraction of 89 ± 17% (the mean being the average fraction of mown and grazed 

grasslands over all the grid-cells in this region and the standard deviation being taken from differences 

between grid-cells), South Asia (82 ± 23%), western Europe (55 ± 33%), and North America (49 ± 

35%). Lower managed grasslands fractions are modeled in Oceania (42 ± 35%), Latin America and the 30	
Caribbean (LAC, 40 ± 27%), the Russian Federation (40 ± 38%), and sub-Saharan Africa (SSA, 38 ± 

35%). 

  

� O
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In some grid-cells, the simulated grassland productivity is not sufficient to fulfil the grass-biomass use 

given by Herrero et al. (2013; Fig. 1d). Of the 2.4 billion tonnes of grass-biomass use (in dry matter) 

given by Herrero et al., 18% cannot be fulfilled by the productivity simulated by ORCHIDEE-GM v3.1. 

This translates into a modelled grass-biomass production deficit of 0.42 billion tonnes (Table 2). Out of 

all regions, the largest modelled production deficit (fglobal in Table 3) is found in South Asia (50%). This 5	
South Asian deficit is predominantly in India (36%) and Pakistan (9%). Other regions with a biomass 

production deficit are the Near East and North Africa (NENA; 16%) and sub-Saharan Africa (SSA 

11%). Overall, 24% of the global production deficit comes from regions with dry climate and low NPP 

(less than 50 g C m-2yr-1), and 10% of it comes from regions with low grassland cover (less than 10% 

of total land cover). The causes of this grass-biomass production deficit diagnosed by ORCHIDEE-GM 10	
are discussed in Sect. 4.2. 

 

3.2 Modelled productivity  

 

Figure 2 shows the grassland productivity (NPP) from the simulation Sim-GM (Fig. 2a), and the NPP 15	
differences between Sim-GM and Sim-GU (Fig. 2b). The effect of including management does not 

produce a big difference in simulated NPP, which has similar patterns between Sim-GM and Sim-GU 

in most regions (Fig. 2b). Nevertheless, there are significant differences of NPP due to management in 

the central United States, Europe, south China, South Korea, south Japan, and south Brazil where N 

fertilizer additions (Table S3) cause a higher productivity (Fig. 2c and Fig. 3).  20	
 

Figure 3 displays the NPP per unit area, and the production (Prod = NPP × grassland area) of each type 

of grassland for ten FAO-defined regions and the globe in Sim-GM. Even when grassland management 

is included, the production of unmanaged grassland (Produnmanaged) still comprises 66% of the total 

production (Prodtotal) in the 1990s. The production of grazed grasslands (Prodgrazed) accounts for 31% 25	
of Prodtotal, while the production of mown grasslands (Prodmown) is only 3%, given the small area under 

this management practice (Fig. 3). Mown grasslands only contribute to production in the regions where 

climate conditions and fertilizers maintain a high NPP, and Ygrazed is not enough to fulfil the animal 

requirement, which triggers the harvest practice in Equations (6-8). As a result, Western and Eastern 

Europe and South Asia have higher Prodmown fractions. 30	
 

 

3.3 Historical changes in the area and productivity of managed grassland 

 

The global minimum area of managed grassland (Amanaged-gm) is of 5.1 × 106 km2 in 1901 and increased 35	
to 11 × 106 km2 in 2000 (Table 3; Fig. 4) — an increase of 116% during the 20th century. This 

expansion of managed grasslands is mainly explained by the increase in the area of grazed lands (+5.3 

× 106 km2) while mown grassland increased only marginally (+0.6 × 106 km2). The largest extension of 

Amanaged-gm (+1.6 × 106 km2) is found in Latin America and the Caribbean (LAC), and Sub-Saharan 

Africa (SSA; Fig. 4). The regions with the largest relative expansion of managed grasslands (as a 40	
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percentage of 1901 areas) are Sub-Saharan Africa (+260%) and East and Southeast Asia (E & SE Asia; 

+245%), a region where the number of domestic ruminants (Nruminant) increased by nearly a factor of 

five. Only small increases of Amanaged-gm were modeled in Western Europe (+37 × 103 km2; i.e., 7.7%) 

and Eastern Europe (+30 × 103 km2; i.e., 8.1%), despite an increase of Nruminant by a factor of 1.5 in 

Western Europe (+27 × 106 LU), and of 1.4 in Eastern Europe (+5 × 106 LU). This means that livestock 5	
production intensified in those two regions, first by giving crop feedstock given to animals (Bouwman 

et al., 2005) and second through the optimization of forage harvesting and grazing to feed higher 

animal-stocking densities. Note that the animal density in Eastern and Western Europe peaked at 123 × 

106 LU near 1990, and has declined by 29% since then. 

 10	
In addition to the extension of managed grassland areas since 1901, the ratio of mown-to-grazed 

grasslands (Rmown-to-grazed) has increased from 6% in 1901 to 8% in 2000. The largest increases in Rmown-

to-grazed are found in East and Southeast Asia (ESA; by a factor of 4.6), Near East and North Africa 

(NENA; by a factor of 4.2), and Oceania (by a factor of 3.2). By contrast, Rmown-to-grazed increased less in 

Russia (by a factor of 1.3) and decreased in Western and Eastern Europe (by factors of 0.7 and 0.8 15	
respectively). It is noteworthy that high Rmown-to-grazed values are modelled in NENA, ESA and Oceania 

for the 1960s, 1970s and 1980s when the number of ruminants increased and was higher than today 

(Fig. 4). For other regions, the Rmown-to-grazed increased by a factor ranging between 1.3 and 2.0 from 

1901 to 2000. 

