Consolidated response to comments

Editor:

Based on your responses to the two reviewers | invite you to prepare a revised
manuscript. Further to the discussion on the effects of Narea versus Nmass and the
role of LMA I recommend you to consider also the paper by Osnas et al. (2013)
published in Science.

This is an excellent point.

Osnas et al. (2013) performed an extensive analysis on a large global leaf trait data
set. Their principal aim was to resolve the question of whether quantitative leaf traits
should most appropriately be expressed on an area or a mass basis. In doing so, they
fitted various statistical models that are relevant to our MS. Their ‘Model LN’ is
particularly of interest. This can be written as.

In Narea(k) = 1"+ 8" In LMA(k) + n’(k)

where (k) refers to an individual measurement, n’(k) is a zero-mean normal random
variable, and I’ and S’ are constants to be estimated. They estimated a value for S’ of
0.38 (95% confidence interval 0.36 to 0.40), which is statistically indistinguishable
from our estimate of the OLS slope of In Nyyeq versus In LMA, viz. 0.42 (0.34 to 0.49).
We have added text to this effect (page 12, lines 10-14):

“Osnas et al. (2013) also fitted various statistical models for the relationships among
leaf traits. Their ‘model LN’ for In Ny, versus In LMA yielded a slope of 0.38 (95%
confidence interval 0.36 to 0.40). This value, based on a global data set, can be
compared directly with — and is indistinguishable from — our fitted partial regression
coefficient of In Narea versus In LMA, which is 0.42 (0.34 to 0.49) (Table 1).”

Osnas et al. (2013) also used a novel approach to determine the extent to which each
quantitative leaf trait could be considered to be area- or mass-dependent. Whereas
some traits were unambiguously one or the other, leaf N fell in between — consistent
with our analysis indicating that leaf N can be broken down into a component
proportional to leaf area, and a component proportional to leaf mass. We have now
commented on this consistency between our findings and those of Osnas et al. (2013)
(page 12, lines 2-6):

“Osnas et al. (2013), analysing a large global leaf-trait data set and applying a novel
method to determine the extent to which different traits are area- versus
mass-proportional, found leaf N to be an intermediate case. This is to be expected if
leaf N is, as our results suggest, a composite of an area-proportional (Npupisco) and a
mass-proportional (Nyyyewre) component.”



Anonymous Referee #1

This paper presents an analysis of how leaf N per area (Na) varies with climate in
terms of its structural and functional (photosynthetic) components. The effects are
attributed to inter-specific variation and within species adaptation, and the results are
interpreted in a leaf optimization framework. I find this study to be extraordinary in
going all the way from leaf sampling to modeling, producing empirical evidence,
theoretical progress, and new components for predictive models in one paper. It is a
rarely seen example of how to combine observations and theory to make real
quantitative progress, beyond the usual "significant or not" testing of ecological
hypotheses. In conclusion, I find this an very useful contribution to the research area.

We thank the referee for this appreciative comment.

In the discussion, p.10 1. 19, the least cost hypothesis is explained as reducing ci/ca in
drier environment due to the need for increased water transport capacity for a given
rate of assimilation. Why this happens is not obvious to me. I would have thought that
in drier environments water limitation would force the plants to increase water use
efficiency by increasing assimilation capacity (Amax) per water use? Maybe an
additional line of explanation could help here.

Nitrogen and water are substitutable resources according to the least-cost hypothesis.
Thus, a plant can invest in additional photosynthetic capacity while closing stomata,
reducing the requirement for water transport. Or it can invest in additional water
transport capacity, allowing more open stomata, while economizing on photosynthetic
capacity. The same assimilation rate is achieved either way. In drier environments,
the marginal cost of water transport is relatively high, compared to that of nitrogen
use, so the optimal strategy is to adopt a lower c;/c, ratio, while increasing Vemay. This
outcome is fully consistent with the referee’s suggestion, because lower ci/c, implies
increased water use efficiency (assimilation per unit water use).

To make this clearer, we have amended the text as follows (page 11, lines 5-8):

[The least-cost hypothesis (Wright et al. 2003; Prentice et al. 2014) predicts lower
ci:cq in drier environments). This is because the drier the atmosphere, the greater the
flux of water required to support a given rate of assimilation; which in turn shifts the
balance of costs and benefits towards investment in photosynthetic capacity (Vemax)
and away from water transport capacity.”

Then in the final comments it is suggested that Vemax should be plotted on the X axis
against leaf N instead of the usual opposite way. I think I get the point of this, but at
the same time, isn’t N in proteins a key part of the machinery or structure that
performs the "function Vemax". I think both ways of plotting could be equally valid
also from an plant centered perspective.



N in proteins is indeed a key part of the machinery that supports Vi pa.. However, we
think our slightly provocative point is worth making, because when the two variables
are plotted in the usual way, it is easy to infer (as is very commonly done, in both
empirical and modelling studies) that the N content of the leaf is a cause of its Vimax.
We are suggesting the reverse: that the metabolic N content of the leaf is a
consequence of the Vi yq. adopted by the leaf.

1t is also too easy, and incorrect, to regard leaf N simply as a proxy for Vemax. As our
analysis suggests, the non-photosynthetic component of leaf N can be large in plants
with high LMA. Adams et al. (2016) have shown that photosynthetic capacity is not
related to Ng..q.in N-fixing plants, and pointed out that leaf N can also perform other
functions than photosynthesis (such as defence against herbivory). There is also
evidence that the predominant effect of artificially increasing N availability by
fertilizer addition is increased canopy size (see e.g. Rosati et al., 2000 and references
therein). Although a fuller review would be beyond the scope of this paper, there seem
to be several lines of evidence suggesting that the common modelling approach,
whereby N supply regulates photosynthetic capacity, needs replacing.

In support of our argument, we have added the following text (page 13 line 29; page
14 lines 1-3):

[our results suggest a possible route towards a general adaptive scheme for the
prediction of major leaf traits in DGVMSs,]| which would be an improvement on
models that assume a one-to-one relationship between photosynthetic capacity and
Narea (see e.g. Adams et al. 2016, who showed that there is considerable variation in
Narea among N-fixers that is unrelated to photosynthetic capacity).

Anonymous Referee #2

This study sets out to predict leaf nitrogen per unit area (Narea) through a
combination of leaf mass per unit area (LMA), the ratio of leaf-internal to
atmospheric CO2 (ci:ca) and Rubisco activity. Although the study presents some
interesting observations relating environmental variables to Narea and other leaf-scale
traits, a major omission has been made by not showing explicitly how nitrogen per
unit leaf mass (Nmass) varies in these observations. It is possible to infer some
aspects of the relationships from the data presented, but it seems possible that a much
simpler and perhaps stronger predictive relationship could be formulated around the
simple fact that Narea = LMA * Nmass. This relationship is clear to the authors as
they use it to calculate Narea itself from measurements of LMA and N, (p.5 line
24).

