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We thank Referee #1 for providing helpful comments and we greatly appreciate the
time and effort Referee #1 had spent to review our manuscript. Most of the Referee’s
comments were considered and we introduced major changes to our manuscript. By
following the Referee’s comments we could identify and remove many ambiguities. In
particular, we eliminate the term ’sensitivity analysis’. That method (typically used to in-
crease understanding of the relationships between input and output variables for model
simplification or error identification) has some similarities and can be easily mistaken
with the uncertainty quantification method we apply here. Besides, we learned that the
term ’effect sizes’ is too ambiguous in the context of our study. We thus eliminated it in
favor of 'sensitivity coefficients’.
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In the revised version of our manuscript we have further clarified the purpose of our
analysis approach. With our approach we aim at providing support to experimental
work in our field of science by specifying potential sources of observed variability. As
pointed out by Referee #1, our study on variability decomposition depends on the un-
derlying model assumptions. In spite of its simplicity, the model yields results that
explain data from independent experiments, which confirms its applicability. Moreover,
our approach goes beyond those analyses that typically focus on “mean dynamics” by
also simulating the data variability. In order to make our method more comprehensive
we prepared a new figure that compares our mathematical approach with the equiv-
alent experimental setup (mesocosm drawings from Scheinin et al. 2015, J. R. Soc,
Interface 12:20150056). The presented approach is, to our knowledge, the first applied
for analyzing complex data from mesocosm experiments. For further clarification, we
have also included a conceptual diagram in the revised method section.

In the following we provide our responses to individual comments raised by of Referee
#1.

Comment 1 (C1): "l am uncomfortable with the assertion that these model simulations
produced in this study can be used to define which uncertainties lead to observed
variably in experimental results (L4-6, page 1)"

Authors’ response to C1:

The model is a mechanistic description of plankton growth dynamics based on dynam-
ically and ecologically consistent equations. Due to the skill of the simple model and
the consistency of our methodology, we regard our results as reasonable estimates of
how the investigated factors can generate the observed variability among replicates.
However, we decided to address this concern of Referee #1 and explicitly mention the
caveat that an agreement between experimental data and simulation results does not
necessarily imply uniqueness and maximum of realism reproduced by the model struc-
ture and by the parameterizations imposed. As a consequence, results based on any
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particular model are always prone to indetermination.

Regarding the variability decomposition method, we performed uncertainty propaga-
tion following the “Guide to the expression of uncertainty in measurement” (GUM),
in particular, the Supplement 1: “Propagation of distributions using a Monte Carlo
method”, prepared in 2008 by the international Joint Committee for Guides in Metrol-
ogy (JCGM). This method has been adopted by many organizations, is widely used,
and has been implemented in standards and guides on measurement uncertainty.

Comment 2 (C2): “... you cannot use this study to infer about what is observed in
POC in the experiments, because you cannot trace how likely your parameter values
used, or the simulations of your state variables are. You do not use any observational
datasets to validate the state variables simulations associated with the mechanisms
represented, or the parameter values chosen here (adjusted?)?

Authors’ response to C2:

The reference solution was obtained by adjusting parameter values so that they can
be used for simulations of two independent experiments. If we had applied a data as-
similation approach we may have identified parameter values based on probabilistic
considerations, e.g. by maximizing a likelihood. Doing so does not automatically pro-
vide reasonable parameter estimates. The additional application of a data assimilation
approach is clearly out of scope of the study presented here. The ’adjustment’ of the
parameter values to provide a qualitative fit to experimental data is rather common than
unusual. In preparation of our study described here we performed an extensive series
of simulation runs, with models of different complexity and with different parameteriza-
tions. This preparatory work is not documented explicitly, as it does not provide much
insight with respect to the objective of the manuscript. For the same reason we did not
introduce a data assimilation method for specifying a reference model solution.

The major achievement during the process of model selection and of parameter ad-
justment was to identify the simplest model structure while keeping parameter values
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within meaningful limits. Thus, we have identified an effective representation of major
processes underlying the observed experimental dynamics, which specified the model
reference solutions. This ‘calibrated’ reference solution successfully explains 54 data
sets of repeated measures of POC, PON and DIN (i.e., 3 quantities x 3 treatment
levels x 3 replicates x 2 independent experiments on ocean acidification with primary
producers).