 20	
The global mean potential productivity of mown grassland (Ymown) increased by 55% from 312 g DM 

m-2 yr-1 for 1900s to 484 g DM m-2 yr-1 for the 1990s, while that of grazed grassland Ygrazed increased by 

33%, from 117 g DM m-2 yr-1 for the 1900s to 156 g DM m-2 yr-1 for the 1990s (Table 4). During the 

last century, Ymown increased by more than 60% in most regions except in Latin America and the 

Caribbean (18%) and North America (43%), while the increase of Ygrazed ranged from 22% in Sub-25	
Saharan Africa and 67% in Eastern Europe (Table 3). 

 

 

3.4 Evaluation of modelled NPP against observed NPP 

 30	
Figure 5 shows the comparison between site-scale NPP observations (NPPobs) and the model results at 

the corresponding grid-cells. The modelled NPP is positively correlated with NPPobs across 113 sites 

but the value of the correlation coefficient is low (r = 0.33 – 0.36, p < 0.01). With calibrated parameters 

and management, the RMSE of NPPSim-GU is 397 g C m-2yr-1 (r = 0.33, p < 0.01). When using NPP of 

mown grassland instead of unmanaged grassland as modelled NPP for managed sites, r increases a 35	
little but the RMSE is not changed (396 g C m-2 yr-1; r = 0.36, p < 0.01; Fig. 5b). Figure 5c presents 

box-and-whiskers plot of the observed and modelled annual whole-plant NPP, aboveground NPP and 

belowground NPP. The mean value and range of modelled whole plant NPP are both higher than those 

of NPPobs. The NPP overestimation by the model is mainly due to a too-high aboveground NPP, while 

belowground NPP is similar for its mean or even lower for its median, than belowground NPPobs. 40	
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3.5 Evaluation of modelled GPP against MODIS-GPP for annual mean and interannual 

variability 

 

At global scale, MODIS-GPP gives a mean grassland GPP of 537 g C m-2 yr-1, and ORCHIDEE-GM 5	
v3.1 simulates a mean value of 813 g C m-2 yr-1 for GPPSim-GU and 791 g C m-2 yr-1 for GPPSim-GM, ≈ 50% 

higher than MODIS-GPP. GPPSim-GU is very similar to GPPSim-GM, indicating that management does not 

explain the higher values than MODIS. A higher modelled GPP than MODIS is found for all latitude 

bands especially in boreal (50oN – 80oN) and tropical regions (20oS – 20oN; Fig. 6).  We performed 

linear regressions between MODIS-GPP and modelled GPP for all the 0.5° grid-cells with grassland 10	
covering more than 20% of total land (i.e., grassland is not a trivial land cover in that grid-cell) in the 

MOD12Q1 dataset. The slope of the regression between GPPSim-GU and MODIS-GPP is 1.01, and the 

correlation coefficient (rspatial) is 0.85 (Table 4). This suggests that the spatial pattern of MODIS-GPP is 

similar to that of GPPSim-GU. Similar slope and rspatial values resulted from GPPSim-GM, which indicates 

that the model comparison against MODIS-GPP is not improved by including management (Table 4).  15	
 

With 14 years of global coverage (2000 – 2013), the MODIS-GPP product can also be used to evaluate 

the interannual variability (IAV) of GPP. The temporal correlation coefficient between the detrended 

time-series of global GPPSim-GU and MODIS-GPP was found to be high (rIAV-global � 0.88, p < 0.01; 

Table 4) Given the similar rIAV between both GPPSim-GU and GPPSim-GM, and MODIS-GPP, one can 20	
conclude that management does not change the IAV of GPP in the model. This is because IAV is 

mainly driven by climate, whereas management responds to trends (Chang et al., 2015c). Within the 

grid-cells covered by grass over more than 20% of total land in MOD12Q1, significant positive 

interannual correlations between GPPSim-GM and MODIS-GPP were found for 40% of the grid-cells (i.e., 

42% of the grassland area), except in some tundra areas of Siberia and North America, grassland on the 25	
Qinghai-Tibet Plateau, and savannah in Sub-Saharan Africa (Fig. 8).  

 

We use the coefficient of variation (CV) to compare the magnitude of the IAV of GPP between 

GPPSim-GM and MODIS-GPP (Fig 9). In general, the average CV of GPPSim-GM (37%) is a factor of three 

larger than that of MODIS-GPP (13%). Relatively high values of CV (over 10%) are consistently 30	
found both in ORCHIDEE-GM and MODIS for semi-arid regions including western United States, 

central Asia, eastern Brazil, the Sahel region, southern Africa, and central Australia. But the CV value 

of GPPSim-GM for those regions (> 30%) is higher than the one of MODIS-GPP. However, in most of 

the Northern Hemisphere tundra, MODIS-GPP gives a higher CV than GPPSim-GM. 

 35	
3.6 Evaluation of modelled seasonal cycle of GPP against MODIS-GPP and GOME-2 SIF 

products 

 

Figure 10 compares the normalized seasonal variation of GPP (GPPSim-GM), MODIS-GPP, and SIF for 

five latitude bands and the globe. The seasonal variations of GPPSim-GU are almost the same as for 40	
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GPPSim-GM (Table 5) indicating management does not change the grass phenology significantly. Similar 

mean seasonal variations of grassland productivity are found between modelled GPP, MODIS-GPP and 

SIF (rseasonal range from 0.55 to 0.90; Fig. 10). Compared to both MODIS-GPP and SIF data, 

ORCHIDEE-GM v3.1 captures the seasonal variation of productivity in boreal and temperate regions 

of the Northern Hemisphere well (rseasonal > 0.8; Table 5; Figs. 11a and b). In the band from 60oS to 5	
30oN, significant positive rseasonal correlations are found both with  MODIS-GPP and SIF  (Fig. 11a and 

b). Non-significant or negative rseasonal values occur however in eastern Africa, in some regions of 

South America, and in central Australia (Fig. 11), which cause the low average rseasonal for the 

corresponding latitude bands (Table 5). However, note that the rseasonal between the two remote sensing 

GPP related products is relatively low for grassland between 60oS and 30oN (Fig. 11c), particularly 10	
between 0-60°S (Table 5).  