In response to this proposal, we have carried out an analysis of In Ny, parallel to
our analysis of In Naq, and have presented this in Table Bl and Fig. Bl in the new
Appendix B. But since the relationship between In Ny, and In Ny, can be expressed
by In Nyrea = In LMA + In Ny, the results were predictable: the partial relationships
to variables other than In LMA are unchanged, while the regression coefficient of



Nuass With respect to In LMA is reduced by exactly 1. Because the coefficient of In
Narea with respect to In LMA < 1, the coefficient of In Ny with respect to In LMA < 0
(i.e. Nyass declines with LMA). But this relationship is neither simpler, nor stronger,
than our main analysis based on N e,

We also tried an analysis of Nyass omitting LMA as a predictor, but this resulted in a
much poorer fit with several non-significant coefficients. We have added some
explanation of these additional results. See page 10, lines 20-26:

“We performed an additional regression using leaf nitrogen content per unit mass
(Nmass) Which showed, as expected, identical fitted coefficients for all predictors
except LMA (Appendix B: Table Bl and Fig. Bl). However, because the regression
coefficient of In Nyeq With respect to In LMA < 1, the regression coefficient of [n Nyss
with respect to In LMA < 0, i.e. Nyuss declines with increasing LMA, as has been
widely reported. We also tried a regression of Nyass on the same set of predictors but
without the inclusion of LMA; this yielded a much poorer fit and is not shown.”

The authors attempt to separate the LMA contribution to variation in Narea from a
metabolic contribution, but they arrive at a summation of effects, one connected to
structural variation which is tightly connected to LMA, and another metabolic
component that is formulated as independent of LMA (p.2 lines 12-14, p.7 lines 4-6).
My concern with this approach is that the metabolic component of Narea includes a
dependence on LMA as well, since metabolic variation can be driven both by changes
in the leaf tissue N concentration and by the number of layers of mesophyll cells and
the thickness of each layer.

We independently predict the structural and metabolic components of leaf N. The
structural component of leaf N is assumed to be proportional to LMA, and this
assumption is supported by an independent analysis of the relationship between
cell-wall N and LMA (see p. 11, line 14). The metabolic component of leaf N is
assumed to be proportional to Vi nax at a given temperature, which is predicted as a
function of irradiance, leaf-internal CO, concentration (c;) and temperature.

Now in reality, as the referee notes, Venay is not entirely independent of LMA, because
leaves with high V. pax require high LMA. But this means they require more structural
N as well. Our multiple regression approach remains valid, even if LMA and V yax
are partially correlated. The fact that we obtain independently significant regression
coefficients indicates that both make separate, significant contributions to
determining Ngyeq,

We have added new text (a) to recognize the partial dependence of LMA on Vi and
(b) to note how this is handled by multiple regression, as follows (page 12, lines
6-10):

“The two predictors (Rubisco capacity and LMA) are not fully independent, because
leaves with higher photosynthetic capacity tend to have higher LMA for structural



reasons. But such leaves must have increased structural N as well. By showing
independently significant regression coefficients for modelled Ngypisco and LMA, the
multiple regression approach establishes that successful prediction of Naq, requires
consideration of both components.”

Without explicitly showing how Nmass is related to the environmental factors
explored here, it is not clear how the current study moves the field forward from the
relationship suggested by Niinemets and Tenhunen (1997) between Vcmax and
Narea.

First, the revised text includes a demonstration of the partial relationships between
Nyass and environmental variables (Table Bl and Fig. Bl in Appendix B).

Second, although Niinemets and Tenhunen (1997) is an important reference for this
research, their focus was on explaining the observed vertical gradients of
photosynthetic capacity and Ngeq,. Our focus is on predicting observed patterns in
Narea more broadly, across species and environments. Our success in doing so
therefore represents a significant advance on this earlier work.

There is also a potential incongruency in the calculation of irradiance as a function of
canopy leaf area, while asserting that the leaves measured were from the sunlit
canopy. If truly sunlit leaves were used, then the relevant irradiance would be the top
of canopy values. Perhaps this is just a matter of defining what sunlit leaves means for
species that exist only in the understory of mixed species canopies. In any case, [ am
concerned that the irradiance used for sunlit leaves of the dominant trees in these
relationships is not the correct one.

Our terminology was wrong: we should have referred to ‘outer canopy’ leaves rather
than ‘sunlit’ leaves! We have amended this in the revision (page 5, lines 26).

By calculating a canopy-average irradiance, we represent the conditions likely to be
experienced by species on average. This will indeed underestimate the irradiance
experienced by the outer leaves of the canopy dominants, but it will also overestimate
the irradiance experienced by plants at ground level. Such errors presumably
contribute to the scatter around the fitted relationship of Naeq with irradiance. We
have added some words of explanation on this point (page 5, lines 19-24):

“In dense vegetation I, will underestimate the PAR exposure of canopy dominants
and overestimate the PAR exposure of understory species. However, the use of a
canopy average in this way was a necessary approximation (because we did not have
quantitative information about the canopy position of each species) and considered
preferable to using 1), which will systematically overestimate PAR exposure for most
species in a dense community.”

M. G. De Kauwe (mdekauwe@gmail.com)



I found this paper very interesting, but did have two quick suggestions:

"For example, any modelling approach that predicts photosynthetic capacity from
Narea, and Narea in turn from soil inorganic N supply (Luo et al. 2004), is
incompatible with the hypothesis that photosynthetic capacity is optimized at the leaf
level as a function of irradiance, leaf internal CO2 concentration (ci) and temperature
(Haxeltine and Prentice 1996, Dewar 1996) — as assumed in the widely used LPJ
DGVM (Sitch et al. 2003) and other models derived from it, including LPJ GUESS
(Smith et al. 2001) and LPX (Prentice et al. 2011a; Stocker et al. 2013)." I wonder if
this could be explained a little further? I think it is an important point, but don’t feel
that it is immediately self evident why these hypotheses cannot co-exist, i.e. that a
canopy can optimise for leaf N, but be constrained by supply from the soil inorganic
N, e.g. McMurtrie et al. 2008, Functional Plant Biology, 2008, 35, 521-534.

At the leaf level, the co-ordination hypothesis predicts that photosynthetic capacity is
optimized as a function of irradiance, leaf internal CO, concentration (c;) and
temperature. At the whole plant level, however, we expect limited N supply to be
manifested in a limitation on canopy size (i.e. number of leaves) rather than on the
photosynthetic capacity of the individual leaves. This has now been stated explicitly in
the revised text (page 3, limes 20-21):

“(Limited N supply, by this reasoning, should lead to the production of fewer leaves,
rather than leaves with suboptimal capacity.)”

Fig 1: Remove the labels from the points and increase their size. Currently you cannot
see the colour variation very easily.

Done and replaced it with the revised Fig.1 (page 26).
Literature cited in this document:

Adams, M. A., Turnbull, T. L., Sprent, J. 1., and Buchmann, N.: Legumes are
different: Leaf nitrogen, photosynthesis, and water use efficiency, Proceedings of
the National Academy of Sciences, 113, 4098-4103, 2016.

Osnas, J. L. D., Lichstein, J. W., Reich, P. B., and Pacala, S. W.: Global leaf trait
relationships: mass, area, and the leaf economics spectrum, Science, 340,
741-744,2013.

