1 2	Interactive comment on "Aquatic macrophytes can be used for wastewater polishing, but not for purification in constructed wetlands" by Yingying Tang et al.
3	
4	Referee 4
5	
6	For final publication, the manuscript should be accepted as is
7 8	This is a very good paper and worthy to be published. I do not find any problems to accept it as it is.
9	
10	Response
11	We would like to thank the referee for her/his very positive comments.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

- 26 Interactive comment on "Aquatic macrophytes can be used for wastewater polishing, but
- 27 not for purification in constructed wetlands" by Yingying Tang et al.
- 28
- 29 Referee 5
- 30
- 31 Overall this study is very nice, novel, and useful and should be published after minor revisions
- 32 (see comments).
- 33
- 34 **Response**
- **35** We would like to thank the referee for her/his positive and constructive comments.
- 36

37 General comments

- 38 This paper focusses on improving water quality by using aquatic plants systems in combination
- 39 with different sediment types. In the study, the authors use several aquatic plant with
- 40 contrasting growth forms and three different sediment types. They assessed how these systems
- 41 perform in the removal of nutrients (focus on N&P) and where these nutrients end up in the
- 42 system, with a focus on the plants and sediment. They furthermore studied how many of the
- 43 nutrients coming into the system (loading) can be removed by harvesting the plant biomass. The
- 44 fact that they combine different nutrient loading, different species with contrasting growth
- 45 forms, and different sediment type makes this study very interesting, useful and novel and will
- 46 be of interest to scientists (ecological and biotechnological), ecosystem managers and
- 47 wastewater treatment specialists.
- 48 The authors conclude that the selected species can be used to remove free N and P from the
- 49 water up to a certain nutrient loading, above which the plants only sequester a very small
- 50 portion of the nutrients introduced to the water. The amount of nutrients removed from the
- 51 water not only depends on species, but also interacts with sediment characteristics. This
- 52 stresses the importance to consider the whole system, but in particular the plant and sediment
- 53 characteristics in successfully designing a sustainable CWS.
- 54 Overall the quality of the research and presentation is very good and should be published after
- 55 mainly textual revisions. Some parts could be presented in a bit more detail or more concisely
- 56 for clarity, as I was confused about some sentences and terms used. (See specific comments.) For

- 57 example, the title does fit the content very well, providing the reader know the difference
- 58 between water polishing and water treatment. To me this was not clear, so perhaps the authors
- 59 could changes this for something like: plants can be used to remove nutrients from surface
- 60 water up to certain nutrient loading levels.
- 61 The paper also cites many relevant references, but could be improved by adding a few more
- 62 recent ones and adding a few more references of other research where plants have been used to
- 63 remove nutrients. This will then allow for more discussion on the general applicability of this
- 64 study and the influence of plant growth form in nutrient removal. (Also see specific comments.)
- 65 I've added quite some specific comments and suggestions to aid the authors in revising the
- 66 manuscript. Most points concern sentences / terms that were not completely clear to me, while
- a few are about questions I had about the methods, results and discussion. I hope this will help
- 68 in a swift revision and publication.
- 69

70 Response to general comments

- 71 We thank the referee for the positive comments and for the constructive suggestions to improve
- 72 our manuscript. Please find below a point-to-point reply to all specific comments raised by this
- 73 referee, including those on our title and using more recent references. All page and line numbers
- 74 refer to the revised manuscript without tracked changes. We feel that the changes made to the
- revised manuscript, based on this referee's comments, have improved readability and clarity.
- 76 We also thank the reviewer for pointing out some technical issues with our manuscripts, all of
- 77 which we corrected in the revised manuscript.

78

79 Specific comments

- 80 Title: I'm not sure that the difference between polishing and purification are clear to all readers.
- 81 Perhaps change for low and high loading (See general comments).
- 82 Line 25-26; here you make it very clear what you mean with polishing VS purifying, perhaps also
- 83 include this in the introduction or just use the loading terms instead of polishing / purifying.
- 84 Additionally, in the title you mention polishing vs treatment. I think it would be good to choose
- 85 the same terms throughout the text or leave them out.
- 86

87 **Response**

- 88 We agree that clarifying the difference between wastewater polishing and purification helps
- 89 readers understand the purpose and conclusion of our manuscript. The referee commented that
- 90 explaining these definitions in the abstract and introduction would help readers understand the
- 91 title better. Therefore, we have added the following text in the introduction [P5, L81], and kept
- 92 the title as it was:
- 93 'By studying the resulting distribution of P and N among the different sediment, macrophyte
- 94 and water compartments, we aimed to determine the nutrient removal efficiency by floating or
- 95 submerged aquatic macrophytes from wastewater at low (polishing) or high (purification)
- 96 loading rates, and the interacting role of sediment type.'
- 97 Line 27: you only mention the importance of soil, but I think that the effect of plant species /
- 98 plant growth form is also an important conclusion which could be added here.
- 99

100 **Response**

- 101 We agree with the reviewer that this should be mentioned explicitly. To emphasize the
- **102** importance of plant species, we have now changed the text [L26] in the summary section to:
- 103 'The outcome of this controlled study not only contributes to our understanding of nutrient
- 104 dynamics in constructed wetlands, but also shows the differential effects of wetland sediment
- 105 types and plant species.'

106

- 107 Line 40: I'm confused about the definition of the terms 'free surface flow systems'
- and 'subsurface flow systems' you use. Is the only difference between the two systems that the
- soil can also take up nutrients in the subsurface systems? The name suggest that in the
- 110 subsurface systems, the water doesn't flow over the sediment, but rather through it (helophyte
- 111 CWS). If this is true, than the incorporation of sediment is not the only difference. Because you
- do not mention these terms in the rest of the text you could also remove them to avoid confusion.
- 113

- 115 We agree with the referee. For clarity, we have now deleted "(free surface flow systems)" and
- 116 "(subsurface flow systems)".

Line 46-47: You mention that low maintenance leads to a saturated system. I think the reason

119 why a low maintenance system is the same as an easily saturated system may not be evident to

all readers, please elaborate. I think you mean that if you do not remove P from the sediment,

- 121 the binding capacity will decrease and no additional P will be taken up, thus no water quality
- increase.
- 123

124 **Response**

125 We have now modified the text [P2, L47] to:

126 'As a result of low maintenance, however, these systems easily become saturated with P and

127 other nutrients, which decreases their nutrient binding capacity. As a result, they only work

128 efficiently for a limited amount of time (Drizo et al., 2002).'

129

130Line 47-48: I think seasonality is also an important limiting factor for these systems. You

131 mention this in the discussion, but perhaps you can also include it here. If you want a system

132 with plants to remove nutrients year round in the temperate regions of the world, you will need

- to add energy in the form of light and heating in the cold seasons, thereby increasing energy
- 134 consumption and perhaps making it not such a 'low energy requiring system', as you mention
- before.

136

137 **Response**

138 We agree with the referee. We have now added this information to the text [P2, L49]:

- 139 'Furthermore, at higher latitudes seasonality is an important factor for these systems because
- additional energy will be needed during cold seasons (e.g. the use of warmed greenhouse
- 141 facilities) to remove nutrients by macrophytes growth year-round (Wittgren & Mæhlum, 1997).'

142

143 Line 50: You mention few studies have been performed, could you shortly give their main results?

144

146	We have now added [P3, L55]:
147 148 149	'Although these studies showed that submerged or floating macrophytes can be used to remove nutrients from wastewater due to their high growth rates, they did not elaborate on nutrient removal efficiencies under different nutrient loadings (Vymazal, 2007; Gao et al., 2009).'
150	
151 152 153	Line 57: with adsorption, do you only mean adsorption to sediment, or more in general (also to waterborne particles?)
154	Response
155	We have clarified this by changing the text to [P4, L63]:
156 157 158 159 160 161	'There is a suite of mechanisms involved in the processes of nutrient removal and recovery in natural and constructed wetlands, including sediment adsorption, phosphate (PO ₄ ³⁻) adsorption by aluminium (Al), iron (Fe) or calcium (Ca), precipitation, plant absorption, volatilization, and microbial processes such as iron oxidation, nitrification, DNRA (dissimilatory nitrate reduction to ammonium) and anammox (anaerobic ammonium oxidation) (Van Loosdrecht & Jetten, 1998; Van Dongen et al., 2001; Kadlec & Wallace, 2008; Wu et al., 2014).'
162 163 164	Line 60: How are the mechanisms affected? Is their speed affected, or efficiency? Please clarify.
165	Response
166	For clarity, we have now added [P4, L68]:
167 168 169 170	'Rates and removal efficiencies by these mechanisms are generally affected by factors such as nutrient loading, plant species and sediment type (Gale et al., 1994; Tanner, 1996; Jampeetong et al., 2012).'
171 172 173	Line 70: could you explain why you report the nutrient loading levels in unit per square metre? As the system is 3-dimentional, would it not be more logical to provide loading in units per litre or per cubic metre?
174	

175	Response
176 177 178	Since fluxes (here nutrient loading rates) are per definition expressed as units per square meter per time, we have used loading per square meter throughout the text.
179 180 181	Line 74: If you want to use these terms (polishing / purifying), please specify the difference here as you did in the abstract.
182	Response
183	For clarity, we have now changed the text to [P5, L81]:
184 185 186 187	'By studying the resulting distribution of P and N among the different sediment, macrophyte and water compartments, we aimed to determine the nutrient removal efficiency by floating or submerged aquatic macrophytes from wastewater at low (polishing) or high (purification) loading rates, and the interacting role of sediment type.'
188	
189 190	Line 74-76: I miss the sediment in your aim / main research question.
191	Response
192	We agree with the referee. We have now added this information to the text [P5, L81]:
193 194 195 196 197	'By studying the resulting distribution of P and N among the different sediment, macrophyte and water compartments, we aimed to determine the nutrient removal efficiency by floating or submerged aquatic macrophytes from wastewater at low (polishing) or high (purification) loading rates, and the interacting role of sediment type.'
198 199	Line 81: did you mix the sediment before adding to the mesocosm?
200	Response
201 202	We carefully mixed the sediment before adding it to mesocosm. We have now modified the text to [P6, L88]:

- 203 'All mesocosms were filled with 20 cm (135 L) of carefully homogenized clay (originating from
- 204 Lalleweer, 53°16' N, 6°59' E; n=9), peaty clay (originating from De Deelen, 53°01' N, 5°55' E; n=9)
- 205 or peat (originating from Ilperveld, 52°27' N, 4°56' E; n=9), after which they received a layer of
- $206 \qquad 50 \text{ cm of Nijmegen tap water (NH_{4^+} < 0.03 \text{ mg } \text{L}^{\text{-1}}, \text{NO}_3^{\text{-1}}: 16.40 \text{ mg } \text{L}^{\text{-1}}, \text{PO}_{4^{3\text{-}}} < 0.03 \text{ mg } \text{L}^{\text{-1}}, \text{pH}: 7.7, \text{NO}_3^{\text{-1}}: 16.40 \text{ mg } \text{L}^{\text{-1}}, \text{PO}_{4^{3\text{-}}} < 0.03 \text{ mg } \text{L}^{\text{-1}}, \text{pH}: 7.7, \text{NO}_3^{\text{-1}}: 16.40 \text{ mg } \text{L}^{\text{-1}}, \text{PO}_{4^{3\text{-}}} < 0.03 \text{ mg } \text{L}^{\text{-1}}, \text{PO}_{4^{3\text{-}}} < 0.0$
- 207 total inorganic carbon (TIC): 30 mg C L⁻¹).'
- 208
- 209 Line 82: could you summarize the basic characteristics for tap water, as you did for sediment?210

211 **Response**

- 212 We have now added this information to the text [P6, L88], see above.
- 213 Although tap water contained relatively high NO₃- concentrations, this did not influence our
- results. As we started our experiment one year after filling the basins, denitrification had taken
- $\label{eq:215} 215 \qquad \text{place and NO_3} \text{ was lost via denitrification, as measured.}$
- 216
- Line 90-92: Did you add the nutrients to the surface water? I was also wondering why you
- 218 included the natural deposition, generally it's very good to include it! But it seems that they are
- 219 negligible compared to your real treatment. Also, you used relatively old references to
- determine the amount of background nutrient deposition, are they still relevant? I think you can
- also just report your loading treatment as is.
- 222

- We have now changed the text to [P6, L100]:
- 225 'To create these, treatment solutions were added three times a week to the surface water to
- $\label{eq:226} enable loading rates of 0.43, 21.4 and 85.7 mg P \, m^{-2} \, d^{-1} \, (added \ as \ NaH_2PO_4.H_2O \ and \ atmospheric$
- 227 deposition of 0.1 kg P ha⁻¹ y⁻¹) (Furnas, 2003) and 1.3, 62 and 249 mg N m⁻² d⁻¹ (added as
- 228 NH_4NO_3 and atmospheric N deposition of 35 kg N ha⁻¹ y⁻¹ in this part of the Netherlands) (RIVM,
- 229 2014).'
- 230 Atmospheric N deposition of 35 kg N ha⁻¹ y⁻¹ (9.59 mg N m⁻² d⁻¹) is a very important N input,
- especially at low N loading rates. Therefore, it is necessary to include nutrient deposition to
- calculate the nutrient budget.