 

We further compare the maximum monthly GPP (GPPmax) from ORCHIDEE-GM v3.1, MODIS-GPP 

and SIF-GPP, to investigate whether the model can capture the GPPmax and its spatial gradient. Only 

GPPmax from Sim-GM is shown, because GPPSim-GM is very similar to GPPSim-GU in its spatial pattern. 15	
ORCHIDEE-GM v3.1 tends to produce higher GPPmax than MODIS-GPP and SIF-GPP all over the 

world (Fig. 12), but especially in tundra. It is worth noting that GPPmax from Sim-GM is more close to 

SIF-GPP in magnitude; SIF-GPP has generally higher GPPmax values than MODIS-GPP in temperate 

and sub-tropical regions. When excluding northern tundra, GPPmax from Sim-GM shows a similar 

spatial gradient to that from SIF-GPP (r = 0.55, p < 0.01) and MODIS-GPP (r = 0.59, p < 0.01), while 20	
GPPmax from SIF-GPP and MODIS-GPP are very similar (r = 0.85, p < 0.01). 

 

4 Discussion 

 

4.1 Managed area of grassland and management intensity: comparison with previous estimates  25	
 

The area of managed grasslands obtained in this study is lower than the pasture area of HYDE 3.1 

(Apasture-hyde, Klein Goldewijk et al., 2011; Table 3), except in Eastern Europe for the year 2000. Apasture-

hyde is 3.8 times larger than Amanaged-gm in the year 1901 and 3.0 times larger in the year 2000. The 

difference comes from the method used for estimating managed areas between Klein Goldewijk et al. 30	
(2011) and this study. Apasture-hyde in Klein Goldewijk et al. (2011) was estimated simply from 

population density and the country-level per capita use of pasture derived from the FAO statistics 

(FAO, 2008). In this study, Amanaged-gm including the minimum area of mown plus grazed grasslands, is 

constrained by grass-biomass use data (i.e., requirement of biomass for animals) and the simulated 

grassland productivity (i.e., supply of biomass to animals). In fact, the actual (real-world) managed 35	
grassland area could be larger than Amanaged-gm in regions where grasslands are not strictly un-managed, 

i.e., not fully occupied by Amanaged-gm in the management intensity maps (i.e., funmanaged > 0; Fig. 1c). In 

pastoral systems such as open rangeland and mountain areas, animals keep moving to search for the 

most digestible grass. Tracts of grasslands can be grazed for a short period, with only a small part of 

the annual grass productivity being digested (i.e., very low herbage-use efficiency). This type of 40	
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grassland could be recognized as extensively grazed grassland, whereas it is considered as unmanaged 

in this study. For example, lower herbage-use efficiency than that simulated in this study (Fig. 13) 

could be expected in open rangeland of central Asia, the Russia federation, sub-Saharan Africa, Brazil 

and Australia, and in the mountains of southwest China and the European Alps. Reclassifying these 

areas would result in a larger area of extensively managed grassland.  Few studies reported the 5	
herbage-use efficiency of managed grassland. One exception is the network of European eddy-

covariance flux sites. For these sites the average herbage-use efficiency (expressed as forage defoliated 

as a propotion of GPP) is 7.1% ± 6.1% for grazed sites, and 13.3% ± 6.4% for mown sites (J-F. 

Soussana, personal communication, 2015); a similar range, between 2% and 20% is simulated in this 

study (Fig. 13).  10	
 

The time evolution of Amanaged-gm since 1901 in this study is arguably more realistic than HYDE because 

it considers changes in animal stocking density from statistics and the evolution in per-head use of 

pasture. Amanaged-gm takes into account 1) changes in grass-biomass requirement considering both 

ruminant numbers and meat/milk productivity (Supplementary Information Text S3; Nruminant in Table 15	
3); 2) changes in grassland productivity driven by climate change, rising CO2 concentration, and 

changes in N fertilization (Ymown and Ygrazed in Table 3); and 3) changes in management types (mown 

and grazed grassland areas in Table 3 and Fig. 4). For example in intensively managed grasslands, an 

increase in ruminant stocking density causes a shift from grazed to mown grassland (globally and 

regionally, except in Europe; Table 3 and Fig. 4), because mown grassland provides more grass 20	
biomass than grazed grassland per unit of area (Fig. S1).  

 

Apasture-hyde is consistent with country-specific pasture area censuses, and thus may be suitable for 

reconstructing land-cover, but it does not provide information about management intensity. Amanaged-gm 

and its split between mown, grazed and unmanaged fractions provides specific global distributions of 25	
pasture management intensity and its historical changes. However, there are several limitations, which 

may cause uncertainties in our maps of management intensity: 1) the grass fraction in ruminant diet has 

likely been changing during the last century, while due to the lack of information, we assumed that it 

was static in each region up to the year 2000; 2) technical development (such as ruminant breeding) are 

not considered, but may affect the feeding efficiency (meat/milk production per amount of feed) and 30	
thus feedback on the grass-biomass requirement; 3) the spatial distribution of ruminants was kept 

constant in our estimate, whereas it could have changed, depending on geographic changes in human 

population distribution; and 4) the results depend on the accuracy of NPP modeling in ORCHIDEE-

GM. Despite these limitations, the maps of grassland management intensity provide new information 

for drawing up global estimates of management impact on biomass production and yields (Campioli et 35	
al., 2015) and for global vegetation models like ORCHIDEE-GM to enable simulations of carbon 

stocks and GHG budgets beyond simple tuning of grassland productivities (e.g., like in LPJmL; 

Bondeau et al., 2007) to account for management. These maps can also be tested in other DGVMs, or 

the same algorithm implemented in other models to give the management intensity consistent with 

simulated NPP. 40	

Biogeosciences Discuss., doi:10.5194/bg-2016-8, 2016
Manuscript under review for journal Biogeosciences
Published: 18 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



	 18	

 

4.2 Causes of regional grass-biomass production deficits  

 

Grass-biomass production is constrained by the gridded biomass consumption for the year 2000 