Rosati, A., Day, K. R., and DeJong, T. M.: Distribution of leaf mass per unit area and
leaf nitrogen concentration determine partitioning of leaf nitrogen within tree
canopies, Tree Physiology, 20, 271-276, 2000.



Appendix B: Partial responses of Ny.ss to environmental predictors

Table B1. Linear regression coefficients for In (Nmass™100) (g g'l) as a function of
ci:cq (from 8"°C), In (mean canopy PAR, ;) (umol m s "), MAT (°C), In LMA (g m ?)
and the factor ‘N-fixer’ at species level. Note N,.ss was multiplied by 100 before

logarithmic transformation

Estimated Predicted p R’
CilCq —0.611 +0.252 —0.615 <0.01
In 7 0.874 £ 0.096 1 <0.001
MAT —0.047 £ 0.007 —0.048 <0.001 51%
InLMA | -0.585+0.036 n/a <0.001
‘N-fixer’ | 0.306 + 0.041 n/a <0.001

Fig B1. Partial residual plots for the regression of In (Nmass*100) (g g'l) as a
function of ci-cq (from 813C), In (mean canopy PAR, I,) (mmol m 2 s 1), MAT (C),

In LMA (g m_z) and the factor ‘N-fixer’ at species level. Note N, was multiplied

by 100 before logarithmic transformation.
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Abstract

Nitrogen content per unit leaf area (Ng.,) is a key variable in plant functional ecology and
biogeochemistry. N, comprises a structural component, which scales with leaf mass per area (LMA),
and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as
implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be
directly proportional to irradiance but should decrease with c;:c, and temperature because the amount of
Rubisco required to achieve a given assimilation rate declines with both. We tested these predictions
using LMA, leaf 8"°C and leaf N measurements on complete species assemblages sampled at sites on a
North-South transect from tropical to temperate Australia. Partial effects of mean canopy irradiance,
mean annual temperature and cic, (from 8°C) on N, were all significant and their directions and
magnitudes were in line with predictions. Over 80% of the variance in community-mean (In) N, was
accounted for by these predictors plus LMA. Moreover, Ny., could be decomposed into two
components, one proportional to LMA (slightly steeper in N-fixers), the other to predicted Rubisco
activity. Trait gradient analysis revealed c;:c, to be perfectly plastic, while species turnover contributed

about half the variation in LMA and N_cq.

Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in
order to improve ecosystem models. Our results indicate that N, has a useful degree of predictability,
from a combination of LMA and c;:c, — themselves in part environmentally determined — with Rubisco
activity, as predicted from local growing conditions. This is consistent with a ‘plant-centred’ approach
to modelling, emphasizing the adaptive regulation of traits. Models that account for biodiversity will
also need to partition community-level trait variation into components due to phenotypic plasticity
and/or genotypic differentiation within species, versus progressive species replacement, along
environmental gradients. Our analysis suggests that variation in N, is about evenly split between these

two modes.

1 Introduction

Nitrogen (N) is an essential nutrient for primary production and plant growth, and nitrogen content per
unit leaf area (Ng.,) is a key variable in plant functional ecology and biogeochemistry. A strong
correlation between leaf N and photosynthetic capacity has been observed, and is to be expected
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because typically almost half of the N in leaves is invested in the photosynthetic apparatus (Field and
Mooney 1986; Evans and Seemann 1989; Evans 1989). This component of leaf N is approximately
proportional to the maximum rate of carboxylation (V.ma) at standard temperature (Wohlfahrt et al.
1999; Takashima et al. 2004; Kattge et al. 2009). Cell walls also account for a significant fraction of
leaf N (Lamport and Northcote 1960; Niinemets and Tenhunen 1997; Onoda et al. 2004). Leaf mass per
area (LMA) is positively correlated with cell-wall N (Onoda et al. 2004) and is used as an index of plant
investment in cell-wall biomass (Reich et al. 1991; Wright and Cannon 2001). Thus, to first order, Ny,
is the sum of a ‘metabolic’ component related to V. and a ‘structural’ component proportional to

LMA.

Dynamic Global Vegetation Models (DGVMs) are being extended to include interactive carbon (C) and
N cycles (Thornton et al. 2007; Xu-Ri and Prentice 2008; Zachle and Friend 2010). But there remain
many open questions about the implementation of C-N coupling (Prentice and Cowling 2013),
including the control of leaf N content, which is treated quite differently by different models. For
example, one modelling approach that predicts photosynthetic capacity from Nye, and Ny, in turn
from soil inorganic N supply (e.g. Luo et al. 2004), But this is incompatible with the hypothesis that
photosynthetic capacity is optimized at the leaf level as a function of irradiance, leaf-internal CO,
concentration (¢;) and temperature (Haxeltine and Prentice 1996, Dewar 1996) — as assumed in the
widely used LPJ DGVM (Sitch et al. 2003) and other models derived from it, including LPJ-GUESS
(Smith et al. 2001) and LPX (Prentice et al. 2011a; Stocker et al. 2013). This ‘plant-centred’ hypothesis
is based on the idea that plant allocation processes determine leaf-level traits. (Limited N supply, by this
reasoning, should lead to the production of fewer leaves, rather than leaves with suboptimal capacity.)
More specifically it is derived from a long-standing concept, the ‘co-ordination hypothesis’, which
states that the Rubisco- and electron transport-limited rates of photosynthesis tend to be co-limiting
under average daytime conditions (Chen et al. 1993; Haxeltine and Prentice 1996; Maire et al. 2012).
Co-limitation is optimal — even though mechanistically, it may be an inevitable outcome of leaf
metabolism (Chen et al. 1993) — in the sense that it provides the right balance of investments in the
biochemical machineries for carboxylation and electron transport. It implies that enzyme activities
adjust, over relatively long periods (weeks or longer), so that co-limitation holds. An important
consequence is that the predicted responses of photosynthetic traits and rates to environmental variables
observed in the field (whether temporally, comparing different seasons or spatially, comparing different

3
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environments) are substantially different from those seen in short-term laboratory experiments.
Specifically, Vemax (and thus the metabolic component of N,.,) is predicted to be directly proportional
to irradiance; to decrease with c¢;:c,; and to decrease with temperature. These predictions are supported
in general terms by an observed positive relationship between N, and irradiance (Field 1983; Wright
et al. 2005), a negative relationship between N, and c;:c, (Wright et al. 2003; Prentice et al. 2011b;
Prentice et al. 2014), and (in woody evergreens at least) a negative relationship between Ny, and
temperature (845 species: data from Wright et al. 2004). But there has been no systematic attempt to
quantitatively assess the relationship of leaf N to environmental and structural predictors across
environmental gradients. Such empirical work is needed to assess and underpin methods of C-N cycle

coupling in DGVMs.