- 233 For natural N deposition, we have now used a reference that covered the N deposition during
- the experimental period instead, and found that it was higher than anticipated based on average
- 235 values for the Netherlands:
- **236** RIVM, 2014. Concentration and deposition maps of the Netherlands: Total Nitrogen (2014).
- 237 Available at: <u>http://geodata.rivm.nl/gcn/</u>.
- 238
- Line 96: What do you mean by environmentally relevant densities? Typical densities for this
- 240 species in lakes, ditches? Please add a bit more detail or a reference. Could you also explain why
- 241 you used different amounts per species? Would your results have been different if you've started
- with the same amount for all species? I feel that this section needs a bit more argumentation.
- 243

244 **Response**

- 245 As biomass production depends on plant density, we adopted typical plant densities for each
- species as found in the field, instead of similar densities for all species. We have added the
- 247 following reference for this:
- 248 'De Lyon, M. J. H., Roelofs, J. G. M., 1986. Waterplanten in relatie tot waterkwaliteit en
- 249 bodemgesteldheid. Deel 1 and 2. Laboratorium voor Aquatische Oecologie, Katholieke
- 250 Universiteit Nijmegen, Nijmegen.'

251

- Line 97: Why do you mention Chara hispida here? It's not mentioned in line 68 of your
- introduction. If you want to include it, perhaps just mention that you also tested chara, but that it
- was outcompeted so is not a suitable species for water purification under your experimental
- conditions and will therefore be disregarded in the rest of this study.
- 256

- 258 At the beginning of our experiment, we planned to include *Chara hispida* as one of our
- submerged species, but since it was outcompeted in almost all experimental units, we had to
- 260 exclude it from our analyses. To avoid confusion over why we divided our mesocosms in four
- equal parts and only used three species, we decided to mention the species in our manuscript.

262 263	To clarify why we did not include it in our results section, we have now changed the text to [P7, L113]:
264 265	'As <i>C. hispida</i> was completely outcompeted by spontaneously developing vegetation, the quarters with this species were excluded from the rest of this study.'
266	
267	Line 103: Were rooted species harvested including roots, or just the shoots?
268	
269	Response
270	We have now modified the text to [P7, L115]:
271 272 273	'During the experimental period, 20 % of the total plant biomass (for rooted macrophytes aboveground biomass only) was harvested when vegetation reached 100 % cover, to avoid space limitation.'
274	
275 276	Line 110: Because pH can vary over time, please provide information on the time of measurement.
277	
278	Response
279	To specify the time of measurement, we have now changed the text to [P8, L122]:
280 281 282	'pH of water samples was measured between 12:00 PM and 2:00 PM using a combined Ag/AgCl electrode (Orion, Thermo Fisher Scientific, Waltham, MA, U.S.A.) with a TIM840 pH meter (Radiometer Analytical, Lyon, France).'
283	
284 285 286	Line 116: Please provide information why it was important to measure Al, Fe and Ca (They can bind P, but I'm not sure all readers will know). You can for example add this information near line 56/57.
287	
288	Response

We have now included the importance of Al, Fe and Ca in nutrient removal in our introduction[P4, L63]:

- 291 'There is a suite of mechanisms involved in the processes of nutrient removal and recovery in
- 292 natural and constructed wetlands, including sediment adsorption, phosphate (PO₄³⁻) adsorption

by aluminium (Al), iron (Fe) or calcium (Ca), precipitation, plant absorption, volatilization, and

- 294 microbial processes such as iron oxidation, nitrification, DNRA (dissimilatory nitrate reduction
- to ammonium) and anammox (anaerobic ammonium oxidation) (Van Loosdrecht & Jetten, 1998;
- 296 Van Dongen et al., 2001; Kadlec & Wallace, 2008; Wu et al., 2014).'
- 297
- Line 133: Do you mean total P or inorganic P (PO4) here, please specify.
- 299

300 **Response**

- 301 To specify which P fraction we used to calculate the P budget, we have now modified the text to302 [P10, L144]:
- 303 'Furthermore, nutrient changes in surface water and pore water were calculated from changes
- of N (NO_{3⁻} and NH_{4⁺}) and total P concentrations (end minus start).'

305

- Line 135-136: could you provide a reference for these processes to explain why this assumption
- 307 is valid. I also wondered if you couldn't quantify (or at least estimate) the amount stored in the
- 308 sediment, based on your sediment measurements In that way, you don't have to make this
- 309 assumption, but can provide proof.
- 310

- 312 We have now added the following reference for coupled nitrification/ denitrification:
- **313** 'Wetzel, R. G., 2001. Limnology: lake and river ecosystems. *3rd ed*. Academic Press, San Diego,
- 314 California.'
- 315

316	It is unfortunately not possible to calculate nutrient amounts stored in the sediment, due to the
317	fact that the amounts of nutrient release or adsorption by the sediment are very small compared

- **318** to total nutrient contents in the sediment. Therefore, no differences in nutrient concentrations in
- 319 the sediment existed between the start and the end of the experiment.

- Line 145: please clarify what you mean with: 'except for treatments also including time as maineffect', which are they?
- 323
- 324 **Response**
- **325** For clarity, we have now modified the text to [P11, L157]:
- 326 'The main effects (including nutrient loading, sediment type, plant species, and time) and
- 327 interactions of treatments on N (NO₃- and NH₄+) and P concentrations in surface water were also
- 328 tested by linear mixed models.'

- Line 148: Please mention which R packages/statistical tests you used for the regression models.
- 331
- 332 **Response**
- **333** We have now changed the text to [P11, L160]:
- 334 'We analyzed the influence of nutrient loadings on P and N sequestration (uptake plus
- adsorption to plants) rates using linear and logistic regression models with the summary
- 336 function.'
- 337
- Line 148: you introduce the term 'sequestration' here. I'm not sure everyone will be familiar
- with this, could you explain or swap for a term you've mentioned before, such as nutrient uptake
- or absorption?
- 341
- 342 **Response**

343	We have now modified the text to [P11, L160]:
344 345 346	'We analyzed the influence of nutrient loadings on P and N sequestration (uptake plus adsorption to plants) rates using linear and logistic regression models with the summary function.'
347	
348 349 350	Line 152-153: I think you mean that there is a main effect; however, looking at the graphs not all treatments show an increase. Perhaps you could provide some more information on this. You performed a full-factorial experiment and especially the interactions are very interesting I think!
351	
352	Response
353	To provide more information, we have now added the following sentence to the text [P12, L166]:
354 355	'There were significant interactions between time and plant species ($X^2=10.18$; $P < 0.01$) for surface water P, and between time and nutrient loadings ($X^2=8.92$; $P < 0.05$) for surface water N.'
356	
357 358	Line 158: Because you don't give the data, perhaps it's informative if you just provide the mean +/- SE values.
359	
360	Response
361	We have now changed the text to [P13, L171]:
362 363 364 365	'Peat sediments had the highest P concentrations in the pore water, whereas the lowest were found in clay sediments (X ² =20.20; $P < 0.001$; 4.65 ± 0.15 mg L ⁻¹ and 0.71 ± 0.05 mg L ⁻¹ for peat and clay, respectively), even though total P and Olsen P concentrations were much higher in clay than in the other two sediments (Table 1).'
366	
367 368 369	Paragraph 3.3 seems a bit long and sometimes unstructured; perhaps not all information is needed. e.g. is line 186-187 really relevant for your story? Also lines 183-184 may fit better at the end of the paragraph.
370	

371	Response
372 373	We agree with the referee and have now corrected this paragraph according to the referee's suggestions.
374	
375	Results: I expected information on Fe, Al and Ca in the results, as you mention them in the M&M.
376	
377	Response
378 379 380	We only used Fe, Al and Ca concentrations in the sediment in this manuscript, and we think that the way we wrote about the measurements of Fe, Al and Ca in material and methods section may indeed be confusing to readers. Therefore, we have now modified the text to [P8, L128]:
381 382	'Concentrations of total P were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES; IRIS Intrepid II, Thermo Fisher Scientific, Franklin, MA, U.S.A.).'
383	and the text to [P9, L133]:
384 385 386 387	'Furthermore, 200 mg of dry sediment was digested in a microwave oven (MLS-1200 Mega, Milestone Inc., Sorisole, Italy) with 4 mL 65 % HNO ₃ and 1 mL 30 % H ₂ O ₂ , after which digestates were analyzed and concentrations of total Al, Fe, Ca and P in sediments were determined by ICP- OES (see above).'
388	
389	Results: I also expected fig. 6 to be mentioned here, for example in section 3.3.
390	
391	Response
392 393	We have now moved Fig 6 from discussion section to results section 3.3, and added two sentences to the text [P16, L205]:
394 395 396 397	'For <i>C. demersum</i> , nutrient sequestration rates increased linearly with increased nutrient loading, while for <i>M. spicatum</i> there was a logistic response to external nutrient loading (Fig. 6). <i>A. filiculoides</i> showed linearly increasing P sequestration rates upon increased P loading and a logistic response to external N loading.'
398	

399 Line 203: perhaps add that N removal also depends on species.

400 401 **Response** 402 We have now added one more sentence to the text [P18, L222]: 403 "Furthermore, this study also shows that N removal efficiency of macrophytes strongly depends 404 on plant species involved." 405 406 Line 206: are these averages calculated over all nutrient loading treatments? 407 408 Response 409 For clarity we have now changed the text to [P19, L225]: 410 With average biomass production rates of 3.4 and 1.0 g DW m⁻² d⁻¹, respectively, *A. filiculoides* 411 and *M. spicatum* showed the highest growth rates, regardless of sediment type and nutrient loading, and therefore have the best potential for being used to remove nutrients in constructed 412 413 wetlands.' 414 415 Line 235-237: Could you comment a bit more on how the different growth forms impact nutrient 416 removal and which species you would recommend under what loadings? Do you expect similar 417 results for other floating / submerged plants? Perhaps you can use the 'few references' you 418 mention are available on this topic. 419 420 **Response** 421 In our study we only determined specific nutrient removal efficiencies of the floating or 422 submerged macrophytes we tested, and therefore the results cannot be simply extrapolated to 423 general plant growth forms. We strongly feel that the removal efficiency depend on the plant 424 species involved due to their specific biomass production and nutrient uptake rates, and not 425 necessarily on plant growth forms. We have therefore now changed the corresponding parts

426 according to the specific comments and suggestions of the referee, as explained in detail below.

427	
428	Line 237-238: this sentence is hard to read, perhaps start with: "Low O2 mobilizes PO4 []"
429	
430	Response
431	We have now modified the text to [P21, L255]:
432 433 434 435	'As low O ₂ concentrations, induced by the coverage of floating macrophytes or dense growth of submerged macrophytes, can mobilize P from the sediment, <i>A. filiculoides</i> and <i>M. spicatum</i> did not only take up all P being discharged into the system by both their roots and shoots, but additionally took up mobilized P (Wetzel, 2001).'
436	
437 438	Line 240: do they only take up nutrients by their roots or also via their shoots when nutrients are mobilized and leach into the water?
439	
440	Response
441	We have now changed the text to [P21, L255]:
442 443 444 445	'As low O ₂ concentrations, induced by the coverage of floating macrophytes or dense growth of submerged macrophytes, can mobilize P from the sediment, <i>A. filiculoides</i> and <i>M. spicatum</i> did not only take up all P being discharged into the system by both their roots and shoots, but additionally took up mobilized P (Wetzel, 2001).'
446	
447	Line 241-242: please add reference to support this.
448	
449	Response
450	We have now added the following reference:
451 452 453	'De Lyon, M. J. H., Roelofs, J. G. M., 1986. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheid. Deel 1 and 2. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen.'

- Line 245: How does this seasonality affect your maximum loading you can remove with plants?
- 456 Should we divide the results of your study by 2 to get the year round maximum nutrient loading
- 457 to account for the winter influx of nutrients, assuming that they are then bound to the sediment?
- 458 Please elaborate on this.
- 459

460 **Response**

- 461 To specify the effect of seasonality on nutrient uptake rates of plants, we have now added the462 following sentence to the text [P22, L261]:
- 463 Under low external loading, sediments will take up most of the P during winter. Since
- 464 submerged plants have N and P accumulation rates that are higher than the low nutrient loading,
- they heavily rely on uptake of nutrients from the sediment. Thus, the nutrients stored in the
- 466 sediment in winter can be mobilised and taken up by macrophytes in summer, creating an
- 467 efficient and sustainable constructed wetland for water polishing in temperate climates.
- 468 Furthermore, predicted climate change will lead to higher temperatures and thus longer
- 469 growing seasons in temperate regions, indicating that these systems may be operational longer
- 470 and longer every year.
- 471
- 472 Line 247-248: how do you come to 6-24mg? In fig. 6 I don't see a maximum.
- 473

474 **Response**

- 475 We have now modified the text to [P23, L269]:
- 476 'When P loading in the treatment water increases, uptake rates of *A. filiculoides* double or even
 477 triple, to rates 7.87 or 17.64 mg P m⁻² d⁻¹.'

- 479 Line 248-249: You mention that your results are comparable to the results of Reddy & de Busk,
- 480 but according to you, they found values 2 times higher than yours, which sounds much higher to
- 481 me. Could this be because you were not near the maximum potential of Azolla, as suggested by
- 482 the linear relationship between loading and uptake (fig6)?

484 **Response**

485 We have now changed the text to [P23, L270]:

486 'The highest value is lower than results of Reddy and DeBusk (1985), who reported P uptake

487 rates of 43 ± 15 mg P m⁻² d⁻¹ by *A. filiculoides* grown in an N-free, 3 mg L⁻¹ P medium which,

488 however, had much higher $PO_{4^{3-}}$ concentrations in the surface water than our high nutrient

489 loading treatment.'