(Herrero et al., 2013). In some grid-cells, the gridded biomass consumption by year 2000 cannot be 5	
fulfilled by the potential grass production simulated by ORCHIDEE-GM v3.1 (Fig. 1b). These 

modelled grass-biomass production deficits could be due to several reasons:  

- Land-cover maps used as input to ORCHIDEE-GM v3.1 do not represent grasslands well in 

the mixed and landless systems, and grasslands providing occasional feed to ruminant (e.g., 

roadside, forest understory grazing land, and small patches). This failing could cause the 10	
model to miss a significant part of grass productivity in this study. For example, the largest 

modelled grass-biomass production deficit is found in India because the simulated grassland 

productivity is far from agreeing with the grass biomass use data. In this country, occasional 

feed may constitute an important fraction of ruminant diet (30% or 50% in mixed and landless 

or pastoral systems of south Asia from Bouwman et al., 2005), which is not represented by the 15	
land-cover maps used as input to ORCHIDEE-GM v3.1 and thus is not modelled.  

- In arid regions such as Pakistan, Sudan, Iran, Egypt and in northwest China, grass can grow in 

places where the water table is near to the surface and groundwater resources are available 

(e.g., oases, riparian zones, lakes). However, ORCHIDEE-GM v3.1 is driven by gridded 

climate data and does not taken into account local topography-dependent water resources such 20	
as rivers and lakes, and thus is not being able to simulate local grass growing areas in arid 

regions.  

- Grassland irrigation, though it is not as common as in cropland, is applied in arid regions such 

as Saudi Arabia, but is not considered by ORCHIDEE-GM v3.1. 

- In some semi-arid open rangeland, ruminants may walk long distances to acquire enough 25	
grass. For example, in semi-arid sub-Saharan Africa, Uzbekistan and central Australia, 

animals usually keep moving in order to search for grass. This displacement of grazing 

animals from grass sources is not considered in the model. 

- The grass fraction in ruminant diet is defined per region according to specific production 

systems. However, the grass fraction can differ within a region depending on local fodder crop 30	
production and grassland use. For example, the large numbers of ruminants in eastern China 

are mostly fed by grain and stovers (fibrous crop residues) instead of grass, because little 

grassland exists in that region. 

 

4.3 Model performance: comparison of modelled and observed grassland productivity 35	
 

In Sects. 3.4 and 3.5, the spatial patterns of modelled productivity (NPP or GPP) were compared with 

observations (NPPobs or MODIS-GPP). ORCHIDEE-GM v3.1 did well at capturing the spatial pattern 

of grassland productivity, with: i) high rspatial between modelled GPP and MODIS-GPP (Sect. 3.5); and 

ii) modelled NPP extracted from global simulation showing significant correlation with site-level NPP 40	
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observation from 113 sites all over the world (Sect. 3.4). However, modelled annual GPP is higher than 

MODIS-GPP in all latitude bands (Fig. 6). It should be kept in mind that MODIS-GPP was diagnosed 

an 18% uncertainty due to climate forcing (Zhao et al., 2006). Besides, a low bias of MODIS-GPP for 

grasslands has been reported in a tallgrass prairie in the United States (Turner et al., 2006) and in an 

alpine meadow on the Tibetan Plateau (Zhang et al., 2008), when compared to the GPP from flux-5	
tower measurements. The underestimate of MODIS-GPP is mostly related to the low value of the 

maximum light-use efficiency parameters used in the MODIS-GPP algorithm (Turner et al., 2006; 

Zhang et al., 2008).  

 

The relatively low r value between modelled NPP and site-level NPPobs (r = 0.33 – 0.36, p < 0.01; Sect. 10	
3.4) could be related to the fact that local climate, soil properties, topographic features are not 

considered in the model. For example, the r between the site-level climate and that from the 

CRU+NCEP climate forcing data (0.5o × 0.5o resolution) are 0.96 for annual mean temperature, but 

only 0.86 for annual total precipitation and 0.86 for solar radiation. The relatively low correlation for 

annual total precipitation may cause inaccuracy in the model simulations of productivity, because water 15	
availability could be a major factor limiting grass growth (e.g., in temperate regions, Le Houerou et al., 

1988; Silvertown et al., 1994; Briggs and Knapp 1995; Knapp et al., 2001; Nippert et al., 2006; 

Harpole et al., 2007). Further, compared to observed aboveground and belowground NPP, a similar 

mean belowground NPP and an overestimation of mean aboveground NPP by ORCHIDEE-GM v3.1 is 

found in Sect. 3.4, which suggests that 1) the model tends to overestimate aboveground NPP possibly 20	
due to overestimation of GPP (compared to MODIS-GPP), and 2) the model tends to overestimate the 

ratio of aboveground and belowground biomass allocation (Rabove/below) compared to observation. This 

overestimation could be the result of nitrogen limitation on the carbon allocation scheme for grassland. 

For example, high nitrogen supply has been observed to increase Rabove/below (Aerts et al., 1991; Cotrufo 

and Gorissen, 1997), while nitrogen limitation might cause it to decrease.  However, nitrogen limitation 25	
in grassland is not accounted for in ORCHIDEE-GM v3.1, which possibly leads to the model’s 

overestimation of Rabove/below. The model could be improved by incorporating the full nitrogen cycle. 