Here we set out to test the predictability of M., using measurements carried out on dried plant material
collected by the Terrestrial Ecosystem Research Network (TERN) AusPlots and Australian Transect
Network facilities, at 27 sites on a north-south transect across the Australian continent. The transect
extended from the wet-dry (monsoonal) tropics to the dry-wet (mediterranean) temperate zone via the
arid interior, and encompassed substantial variation in all of the hypothesized controls of N, (Fig. 1).
The Ausplots protocol involves sampling all species within a 100x100 m plot (White et al. 2012). We
measured Nye,, 8°C and LMA on all species at each site, and tested and quantified the effects of
irradiance, cic, ratio (from 8'°C), temperature, LMA, and N-fixation ability (26% of the species
sampled were N-fixers), on variation in Ng.,. The sampling design also allowed us to implement the
trait gradient analysis method introduced by Ackerly and Cornwell (2007), which has been surprisingly
little used to date. A growing body of field measurements shows extensive leaf-trait variation within
species and PFTs (Kattge et al. 2011; Meng et al. 2015). Trait gradient analysis allows trait variation to
be partitioned into a component due to variation within species and a component due to species

replacement.
2 Materials and Methods
2.1 Climate data and analysis

Climatological data for the 27 sites were obtained from the eMAST/ANUClimate dataset

(http://dapds00.nci.org.au/thredds/dodsC/rr9/Climate/eMAST/ANUClimate/0_0ldeg/vim0_aus/mon/la
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nd/catalog.html), which extends from 1970 to 2012 with 1 km spatial resolution across the entire
continent. Mean annual precipitation (MAP) over this period at the sampling sites ranged from 154 to
1726 mm and mean annual temperature (MAT) from 14.1° to 27.6°C. The moisture index (MI = P/E,,
where P is mean annual precipitation and E, is equilibrium evapotranspiration, calculated with the
STASH program: Gallego-Sala et al. 2012) varied from 0.07 to 0.82. The mean incident flux of
photosynthetically active radiation (PAR) during daylight hours, expressed as photosynthetic photon
flux density (umol m™ s™), was also calculated using STASH. This incident flux (at the top of the
canopy) was averaged through the canopy using Beer’s law, as follows. First leaf area index (L) was
estimated from remotely sensed (MODIS NBAR-derived using MODA43A4:
http://remote-sensing.nci.org.au/u39/public/html/modis/fractionalcover-clw)  fractional — cover  of
photosynthetic vegetation (f,) in 1 km resolution at each site, from data assembled by the TERN

AusCover facility (Guerschman et al. 2009):
L =~ —(/kIn(1-1) e
where k£ = 0.5. Then absorbed PAR per unit leaf area (1) was calculated as:

I =~ L(l—e¢™/L = Lkf,/In[1/1-£)] Q)

where [ is the incident PAR above the canopy. This calculation yields 7;, ~ I, for sparse vegetation (L <
1) but 7; becomes progressively smaller than /) as foliage density increases, reflecting the fact that the
irradiance experienced by the average species is much lower in, say, a closed woodland than in an open
shrubland, even if the PAR incident at the top of canopy is the same. In dense vegetation /; will
underestimate the PAR exposure of canopy dominants and overestimate the PAR exposure of
understory species. However, the use of a canopy average in this way was a necessary approximation
(because we did not have quantitative information about the canopy position of each species) and

considered preferable to using /), which will systematically overestimate PAR exposure for most

species in a dense community.

2.2 Foliage sampling and analysis

Mature outer-canopy leaves were sampled during the growing season using the AusPlots methodology

(White et al. 2012). In total, the 27 selected sites included 442 unique species, of which 37 were C,4

Ning Dong 25/6/2016 6:13 PM
S B : sunlit




10

15

20

25

plants (not analysed further here). LMA was measured on the archived leaf samples by scanning and
weighing the leaves. Subsamples (a mixture of material from at least 2 replicates) were analysed for C
and N contents and bulk 8'°C at the Stable Isotope Core Laboratory of Washington State University,
USA. Ngea was calculated from N content and LMA. Carbon isotope discrimination (4) values were

derived from the reported 8'"°C values using the standard formula:
4= (5air - plant)/(l + 5plzmt) (3)

where d,;- is the carbon isotope composition of air and Jp. is the carbon isotope composition of the
plant material. Because of the different diffusion rates and biochemical rates of carboxylation between

BC0, and 2CO,, 4 can be used to estimate the c;:c, ratio as:

ciicag = (atD/(b-a) 4
where the recommended standard values are a = 4.4 %o and b =27 %o (e.g. Cernusak et al. 2013).
2.3 Analysis of Veyax

Values of V.. were predicted based on the co-ordination hypothesis, by equating the carboxylation-
and electron transport-limited rates of photosynthesis and, as a simplifying assumption, treating the
electron transport-limited rate as proportional to absorbed PAR (i.e. ignoring the saturation of the

electron transport rate at high irradiances). These assumptions lead to the following estimate:
Vz‘max = ®o IL (C,‘ + K)/(cl + ZF*) (5)

where ¢y is the intrinsic quantum efficiency of photosynthesis (0.093: Long et al. 1993), ¢; is the
leaf-internal concentration of CO,, K is the effective Michaelis-Menten coefficient of Rubisco, and I™*
is the photorespiratory compensation point. Both K and I™* were evaluated at standard atmospheric
pressure and oxygen concentration, and site MAT. Predicted values of Vena were adjusted to 25°C,
because the amount of N allocated to Rubisco and other enzymes involved in carboxylation should be
proportional to V. at a standard temperature, not at the growth temperature. /n vivo temperature

dependencies of K, I™* and V.« were used for these calculations, following Bernacchi et al. (2001).

2.4 Statistical methods
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All statistics were performed in R3.1.3 (R Core Team 2015). Linear regressions were fitted using the /m
function, and partial residual plots generated using the visreg package. In a first, exploratory statistical
analysis, a linear model was fitted for In Ny, with ¢;:c,, MAT, In I, In LMA and the factor ‘N-fixer’ as
predictors. The regression slopes of In N, against ci:c,, MAT and In [; can all be independently
predicted from the co-ordination hypothesis by differentiation of eq (5) (see Appendix A. Note that
these formulae explicitly predict the slopes for In N,.,). These predicted values were compared with the

fitted values and their 95% confidence limits in order to assess support for the co-ordination hypothesis.

In a second analysis, community-mean values were calculated as simple averages across the species in
each plot, omitting the factor ‘N-fixer’. A linear model was fitted to the community means of In N, as

a function of ¢;:c,, MAT, In [; and In LMA to assess the predictability of leaf N at the community level.

In a third analysis, Nu., was modelled as a linear combination of the predictors Rubisco N, Nupisco
(derived from predicted Vepay at 25°C) and structural N, Nyyycure (derived from LMA using the empirical
relationship Nymemre = 102 LMA®”, in g m™? Yusuke Onoda, personal communication 2015),
including ‘N-fixer’ as a factor and allowing interactions of the predictors with this factor. An additional
regression was performed with only Nyycnre and Nupisco as predictors; their relative importance was

calculated using the relaimpo package.
2.5 Trait gradient analysis

Trait gradients were generated for In LMA, In N, and c;:¢c, following the analysis method of Ackerly
and Cornwell (2007), again using simple averages across species to estimate community means. In this
analysis species trait values were plotted against site-mean trait values. By definition, the regression of
the species trait values against site-mean trait values has a slope of unity. For a perfectly plastic trait,
regression of trait variation within species against the site-mean trait values would also yield a slope of
unity. The common within-species slope that this approach provides is a measure of the fraction of trait
variation due to phenotypic plasticity and/or genotypic variability. Its one-complement measures the
fraction due to species turnover. Natural log transformation was applied to LMA and N, because of
their large variance and skewed distributions, but not to c;:c, because of its small variance and

approximately normal distribution.
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3 Results

3.1 Leaf N variations with climate and leaf traits

Significant partial relationships were found for In N, versus ci.c,, MAT and In I; (Table 1, Fig. 2).
The relationship was negative for ci'c,, as expected because lower c;.c, implies that a greater
photosynthetic capacity is required to achieve a given assimilation rate (or equivalently: a stronger CO,
drawdown is enabled by a higher V). The relationship was also negative for MAT, as expected
because there is an inverse relationship between temperature and the quantity of leaf proteins required
to support a given value of V4. The relationship was positive for In /; (PAR), as expected because the
higher the irradiance, the greater the carboxylation capacity required for co-limitation with the rate of

electron transport.