We added some more information (second paragraph section 2.1) about the calibration
of the model and how the reference solution is identified. In fact, we also considered a
third independent data set for model validation. The third data set is not included since
it is not directly relevant for the study presented here.

Comment 3 (C3): “Through the various optimizations of parameter values, it is there-
fore possible that random combinations of parameters can be achieved to produce the
observed variability in POC, or close to it, but this does not mean that this is what hap-
pens in reality. | believe you address this partially at the end of the methods section
(L24-27, page 5), but isn’t this the rationale of your study?"

Authors’ response to C3:

We disagree with the Referee’s remark that any random combination of parameter
values would yield similar variability on POC. We recall that no systematic data assimi-
lation method was employed for parameter optimization. By 'optimization of parameter
values’ we assume that Referee #1 actually refers to the iterative procedure of as-
sessing the limits of variations of parameter values that generate variations in model
states at specific times. These variations in model states (like in POC) are thus mech-
anistically (dynamically) linked to the variations of parameter values, including initial
conditions. The parameter values were varied individually while other parameter val-
ues remained fixed (note that the fixed values correspond with the calibrated model
reference solution).

In L24-27, page 5, we noticed that a substantial achievement already is to mechanisti-
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cally elucidate a minimum number of requirements that are sufficient for the uncertainty
to escalate and mask treatment effects (specially since it is not possible to find the total
number of requirements, neither experimentally nor mathematically). The rationale of
our study is to show that slight differences in initial conditions (in particular, in nutrient
concentration, mean cell size or biomass losses) are already sufficient to blur the signal
of treatment effects.

Comment 4 (C4): "Indeed, in page 4, L29-32, it seems you optimize the parameter
values by minimizing a model costs based on an emergent property (POC) (i.e. the re-
lationship between POCexp and POCmod), not your state variables. Is this the case?"

Authors’ response to C4:

We learned that the essence of the method is not sufficiently well documented. The
Referee’s comment is helpful. A conceptual diagram of the method has been devised
and included to our revised manuscript, see new Fig. (1). The diagram illustrates all
steps of the work flow of the analysis: the model was calibrated with POC, PON and
DIN experimental data (calculation of the reference run, steps 1 and 2 in Fig. 1); later,
we perform the uncertainty propagation analysis (part of it is the comparison of POC
experimental and simulated variability to estimate the tolerance thresholds, step 5 in
Fig. 1).

The model counterpart to the POC measurements is equal to the sum of two state
variables, namely phytoplankton carbon and the carbon pool attributed to detritus and
all heterotrophs: POC = PhyC + DH_C (see former L23, page 3).

Comment 5 (C5): "... you assume that increased DIC increases primary production
(L27 onwards, page 3) but this is not a ubiquitous perspective in the community (e.g.
Artioli et al 2014 Biogeosciences Discussions 11: 601-612; Nagelkerken & Connel
2015 PNAS 112: 13272-13277)”

Authors’ response to C5:
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We find sufficient evidence in the literature that primary production becomes enhanced
under elevated CO2 conditions. This enhancement may seem to be low and whether it
can be unambiguously revealed depends on the experimental design. We also follow
theoretical considerations as described in Wirtz (2011, Journal of Phytoplankton Re-
search 33, 9:1325-1341, that are in support of finding enhanced carbon fixation rates
with increasing CO2 levels. We greatly appreciate that Referee #1 provided two valu-
able references. In Artioli et al. (2016, Biogeosciences Discussions 11: 601-612) it
is straightened that high CO2 enhances primary production (and in that article also
PeECE lll data are used). In the second study, by Nagelkerken & Connel (2015, PNAS
112: 13272-13277), it is shown that high CO2 enhanced primary production in most
cases while the variability in the data may become too large. These studies are good
examples that highlight the relevance of our study: controversial results in ocean acidi-
fication experiments. We have considered both studies in the Introduction and Methods
sections.

Responses to detailed comments by Referee #1

Detailed comment 1 (DC1): "Did you constrain the normal distributions sampled in
order to limit the parameter values to positive values? If so, please state this and
explain how you constrained the sampled distributions used for delta phi"

Authors’ response to DC1:

We thank Referee #1 for this notice. We added a sentence at the end of the Methods
section to explain that we dismissed negative values, representing less than 5% of all
trajectories. Given the super-optimal number of virtual replicates, this reduction did not
affect the results.