 

For the seasonal cycle, we compared modelled GPP seasonality to both MODIS-GPP (MOD17A2 

product) and GOME-2 SIF data. ORCHIDEE-GM v3.1 captures the seasonal variation of productivity 30	
in most regions where grassland is the dominant ecosystem (coverage > 50%), as shown by the high 

rseasonal between modelled GPP and MODIS-GPP (Fig. 11a) or SIF data (Fig. 11b). However, the model 

does not capture the seasonal amplitude of grassland productivity in some arid/semi-arid regions (e.g., 

southwest United States, and central Australia). In arid/semi-arid regions, grass productivity is 

triggered by discrete precipitation events, and depends on the timing and magnitude of these pulses 35	
(Sala et al., 1982; Schwinning and Sala, 2004; Huxman et al., 2004). These precipitation pulses are 

infrequent, discrete, and not represented in a global climate re-analysis dataset such as CRU+NCEP 

used in our simulation. In particular, NCEP, like all climate models tends to produce “GCM drizzle” 

(Berg et al., 2010), i.e., too many frequent small rainfall events. This forcing uncertainty could be a 

major obstacle for our model to capture the seasonality of productivity in these regions. In dry 40	
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grasslands, the dominant species could change during the season, but the resultant changes in SLA and 

Vcmax25 by different dominant species cannot be reflected in ORCHIDEE-GM v3.1. This within-season 

variability could be another reason for the model-data discrepancy in arid/semi-arid grassland 

seasonality. For the savanna of sub-Saharan Africa, eastern Africa and South America (Fig. 11), the 

relatively low rseasonal could be result from the fact that the frequent fires are not simulated in the 5	
current version of the model used here. GPPmax, indicating the maximum photosynthetic activity within 

a year, could be another good indicator of plant seasonality. The comparison between GPPmax from the 

model, the MODIS product and the SIF data (Sect. 3.6) reveals that: 1) ORCHIDEE-GM v3.1 greatly 

overestimates grassland GPPmax of the boreal-tundra areas, but 2) the model generally captures the 

same spatial gradient of GPPmax than MODIS and SIF products. Tundra has its own specific 10	
characteristics and functioning traits associated with the extreme environment with a severely cold 

winter, frozen soil and short growing season, but is treated as normal C3 grassland in our model. Apart 

from the extreme environment, the low productivity of the tundra system is also attributed to low 

availability of nutrients and the slow nutrient cycle (e.g., Nilsson et al., 2002; Elser et al., 2007; Stark, 

2007; Giesler et al., 2012). However, the nutrient cycles such as the nitrogen and phosphorus cycles are 15	
not considered in our model. Specific parameterization, and inclusion of the nutrient cycles for the 

tundra biome are required in the future to improve model performance.  

 

ORCHIDEE-GM v3.1 captures the the same IAV of grassland GPP at global scale and in many regions 

of the world (42% of global grassland area) than in the MODIS-GPP product. One exception where 20	
IAV is not in phase with MODIS-GPP is sub-Saharan Africa. Possible causes of this discrepancy are : 

1) the frequent fires which affect the IAV of GPP, are not simulated in this study, 2) model biases in 

the IAV of soil moisture, which could affect the model performances for the productivity of semi-arid 

Africa, given its two-layer bucket hydrology; 3) the problems with MODIS-GPP dry areas, which may 

degrade the model-data agreement.  The cold Qinghai-Tibet plateau is another region where the model 25	
does not capture the GPP IAV (Fig. 8), which could be due to shortcomings in the phenology 

parameterization and the snow scheme. For the Qinghai-Tibet plateau, the phenology of ORCHIDEE 

could be improved by a regional parameterization (Tan et al., 2010). Snow can exist for several months 

in Qinghai-Tibet plateau and in the high-latitude tundra of the Northern Hemisphere. The timing of 

snowmelt will impact the grass phenology, while early spring soil moisture impacted by snow water 30	
storage may affect the grassland productivity. The single-bucket snowpack scheme (Chalita and Le 

Treut, 1994) in the current version of ORCHIDEE-GM may not represent the snow processes 

sufficiently accurately. The mechanistic intermediate-complexity snow scheme (ISBA-ES; Boone and 

Etchevers, 2001) implemented into ORCHIDEE-ES (Wang et al., 2013) may improve the model 

performance in simulating grassland productivity. In boreal-tundra areas, again, the low model-data 35	
agreement in IAV could be due to the specific characteristics, functioning traits, and nutrient 

availability that are not well parameterized or accounted for in our model.  

 

5. Concluding remarks  

 40	
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The carbon-water-energy land surface model ORCHIDEE-GM v3.1 is calibrated for C4 grass 

parameters representing photosynthetic (Vcmax25), and morphological plant traits (SLAmax) and includes 

specific parameterization of managed grasslands. The modelled distribution of grassland productivity 

on a 0.5° by 0.5° grid over the globe was evaluated against a series of observations from site-level NPP 

measurements to global satellite-based products (MODIS-GPP and GOME2-SIF). Generally, 5	
ORCHIDEE-GM v3.1 captures the spatial pattern, seasonal cycle and IAV of grassland productivity at 

global scale, except in regions with either arid or cold climates (tundra) and high altitude 

mountains/plateaus. Because the major purpose of a global vegetation model like ORCHIDEE-GM is 

to simulate carbon, water, and energy fluxes at a large scale it uses a limited number of plant functional 

types and generic equations. The model is not expected to accurately capture productivity variations 10	
everywhere. Thus we conclude that its current version,ORCHIDEE-GM v3.1 is suitable for use at 

simulating global grassland productivity. 

 

In this study, we have derived the global gridded maps of grassland management intensity including 

the minimum area of managed grassland with fraction of mown/grazed part, the grazing ruminant 15	
stocking density, and the density of the wild animal population.  The management intensity maps are 

built based on the assumption that grass-biomass production from managed grassland (simulated by 

ORCHIDEE-GM v3.1) in each grid-cell is just enough to satisfy the grass-biomass requirement by 

ruminants in the same grid (data derived from Herrero et al., 2013). Furthermore, the maps are 

extended to cover the period 1901-2012, taking into account both the changes in grass-biomass 20	
requirement and supply. The evolution in grass-biomass requirement is determined by the ME-based 

ruminant numbers calculated in this study, while the changes in grass-biomass supply are simulated by 

ORCHIDEE-GM v3.1 considering variable drivers such as climate, CO2 concentration, and N 

fertilization. Despite the multiple sources of uncertainty, these maps, to our knowledge for the first 

time, provide global, time-dependent information on grassland management intensity. Global 25	
vegetation models such as ORCHIDEE-GM, containing an explicit representation of grassland 

management, are now able to use these maps to make a more accurate estimates of global carbon and 

GHG budgets. 