Theoretical slopes for these relationships (derived in Appendix A) are compared with the fitted slopes
in Table 1. For In Ny, versus In /;, the theoretical slope is unity. The fitted slope of 0.874 (95%
confidence limits: 0.685, 1.063) was statistically indistinguishable from unity. For In Ny, versus ci:cq,
the fitted slope of —0.611 (-1.107, —0.115) was fortuitously close to the theoretical slope of —0.615,
although the value was only weakly constrained for these data. For In N, versus MAT, the theoretical
slope was obtained by subtracting the ‘kinetic’ slope of In V. versus temperature (from the activation
energy of carboxylation as given by Bernacchi et al. 2001) from the shallow positive slope implied by
eq (5). The kinetic effect was dominant, and results in an overall predicted negative slope of —0.048.
The fitted slope of —0.047 (-0.060, —0.034) was indistinguishable from this theoretical slope, indicating
acclimation to temperature by diminished allocation of N to metabolic functions at higher temperature,
offsetting the increased reaction rate predicted by the Arrhenius equation. However this slope was
shallower than would be predicted by the Arrhenius equation alone, reflecting the reduced quantum
efficiency of assimilation (a higher V.. is required to support a given assimilation rate) at higher

temperatures.

The proportion of leaf N allocated to Rubisco has generally been found to decline while the total N
allocated to cell walls increases with increasing LMA (Hikosaka and Shigeno 2009). Fig. 2 shows a

strong positive partial relationship between In N,., and LMA. N-fixers had generally higher N, than
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non-N-fixers (Fig. 2e: p < 0.001). The predictors together explained 55% of the variation in leaf N

across species and sites.

Fully 82% of the variation in the community-mean value of In N,., could be explained by the
combination of community-mean LMA and environmental variables. Significant partial relationships of
community-mean In N, with MAT, In [, and In LMA (Table 2) were consistent with the results
obtained at species level. The fitted slopes of In N, against In [, and MAT were again
indistinguishable from the theoretical values, albeit with wide error bounds due to the much smaller
sample size (27 as opposed to 405). The community-level partial relationship between In Ny, and ¢;:c,

showed a negative slope as predicted, but this relationship was non-significant (p = 0.1).

3.2 Leaf N as the sum of metabolic and structural components

Highly significant (p < 0.001) positive relationships were found between N,., and the predicted
Rubisco-N content per unit leaf area (N,isc0), and the predicted cell wall N content per unit leaf area
(Nstructure) (Fig. 3). A priori we would expect the regression coefficient for Nyycure to be close to unity,
and that for N,isco to be about 6 to 20 (if Rubisco constitutes about 5 to 15% of total leaf protein: Evans
1989; Evans and Seemann 1989; Onoda et al. 2004). The fitted slopes of 1.2 (p < 0.001; 95%
confidence limits: 1.0, 1.4) and 9.5 (p < 0.001; 7.6, 11.5) in Table 3, respectively, were consistent with

these expectations.

There was no significant main effect of the factor ‘N-fixer’, and no significant interaction between
N,ubisco and the factor ‘N-fixer’. The co-ordination hypothesis predicts that the metabolic component of
Narea should be environmentally optimized, and therefore independent of N supply. This could not be
tested without measurements of Veuax OF Nyupisco, Which were precluded by the design of this study.
However, N-fixers showed a steeper relationship between Nyyeq and Nyyuenre. This was manifested as a
significant interaction between the factor ‘N-fixer’ and Nyyycure (p < 0.01). This model, in which Ny,
was decomposed into a metabolic component predicted by the co-ordination hypothesis and a structural
component proportional to LMA, explained 52% of the variance in N,., across species and sites. The
relative importance of variations in the metabolic and structural components, were determined to be 39%
and 61% respectively (in an analysis with only Nupisco and Ngyucure as predictors), showing inter alia the

importance of variation in LMA in determining leaf N content.
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3.3 Quantifying trait plasticity versus species turnover

In total, 243 C; species were sampled at two or more sites. These species allowed calculation of a
common slope, being an estimate of trait plasticity sensu lato (that is, phenotypic plasticity or genetic
adaptation or both) across species (Fig. 4), for the traits c;:c,, In LMA and In N,.,. Contrasting results
were obtained for the three traits. It appeared that c;:c, is perfectly plastic, with a common
(within-species) slope indistinguishable from unity. The slope of N,., was close to 0.5, indicating
approximately equal contributions of plasticity and species turnover to the total variation. In the case of
LMA, however, there was significant heterogeneity (p < 0.05) among the within-species slopes, with
Marsdenia viridiflora showing a significantly steeper slope than the other species. After excluding this
species, the common slope for LMA was also close to 0.5. A positive common slope indicates the
ability of species to adapt their leaf morphology to environment. The positive common slope found for
Nareq 18 consistent with this trait’s nature as a combination of metabolic and structural components; its
similarity to the slope for LMA is consistent with the importance of variations in structural N in

determining total N.

4 Discussion

4.1 Leaf N and environment

The variety of environments provided in this study by the long transcontinental transect, and the number
of species sampled, allowed us to statistically separate the effects of c;.c,, irradiance, temperature and
LMA on N, The relationships to c¢i:¢c, irradiance and temperature were in the directions and
imagnitudes predicted by the co-ordination hypothesis. We performed an additional regression using leaf
nitrogen content per unit mass (N.ss) which showed, as expected, identical fitted coefficients for all
predictors except LMA (Appendix B: Table Bl and Fig. B1). However, because the regression
coefficient of In N,., with respect to In LMA < 1, the regression coefficient of In N, with respect to
In LMA < 0, i.e. Nuss declines with increasing LMA, as has been widely reported. We also tried a
regression of Ny, on the same set of predictors but without the inclusion of LMA; this yielded a much

poorer fit and is not shown.