490

491 Line 264: Very nice that you mention N-fixation in Azolla! Could you add references of a study

492 that researched the N-fixation capacity of Azolla to assess how much they can fix N and thus

493 argue if this amount could have affected your results. N was still removed from the water, so I

494 see no reason why this would be very detrimental to your story.

495

496 **Response**

497 We have now modified the text to [P24, L288]:

498 'Although it can be estimated that N₂-fixation rates by *Azolla* grown in an N-free medium were in

the range of 1.4 - 2.7 kg N ha⁻¹ d⁻¹ (Reddy & DeBusk, 1985), in our study we added N to the

500 surface water which may affect N₂ fixation. Therefore it was difficult to calculate N removal rates

for *A. filiculoides*, as the unknown N₂ fixation rates lead to an overestimation of N uptake rates by *A. filiculoides*.'

503

- Line 263-265: This argument needs a bit more information, could you provide some
- 505 mechanisms why you conclude that senescence is more important than soil leaching? I'm not
- sure the information provided is sufficient.

507

508 **Response**

509 To provide more information we have now changed the text to [P24, L295]:

- 510 'At the end of the growing season, dissolved N concentrations increased under high nutrient
- 511 loading, similar to P concentrations. This increase may result from a combination of reduced
- 512 plant uptake, nutrient leaching from senescing plants and reduced denitrification rates as a
- result of lower temperatures. Due to the different available pathways for nitrogen removal from
- 514 the sediment, sediment saturation of N seems unlikely.'
- 515
- Line: 271- 274: Here you extrapolate your results to plant growth forms. Only your data does
 not allow for this, please provide literature on other species with the same growth form or on
 the mechanisms which will show why we can assume that other species with the same growth
 form with have similar nutrient removal rates.
- 520

521 **Response**

- Although we can see how our statement may be confusing, we did not mean to extrapolate our
 results to plant growth form (see above). In order to avoid confusion, we have now changed the
 text to [P25, L301]:
- 525 'We showed that in macrophyte-dominated CWS, both the submerged and the floating
- 526 macrophytes we tested are able to remove most of the added nutrients at low P and N loadings,
- 527 whereas at higher nutrient loadings, floating or submerged macrophytes could only remove 20-
- 528 45 % and 10-25 % of the external P loads for 21.4 and 85.7 mg P $m^{-2} d^{-1}$, respectively.'

529

- 530 Line 279: explain how the creation of anoxic conditions removes P from the sediment.
- 531

- **533** To specify the mechanism regulating P removal, we have now modified the text to [P25, L309]:
- 534 'While aquatic macrophytes are able to remove this P from the sediments by either creating
- anaerobic conditions to trigger high P mobilization (Smolders et al., 2006) or through both root
- and shoot uptake, the external load will have to be reduced for this process to occur efficiently.'
- 537
- 538 DISCUSSION: Do you have any idea why C. demersum performed so poorly?

5	3	9
-	-	-

540 **Response**

541 To provide more information about the reason for the poor performance of *C. demersum*, we542 have now changed the text to [P19, L228]:

543 *C. demersum*, on the other hand, appeared to be less suitable, since this species was easily

544 outcompeted for light by other species, such as floating algae and *Zanichellia spp.*'

545

546 Discussion: Could you compare your results to other studies about CWS with floating or

547 submerged plants or with plant nutrient uptake studies? This will enable you to give more

548 general recommendations and conclusions. Perhaps also shortly compare your results with

549 more traditional emergent CWS, as you've mentioned there's a lot of literature about those and

550 readers will be more familiar with those.

551

552 **Response**

553 To compare nutrient uptake rates of floating or submerged macrophytes with nutrient uptake

rates of emergent macrophytes, we have now added the following sentence to the text [P23,

555 L272]:

⁵⁵⁶ 'P uptake rates of *A. filiculoides* in this study are similar to, or even lower than, results of Brix

557 (1994), who reported P uptake rates of 8 - 41 mg P m⁻² d⁻¹ by emergent macrophytes. The main

558 advantage of using floating macrophytes instead of emergent macrophytes is, however, that they

559 can be harvested multiple times a year and that they take up nutrients from both the water layer

560 and sediment.

561

Line 283-286: Perhaps remove the species specific information here, as the effects on N are
different (Azolla is always better). Furthermore, looking at fig. 6 M. spicatum is only better in P
uptake between your low and medium nutrient treatment, because you've fitted a log.-line, at
22mgP input azolla is already better (although not sign.) It's important to keep in mind how
reliable your regression is when only using 3 points on the x-axis, especially when making these
kinds of general statements and using the regression line to determine thresholds. I would tone

568	this down a little bit	, or at least acknow	vledge the uncertainty.

570	Response
3,0	neoponoe

- 571 We agree with the referee. We have now modified the text to [P26, L316]:
- 572 'At a low nutrient loading *M. spicatum* and *A. filiculoides* performed equally well for P removal
- 573 whereas at loads \ge 22 mg P m⁻² d⁻¹, *A. filiculoides* removes P more efficiently.'
- 574 and the text to [P20, L237]:
- 575 'Our results indicate that at a low nutrient loading *M. spicatum* and *A. filiculoides* performed
- **576** equally well for P removal whereas at loads $\ge 22 \text{ mg P m}^{-2} \text{ d}^{-1}$, *A. filiculoides* removes P more
- 577 efficiently (Fig. 6a).'

578

579 **Technical comments**

- 580 Line 54: change 'drained' to 'removed'
- 581
- 582 **Response**
- 583 We have now corrected this issue.

584

- 585 Line 55: add recent reference, several recent studies that have looked into this as well.
- 586

587 **Response**

- 588 We have now added one recent reference:
- 589 'Biswas, S., Sarkar, S., 2013. *Azolla* cultivation: a supplementary cattle feed production through
- 590 natural resource management. Agriculture Update 8, 670-672.'

- Line 63: you mention 'soil type'. Do you mean the same with this as with 'soil characteristics' in
- line 60? If so, it's better to use the same term throughout the whole text.

594	
595	Response
596	We have corrected this.
597	
598 599	Line 68: because you specifically use macrophyte species with contrasting growth forms, I would stress this here.
600	
601	Response
602	We have now changed the text [P5, L75] to:
603 604 605 606	'Using a full-factorial outdoor mesocosm experiment, we studied the nutrient uptake rates of three different aquatic macrophytes with contrasting growth forms, <i>Azolla filiculoides</i> , <i>Ceratophyllum demersum</i> and <i>Myriophyllum spicatum</i> , growing on peat, peaty clay or clay sediments.'
607	
608	Line 70: Please provide reference of 'environmentally relevant nutrient levels'.
609	
610	Response
611	We have now added one reference:
612 613	'Lamers, L. P. M., Smolders, A. J. P., Roelofs, J. G. M., 2002. The restoration of fens in the Netherlands. Hydrobiologia 478, 107-130.'
614	
615 616	Line 79: please check your calculation for volume. I'm not sure that 20cm in a 185cm diameter cylinder is 135 L.
617	
618	Response
619	The calculation is correct, as 135 L is the soil volume for each quarter.

\boldsymbol{c}	h	0
ю	Z	υ

Line 143-146: Long, complex sentence. Could you abbreviate this or split in 2 sentences? 621 622

623	Response
624	We have now split this sentence into [P11, L155]:
625 626 627	'Linear mixed models were used to test the main effects and interactions of treatments on sediment characteristics, biomass production rates, the ratios between N and P, and nutrient budgets with mesocosm number as a random effect, by using R package nlme.'
628	And [P11, L157]:
629 630 631	'The main effects (including nutrient loading, sediment type, plant species, and time) and interactions of treatments on N (NO ₃ ⁻ and NH ₄ ⁺) and P concentrations in surface water were also tested by linear mixed models.'
632	
633 634	Line 155 and further: you often write p<0.000, which means that p is negative. I believe you mean p<0.001.
635	
636	Response
637	We have corrected this issue.
638	
639 640	Line 158-161: To remove some ambiguity, perhaps rewrite as: [] even though total P and Olsen P concentrations were much higher in clay than in the other two soils [].
641	
642	Response
643	We have corrected this issue.

645 646	Line 177: I think you mean Azolla OR Spicatum. Now it seems like they were both inside one quarter.
647	
648	Response
649	We have now corrected it.
650	
651 652	Line 179: 'on the other hand' seems to contradict the previous sentence where M. spicatum also didn't take up more than 20%.
653	
654	Response
655	We have now deleted 'on the other hand'.
656	
657	Line 188: Here you use 'absorbed', I was wondering if you mean the same with words like: take
658	up nutrient, sequester nutrients and absorb nutrients. If so, it is more clear to choose one term
659	and use that one throughout the whole text for clarity.
660	
661	Response
662	We have now corrected this issue.
663	
664	Line 195: 'As P loading []' can be removed as the first 2 lines of the paragraph provides the
665	same information.
666	
667	Response
668	We have now deleted this line.
669	

670	Line 251: It's hard to compare values in mols and grams, please choose one unit and use it
671	throughout the text.
672	
673	Response
674	We have now used grams throughout the whole text.
675	
676 677	Line 257: add '[] in our study.' to the end of the sentence to make sure that readers know your talking about your results.
678	
679	Response
680	We have now added this.
681	
682	Line 271: change beginning to: '[] CWS, both submerged and floating plants are []'
683	
684	Response
685	We have now corrected this.
686	
687 688	Line 274-276: Too many dependent clauses, please reformulate. (Also check the rest of the text for these sentences, they are often hard to understand.)
689	
690	Response
691	We have now corrected this.
692	
693 694	Line 278: change with: [] resulting in saturated soil and thus leading to an increase in water nutrient levels under continued nutrient input.

695	
696	Response
697	We have now corrected this.
698	
699 700	General: I'm not sure the term 'soil' is used often when referring to aquatic systems, sediment may be more appropriate in the context of your study
701	
702	Response
703	We now use the term 'sediment' throughout the entire text.
704	
705	
706	
707	
708	
709	
710	
711	
712	
713	
714	
715	
716	
717	

718 Aquatic macrophytes can be used for wastewater polishing,

⁷¹⁹ but not for purification in constructed wetlands

- 720 Yingying Tang^{1§}, Sarah F. Harpenslager^{1§}, Monique M.L. van Kempen¹, Evi J.H. Verbaarschot², Laury
- 721 M.J.M Loeffen¹, Jan G.M. Roelofs², Alfons J.P. Smolders^{1,2}, Leon P.M. Lamers¹
- ¹ Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research,
- 723 Radboud University, P.O. Box 9010 Nijmegen, 6500 GL, The Netherlands
- 724 ² B-WARE Research Centre, Radboud University, Nijmegen, P.O. Box 6558, 6503 GB, The Netherlands
- 725 §Y.T. and S.F.H. contributed equally to this study
- 726 *Correspondence to*: Yingying Tang (<u>nicoletangying/ing@126.com)y.tang@science.ru.nl</u>)
- 727 Abstract

728 The sequestration of nutrients from surface waters by aquatic macrophytes and sedimentssoils 729 provides an important service of both natural and constructed wetlands. While emergent species take up nutrients from the soilsediment, submerged and floating macrophytes filter nutrients 730 731 directly from the surface water, which may be more efficient in constructed wetlands. It remains 732 unclear, however, whether their efficiency is sufficient for wastewater purification, and how plant 733 species and nutrient loading affects nutrient distribution over plants, water, and soilsediment. We 734 therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, 735 Ceratophyllum demersum or Myriophyllum spicatum) and soil-sediment types (clay, peaty clay and 736 peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m⁻² d⁻¹), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while 737 soils sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass 738 739 production and could be harvested regularly for nutrient recycling, whereas C. demersum was 740 outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only

stimulated A. *filiculoides* growth. At higher rates ($\geq 21.4 \text{ mg P m}^{-2} \text{ d}^{-1}$) 50-90 % of added P ended up in 741 soilssediments, with peat soils sediments becoming more easily saturated. For nitrogen (N), 45-90 % 742 was either taken up by the <u>soil sediment</u> or lost to the atmosphere at loadings \ge 62 mg N m⁻² d⁻¹. This 743 744 shows that aquatic macrophytes can indeed function as an efficient nutrient filter, but only for low 745 loading rates (polishing), not for high rates (purification). The outcome of this controlled study not 746 only contributes to our understanding of nutrient dynamics in constructed wetlands, but also shows 747 the differential effects the importance of wetland of wetland soil sediment characteristics types and 748 plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte 749 harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded 750 natural wetlands.

751 Keywords: Eutrophication, nutrient removal, macrophytes, nutrient budgets, purification, water 752 management

753 **1. Introduction**

754 Excess loading of phosphorus (P) and nitrogen (N) from domestic, agricultural and industrial 755 wastewaters is the main cause of eutrophication of aquatic ecosystems, damaging their ecological 756 quality and functioning (Kronvang et al., 2005; Kantawanichkul et al., 2009). Surface water 757 eutrophication can lead to algal and cyanobacterial blooms, die-off of indigenous vegetation and 758 serious decrease in biodiversity (Pretty et al., 2003; Conley et al., 2009). In recent decades, wetlands 759 have been constructed to mitigate eutrophication of watercourses, lakes and seas by reducing the 760 nutrient loads in discharge water of wastewater treatment plants, farmlands, households or 761 industries (Brix & Arias, 2005; Mitsch et al., 2005).