 

 30	
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Figure legend 
Figure 1. (a) Mown, (b) grazed, and (c) unmanaged fraction of global grassland, and (d) modelled 
grass-biomass production deficit of 2000. Modelled grass-biomass production deficit indicates the 
simulated grassland productivity in the grid cells is not sufficient to fulfill the grass-biomass use given 
by Herrero et al. (2013), and is expressed with units of g dry matter (DM) per m2 of total land area in 5	
each grid cell. 
Figure 2. Modelled mean grassland NPP for the period 1990-1999 from the simulation experiments 
Sim-GM (a), and the NPP differences (b) between Sim-GM and Sim-GU. See Sect. 2.5 for the details 
of the experiments.  
Figure 3. Productivities per unit area (height of each rectangle) and grassland areas (width of each 10	
rectangle) of the different types of grassland (mown, grazed, and unmanaged grassland) by FAO-
defined regions and global total. Areas in the graph shows the production of each grassland type. 
Productivities and grassland areas are averaged for 1991-2000 from experiment Sim-GM. The FAO-
defined regions (from top-left) are North America, Russian Federation, Western Europe, Eastern 
Europe, Near East & North Africa (NENA), East & Southeast Asia, Oceania, South Asia, Latin 15	
America and the Caribbean (LAC), Sub-Saharan Africa (SSA). 

Figure 4. Historic changes in the area of managed/unmanaged grassland, and in the ruminant numbers 
for 1901 and 2012 by regions and global total. See caption to Fig. 3 for expansion of FAO-defined 
regions. 
Figure 5. Comparison between site-observations of whole plant NPP (NPPobs) and modelled NPP from 20	
experiments: (a) Sim-GU or (b) Sim-GM, and (c) box-and-whisker plot of the observed and modelled 
annual whole-plant NPP, aboveground NPP and belowground NPP. In subplot (a) and (b), grassland 
sites in different Köppen climate zones are specified by different colours. The Köppen climate zones 
are classified based on Peel et al. (2007) using climate data from WorldClim 
(http://www.worldclim.org/). In subplot (c), NPPs from different experiments are specified by different 25	
colours, and the ‘whisker’ indicates the cross-measurement (total 214 measurements) uncertainty.	
Figure 6. Comparison between MODIS-GPP and modelled GPP from two experiments, by latitude 
band. GPPSim-GU (green line) is nearly fully covered by GPPSim-GM (red line). The uncertainty of 
MODIS-GPP comes from the reported relative error term driven by NASA’s Data Assimilation Office 
(DAO) reanalysis datasets (Zhao et al., 2006). The uncertainty of modelled GPP is the standard 30	
deviation of interannual variation of grassland GPP in each band for the period 2000-2013. To make 
the figure less complicated and readable, only the uncertainty of GPPSim-GM is presented as an example. 
Figure 7. Comparison between MODIS-GPP and modelled GPP from two experiments at the resolution 
of 0.5o × 0.5o. 
Figure 8. Spatial distribution of rIAV between MODIS-GPP and GPPSim-GM. rIAV is the correlation 35	
coefficient between detrended time-series of modelled and MODIS-GPP from 2000 to 2013. This 
figure only shows the rIAV for grid-cells with grassland covering more than 20% of total land in the 
MOD12Q1 dataset. Grey colour indicates insignificant or negative rIAV (p > 0.05 or r < 0); and yellow-
to-red indicate significant positive rIAV with increasing value (r > 0 and p < 0.05). 
Figure 9. Coefficient of variation (CV) of (a) MODIS-GPP and (b) GPPSim-GM. 40	
Figure 10. The normalized seasonal variation of modelled GPP (GPPSim-GM), MODIS-GPP, and SIF for 
five latitude bands (a – e) and (f) global average.  
Figure 11. Spatial distribution of rseasonal between (a) SIF data and GPPSim-GM, (b) MODIS-GPP and 
GPPSim-GM,  and (c) MODIS-GPP and SIF data respectively. rseasonal is the correlation coefficient 
between mean seasonal cycle of modelled GPP, MODIS-GPP and SIF data from 2008 to 2012. This 45	
figure only shows the rseasonal for grid-cells with grassland covering more than 50% of total land in the 
MOD12Q1 dataset. Grey colour indicates insignificant or negative rseasonal (p > 0.05 or r < 0); and 
yellow-to-red indicate significant positive rseasonal with increasing value (r > 0 and p < 0.05). 
Figure 12. The maximum monthly GPP (GPPmax) from (a) ORCHIDEE-GM v3.1 (GPPSim-GM), (b) 
MODIS-GPP and (c) GPP derived from SIF Version 26 (SIF-GPP). Data are monthly average for the 50	
period 2008 - 2012. 
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Figure 13. Average herbage-use efficiency over managed grassland (grazed plus mown) in 2000-2009 
simulated by ORCHIDEE-GM v3.1. Herbage use efficiency (Hodgson, 1979) is defined as the forage 
removed expressed as a proportion of herbage growth. In this study, the forage removed is modelled 
annual grass biomass use including Ygrazed and Ymown, and herbage growth is modeled annual grass GPP. 
 5	
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Tables 
 
Table 1. The forcing data for different types of grassland in the simulation.  

Forcing data 
Grassland types 

Unmanaged 
grassland 

Mown 
grassland 

Grazed 
grassland 

Atmospheric CO2 concentration Yes Yes Yes 

Climate forcings Yes Yes Yes 

Historic N deposition maps Yes Yes Yes 

Historic N fertilizer application maps  No Yes Yes 

Historic domestic grazing-ruminant density maps No No Yes 

Wild herbivores density maps Yes No No 
  
 5	
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Table 2. Grass-biomass production deficits in regions where simulated productivity by ORCHIDEE-
GM Sim-GM (see text) cannot fulfil the grass-biomass use given by Herrero et al. (2013) for 2000. 