High Mg, in plants from arid environments has been described often, and has traditionally been

explained as a consequence of high N supply in environments with low rainfall (reducing leaching
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losses) and restricted plant cover (reducing total vegetation N demand) (e.g. Field and Mooney 1986).
This explanation would imply that plants in wetter environments have lower (and suboptimal) N, due
to low availability of N. However, the negative relationship commonly found between c;:c, and Ngyeq
supports an alternative, adaptive explanation. The least-cost hypothesis (Wright et al. 2003; Prentice et
al. 2014) predicts lower c;:c, in drier environments,, This is because the drier the atmosphere, the greater
the flux of water required to support a given rate of assimilation; which in turn shifts the balance of
costs and benefits towards investment in photosynthetic capacity (V,m.) and away from water transport
capacity. When c;:c, is lower, the co-ordination hypothesis predicts that a higher V.. (and therefore
higher N,.,) is optimal, in order for the leaves to fully utilize the available light. The co-ordination
hypothesis also predicts a further increase in N, with increasing aridity due to reduced cloudiness and
reduced shading by competitors, both factors tending to increase /;. Thus the co-ordination hypothesis
could account for independent positive effects of site irradiance and aridity on Ny, as previously
reported by Wright et al. (2005). The fitted relationship of N, to temperature, PAR and c;:c, is

consistent with our theoretical prediction, which implicitly includes all of these effects.

Despite the large within-site variation in LMA found at all points along the aridity gradient, there is a
significant tendency for LMA to increase with aridity, perhaps because of the resistance to dehydration
conferred by stiffer leaves (Niinemets 2001; Wright and Westoby 2002; Harrison et al. 2010), and/or
the need for leaves to avoid overheating under transient conditions of high radiation load and low
transpiration rates combined with low wind speed (Leigh et al. 2012). This increase in LMA is

inevitably accompanied by an increasing structural N component.

Thus, several distinct aspects of plant allocation tend to increase N, along gradients of increasing
dryness. The predicted response of Nuisco to temperature is a result of opposing effects: the declining
efficiency of photosynthesis with increasing temperature (due to the temperature dependencies of K and
I'*) is offset by the increased catalytic capacity of Rubisco at higher temperatures. The latter effect is

predicted to be stronger, implying reduced N,., with increasing temperature, as observed.

4.2 The predictability of leaf N

Predicted Nyupisco and Ngpucnre together explained more than half of the variation in total N, across

species and sites. Our approach to predicting these two quantities invokes a simplified formula, eq (5),
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which is based on the co-ordination hypothesis for N0, assuming proportionality with Rubisco

capacity; and assumes a simple proportionality with LMA for Nyyucure. Osnas et al. (2013), analysing a

large global leaf-trait data set and applying a novel method to determine the extent to which different
traits are area- versus mass-proportional, found leaf N to be an intermediate case. This is to be expected
if leaf N is, as our results suggest, a composite of an area-proportional (Ngupisco) and a mass-proportional
(Nstrucure) component. The two predictors (Rubisco capacity and LMA) are not fully independent,
because leaves with higher photosynthetic capacity tend to have higher LMA for structural reasons. But

such leaves must have increased structural N as well. By showing independently significant regression

coefficients for modelled Nr.u»isco and LMA, the multiple regression approach establishes that successful

prediction of N,., requires consideration of both components. Osnas et al. (2013) also fitted various

statistical models for the relationships among leaf traits. Their ‘model LN’ for In Ny, versus In LMA
yielded a slope of 0.38 (95% confidence interval 0.36 to 0.40). This value, based on a global data set,
can be compared directly with — and is indistinguishable from — our fitted partial regression coefficient

of In Narea versus In LMA, which is 0.42 (0.34 to 0.49) (Table 1).

In reality, however, leaf N does not consist exclusively of Rubisco and cell wall constituents. Leaf N

includes multiple additional components including, other photosynthetic proteins, proteins of the

light-harvesting complexes and electron transport chains, cytosolic proteins, ribosomes and
mitochondria, nucleic acids (which account for about 10-15% of leaf N: Chapin III and Kedrowski
1983), and N-based defensive compounds. It is possible that the higher N found for N-fixers resides in
N-based osmolytes (Erskine et al. 1996) or defence compounds (Gutschick 1981). Nonetheless, our

simplifications suggest that N,., — especially at the community level, which is key for large-scale

modelling — is, to first order, inherently predictable from leaf morphology and the physical environment.

A corollary is that limitation in N supply may act primarily by changing plant allocation patterns
(reducing allocation to light capture by leaves, while increasing allocation to N uptake by roots), rather

than by altering leaf stoichiometry.

4.3 Trait variations within and between species

By testing for acclimation along spatial gradients, the design of our study did not allow phenotypic

plasticity to be distingsuished from genetic adaptation. Phenotypic plasticity is the ability of a genotype

to alter its expressed trait values in response to environmental conditions (Bradshaw 1965; Sultan 2000).
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A part of the observed variation in trait values within species could be due to shifts in the occurrence
and frequency of different genotypes, producing different preferred trait values. Thus, when we refer to
traits as ‘plastic’ this should be understood in a broad sense to allow the possibility of a genetic
component of the observed adaptive differentiation within species. Seasonal acclimation within
individual plants can provide more direct evidence for phenotypic plasticity (Togashi et al., in revision),
whereas in this study we disregard possible seasonal variations and instead relate trait variations to the
mean annual environment. However, by sampling all of the species present at each site and including
measurements on species at multiple sites, we could distinguish between the contribution of plasiticity
sensu lato (phenotypic plasticity and/or genetic adaptation) versus species turnover, i.e. the progressive
replacement of species with different mean trait values, to spatial variation in the community mean
values of a given trait. We found that 5"°C was perfectly plastic, perhaps not surprisingly as variations
in ciic, are under stomatal control. In contrast, LMA and Ng., showed approximately equal

contributions from plasticity and species turnover.
4.4 Implications for modelling

There has been a surge of interest in schemes to predict continuous trait variation in DGVMs (e.g.
Scheiter et al. 2013; Fyllas et al. 2014; van Bodegom et al., 2014; Ali et al. 2015; Fisher et al. 2015;
Meng et al. 2015; Sakschewski et al. 2015). Some trait-based modelling approaches have relied on
empirical information on trait-trait and trait-environment covariation, but others (e.g. Scheiter et al.
2013) have aimed to represent the adaptive nature of trait variation explicitly. Our focus has been on
testing an explicit adaptive hypothesis for the controls of one key trait, Nu,, Which in addition to a
structural component (necessarily linked to LMA) includes an important metabolic component,
reflecting the leaf-level investment in photosynthetic proteins. We have shown that N, is predictable
to a degree that is useful for modelling. Our prediction is based on LMA, c;:c, and a predicted value of
Vemax based on the co-ordination hypothesis, for which there is strong independent evidence (e.g. Maire
et al. 2012). The partial responses of N, t0 ciic,, irradiance and temperature are consistent with
predictions of the co-ordination hypothesis, and the inclusion of predicted V... adds significantly and
substantially to the predictive power of LMA and c;:c, alone. As both LMA (Wright et al. 2005) and
ciicq (Prentice et al. 2014) show relationships to environment, our results suggest a possible route

towards a general adaptive scheme for the prediction of major leaf traits in DGVMs, which would be an

13
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improvement on models that assume a one-to-one relationship between photosynthetic capacity and
Narea(see e.g. Adams et al. 2016, who showed that there is considerable variation in Ny, among
N-fixers that is unrelated to photosynthetic capacity). Our results, also suggest some priorities for trait
data collection and analysis: to test the predicted controls of N, over a wider range of environments,

and to test the predicted environmental controls of V. directly in the field.