Constructed wetland systems (CWS) use macrophytes (free surface flow systems) or a combination
of macrophytes and soilsediment, -(subsurface flow systems), to remove nutrients from the water
(Brix, 1994; Vymazal, 2007). These systems are either used as stand-alone water purification systems

765 (Vrhovšek et al., 1996; Jing et al., 2001) or as a polishing method of pre-treated wastewater (Kaseva, 766 2004; Greenway, 2005). The most commonly used macrophyte species are emergent genera such as 767 Typha, Phragmites, Scirpus, Phalaris and Iris (Vymazal, 2011). Advantages of CWS include utilization 768 of natural processes, low cost and energy requirements, and easy operation and maintenance (Brix, 769 1999; Konnerup et al., 2009). As a result of low maintenance, however, these systems easily become 770 saturated_- especially with especially P and other nutrients, which a decreased inges their nutrient 771 binding capacity-of the sediment over time, . and tAs a resultherefore, -they only work efficiently for 772 a limited amount of time (Drizo et al., 2002). Furthermore, at higher latitudes seasonality is an 773 important factor for these systems because additional energy will be needed during cold seasons (e.g. 774 the use of warmed greenhouse facilities) towould have remove nutrients by macrophytes growth 775 year-round (Wittgren & Mæhlum, 1997).

776 Although much research has focused on the optimal design of CWS with respect to the most efficient 777 macrophyte species (Lin et al., 2002; Scholz & Xu, 2002), only few have investigated the possibility of 778 using floating or submerged aquatic macrophytes in treatment systems. Although these research 779 findingsstudies showed that submerged or floating macrophytes can be used to remove nutrients 780 from wastewater due to itstheir high growth rates, ., wherea they but did -s did not elaborate 781 onfocuselaborate on -nutrient removal efficiencies under different nutrient loadings (Vymazal, 2007; 782 Gao et al., 2009). While helophytes mainly take up nutrients from the soilsediment, floating and 783 submerged aquatic macrophytes, such as Azolla spp. or Myriophyllum spp., can also take up 784 nutrients from the water layer (Best & Mantai, 1978; Van Kempen et al., 2012). By regularly 785 harvesting these plants, nutrients may be drained-removed from the system. The aquatic biomass 786 can then be used in various bio-based applications, for instance, as a bio-fertilizer or as fodder for 787 livestock (Hauck, 1978; Biswas & Sarkar, 2013).

There is a suite of mechanisms involved in the processes of nutrient removal and recovery in natural and constructed wetlands, including <u>sediment</u> adsorption, <u>phosphate</u> (PO_4^{3-}) adsorption by 790 Alaluminium (Al), Feiron (Fe) or Cacalcium (Ca), precipitation, plant absorption, volatilization, and 791 microbial processes such as iron oxidation, nitrification, DNRA (dissimilatory nitrate reduction to 792 ammonium) and anammox (anaerobic ammonium oxidation) (Van Loosdrecht & Jetten, 1998; Van 793 Dongen et al., 2001; Kadlec & Wallace, 2008; Wu et al., 2014). Rates and removal efficiencies by 794 These these mechanisms are generally affected by factors such as nutrient loading, plant species and 795 soil-sediment characteristics-types (Gale et al., 1994; Tanner, 1996; Jampeetong et al., 2012). So far, 796 most studies have focused on the effects of only one or two of these factors on nutrient retention in 797 wetlands, whereas little information is available on interactions among plant species, soil-sediment 798 type and nutrient loading. Only by including all interactions, however, can nutrient sequestration 799 efficiency of wetland plants and soils sediments under different loads be assessed.

800 Here, we studied the effects of plant species, nutrient loading and soil-sediment type on nutrient 801 uptake rates of aquatic macrophytes and nutrient retention rates of soilssediments. Using a full-802 factorial outdoor mesocosm experiment, we studied the nutrient uptake rates of three different 803 aquatic macrophytes with contrasting growth forms, Azolla filiculoides, Ceratophyllum demersum 804 and Myriophyllum spicatum, growing on peat, peaty clay or clay soilssediments. Three different, environmentally relevant, nutrient loadings of P (0.43, 21.4 and 85.7 mg P m⁻² d⁻¹) and N (1.3, 62 and 805 249 mg N m⁻² d⁻¹) were applied to the mesocosms, representing pre-treated (low nutrient loading), 806 807 and eutrophic and hypertrophic wastewater input (medium and high nutrient loading) (Lamers et al., 808 2002). By studying the resulting distribution of P and N among the different sediment, macrophyte 809 and water compartments, we aimed to determine the nutrient removal efficiency by floating or 810 submerged aquatic macrophytes from wastewater at low (polishing) or high (purification) loading 811 rates, and the interacting role of sediment type. By studying the resulting distribution of P and N 812 among the different sediment, macrophyte and water compartments, we aimed to determine the 813 nutrient removal efficiency by floating or submerged aquatic macrophytes from wastewater at low 814 (polishing) or high (purification) loading rates, and the interacting role of sediment type.

815	2. By studying the resulting distribution of P and N among the different soilsediment,
816	macrophyte and water compartments, we aimed to determine whether <u>floating or</u>
817	submerged aquatic macrophytes can effectively remove nutrients from wastewater
818	removal by floating or submerged aquatic macrophytes may be an efficient approach
819	f or <u>atat low loading rates (</u>polishing) or <u>forat high loading rates (</u>purifying
820	purification)wastewater., and taking into accountand the interacting role of sediment
821	t ype.

822 **3.2.** Materials and methods

I

823 <u>3.1.2.1.</u> Experimental set-up

824 Twenty-seven mesocosms (185 cm \emptyset , 90 cm depth) were sunk into the ground outside the 825 greenhouse facility at Radboud University (Nijmegen, The Netherlands). All mesocosms were filled 826 with 20 cm (135 L) of carefully homogenized -clay (originating from Lalleweer, 53°16' N, 6°59' E; n=9), 827 peaty clay (originating from De Deelen, 53°01' N, 5°55' E; n=9) or peat (originating from Ilperveld, 828 52°27' N, 4°56' E; n=9), after which they received a layer of 50 cm of Nijmegen tap water $(NH_4^+ < 0.03)$ mg L⁻¹, NO₃⁻: 16.40 mg L⁻¹, PO₄³⁻ < 0.03 mg L⁻¹, pH: 7.7, total inorganic carbon (TIC): 30 mg C L⁻¹-data 829 830 from Vitens Laboratory). Soil-Sediment characteristics are displayed in Table 1, expressed per unit 831 volume to enable comparison among soil-sediment types with respect to nutrient exchange and 832 plant nutrient availability. In all mesocosms, crossed transparent carbon fiber plates were used to 833 create four fully isolated quarters. We did not include non-vegetated treatments because: 1) our 834 focus was on complete ecosystems in constructed and natural wetlands, i.e. including soil-sediment 835 and vegetation; 2) bare soils sediments always show spontaneous vegetation development if light 836 and nutrient conditions suffice (see section 2.2); 3) continuous plant removal would lead to 837 significant soil sediment disturbance; and 4) dark conditions would affect soil sediment 838 biogeochemistry. Mesocosms were randomly assigned to "low", "medium" or "high" nutrient loading 839 treatment (n=3 for all). To create these, treatment solutions were added three times a week to the 840 surface water to enable loading rates of 0.43, 21.4 and 85.7 mg P m⁻² d⁻¹ (added as NaH₂PO₄·H₂O and 841 atmospheric deposition of 0.1 kg P ha⁻¹ y⁻¹) (Furnas, 2003) and 1.3, 62 and 249 mg N m⁻² d⁻¹ (added as 842 NH₄NO₃ and atmospheric N deposition of 20-35 kg N ha⁻¹ y⁻¹ in this part of the Netherlands; TNO) 843 (RIVM, 2014). In the results and discussion sections, treatments will be called-referred to as -0.43 844 (low), 21.4 (medium) and 85.7 (high) mg P m⁻² d⁻¹, according to their respective P loading.

845 <u>3.2.2.2</u> Plant measurements

846 In July 2013, environmentally relevant densities (based on personal field observations) (De Lyon & Roelofs, 1986) of *Ceratophyllum demersum* (5.03 \pm 0.24 g DW m⁻²; rigid hornwort, submerged 847 macrophyte), Chara hispida (8.66 \pm 0.69 g DW m⁻²; bristly stonewort, submerged macroalga) and 848 *Myriophyllum spicatum* (5.31 \pm 0.60 g DW m⁻²; Eurasian water-milfoil, submerged macrophyte) were 849 850 planted randomly in each of three quarters of every mesocosm to establish. In April 2014, patches of Azolla filiculoides (28.39 \pm 0.88 g DW m⁻²; water fern, floating macrophyte) were added to the water 851 852 layer of the remaining quarter. Apart from these four introduced species, other species colonized the 853 quarters, including Zanichellia spp. and floating algae. As C. hispida was completely outcompeted by 854 spontaneously developing vegetation, the quarters with this species were excluded from the rest of 855 this studyresults. During the experimental period, 20 % of the total plant biomass (for rooted 856 macrophytes aboveground biomass only) was harvested when vegetation reached 100 % cover, to 857 avoid space limitation. During the final harvest, biomass of all present species was harvested 858 separately and dried (48 h at 60 °C), after which they were weighed, ground and homogenized. As G. 859 hispida was completely outcompeted by spontaneously developing vegetation, the quarters with this 860 species were excluded from the results.

861 <u>3.3.2.3.</u> Chemical analyses

862 Surface water samples were collected every week between May and October 2014, whereas pore
863 water samples were collected anaerobically every month using ceramic soil moisture cups-samplers

864 (SMS rhizons, Eijkelkamp, Giesbeek, Netherlands). pH of water samples was measured between 865 12:00 PM and 2:00 PM using a combined Ag/AgCl electrode (Orion, Thermo Fisher Scientific, 866 Waltham, MA, U.S.A.) with a TIM840 pH meter (Radiometer Analytical, Lyon, France). Total inorganic 867 carbon (TIC) of water samples was measured using an Infra-red Gas Analyzer (IRGA; ABB Analytical, Frankfurt, Germany). Concentrations of PO_4^{3-} , NO_3^{-} and NH_4^{+} in the surface water and pore water 868 869 were measured colorimetrically on an Auto-Analyzer III system (Bran & Luebbe, Norderstedt, 870 Germany) by using ammonium molybdate (Henriksen, 1965), hydrazine sulphate (Kamphake et al., 871 1967) and salicylate (Grasshoff & Johannsen, 1972), respectively. Concentrations of total Al, Fe, Ca, 872 and P were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES; IRIS 873 Intrepid II, Thermo Fisher Scientific, Franklin, MA, U.S.A.).

874 Soil-Sediment samples were collected at the end of the experiment, and subsequently volume 875 weighted and dried for 48 h at 60 °C to determine bulk density. Dry soil-sediment samples were 876 heated for 4 h at 550 °C and re-weighed to determine organic matter content. Furthermore, 200 mg 877 of dry soil-sediment was digested in a microwave oven (MLS-1200 Mega, Milestone Inc., Sorisole, Italy) with 4 mL 65 % HNO₃ and 1 mL 30 % H_2O_2 , after which digestates were analyzed and 878 879 concentrations of total Al, Fe, Ca and P in sediments were determined by ICP-OES (see above). Plant 880 available P was determined by extraction according to Olsen et al. (1954), whereas an NaCl-881 extraction was performed to determine exchangeable N ions $(NO_3^+ + NH_4^+)$ as described in Tomassen 882 et al. (2004). Total P concentrations in plants were determined by digestion of 200 mg of dry plant 883 material and analyzed as described above. Furthermore, 3 mg of dry plant material was combusted 884 to determine C and N content using an elemental analyzer (Carlo Erba NA 1500, Thermo Fisher 885 Scientific, Waltham, MA, USA).

886 <u>3.4.2.4</u>. Budget calculations

For both N and P, nutrient budgets were calculated to determine the distribution among biomass,
soil_sediment_and other components. Cumulative biomass production and nutrient content of

submerged or floating macrophytes (target species and others) were used to calculate plant uptake rates of N and P. Furthermore, nutrient changes in surface water and pore water were calculated from changes of N (NO_3^- and NH_4^+) and total P concentrations (end minus start). After subtracting the N and P uptake of plants and water components from the external loading, we assume that the remainder is either stored in the <u>soil_sediment_or</u>, in case of N, lost through <u>coupled</u> <u>nitrification/denitrification or anammox_(Wetzel, 2001)-or anammox (ref)</u>.

895 <u>3.5.2.5.</u> Statistical Analyses

896 All analyses were performed using the software program R (version 3.2.1; R development Core Team, 897 2015). The effects were considered significant if P < 0.05. In order to meet the assumption that 898 residuals fit a normal distribution and homogeneity of variance, we transformed soil-sediment 899 characteristics, N (NO₃⁻ and NH₄⁺) and P concentrations in surface water, biomass production rates, N: 900 P ratios in macrophytes, N and P budgets and N and P sequestration rates (response variables) by log 901 (response variable) or log (response variable+1) in case the lowest value of a variable was below one. 902 Linear mixed models were used to test the main effects and interactions of treatments on soil 903 <u>sediment</u> characteristics, biomass production rates, the ratios between N and P, N (NO₂ and NH₄⁺) 904 and P concentrations in surface water (except for treatments also including time as a main effect in 905 this model), and nutrient budgets with mesocosm number as a random effect, by using R package 906 nlme. The main effects (including nutrient loading, sediment type, plant species, and time) and 907 interactions of treatments on N (NO₃⁻ and NH₄⁺) and P concentrations in surface water were also 908 tested by linear mixed models. Tukey tests were used to find differences between treatments by 909 using R package multcomp. We analyzed the influence of nutrient loadings on P and N sequestration 910 (uptake plus adsorption to plants) rates using linear and logistic regression models with the summary 911 function. All graphs were plotted using R package ggplot2.