Regionsa 
Grass biomass use 

(million tonne DM) 
Production deficit        

(million tonne DM) 
fdeficit 
(%)b 

fglobal 
(%)c 

North America 228 24 11% 6% 
Russian Federation 52 2 4% 1% 
Western Europe 196 10 5% 2% 
Eastern Europe 82 3 4% 1% 
Near East & North Africa 175 67 38% 16% 
East & Southeast Asia 275 34 12% 8% 
Oceania 107 4 4% 1% 
South Asia 390 209 53% 50% 
Latin America & Caribbean 534 20 4% 5% 
Sub-Saharan Africa 351 46 13% 11% 

World total 2391 420 18% 100% 
a Regions are classified following the definition in the FAO Global Livestock Environmental 
Assessment Model (GLEAM; http://www.fao.org/gleam/en/). 
b fdeficit is the fraction of production deficit in the total grass biomass use of the region for 2000. 5	
c fglobal is the fraction of production deficit in the global total production deficit for 2000. 
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Table 3. Area and mean productivity of managed grassland from this study, ruminant numbers, and pasture area from HYDE 3.1 dataset for 1901 and 2000 
by regions and global total. 

Regionsa 

Grassland area  
(1000 km2; 1901/2000) 

  Mean Productivity  
(g DM m2 yr-1; 1900s/1990sb) 

Nruminant c 

(106 LU; 
1901/2000) 

Pasture area from 
HYDE 3.1d (1000 km2; 

1901/2000)  Total managed Mown Grazed   Ycut Ygraze 
North America 925/1203 47/96 877/1108 

 
280/399 114/156 42/87 1157/2482 

Russian Federation 274/441 14/29 260/412 
 

220/437 79/101 9/16 2995/904 
Western Europe 480/517 41/31 439/486 

 
505/840 225/316 49/76 793/595 

Eastern Europe 317/346 52/44 265/302 
 

282/550 118/197 12/17 655/248 
Near East & North Africa 420/1062 15/139 405/923 

 
108/193 60/79 12/50 2607/5607 

East & Southeast Asia 362/1247 6/88 356/1159 
 

403/727 106/161 14/83 2998/5327 
Oceania 321/696 9/60 312/636 

 
205/332 98/122 11/33 979/4000 

South Asia 497/688 84/200 412/488 
 

333/593 122/154 35/109 651/962 
Latin America & Caribbean 842/2473 13/60 830/2413 

 
294/346 134/204 40/194 1341/5446 

Sub-Saharan Africa 635/2282 17/108 618/2174 
 

249/466 91/111 16/93 4486/6991 

Global total 5072/10955 297/855 4775/10100   312/484 117/156 238/759 19181/32764 
a Regions are classified following the definition in the FAO Global Livestock Environmental Assessment Model (GLEAM; http://www.fao.org/gleam/en/). 
b The potential harvested biomass from mown grassland (Ycut) and the potential biomass consumption over grazed grassland (Ygraze) are 10-year averages 
for the period 1901-1910 (1900s) and 1991-2000 (1990s) representing the productivity at the beginning and at the end of the 20th century respectively.  5	
c Ruminant numbers (in units of Livestock Unit, LU) are calculated based on the total metabolisable energy (ME) requirement by all ruminant. The ME 
requirement by all ruminants is based on ruminant numbers from statistics (for 1961-2021; data derived from FAOSTAT, 2013) and literature estimates 
(for 1901-1960; data derived from Mitchell (1993, 1998) and available in HYDE database at: 
http://themasites.pbl.nl/tridion/en/themasites/hyde/landusedata/livestock/index-2.html), using the calculation method given in the Supporting Information 
Text S1 of Chang et al. (2015b). 10	
d see Klein Goldewijk et al. (2011) for details.
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Table 4. Comparison between modelled GPPs and MODIS-GPP. The spatial pattern (Slope and rspatial) 
and the interannual variability (rIAV) are compared. 

  GPPSim-GU vs. MODIS-
GPP 

GPPSim-GM vs. MODIS-
GPP 

Slope 1.01 1.04 
rspatial 0.85 0.84 
rIAV-global 0.88 0.87 
rIAV  0.39 ± 0.33 0.38 ± 0.34 
Slope and rspatial: slope and correlation coefficient from the linear regressions between modelled and 
MODIS-GPP for grid-cells with grassland covering more than 20% of total land in the MOD12Q1 
dataset.  5	
rIAV-global: correlation coefficient between detrended time-series of global total modelled GPP and 
MODIS-GPP from 2000 to 2013. 
rIAV: correlation coefficient between detrended time-series of modelled GPP and MODIS-GPP at grid-
cell level. Here, we show the average ± standard deviation of rIAV for all grid-cells with grassland 
covering more than 20% of total land in the MOD12Q1 dataset. The average ± standard deviation of 10	
rIAV spatial resolutions 0.5o × 0.5o is presented. 
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Table 5. Mean ± standard deviation of rseasonal comparing the seasonal cycle of modelled GPP, MODIS-GPP and SIF data for the 
five latitude bands and global scale. rseasonal is expressed as mean ± standard deviation of grid level correlation coefficient within 
each latitude band and global. To avoid the strong impact of other land cover types (e.g., crop and forest) to the seasonal cycle, we 
only consider rseasonal for grid-cells with grassland covering more than 50% of total land in the MOD12Q1 dataset. 

rseasonal 
    Latitude bands   

Global 
60oN - 90oN 30oN - 60oN 0 - 30oN 0 - 30oS 30oS - 60oS 

GPPSim-GU vs.  
SIF data 0.84 ± 0.15 0.81 ± 0.19 0.65 ± 0.27 0.68 ± 0.28 0.56 ± 0.33 0.77 ± 0.23 