Our application of trait gradient analysis also points out a way towards process-based treatments of
functional trait diversity in next-generation models. It is increasingly accepted that models could, and
should, sample ‘species’ from continuous gradients of traits rather than fixing the traits associated with
discrete PFTs. A hybrid approach to modelling N, based on the present analysis would consider Ngeq
explicitly as the sum of metabolic and structural components. The metabolic component would be
treated as plastic, and subject to environmental optimization (in space and time) consistent with the
least-cost and co-ordination hypotheses. The structural component would be tied to LMA, which is a
key variable of the ‘leaf economics spectrum’ (Wright et al. 2004), strongly expressed both within and
between environments and therefore requiring a broad range of values to be assigned to model

‘species’.

Finally, we note that if our results can be corroborated more widely, this would point to the need for a
shift in the way N ‘limitation’ is treated — both in models and in analyses of field data. In studies of the
relationship between V... and leaf N, for example, it is conventional to plot N on the x-axis and Vi
on the y-axis, and it is then often stated that the positive relationship found shows that variation in leaf
N ‘causes’ variation in V4. But all that is shown on the graph is a correlation, and our ‘plant-centred’
interpretation is the opposite of the conventional one: that is, V. is adaptively matched (acclimated)
to environmental conditions, and the metabolic component of leaf N is a consequence of this
acclimation. Low N availability would then result in reduced allocation of C (and N) to leaves, and
increased allocation below ground — which is also an adaptive response, but at the whole-plant rather

than the leaf level.
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Appendices
Appendix A: Theoretical responses of N,., to environmental predictors

We estimate optimal Veuer by @9 I (c; + K)/(c; + 2I'*) (eq 5). Holding other variables constant, the
sensitivity of this estimate to absorbed PAR is given by the derivative of its natural logarithm with

respect to In /;:

olnVepge/ 0Inl, =1 (A1)
Similarly, the sensitivity of this estimate to ¢; is given by:

OIn Vepar/Ooci = QI*=K)/[(ci + K)(c; + 2I%)] (A2)
and its sensitivity to the c;:c, ratio is smaller than this by a factor c,.

Temperature-dependent reaction rates are described by the Arrhenius equation:

Inx (D) -Inx(Trp) = (H/R)(UTe—U/T) (A3)

where x is the rate parameter of interest, 7 is the measurement temperature (K), 7. is the reference
temperature (here 298 K), AH is the activation energy of the reaction (J mol”' K™') and R is the

universal gas constant (8.314 J mol”' K™"). Linearizing eq (A3) around T,ryields:

Inx (1) -Inx(Tr) = (AH/RT,/)AT (A4)
where AT = T — T, Thus, from equation (5):

0 Veparzs = 0 Vepar — (AHJRTf?) AT (A5)
where 4H, is the activation energy of Vuqr. The sensitivity of Vepaxos to T is then:

O In Veax2s/OT = 010 Via/OT — (AHV/RTrefZ)
—  (K/OT)(e; + K) — 20T *0T)(c; + 2I'*) — (AHR/T;ef) (A6)

where K = K. (1 + O/K,), hence:

OK/OT = 0K./oT +[(0K./ OT) K, — (9K./ dT) K.] O/K, (A7)
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where O1is the atmospheric concentration of oxygen and /™* and the Michaelis-Menten coefficients for
carboxylation (K¢) and oxygenation (Ko) respectively have values at T,.r (in umol mol™) and activation

energies as given by Bernacchi ef al. (2001).
Author contribution

ICP, ND and AJL planed and designed the study; ND carried out all the field measurement and
performed the data analyses. ND and ICP wrote the first draft; BJE supported the study through
provision of climate data; [JW assisted with data interpretation, contributed with ideas throughout and
suggested important improvements to the text. SCR contributed important ideas to improve text. All

authors contributed on subsequent versions.
Acknowledgments

Research funded by the Terrestrial Ecosystem Research Network (TERN) through the AusPlots,
Australian Transect Network and eMAST facilities. DN is supported by an international Macquarie
University Research Scholarship. IJW has been supported by an Australian Research Council Future
Fellowship (FT100100910). Thanks to the AusPlots Rangelands team (particularly Emrys Leitch,
Christina Pahl and Ben Sparrow) for undertaking field work and detailed consultation; Rosemary Taplin,
Peter Latz and Emrys Leitch for plant identification; Belinda Medlyn for insisting that the assumptions
in the LPJ model must be tested; Yusuke Onoda for providing the empirical relationship between LMA
and cell-wall N. Discussions with Yan-Shih Lin and Han Wang helped to improve the data analysis.
This work is a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the

Imperial College Initiative on Grand Challenges in Ecosystems and the Environment.

16



10

15

20

25

References
Ackerly, D.D. and Cornwell, W.K.: A trait based approach to community assembly: partitioning of

species trait values into within and among community components, Ecol. Lett., 10, 135-145,

2007.
Adams, M. A., Turnbull, T. L., Sprent, J. 1., and Buchmann, N.: Legumes are different: Leaf nitrogen,
photosynthesis, and water use efficiency, Proc. Natl. Acad. Sci. U.S.A., 113, 4098-4103, 2016.

Ali, A. A., Xu, C., Rogers, A., McDowell, N. G., Medlyn, B. E., Fisher, R. A., Wullschleger, S. D.,
Reich, P. B., Vrugt, J. A., Bauerle, W. L., Santiago, L. S., and Wilson, C. J.: Global scale
environmental control of plant photosynthetic capacity, Ecol. Appl., doi:10.1890/14-2111.1,
2015.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.P. and Long, S.P.: Improved temperature
response functions for models of Rubisco limited photosynthesis, Plant Cell Environ., 24,
253-259,2001.

Bradshaw, A.D.: Evolutionary significance of phenotypic plasticity in plants, Adv. Genet., 13, 115-155,
1995.

Cernusak, L.A., Ubierna, N., Winter, K., Holtum, J.A., Marshall, J.D. and Farquhar G.D.:
Environmental and physiological determinants of carbon isotope discrimination in terrestrial
plants, New Phytol., 200, 950-965. 2003.

Chapin III, F.S. and Kedrowski, R.A.: Seasonal changes in nitrogen and phosphorus fractions and
autumn retranslocation in evergreen and deciduous taiga trees, Ecology, 64, 376-391, 1983.

Chen, J.L., Reynolds, J.F., Harley, P.C. and Tenhunen, J.D.: Coordination theory of leaf nitrogen
distribution in a canopy, Oecologia, 93, 63-69,1993.

Dewar, R.C.: The correlation between plant growth and intercepted radiation: an interpretation in terms
of optimal plant nitrogen content, Ann. Bot., 78, 125-136, 1996.

Erskine, P.D., Stewart, G.R., Schmidt, S., Turnbull, M.H., Unkovich, M. and Pate J.S.: Water
availability - a physiological constraint on nitrate utilization in plants of Australia semi-arid
mulga woodlands, Plant Cell Environ., 19, 1149-1159, 1996.

Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia, 78, 9-19, 1989.