Detailed comment 2 (DC2): "Could you explicitly provide the values you used in the
definition of future, present and past CO2 conditions? Could you provide the refer-
ences you used to define your initial conditions for all your model factors (Tables | and
II)? My expertise in plankton ecology is not sufficient to allow me to comment on the

C6



actual, values used as initial conditions for the model. So these should be reviewed by
someone with that knowledge.”

Authors’ response to DC2:

The CO2 values we used as forcing were plotted in Appendix D. They were downloaded
from PANGAEA, together with the initial conditions of the state variables given in Table
(1). Table (2) lists the parameter values used in the reference run. Many parameters
are difficult to measure and have not been experimentally determined, but the values
used remain within the range of plausible biological values.

Detailed comment 3 (DC3): "L3-5 page 5: is this a reasonable expectation, given that
your parameters are not independent? E.g. aCO2 is possibly quite tightly dependent
on V*max? Please expand on why you think this is an appropriate assumption."

Authors’ response to DC3:

We refer to independence of errors (i.e. covariances being zero), not the independence
of the parameters (no collinearities). The independence of the uncertainties is exten-
sively assumed (we have included the reference to the GUM). Although this is a typical
assumption, we agree that this assumption introduces limitations and the consideration
of correlations will likely be an improvement.

Our model accounts for the dependence between aCO2 and V*max because we follow
Edwards et al. (2011, Ecology 92:2085—-2095) and resolve allometric relationships that
describe the relation between maximum growth and nutrient uptake through the loga-
rithm of the equivalent spherical diameter (GUM Supplement 1, Section 6.1.4 NOTE:
“It may be possible to remove some or all dependencies by re-expressing relevant in-
put quantities in terms of more fundamental independent input quantities on which the
original input quantities depend”).

Detailed comment 4 (DC4): "Results L7-10 page 6: it could be argued that the purpose
of conducting mesocosm experiments in real life (usually to investigate what we think
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are the mechanism underlying variation in some variable in real life) is to observe
what mean and variability we get under pre-determined conditions. To bind the initial
conditions of the experiment in order to modify the result (variability) could be perceived
to be a circular argument.”

Authors’ response to DC4:

Effects of the treatment are expected to appear as differences among treatment lev-
els, not as differences among replicates of the same treatment level. We provide an
estimate of how much the latter need to be constrained in order to observe the former.
We do not suggest to ’bind’ the initial conditions of different treatment levels since the
exploration of the differences among treatment levels is the aim of the experiment, as
correctly pointed by Referee #1.

Detailed comment 5 (DC5): "L14-onwards: if the parameters are tuned based on model
cost calculated using POCexp, how can we be sure that this matters in any way other
than in the model structure used here? What you have carried out is a model per-
turbation experiment, with tuning of parameters. | find it difficult to determine how we
can derive new knowledge about the way in which ocean acidification impacts plankton
communities.”

Authors’ response to DC5:

The main point is that our method involves a mechanistic understanding of how the
plankton community can react to ocean acidification. Based on the available data and
on this mechanistic description we make inferences about CO2 effects on the tim-
ing and intensity of the phytoplankton bloom (it is earlier and larger under high CO2
conditions) and about the origins of variability in observations from ocean acidifica-
tion mesocosm experiments that include a natural plankton community. Furthermore,
we can disentangle differences in observed POC in response to a CO2 effect and in
response to variations in ecophysiological factors (phi_i). To make similar inferences
from statistical analyses of the data is hardly possible, unless such analysis accounts
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for some of the predominant interdependencies between nonlinear processes. The
mechanistic model description introduces an explicit representation of such nonlinear-
ities.

We thank Referee #1 for sharing her/his thoughts and for proposing two new refer-
ences. The comments helped to improve the manuscript and to avoid any further

misconceptions. Following her/his suggestion, we hired an English editing service for
the manuscript text as well.
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Fig. 1. Conceptual diagram for the variability decomposition method based on uncertainty
propagation
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Fig. 2. The exploration of the sources of variability in an experiment requires a multi-factorial
high-dimensional set-up (left). Alternately, we simulate the biomass dynamics with virtual repli-

cates (right)