912 4.<u>3.</u> Results

913

4.1.3.1. Surface water and pore water quality

914 Over_time, surface water P and N (NH₄⁺+NO₃⁻) concentrations increased (Figs. 1 and 2; X²=4<u>3.2644</u>; *P* 915 < 0.05 and X²=<u>3523.6163</u>; *P* < 0.000-001 for P and N respectively), especially towards the end of the 916 growing season. There were significant interactions between time and plant species (X²=10.18; *P* < 917 0.01) for surface water P, and between time and nutrient loadings (X²=8.92; *P* < 0.05) for surface 918 water N. When macrophytes were growing on peat or peaty clay soilssediments, P concentrations in 919 the surface water increased with increasing external P loading (X²=<u>11599.8780</u>; *P* < 0.000-001 and 920 X²=<u>8859.9440</u>; *P* < 0.000-001 for peat and peaty clay soils-sediments respectively).

921 Porewater nutrient concentrations depended on soil-sediment type. Peat soils-sediments had the 922 highest P concentrations in the pore water, whereas the lowest were found in clay soils sediments $(X^2 = \frac{12}{20.0720}; P < 0.001; \frac{1}{2000} \text{ data not shown} 4.65 \pm 0.15 \text{ mg L}^{-1} \text{ and } 0.71 \pm 0.05 \text{ mg L}^{-1} \text{ for peat and clay,}$ 923 924 respectively), -even though their total P and Olsen P concentrations were much higher in clay than in 925 the for the other two soils sediments (Table 1). In addition, mesocosms filled with peat soils 926 sediments had higher N concentrations in the pore water than those with peaty clay and clay 927 $(X^2=7.13; P < 0.05; data not shown)$. Surface water and porewater together never contained more than 12 % of total P and N added to the system at P loadings \geq 21.4 mg P m⁻² d⁻¹ (Figs. 4 and 5). 928

929

4.2.3.2. Macrophyte productivity and nutrient ratio

Due to their high biomass production rates, *A. filiculoides* and *M. spicatum* could be harvested weekly and biweekly, respectively. *A. filiculoides* had the highest biomass production rates of all three macrophyte species (X^2 = 55.45, *P*<0.000001), whereas *C. demersum* grew best on peaty clay soils-sediments (X^2 =10.67, *P* < 0.01), but almost disappeared when growing on clay and peat soils sediments due to competition with algae and other non-target species (Fig. 3). Biomass production rates of *A. filiculoides* were significantly higher at high nutrient loading than at low nutrient loading 936 $(X^2=11.39, P < 0.01)$, whereas no effect of nutrient loading was found for the other macrophytes. In 937 quarters with *C. demersum* there was a higher production rate of non-target species than in quarters 938 with *A. filiculoides* and *M. spicatum* ($X^2=6.28, P < 0.05$). *A. filiculoides* showed high N: P ratios (> 24-11 939 mol-g_molg⁻¹) when grown at \leq 21.4 mg P m⁻² y⁻¹ (*P* < 0.000001), whereas all other species generally 940 showed N: P ratios ranging from 8-4 to 17-8 mol-g_molg⁻¹, without an effect of soil-sediment_type 941 (Table 2).

942 <u>4.3.3.</u> Plant nutrient uptake

943 A. filiculoides and M. spicatum accumulated much more P than C. demersum (X^2 =23.66, P < 0.00001; Fig. 4). At a P loading of 0.43 mg m⁻² d⁻¹ around 100 % of added P and N were accumulated by the 944 945 targeted macrophytes (Figs. 4 and 5). For the quarters with A. filiculoides and or M. spicatum, around 946 20-40 % and 10-20 % of the P added was taken up by target species at P loadings of 21.4 and 85.7 mg $m^{-2} d^{-1}$, respectively, regardless of soil-sediment types. C. demersum, on the other hand, never took 947 948 up more than 20 % of the P added at these loadings. Still, at a loading of 85.7 mg P m⁻² d⁻¹, removal rates by macrophytes were significantly higher than at 0.43 mg P m⁻² d⁻¹ (X^2 =7.22, P < 0.05; Fig. 4). 949 The average P sequestration rates by A. filiculoides and M. spicatum were 3 to 9 mg m⁻² d⁻¹ at P 950 951 loadings \leq 21.4 mg m⁻² d⁻¹. At a high P loading of 85.7 mg m⁻² d⁻¹, the average P removal rates by A. filiculoides and M. spicatum were 16 to 20 and 6 to 14 mg m⁻² d⁻¹, respectively. In addition, C. 952 953 demersum had higher P and N uptake rates in mesocosms with peaty clay compared to mesocosms 954 with clay $(X^2 = 10.50, P < 0.01; X^2 = 10.43, P < 0.01)$. In guarters with C. demersum, more P was taken up 955 by other, spontaneously developing species than in quarters with A. filiculoides and M. spicatum 956 (X²=6.89, P < 0.05). In addition, these non-target plants in *C. demersum* quarters had lower P uptake 957 rates on peaty clay than on peat and clay soils (X^2 =6.92, P < 0.05). A. filiculoides and M. spicatum absorbed sequestrated much more N than C. demersum and the final biomass of A. filiculoides had 958 the highest N content (including N₂ fixed) among all macrophyte species (X^2 =10.28, P < 0.01; Fig. 5). 959 960 At high N loadings, less than 21 % of added N was removed by the targeted macrophytes. In addition,

961	<u>C.</u>	demersum	had	higher	Pi	and	Ν	uptake	rates	in	mesocosms	with	peaty	clay	compared	to
962	m	esocosms wi	th cla	x = 1	0.50), P <	0.0	01; X ² =1	0.43, F) < (<u> 0.01).</u>					

963 For *C. demersum*, nutrient sequestration rates increased linearly with increased nutrient loading,
 964 while for *M. spicatum* there was a logistic response to external nutrient loading (Fig. 6). *A. filiculoides* 965 showed linearly increasing P sequestration rates upon increased P loading and a logistic response to
 966 external N loading.

967 4.4.<u>3.4.</u> Mobilization and adsorption of nutrients by the soilsediment

At a P loading of 0.43 mg m⁻² d⁻¹, soils sediments were sources of P, whereas soils sediments became 968 P sinks at P loading \geq 21.4 mg m⁻² d⁻¹ (Fig. 4). On average, 50 to 80 % and 70 to 90 % of P added 969 970 accumulated in soils-sediments at medium and high nutrient loadings, respectively (Fig. 4). In 971 quarters with C. demersum, more P accumulated in the soil sediment than in quarters with A. filiculoides (X^2 =11.25, P < 0.01). As P loading increased, more P accumulated in the soils (X^2 =566.40, P 972 973 < 0.000). At medium and high N loads, 45 to 90 % and 80 to 90 %, respectively, was either taken up</p> 974 the soil sediment or lost the atmosphere through coupled by to 975 nitrification/denitrificationdenitrification/anammox (Wetzel, 2001).

976 **5.4.** Discussion

977 In our mesocosm experiment, we show that at low nutrient input ($\leq 0.43 \text{ mg P m}^{-2} \text{ d}^{-1}$), 100 % of 978 external loading could be removed through macrophyte uptake, whereas with loadings \geq 21.4 mg P 979 m⁻² d⁻¹, 50 to 90 % of added P ended up in <u>soilssediments</u>. Differences exist, however, between 980 binding abilities of <u>soilssediments</u>, with clay <u>soils-sediments</u> being able to immobilise P better than 981 peaty clay or peat <u>soilssediments</u>. Apart from P, macrophytes were able to remove no more than 65 % 982 and 21 % of added N at loadings of 62 mg m⁻² d⁻¹ and 249 mg m⁻² d⁻¹, respectively, while the 983 remaining N was either stored in the <u>soil-sediment</u> or lost to the atmosphere through <u>coupled</u>

- 984 <u>nitrification/denitrification_denitrification_and/or_anammox</u>. Furthermore, this study also shows that
 985 N removal efficiency of macrophytes strongly depends on plant species involved.
- 986 <u>5.1.4.1.</u> Growth and nutrient uptake of macrophyte species in constructed wetlands

With average biomass production rates of 3.4 and 1.0 g DW $m^{-2} d^{-1}$, respectively, A. filiculoides and M. 987 988 spicatum showed the highest growth rates, regardless of sediment types and nutrient loadings, and 989 therefore <u>have</u> the best potential for being used to remove nutrients in constructed wetlands. Due to 990 their high growth rates, these species could be harvested biweekly or even weekly. C. demersum, on 991 the other hand, appeared to be less suitable, since this species was easily readily outcompeted for 992 light by other species, such as floating algae and Zanichellia spp. P was removed most efficiently by A. *filiculoides,* followed by *M. spicatum and C. demersum.* Although a high P load (85.7 mg m⁻² d⁻¹) 993 resulted in increased uptake rates of 6 to 14 and even 16 to 20 mg P m⁻² d⁻¹ for *M. spicatum* and *A.* 994 995 filiculoides, respectively, these rates were not sufficient to efficiently filter all added P from the 996 system.

997 DFor C. demersum, nutrient sequestration rates increased linearly with increased nutrient loading, 998 while for M. spicatum there was a logistic response to external nutrient loading (Fig. 6). A. filiculoides showed linearly increasing P sequestration rates upon increased P loading and a logistic response to 999 1000 external N loading. These dDifferent response types between species to external nutrient loading 1001 between species most likely resulted from differences in main nutrient sources and nutrient 1002 limitation (Fig. 6). For rooted M. spicatum, plants mainly rely on soil-sediment uptake (Best & Mantai, 1003 1978; Barko & Smart, 1980; Carignan & Kalff, 1980), whereas for non-rooted A. filiculoides and C. 1004 demersum water is the main nutrient source (Denny, 1987; Mjelde & Faafeng, 1997). Our results 1005 indicate that at a low nutrient loading M. spicatum and A. filiculoides performed equally well for P removal at loads \leq low loadings 22 mg P m² d⁴, *M. spicatum* is the most efficient P remover, 1006 whereas at loads \ge 22 mg P m⁻² d⁻¹, A. filiculoides is more efficient removes P more efficiently (Fig. 6a). 1007 1008 In addition, the effective thresholds for P purification (100 % removal) of C. demersum, A. filiculoides,

and *M. spicatum* are 1.9, 4.8 and 6.8 mg P m⁻² d⁻¹, respectively (Fig 6a). Threshold values for 1009 complete N removal are 8.6 and 31.4 mg N m⁻² d⁻¹ for *C. demersum* and *M. spicatum*, respectively 1010 1011 (Fig. 6b). A. filiculoides, on the other hand, hardly ever becomes N limited due to its symbiosis with a 1012 diazotrophic microbial community (Handley & Raven, 1992). Under low external P loadings, A. 1013 *filiculoides* therefore displayed very high N: P ratios indicating P limitation at P loadings \leq 21.4 mg P m⁻² d⁻¹. C. demersum, on the other hand, having no access to soil-sediment or atmospheric N, 1014 1015 probably showed N limitation in these systems, as indicated by their low N: P ratios. For all species, N: 1016 P ratios decreased with increasing P load.

1017 <u>5.2.4.2.</u> Using aquatic macrophytes for polishing of pre-treated wastewater

1018 Due to regular harvesting of A. filiculoides and M. spicatum, P and N were removed at rates of around 3 to 9 mg P m⁻² d⁻¹ and 31 mg N m⁻² d⁻¹ at loadings of 0.43 mg P m⁻² d⁻¹ and 1.3 mg N m⁻² d⁻¹. 1019 1020 These results are comparable to those found by Van Kempen (2013) who found uptake rates of 3.7 1021 mg P m⁻² d⁻¹ (13.4 kg ha⁻¹ year⁻¹) and 13.7 mg N m⁻² d⁻¹ (50 kg ha⁻¹ year⁻¹) in summer, and 4.8 mg P m⁻² d^{-1} (17.5 kg ha⁻¹ year⁻¹) and 69.3 mg N m⁻² d⁻¹ (253 kg ha⁻¹ year⁻¹) in early fall for A. filiculoides grown 1022 in N-free water with $\frac{25}{2.38}$ µmol mg L⁻¹ PO₄. For *M. spicatum*, our results are in the same range as 1023 those reported by Smith and Adams (1986) and N uptake rates of 0.05-1.26 g N m^{-2} d⁻¹ by 1024 1025 Myriophyllum aquaticum reported by Nuttall (1985). Due to As low O₂ concentrations, induced by 1026 the coverage of floating macrophytes or dense growth of submerged macrophytes, can mobilize P 1027 from the sediment, A. filiculoides and M. spicatum did lowering of the O2 concentration in the water 1028 layer, similar to other floating or densely growing submerged macrophytes (Caraco et al., 2006), 1029 these plants not only take up all P being discharged into the system by both their roots and shoots, 1030 but additionally mobilize and takeook up mobilized P from the soil by their roots and the creation of 1031 anaerobic conditions (Wetzel, 2001).