GPPSim-GM vs.  
SIF data 0.84 ± 0.15 0.81 ± 0.19 0.65 ± 0.27 0.68 ± 0.29 0.55 ± 0.33 0.77 ± 0.23 

GPPSim-GU vs. MODIS-
GPP 0.89 ± 0.10 0.86 ± 0.16 0.70 ± 0.30 0.63 ± 0.43 0.65 ± 0.32 0.80 ± 0.27 

GPPSim-GM vs. MODIS-
GPP 0.89 ± 0.10 0.86 ± 0.16 0.70 ± 0.30 0.62 ± 0.44 0.64 ± 0.32 0.80 ± 0.28 

MODIS-GPP vs. SIF 
data 0.90 ± 0.11 0.87 ± 0.16 0.80 ± 0.22 0.61 ± 0.37 0.61 ± 0.36 0.81 ± 0.25 

 5	
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Figures 

 
Figure 1. (a) Mown, (b) grazed, and (c) unmanaged fraction of global grassland, and (d) modelled 
grass-biomass production deficit of 2000. Modelled grass-biomass production deficit indicates the 
simulated grassland productivity in the grid cells is not sufficient to fulfill the grass-biomass use given 5	
by Herrero et al. (2013), and is expressed with units of g dry matter (DM) per m2 of total land area in 
each grid cell. 
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Figure 2. Modelled mean grassland NPP for the period 1990-1999 from the simulation experiments 
Sim-GM (a), and the NPP differences (b) between Sim-GM and Sim-GU. See Sect. 2.5 for the details 
of the experiments.  
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Figure 3. Productivities per unit area (height of each rectangle) and grassland areas (width of each 
rectangle) of the different types of grassland (mown, grazed, and unmanaged grassland) by FAO-
defined regions and global total. Areas in the graph shows the production of each grassland type. 
Productivities and grassland areas are averaged for 1991-2000 from experiment Sim-GM. The FAO-5	
defined regions (from top-left) are North America, Russian Federation, Western Europe, Eastern 
Europe, Near East & North Africa (NENA), East & Southeast Asia, Oceania, South Asia, Latin 
America and the Caribbean (LAC), Sub-Saharan Africa (SSA). 
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Figure 4. Historic changes in the area of managed/unmanaged grassland, and in the ruminant numbers 
for 1901 and 2012 by regions and global total. See caption to Fig. 3 for expansion of FAO-defined 
regions. 
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Figure 5. Comparison between site-observations of whole plant NPP (NPPobs) and modelled NPP from 
experiments: (a) Sim-GU or (b) Sim-GM, and (c) box-and-whisker plot of the observed and modelled 
annual whole-plant NPP, aboveground NPP and belowground NPP. In subplot (a) and (b), grassland 
sites in different Köppen climate zones are specified by different colours. The Köppen climate zones 5	
are classified based on Peel et al. (2007) using climate data from WorldClim 
(http://www.worldclim.org/). In subplot (c), NPPs from different experiments are specified by different 
colours, and the ‘whisker’ indicates the cross-measurement (total 214 measurements) uncertainty. 
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Figure 6. Comparison between MODIS-GPP and modelled GPP from two experiments, by latitude 
band. GPPSim-GU (green line) is nearly fully covered by GPPSim-GM (red line). The uncertainty of 
MODIS-GPP comes from the reported relative error term driven by NASA’s Data Assimilation Office 
(DAO) reanalysis datasets (Zhao et al., 2006). The uncertainty of modelled GPP is the standard 5	
deviation of interannual variation of grassland GPP in each band for the period 2000-2013. To make 
the figure less complicated and readable, only the uncertainty of GPPSim-GM is presented as an example. 
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Figure 7. Comparison between MODIS-GPP and modelled GPP from two experiments at the resolution 
of 0.5o × 0.5o. 
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Figure 8. Spatial distribution of rIAV between MODIS-GPP and GPPSim-GM. rIAV is the correlation 
coefficient between detrended time-series of modelled and MODIS-GPP from 2000 to 2013. This 
figure only shows the rIAV for grid-cells with grassland covering more than 20% of total land in the 
MOD12Q1 dataset. Grey colour indicates insignificant or negative rIAV (p > 0.05 or r < 0); and yellow-5	
to-red indicate significant positive rIAV with increasing value (r > 0 and p < 0.05). 
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Figure 9. Coefficient of variation (CV) of (a) MODIS-GPP and (b) GPPSim-GM. 
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Figure 10. The normalized seasonal variation of modelled GPP (GPPSim-GM), MODIS-GPP, and SIF for 
five latitude bands (a – e) and (f) global average.  
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Figure 11. Spatial distribution of rseasonal between (a) SIF data and GPPSim-GM, (b) MODIS-GPP and 
GPPSim-GM,  and (c) MODIS-GPP and SIF data respectively. rseasonal is the correlation coefficient 
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between mean seasonal cycle of modelled GPP, MODIS-GPP and SIF data from 2008 to 2012. This 
figure only shows the rseasonal for grid-cells with grassland covering more than 50% of total land in the 
MOD12Q1 dataset. Grey colour indicates insignificant or negative rseasonal (p > 0.05 or r < 0); and 
yellow-to-red indicate significant positive rseasonal with increasing value (r > 0 and p < 0.05). 
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Figure 12. The maximum monthly GPP (GPPmax) from (a) ORCHIDEE-GM v3.1 (GPPSim-GM), (b) 
MODIS-GPP and (c) GPP derived from SIF Version 26 (SIF-GPP). Data are monthly average for the 
period 2008 - 2012.  
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Figure 13. Average herbage-use efficiency over managed grassland (grazed plus mown) in 2000-2009 
simulated by ORCHIDEE-GM v3.1. Herbage use efficiency (Hodgson, 1979) is defined as the forage 
removed expressed as a proportion of herbage growth. In this study, the forage removed is modelled 
annual grass biomass use including Ygrazed and Ymown, and herbage growth is modeled annual grass GPP. 5	
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