Since uptake of nutrients by aquatic macrophytes depends on their biomass production and thus on
 macrophyte photosynthesis, these systems would only function optimally during the growing season

1034	(Wetzel, 2001). Under low external loading, sediments will take up most of the P during winter. Since
1035	submerged plants have N and P accumulation rates that are higher than the low nutrient loading,
1036	they heavily rely on uptake of nutrient-s from the sediment. Thus, the nutrients stored in the
1037	sediment in winter can be mobilised and taken up by macrophytes in summer, creating an efficient
1038	and sustainable constructed wetland for water polishing in temperate climates. Furthermore,
1039	predicted climate change will lead to higher temperatures and thus longer growing seasons in
1040	temperate regions, indicating that these systems may be operational longer and longer every year.
1041	Under low external loading, soils <u>sediments will take up most of the P during winter, which can</u>
1042	subsequently be mobilised and taken up by macrophytes in summer, creating an efficient and
1043	sustainable constructed wetland for water polishing in temperate climates. In addition, an increase in
1044	temperature induced by climate change could potentiallycan can contribute to the increase in
1045	nutrient uptake rates of plants during the growing season.
1046	5.3.4.3. Using aquatic macrophytes for wastewater purification
1046 1047	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple,
1046 1047 1048	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable to lower than results
1046 1047 1048 1049	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable to lower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i>
1046 1047 1048 1049 1050	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ $PQ_4^{-2}P$ medium which, however, had <u>has much higher PO_4^{-3}</u> .
1046 1047 1048 1049 1050 1051	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ $PO_4^{2*}P$ medium which, however, had <u>has</u> much higher PO_4^{3*} <u>concentrations in the surface water than our concentrations</u> than our high nutrient loading treatment.
1046 1047 1048 1049 1050 1051 1052	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ PQ ₄ ² Pmedium_which, however, had <u>has</u> much higher PQ ₄ ³ : <u>concentrations in the surface water than our concentrations</u> than our high nutrient loading treatment. <u>Although P uptake rates of <i>A. filiculoides</i>- in this study are similar to, or even lower than, results of</u>
1046 1047 1048 1049 1050 1051 1052 1053	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable to lower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ $PO_4^{-2}P$ medium which, however, had —has much higher PO_4^{-3} concentrations in the surface water than our concentrations than our high nutrient loading treatment. Although P uptake rates of <i>A. filiculoides</i> - in this study are similar to, or even lower than, results of Brix (1994), who reported P uptake rates of 8 - 41 mg P m ⁻² d ⁻¹ by emergent macrophytes The main
1046 1047 1048 1049 1050 1051 1052 1053 1054	5-3-4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of A. filiculoides double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by A. filiculoides grown in an N-free, 3 mg L ⁻¹ PO ₄ ²⁻ Pmedium_which, however, had <u>has</u> much higher PO ₄ ³⁻ concentrations in the surface water than our concentrations than our high nutrient loading treatment. Although-P uptake rates of A. filiculoides- in this study are similar to, or even lower than, results of Brix (1994), who reported P uptake rates of 8 - 41 mg P m ⁻² d ⁻¹ by emergent macrophytes The main advantage of using floating macrophytes instead of emergent macrophytes is, however, that they
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ PO ₄ ³⁻ Pmedium_which, however, had <u>has</u> much higher PO ₄ ³⁻ concentrations in the surface water than our concentrationsthan our high nutrient loading treatment. Although P uptake rates of <i>A. filiculoides</i> - in this study are similar to, or even lower than, results of Brix (1994), who reported P uptake rates of 8 - 41 mg P m ⁻² d ⁻¹ by emergent macrophytes The main advantage of using floating macrophytes instead of emergent macrophytes is, however, that they can be harvested multiple times a year and that they take up nutrients from both the water layer and
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of A. filiculoides double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by A. filiculoides grown in an N-free, 3 mg L ⁻¹ $PQ_4^{a^2}P$ medium which, however, had <u>has</u> much higher $PQ_4^{a^2}$ concentrations in the surface water than our concentrations than our high nutrient loading treatment. Although-P uptake rates of A. filiculoides- in this study are similar to, or even lower than, results of Brix (1994), who reported P uptake rates of 8 - 41 mg P m ⁻² d ⁻¹ by emergent macrophytes The main advantage of using floating macrophytes instead of emergent macrophytes is, however, that they can be harvested multiple times a year and that they take up nutrients from both the water layer and sediment floating macrophytes are still more suitable for wastewater purification than emergent
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056	5.3.4.3. Using aquatic macrophytes for wastewater purification When P loading in the treatment water increases, uptake rates of <i>A. filiculoides</i> double or even triple, to rates around 67.87 or 17.64-24 mg P m ⁻² d ⁻¹ . The highest value is comparable tolower than results of Reddy and DeBusk (1985), who reported P uptake rates of 43 ± 15 mg P m ⁻² d ⁻¹ by <i>A. filiculoides</i> grown in an N-free, 3 mg L ⁻¹ $PQ_4^{+2}P$ medium which, however, had —has much higher PQ_3^{-2} concentrations in the surface water than our concentrationsthan our high nutrient loading treatment. Although P uptake rates of <i>A. filiculoides</i> - in this study are similar to, or even lower than, results of Brix (1994), who reported P uptake rates of 8 - 41 mg P m ⁻² d ⁻¹ by emergent macrophytes The main advantage of using floating macrophytes instead of emergent macrophytes is, however, that they can be harvested multiple times a year and that they take up nutrients from both the water layer and sediment. – floating macrophytes are still more suitable for wastewater purification than emergent macrophytes, due to the fact that they are easy to harvest and need less maintenance. Although

remained around or below $\frac{12-0.37 \,\mu\text{mol}}{\mu\text{mol}}$ mg L⁻¹ when clay sediments were used for the construction 1059 1060 of the wetland. At the end of the growing season, however, plant uptake decreased and P availability 1061 in surface waters above peaty clay and peat soils sediments increased strongly to concentrations 1062 around $\frac{60-1.86}{1.86}$ and $\frac{72-2.23}{100}$ µmol mg P L⁻¹, respectively, indicating not only inactivity of aquatic 1063 macrophytes but probably also P saturation of soilssediments. Due to the 7-8 times higher Fe and Al contents (400-22.6 vs. 2.6-503.3-60 mmol-g L⁻¹ FW, 450-11.9 vs. 601.5-70-1.8 mmol-g L⁻¹ FW for Fe 1064 1065 and AI, respectively) of clay soilssediments, P was most probably immobilized more efficiently by clay 1066 (Reddy & DeLaune, 2008), which resulted in lower P concentrations in surface water above clay 1067 soilssediments in our study.

1068 More than 98 % of added N was removed from the surface water during the run of the experiment. 1069 As nutrient loading increased, the amount of added N that was removed by plant uptake decreased. Harvested biomass of target plants contained 31 mg N m⁻² d⁻¹ for *M. spicatum*, whereas in the 1070 1071 quarters with C. demersum, non-target macrophytes or algae absorbed sequestrated most N. For A. 1072 filiculoides it was difficult to calculate N removal rates due to unknown N₂ fixation rates leading to an 1073 overestimation of N uptake rates by *A. filiculoides* Although it can be estimated that N₂-fixation rates by Azolla grown in an N-free medium were in the range of 1.4 - 2.7 kg N ha⁻¹ d¹ (Reddy & DeBusk, 1074 1075 1985), in our study we added N to the surface water which may affect N₂ fixation. Therefore it was 1076 difficult to calculate N removal rates for A. *filiculoides*, as the unknown N_2 fixation rates lead to an 1077 overestimation of N uptake rates by A. *filiculoides*. -N that was not taken up by plants, but was still removed from the water layer most likely ended up in the soil-sediment or was released to the 1078 1079 atmosphere by coupled nitrification/denitrification (Wetzel, 2001) and/or anammox. On average, inorganic N (NH₄⁺+NO₃⁻) concentrations in the surface water were below 8–0.11 μ mol-mg L⁻¹ with 1080 external loadings $\leq 62 \text{ mg N m}^2 \text{ d}^{-1}$ and around $\frac{20 \cdot 0.28 \text{ }\mu\text{mol} \text{ }\text{mg} \text{ L}^{-1}}{\text{ when receiving 249 mg N m}^2 \text{ d}^{-1}}$. 1081 1082 At the end of the growing season, dissolved N concentrations increased under high nutrient loading, 1083 similar to P concentrations, -. suggesting This increase may result from a combination of reduced plant uptake, lower denitrification rates. This suggests that nutrient leaching from senescing plants 1084

and reduced denitrification rates as a result of lower temperatures is more important than soil
 sediment_saturation. Due to the different available pathways for nitrogen removal from the
 sediment, sediment saturation of N seems unlikely.

1088 <u>5.4.4.4.</u> Implications for management

1089 We showed that in macrophytes-dominated CWS, both the submerged or and the floating 1090 macrophytes we tested are able to remove most of the added nutrients at low P and N loadings, 1091 whereas at higher nutrient loadings, floating or submerged macrophytes can-could only remove 20-1092 45 % and 10-25 % of the external P loads for 21.4 and 85.7 mg P m⁻² d⁻¹, respectively. For water 1093 management, using fast growing aquatic macrophytes, such as A. filliculoides or M. spicatum regular 1094 mowing of -fast growing aquatic macrophytes, such as A. *filliculoides* or M. spicatum allows complete removal of added nutrients at relatively low nutrient loading ($\leq 4.8 \text{ mg P m}^{-2} \text{ d}^{-1} \text{ or } \leq 6.8 \text{ mg P m}^{-2} \text{ d}^{-1}$, 1095 1096 respectively). Although A. filiculoides still extracted P and competed with soil-sediment adsorption at 1097 higher P loads (\geq 21.4 mg P m⁻² d⁻¹), most external P ended up in the soilsediment, eventually 1098 resulting in saturated sediments and thus leading to an increase in water nutrient levels under a 1099 continued nutrient inputsaturation. While aquatic macrophytes are able to remove this P from the 1100 soils-sediments by either creating anaerobic conditions to trigger high P mobilization (Smolders et al., 1101 2006) or through both root and shoot uptake, the external load will have to be reduced for this 1102 process to occur efficiently. Consequently, at these higher P and N loads, the macrophyte stage can 1103 only be used as an additional polishing step after a major part of the nutrients have been removed by 1104 other ways of water treatment.

1105 **6.5.** Conclusions

1106Here, we show that aquatic macrophytes can be used for polishing, but not as a stand-alone1107purification treatment for nutrient removal from wastewater. At loads $\leq 22 \text{ mg P m}^2 - d^4$, At a low1108nutrient loading *M. spicatum* and *A. filiculoides* performed equally well for P removal, is the best

1109option, whereas at loads $\geq 22 \text{ mg P m}^{-2} d^{-1}$, A. filiculoides removes P more efficiently. Furthermore,1110we have shown that soil_sediment_type is a previously underestimated factor influencing the1111efficiency of nutrient removal and immobilization. Especially at higher P loads, soils-sediments form1112highly important sinks and the saturation potential of the soil_sediment is therefore important. Clay1113soils_sediments should be preferred, as these take longer to become saturated than more organic1114soils_sediments.

1115 Acknowledgements

1116 The authors would like to thank Moni Poelen and Peter Cruijsen for their practical assistance and 1117 Ankie De Vries-Brock, Germa Verheggen, Jelle Eygensteyn, Paul Van der Ven, Roy Peters and 1118 Sebastian Krosse for their assistance with the chemical analyses. SFH, MMLvK and LMJML were 1119 funded by the European Union, GO EFRO 2007-2013 (Water-Rijk, Rich Water World). YT was funded 1120 by the China Scholarship Council (CSC; file number 201206140019).

1121 Author Contributions

- 1122 Conceived and designed the experiment: J.G.M.R., A.J.P.S., L.P.M.L. and M.M.L.V.K.; Performed the
- 1123 experiment: E.J.H.V., L.M.J.M.L. and M.M.L.V.K.; Analysed the data: S.F.H., Y.T. and E.J.H.V.; Wrote
- the paper: S.F.H., Y.T., A.J.P.S., L.P.M.L. and M.M.L.V.K.

1125 References

- Barko, J. W., Smart, R. M., 1980. Mobilization of sediment phosphorus by submersed freshwater
 macrophytes. Freshwater Biology 10, 229-238.
- Best, M. D., Mantai, K. E., 1978. Growth of *Myriophyllum*: sediment or lake water as the source of
 nitrogen and phosphorus. Ecology 59, 1075-1080.

- 1130 Biswas, S., Sarkar, S., 2013. Azolla cultivation: a supplementary cattle feed production through
- 1131 natural resource management. Agriculture Update 8, 670-672.
- Brix, H., 1994. Functions of macrophytes in constructed wetlands. Water Science and Technology 29,
 71-78.
- 1134 Brix, H., 1999. How 'green'are aquaculture, constructed wetlands and conventional wastewater

1135 treatment systems? Water Science and Technology 40, 45-50.

1136 Brix, H., Arias, C. A., 2005. The use of vertical flow constructed wetlands for on-site treatment of

1137 domestic wastewater: New Danish guidelines. Ecological Engineering 25, 491-500.

- Carignan, R., Kalff, J., 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207,
 987-989.
- 1140 Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C.,
- 1141 Likens, G. E., 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323, 10141142 1015.
- 1143 De Lyon, M. J. H., Roelofs, J. G. M., 1986. Waterplanten in relatie tot waterkwaliteit en
- bodemgesteldheid. Deel 1 and 2. Laboratorium voor Aquatische Oecologie, Katholieke
 Universiteit Nijmegen, Nijmegen.
- Denny, P., 1987. Mineral cycling by wetland plants-a review. Archiv für Hydrobiologie Beiheft
 Ergebnisse der Limnologie 27, 1-25.
- 1148 Drizo, A., Comeau, Y., Forget, C., Chapuis, R. P., 2002. Phosphorus saturation potential: A parameter
- 1149 for estimating the longevity of constructed wetland systems. Environmental Science &
- 1150 Technology 36, 4642-4648.

- Furnas, M. M. J., 2003. Catchments and corals: terrestrial runoff to the Great Barrier Reef. Australian
 Institute of Marine Science & CRC Reef Research Centre, Townsville, Australia.
- Gale, P. M., Reddy, K. R., Graetz, D. A., 1994. Wetlands and aquatic processes phosphorus retention
 by wetland soils used for treated wastewater disposal. Journal of Environmental Quality 23,
 370-377.
- Gao, J., Xiong, Z., Zhang, J., Zhang, W., Mba, F. O., 2009. Phosphorus removal from water of
 eutrophic Lake Donghu by five submerged macrophytes. Desalination 242, 193-204.
- 1158 Grasshoff, K., Johannsen, H., 1972. A new sensitive and direct method for the automatic
- determination of ammonia in sea water. ICES Journal of Marine Science 34, 516-521.
- 1160 Greenway, M., 2005. The role of constructed wetlands in secondary effluent treatment and water

reuse in subtropical and arid Australia. Ecological Engineering 25, 501-509.

- Handley, L. L., Raven, J. A., 1992. The use of natural abundance of nitrogen isotopes in plant
 physiology and ecology. Plant, Cell & Environment 15, 965-985.
- Hauck, F. W., 1978. China: recycling of organic wastes in agriculture. Food and Agricultural
- 1165 Organization of the United Nations, Rome.
- Henriksen, A., 1965. An automatic method for determining low-level concentrations of phosphates in
 fresh and saline waters. Analyst 90, 29-34.
- 1168 Jampeetong, A., Brix, H., Kantawanichkul, S., 2012. Effects of inorganic nitrogen forms on growth,
- 1169 morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic
- 1170 macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria
- 1171 *zizanioides*). Aquatic Botany 97, 10-16.

- 1172 Jing, S. R., Lin, Y. F., Lee, D. Y., Wang, T. W., 2001. Nutrient removal from polluted river water by
- using constructed wetlands. Bioresource Technology 76, 131-135.
- 1174 Kadlec, R. H., Wallace, S. D., 2008. Treatment wetlands. *2nd ed*. CRC press, Boca Raton, Florida.
- 1175 Kamphake, L. J., Hannah, S. A., Cohen, J. M., 1967. Automated analysis for nitrate by hydrazine
- 1176 reduction. Water Research 1, 205-216.
- Kantawanichkul, S., Kladprasert, S., Brix, H., 2009. Treatment of high-strength wastewater in tropical
 vertical flow constructed wetlands planted with *Typha angustifolia* and *Cyperus involucratus*.
 Ecological Engineering 35, 238-247.
- 1180 Kaseva, M. E., 2004. Performance of a sub-surface flow constructed wetland in polishing pre-treated
 1181 wastewater-a tropical case study. Water Research 38, 681-687.
- Konnerup, D., Koottatep, T., Brix, H., 2009. Treatment of domestic wastewater in tropical, subsurface
 flow constructed wetlands planted with *Canna* and *Heliconia*. Ecological Engineering 35, 248 257.
- 1185 Kronvang, B., Jeppesen, E., Conley, D. J., Søndergaard, M., Larsen, S. E., Ovesen, N. B., Carstensen, J.,
- 1186 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish
 1187 streams, lakes and coastal waters. Journal of Hydrology 304, 274-288.
- Lamers, L. P. M., Smolders, A. J. P., Roelofs, J. G. M., 2002. The restoration of fens in the Netherlands.
 Hydrobiologia 478, 107-130.
- Lin, Y. F., Jing, S. R., Wang, T. W., Lee, D. Y., 2002. Effects of macrophytes and external carbon
- sources on nitrate removal from groundwater in constructed wetlands. EnvironmentalPollution 119, 413-420.

1193	Mitsch, W. J., Zhang, L., Anderson, C. J., Altor, A. E., Hernandez, M. E., 2005. Creating riverine
1194	wetlands: Ecological succession, nutrient retention, and pulsing effects. Ecological
1195	Engineering 25, 510-527.

Mjelde, M., Faafeng, B., 1997. *Ceratophyllum demersum* hampers phytoplankton development in
 some small Norwegian lakes over a wide range of phosphorus concentrations and

1198geographical latitude. Freshwater Biology 37, 355-365.

Nuttall, P. M., 1985. Uptake of phosphorus and nitrogen by *Myriophyllum aquaticum* (Velloza) Verd.
Growing in a wastewater treatment system. Marine & Freshwater Research 36, 493-507.

Olsen, S. R., Cole, C. V., Watanabe, F. S., Dean, L. A., 1954. Estimation of available phosphorus in soils
 by extraction with sodium bicarbonate. U.S. Department of Agriculture Circular No 939. US
 Government Print Office, Washington, D.C.

- Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., Dils, R., 2003. Environmental costs of
 freshwater eutrophication in England and Wales. Environmental Science & Technology 37,
 201-208.
- Reddy, K., DeBusk, W., 1985. Growth characteristics of aquatic macrophytes cultured in nutrientenriched water: II. Azolla, Duckweed, and Salvinia. Economic Botany 39, 200-208.
- Reddy, K. R., DeLaune, R. D., 2008. Biogeochemistry of wetlands: science and applications. *1st ed*.
 CRC Press, Boca Raton, Florida.
- 1211 RIVM, 2014. Concentration and deposition maps of the Netherlands: Total Nitrogen (2014). Available
 1212 at: <u>http://geodata.rivm.nl/gcn/</u>.
- 1213

- Scholz, M., Xu, J., 2002. Performance comparison of experimental constructed wetlands with
 different filter media and macrophytes treating industrial wastewater contaminated with
 lead and copper. Bioresource Technology 83, 71-79.
- Smith, C. S., Adams, M. S., 1986. Phosphorus transfer from sediments by *Myriophyllum spicaturn*.
 Limnology and Oceanography 31, 1312-1321.
- Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van Der Velde, G., Roelofs, J. G. M., 2006.
 Internal eutrophication: How it works and what to do about it-a review. Chemistry and
 Ecology 22, 93-111.
- Tanner, C. C., 1996. Plants for constructed wetland treatment systems-A comparison of the growth
 and nutrient uptake of eight emergent species. Ecological Engineering 7, 59-83.
- Tomassen, H. B. M., Smolders, A. J. P., Limpens, J., Lamers, L. P. M., Roelofs, J. G. M., 2004. Expansion
 of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of
 Applied Ecology 41, 139-150.
- 1227 Van Dongen, U., Jetten, M. S. M., Van Loosdrecht, M. C. M., 2001. The SHARON[®]-Anammox[®] process
- 1228 for treatment of ammonium rich wastewater. Water Science and Technology 44, 153-160.
- 1229 Van Kempen, M. M. L., 2013. *Azolla* on top of the world: an ecophysiological study of floating fairy
 1230 moss and its potential role in ecosystem services related to climate change. in: *Aquatic*
- 1231 *Ecology & Environmental Biology*, Radboud University Nijmegen. Nijmegen, the Netherlands,
 1232 pp. 165.
- Van Kempen, M. M. L., Smolders, A. J. P., Lamers, L. P. M., Roelofs, J. G. M., 2012. Micro-halocline
 enabled nutrient recycling may explain extreme *Azolla* event in the Eocene Arctic Ocean.
 PLoS ONE 7, e50159.

- 1236 Van Loosdrecht, M. C. M., Jetten, M. S. M., 1998. Microbiological conversions in nitrogen removal.
- 1237 Water Science and Technology 38, 1-7.
- 1238 Vrhovšek, D., Kukanja, V., Bulc, T., 1996. Constructed wetland (CW) for industrial waste water
 1239 treatment. Water Research 30, 2287-2292.
- 1240 Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total
 1241 Environment 380, 48-65.
- 1242 Vymazal, J., 2011. Plants used in constructed wetlands with horizontal subsurface flow: a review.
 1243 Hydrobiologia 674, 133-156.
- Wetzel, R. G., 2001. Limnology: lake and river ecosystems. *3rd ed*. Academic Press, San Diego,
 California.
- Wittgren, H. B., Mæhlum, T., 1997. Wastewater treatment wetlands in cold climates. Water Scienceand Technology 35, 45-53.
- Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R., 2014. Development of constructed wetlands in
 performance intensifications for wastewater treatment: A nitrogen and organic matter
- 1250 targeted review. Water Research 57, 40-55.

1252

1253

1255 Table 1 Soil-Sediment characteristics of peat, peaty clay and clay soils sediments used in the experiment (±SE; n=36). pH and

1256 Total inorganic carbon (TIC) are derived from porewater analyses, whereas all other analyses were performed using fresh or

1257 dry soil-sediment (see Sect. 2.3.).

<u>Sediment</u> Soil	Bulk density (kg DW.L ⁻¹ FW)	Organic matter %	рН	TIC (µmol <u>mg C</u> L ⁻¹)	Salt extractable N (NO ₃ ⁻ + NH ₄ ⁺) (μ mol <u>mg N</u> L ⁻¹ FW)	Olsen-P (umol-<u>mg</u> L⁻¹ FW)	Total-P (mmol-<u>mg</u> L⁻¹ FW)	Total-Fe (mmol-g_ L ⁻¹ FW)	Total- Al (mmol gL ⁻¹ FW)	Total- Ca (mmol g_L ⁻¹ FW)
Peat	0.15 (0.00) ^c	43.73 (0.80) ^A	7.20 (0.02) ^A	8825 <u>10</u> 5.84-91 (1201 .3 644) ^A	551<u>7</u>.72 (58<u>0</u>.71<u>82</u>)⁸	2698<u>.35</u>41 (13 0. 1641) ⁸	4 <u>154</u> .98 <u>38</u> (0<u>5</u>.1989)^B	47 <u>2</u> . 15-64 (0. 92<u>05</u>)⁸	55 <u>1</u> .4 3 <u>50</u> (<u>10</u> .80 05) ^B	65 <u>2.6</u> 005 (<u>10</u> .06 04) ^B
Peaty clay	0.23 (0.01) ^B	34.39 (1.63) ^B	6.92 (0.03) ⁸	5 <u>89270</u> . 89-<u>71</u> (<u>2402</u>.5 6<u>89</u>)^B	4 <u>946</u> .11 <u>92</u> (70 0.17 <u>98</u>) ⁸	153<u>4</u>.90-77 (13 0. 9843) ^C	3<u>105</u>.39 <u>09</u> (05 . 19 89) ^C	583 . 72-29 (4 <u>0</u> . 32 24) ⁸	67<u>1</u>.8 4 <u>83</u> (5 <u>0</u> . 37 <u>14</u>) ^B	622.1 4<u>49</u> (<u>50</u>.02 20)^B
Clay	1.00 (0.01) ^A	5.07 (0.24) ^C	7.18 (0.04) ^A	10189<u>1</u> 22.53<u>27</u> (537<u>6</u>.6 7<u>45</u>)^A	<u>106314</u> . <u>668</u> <u>9</u> (1231 .9 <u>874</u>) А	1104<u>34,24</u>4 8 (18<u>0</u>.6958) ^A	22<u>689</u>.25 <u>75</u> (012 .4 <u>171</u>) ^A	4 02 22.74 <u>55</u> (<u>50.2629</u>) ^A	4 <u>3811</u> . <u>7785</u> (<u>80</u> .05 <u>22</u>) ^A	1014 . 85-<u>07</u> (<u>10</u>.31 <u>05</u>)^A

1258

1259	Significant differences among soil sediment types are indicated by different capital letters (A, B and C).
1260	

1262

1263 Table 2 Plant tissue ratios between N and P for different macrophytes subjected to different nutrient loadings (0.43, 21.4

1264 and 85.7 mg P m⁻² d⁻¹) at the end of the experiment. Average N: P ratios of target species are given with standard error.

	N : P (mol g : mol g)							
	0.43	21.4	85.7					
Clay	34<u>15</u>.77-<u>70 (±±0</u>.03<u>47</u>)^a	<mark>42<u>19</u>.88-36 (±1.1286)^ª</mark>	17<u>8</u>.87-<u>07 (±10</u>.28<u>58</u>)^b					
Peaty clay	49 <u>22</u> . 21 . <u>22 (±31</u> . 66 65)ª	<mark>24<u>10</u>.1088 (±0.64<u>29</u>)^b</mark>	115 . 23-<u>07 (</u>±0.32<u>14</u>)^c					
Peat	4 <u>118</u> .94 (±0. 23<u>10</u>)^a	24<u>10</u>.17-<u>92 (±10</u>.95<u>88</u>)^b	125 . 84-<u>80 (</u>±0.7534)^c					
Clay	84 . 92-<u>03 (±10</u>.36<u>61</u>)	94 . 16-<u>14 (</u>±1<u>0</u>.1250)	NA					
Peaty clay	94 . 33-<u>21 (</u>±0.97<u>44</u>)	<u>94</u> .04- <u>08 (±10</u> .59 <u>72</u>)	8<u>3</u>.04-<u>63 (</u>±0.84<u>38</u>)					
Peat	16<u>7.66</u>9_5 (±4 <u>1</u> . 29 94) ^a	94 .4 3-<u>26 (</u>±0.69<u>31</u>)^{ab}	7 <u>3</u> . 52 <u>40</u> (±0.9342)^b					
Clay	10<u>4</u>.71 4 3 (±1 <u>0</u> .39 <u>63</u>)	9<u>4</u>.80 <u>42 (</u>±0.5324)	94 . 22-<u>16 (</u>±1<u>0.87</u>92)					
Peaty clay	13 6. 31 01 (±±0. 80 81) ^a	104 . 24-<u>63</u> (±0.5625)^{ab}	8<u>3</u>.40-<u>80 (</u>±0.74<u>34</u>)^b					
Peat	104 . 14-<u>58 (</u>±10 . 18 53)	94 . 66-<u>36 (</u>±0.3817)	8<u>3</u>.34-<u>77 (</u>±0.78<u>35</u>)					
	Clay Peaty clay Peat Clay Peaty clay Peat Clay Peaty clay Peaty clay	Clay 3415.7770(±10.0347) ^a Peaty clay 4922.21-22(±31.6665) ^a Peat 4118.94(±0.2310) ^a Clay 84.92-03(±10.3661) Peaty clay 94.33-21(±0.9744) Peaty clay 94.33-21(±0.9744) Peat 167.669.5(±41.2994) ^a Clay 104.7143(±10.3963) Peaty clay 136.31-01(±10.8081) ^a Peaty clay 104.1458(±10.1853)	Clay 3415.77-70 (±40.0347) ^a 4219.88-36 (±1.1286) ^a Peaty clay 4922.21-22 (±31.6665) ^a 2410.10-88 (±0.6429) ^b Peat 4118.94 (±0.2310) ^a 2410.17-92 (±10.9588) ^b Clay 84.92-03 (±10.3661) 94.16-14 (±40.1250) Peaty clay 94.33-21 (±0.9744) 94.04.08 (±10.5972) Peat 167.669-5 (±41.2994) ^a 94.43-26 (±0.6931) ^{ab} Clay 104.7143 (±10.3963) 94.80-42 (±0.5324) Peaty clay 136.31-01 (±10.8081) ^a 104.24-63 (±0.5625) ^{ab} Peaty clay 104.14-58 (±10.1853) 94.66-36 (±0.3817)					

1266	Significant differences among different nutrient loadings are indicted by different lower case letters (a, b and c); there were
1267	no significant differences among soil-sediment types. Note that NA means that there were no replicates for this treatment.
1268	
1269	
1270	
1271	
1272	
1273	

1276Figure 1. Surface water TP concentrations subjected to different nutrient loadings (L = 0.43 mg P m⁻² d⁻¹; M = 21.4 mg P m⁻²1277 d^{-1} ; H = 85.7 mg P m⁻² d⁻¹) in mesocosms with different plant species (vertical panels) on clay, peaty clay or peat soils1278sediments (horizontal panels) during the experiment. Average TP concentrations are given with SEM. Note the log₁₀ scale1279for the y-axis.

1282Figure-2. Surface water N ($NH_4^+ + NO_3^-$) concentrations subjected to different nutrient loadings (L = 0.43 mg P m⁻² d⁻¹; M =128321.4 mg P m⁻² d⁻¹; H = 85.7 mg P m⁻² d⁻¹) in mesocosms with different plant species (vertical panels) on clay, peaty clay or1284peat soils-sediments (horizontal panels) during the experiment. Average N ($NH_4^+ + NO_3^-$) concentrations are given with SEM.1285Note the log₁₀ scale for the y-axis.

Figure 3. Biomass production rates (in g DW m⁻² d⁻¹) of *A. filiculoides* (a), *C. demersum* (b), *M. spicatum* (c) and other, nontarget plants (e.g. floating algae, *Zanichellia* spp and other plants) grown on different soil-sediment types and subjected to different nutrient loadings (L = 0.43 mg P m⁻² d⁻¹; M = 21.4 mg P m⁻² d⁻¹; H = 85.7 mg P m⁻² d⁻¹). Average biomass production rates of target species (-SEM) and other plants (+SEM) are given.

1293Figure 4. P budgets of soilsediment, surface water, pore water, target species and other plants subjected to different1294nutrient loadings (L = 0.43 mg P m⁻² d⁻¹; M = 21.4 mg P m⁻² d⁻¹; H = 85.7 mg P m⁻² d⁻¹) for (a) A. filiculoides, (b) C. demersum,

and (c) *M. spicatum*. Standard errors are given only for soil_sediment_and target species. PW = pore water, SW = surface
 water. Positive values represent P accumulation in relative parts; negative values represent P release from respective
 compartments.

Figure 5. N distribution in surface water, pore water, target species and other plants subjected to different nutrient loadings (L = 0.43 mg P m⁻² d⁻¹; M = 21.4 mg P m⁻² d⁻¹; H = 85.7 mg P m⁻² d⁻¹) from (a) *A. filiculoides*, (b) *C. demersum* and (c) *M. spicatum* macrophyte systems. Standard errors are given only for target plants. PW = pore water, SW = surface water. Positive values represent N accumulation in relative parts; negative values represent N release from respective compartments. The lowest, medium and highest dashed lines represent external N input at low, medium and high N loadings (including actual atmospheric N deposition), respectively.

- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311

- 1314 Figure 6. The correlations between external loading and nutrient sequestration rates of P (a) and N (b) by three different
- 1315 aquatic plant species. Standard errors and 1:1 line are given. Note that for *A. filiculoides* N₂ fixation is included in the
- 1316 sequestration rates, overestimating the effects of loading.

1317			
1318			
1319			
1320			
1321			
1322			
1323			
1324			
1325			
1326			
1327			
1328			
1329			
1330			
1331			
1332			
1333			

1334 Supplementary information

- 1335 Table S1 Overview of the statistical output from the analyses of the data presented in Figures 1, 2, 3, 4 and 5.
- 1336 Surface water TP (Figure 1; ANOVA)

Targeted	Soil <u>Sediment</u>	Time			Nutrient loading				Time*nutrient loading			
plants	types	df	X ²	Ρ	df	X ²	Ρ	df	X ²	Ρ		
	Clay	1	2. 57<u>06</u>	0. 11<u>15</u>	2	<u> 12</u> . 82 38	0.40 <u>30</u>	2	<u> 10.98</u> 44	0. 49<u>61</u>		
A. filiculoides	Peaty clay	1	8<u>4</u>.38<u>34</u>	0. 00<u>04</u>	2	110<u>77</u>.10<u>04</u>	0.00	2	80 89. 57 84	0.00		
	Peat	1	7.23 4.17	0. 01<u>04</u>	2	4 <u>637</u> . 75 72	0.00	2	25 30. 61 64	0.00		
	Clay	1	12 10.47 <u>44</u>	0.00	2	12. 03<u>82</u>	0.00	2	9<u>12</u>.32 87	0. 01<u>00</u>		
C. demersum	Peaty clay	1	19 14. 35 20	0.00	2	54<u>38</u>.0870	0.00	2	9 8.77 <u>30</u>	0. 01<u>02</u>		
	Peat	1	86 67. 75 32	0.00	2	31<u>33</u>.01 42	0.00	2	76 71. 92 56	0.00		
	Clay	1	4 <u>633</u> . 98 34	0.00	2	12 14.70 51	0.00	2	6 5. 78 63	0. 03<u>06</u>		
M. spicatum	Peaty clay	1	12 9. 59 03	0.00	2	65 54. 62 38	0.00	2	10 9. 69 12	0. 00<u>01</u>		
	Peat	1	156<u>117</u>.93 02	0.00	2	97<u>101</u>.83 51	0.00	2	85<u>64</u>.34<u>62</u>	0.00		

1337

1338

1339 Surface water N ($NH_4^++NO_3^-$) (Figure 2; ANOVA)

1340

Tenestedialente		Time			Nutrient loading				Time*nutrient loading		
largeted plants	Soil-<u>Seaiment</u> types	df	X ²	Ρ	df	X ²	Р	df	X ²	Ρ	
	Clay	1	35<u>24</u>.44<u>68</u>	0.00	2	0. 22 75	0. <u>69<mark>90</mark></u>	2	17 9. 97 32	0. <u>0001</u>	
A. filiculoides	Peaty clay	1	4 <u>131</u> .4 <u>310</u>	0.00	2	5. 24<u>12</u>	0. 07<u>08</u>	2	4 <u>337</u> . 60 41	0.00	
	Peat	1	34<u>26</u>.19 74	0.00	2	2<u>1</u>.58<u>34</u>	0. 28<u>51</u>	2	21<u>14</u>.31<u>04</u>	0.00	
	Clay	1	31<u>19</u>.07<u>69</u>	0.00	2	2 5. 75 20	0. 25 07	2	<mark>93</mark> .78	0. 01<u>15</u>	
C. demersum	Peaty clay	1	47 <u>29</u> . 02 23	0.00	2	<u>20</u> .11 <u>72</u>	0. 35<u>70</u>	2	33<u>21</u>.65 03	0.00	
	Peat	1	43 <u>35</u> . 71 70	0.00	2	2. 99<u>51</u>	0. 22<u>28</u>	2	29<u>22</u>.46<u>01</u>	0.00	
	Clay	1	7 <u>5</u> . 88 26	0. 00<u>02</u>	2	<u> 12</u> .4 <u>368</u>	0. 49<u>26</u>	2	<u> 10</u> . 81 46	0. 40<u>80</u>	
M. spicatum	Peaty clay	1	29<u>18</u>.16 72	0.00	2	0. 16<u>47</u>	0. 92<u>79</u>	2	16 10. 11 56	0. 00<u>01</u>	
	Peat	1	39<u>32</u>.52 80	0.00	2	2. <u>4144</u>	0.30	2	17<u>12</u>.10 90	0.00	

1341

1344 Biomass production rates (Figure 3; ANOVA)

									Soil Sediment type*nutrient			
Targeted plants	Position	Soil-<u>Sediment</u> type			Ν	lutrient loa	ading	loading				
		df	X ²	Р	df	X ²	Р	df	X ²	Р		
A filiculaides	A. filiculoides	2	2.88	0.24	2	11.39	0.00	4	5.65	0.23		
A. Jiiiculoides	Others	2	1.48	0.48	2	1.15	0.56	4	4.23	0.38		
C demorsum	C. demersum	2	10.67	0.00	2	0.16	0.92	4	3.89	0.42		
C. demersum	Others	2	2.89	0.24	2	0.12	0.94	4	1.60	0.81		
M chicatum	M. spicatum	2	3.63	0.16	2	0.16	0.93	4	4.45	0.35		
wi. spicatum	Others	2	1.62	0.45	2	5.41	0.07	4	3.34	0.50		

1347 P budget (Figure 4; ANOVA)

		So	uLSedimen	t type		Nutrient loa	ding	Soil Sediment type*nutrient				
Targeted plants	Position	Son <u>Seament</u> type				Nutrent loading			loading			
		df	X ²	Р	df	X ²	Р	df	X ²	Р		
	Surface water	2	2.26	0.32	2	0.35	0.84	4	4.00	0.41		
	Other plants	2	0.53	0.77	2	1.38	0.50	4	2.78	0.60		
A. filiculoides	Targeted plants	2	0.25	0.88	2	13.84	0.00	4	0.20	1.00		
	Pore water	2	1.07	0.58	2	0.14	0.93	4	0.20	1.00		
	Soils	2	4.66	0.10	2	792.84	0.00	4	3.14	0.54		
	Surface water	2	21.05	0.00	2	1.17	0.56	4	23.61	0.00		
	Other plants	2	6.92	0.03	2	1.28	0.53	4	3.77	0.44		
C. demersum	Targeted plants	2	10.50	0.01	2	0.13	0.94	4	4.04	0.40		
	Pore water	2	0.88	0.64	2	0.04	0.98	4	1.58	0.81		
	Soils	2	5.67	0.06	2	728.39	0.00	4	7.47	0.11		
	Surface water	2	11.57	0.00	2	18.76	0.00	4	10.30	0.04		
M. spicatum	Other plants	2	1.58	0.45	2	1.87	0.39	4	4.81	0.31		
	Targeted plants	2	6.02	0.05	2	0.38	0.83	4	6.57	0.16		

Pore water	2	1.75	0.42	2	0.06	0.97	4	0.56	0.97
Soils	2	21.52	0.00	2	1109.54	0.00	4	16.35	0.00

1350 N budget (Figure 5; ANOVA)

		6	:1. C1'			to the section	Pro	Soil-Sediment type*nutrient			
Targeted plants	Position	son <u>seament</u> type			Nutrient loading			loading			
		df	X ²	Р	df	X ²	Р	df	X ²	Р	
	Other plants	2	2.20	0.33	2	2.01	0.37	4	4.79	0.31	
A filiculaidas	Targeted plants	2	0.49	0.78	2	7.77	0.02	4	2.95	0.57	
A. jiiiculoides	Pore water	2	10.17	0.01	2	1.03	0.60	4	1.24	0.87	
	Surface water	2	2.91	0.23	2	3.90	0.14	4	2.97	0.56	
	Other plants	2	5.38	0.07	2	0.66	0.72	4	1.28	0.86	
C domorsum	Targeted plants	2	10.43	0.01	2	6.28	0.04	4	9.86	0.04	
C. demersum	Pore water	2	14.48	0.00	2	0.04	0.98	4	3.58	0.47	
	Surface water	2	0.37	0.83	2	10.56	0.01	4	0.26	0.99	
	Other plants	2	3.08	0.21	2	4.53	0.10	4	5.75	0.22	
	Targeted plants	2	4.00	0.14	2	0.06	0.97	4	3.99	0.41	
ıvı. spicatum	Pore water	2	4.16	0.13	2	0.02	0.99	4	8.92	0.06	
	Surface water	2	11.51	0.00	2	14.03	0.00	4	5.73	0.22	