17



10

15

20

25

Evans, J.R. and Seemann, J.R.: The allocation of protein nitrogen in the photosynthetic apparatus: costs,
consequences and control, In: In Photosynthesis, Brigs,W.R. (Eds.), Alan R. Liss, New York,
183-205,1989.

Field, C. : Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the
allocation program, Oecologia, 56, 34-347, 1983.

Field, C. and Mooney, H.A.: Photosynthesis and nitrogen relationships in wild plants, In: On the
economy of plant form and function, Givinsh, T.J. (Eds.), Cambridge University Press,
Cambridge, 25-55, 1986.

Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G.,
Koven, C., Holm, J., Rogers, B. M., Lawrence, D., and Bonan, G.: Taking off the training
wheels: the properties of a dynamic vegetation model without climate envelopes, Geosci. Model
Dev. Discuss., 8, 3293-3357, doi:10.5194/gmdd-8-3293-2015, 2015.

Fyllas, N., Gloor, E., Mercado, L. M., Sitch, S., Quesada, C. A., Domingues, T. F., Galbraith, D. R.,
Torre-Lezama, A., Vilanova, E., Ramirez-Angulo, H., Higuchi, N., Neill, D. A., Silveira, M.,
Ferreira, L., Aymard, G. A., Malhi, Y., Phillips, O. L. and Lloyd, J.: Analysing Amazonian
forest productivity using a new individual and trait-based model (TFS v.1), Geoci. Model Dev.,
7, 1251-1269, 2014.

Gallego-Sala, A., Clark J., House J., Orr H., Prentice I.C., Smith P., Farewell, T. and Chapman, S.:
Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great
Britain, Clim. Res., 45, 151-162, 2010.

Guerschman, J.P., Hill, M.J., Renzullo, L.J, Barrett, D.J., Marks, A.S., Botha, E.J.: Estimating fractional
cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian
tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors, Remote Sens.
Environ., 5, 928-945, 2009.

Gutschick, V.P.: Evolved strategies in nitrogen acquisition by plants, American Naturalist, 188,
607-637, 1981.

Harrison, S.P., Prentice, 1.C., Barboni, D., Kohfeld, K.E., Ni, J. and Sutra, J.P.: Ecophysiological and
bioclimatic foundations for a global plant functional classification, J. Veg. Sci., 21, 300-317,

2010.

18



10

15

20

25

Haxeltine, A. and Prentice, I.C.: A general model for the light use efficiency of primary production,
Funct. Ecol., 10, 551-561,1996.

Hikosaka, K. and Shigeno, A.: The role of Rubisco and cell walls in the interspecific variation in
photosynthetic capacity, Oecologia, 160, 443-451, 2009.

Kattge, J., Knorr, W., Raddatz, T. and Wirth, C.: Quantifying photosynthetic capacity and its
relationship to leaf nitrogen content for global-scale terrestrial biosphere models, Glob. Change
Biol., 15, 976-991, 2009.

Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P. Bonisch, G., Garnier, E., Westoby, M., Reich,
P.B. and Wright, 1.J.: TRY — a global database of plant traits, Glob. Change Biol., 17,
2905-2935, 2011.

Lamport, D.T. and Northcote, D.: Hydroxyproline in primary cell walls of higher plants, Nature, 188,
665-666, 1960.

Leigh., A., Sevanto, S., Ball, M. C., Close, J. D., Ellsworth, D. S., Knight, C. A., Nicotra, A. and Vogel,
S.: Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol., 194,
477-487,2012.

Long, S. P., Postl, W. F. and Bolhar-Nordenkampf, H. R.: Quantum yields for uptake of carbon dioxide
in C3 vascular plants of contrasting habitats and taxonomic groupings, Planta, 189, 226-234,
1993.

Luo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R.E., Oren,
R. and Parton, W..: Progressive nitrogen limitation of ecosystem responses to rising
atmospheric carbon dioxide, Bioscience, 54, 731-739, 2004.

Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S. and Soussana, J.F.: The coordination
of leaf photosynthesis links C and N fluxes in C; plant species, PLoS ONE, 7, 38345, doi:
10.1371/journal.pone.0038345, 2012

Meng, T., Wang, H., Harrison, S.P., Prentice, I.C., Ni, J. and Wang, G.: Responses of leaf traits to
climatic gradients: adaptive variation vs. compositional shifts, Biogeosci., 12, 5339-5352, 2015.

Niinemets, U. and Tenhunen, J.: A model separating leaf structural and physiological effects on carbon
gain along light gradients for the shade-tolerant species Acer saccharum, Plant, Cell Environ., 20,

845-866, 1997.

19



10

15

20

25

30

Niinemets, U.: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees
and shrubs, Ecology, 82, 453-469, 2001.

Onoda, Y., Hikosaka K. and Hirose, T.: Allocation of nitrogen to cell walls decreases photosynthetic
nitrogen-use efficiency, Funct. Ecol., 18, 419-425, 2004.

Osnas, J. L. D., Lichstein, J. W., Reich, P. B., and Pacala, S. W.: Global leaf trait relationships: mass,
area, and the leaf economics spectrum, Science, 340, 741-744, 2013.

Prentice, 1.C. and Cowling, S.A. Dynamic global vegetation models, In: Encyclopedia of Biodiversity,
ond edn, Levin, S.A. (Eds.), Waltham, MA, Academic Press, 670-689, 2013.

Prentice, 1.C., Dong, N., Gleason, S.M., Maire, V. and Wright, .J.: Balancing the costs of carbon gain
and water transport: testing a new theoretical framework for plant functional ecology, Ecol. Lett.,
17, 82-91, doi: 10.1111/ele.12211, 2014.

Prentice, I.C., Kelley, D.I., Harrison, S.P., Bartlein, P.J., Foster, P.N. and Friedlingstein, P.: Modeling
fire and the terrestrial carbon balance, Glob. Biogeochem. Cycles, 25, GB3005, doi:
10.1029/2010GB003906, 201 1a.

Prentice, 1.C., Meng, T., Wang, H., Harrison, S.P., Ni, J. and Wang, G.: Evidence of a universal scaling
relationship for leaf CO, drawdown along an aridity gradient, New Phytol., 190, 169-180,
2011b.

R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org/, 2015.

Reich, P.B., Walters, M.B. and Ellsworth, D.S.: Leaf age and season influence the relationships
between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees, Plant Cell
Environ., 14, 251-259, 1991.

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Pefiuelas, J. and Thonicke,
K.: Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic
global vegetation model, Glob. Change Biol., 21, 2711-2725, 2015.

Scheiter, S., Langan, L. and Higgins, S.I.: Next-generation dynamic global vegetation models: learning
from community ecology, New Phytol., 198, 957-969, doi: 10.1111/nph.12210, 2013.

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht,
W. and Sykes, M.T.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon

cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161-185, 2003.

20



10

15

20

25

30

Smith, B., Prentice, I.C. and Sykes, M.T.: Representation of vegetation dynamics in the modelling of
terrestrial ecosystems: comparing two contrasting approaches within European climate space,
Glob. Ecol. Biogeogr., 10, 621-637, 2001.

Stocker, B.D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S., Bouwman, L. and Prentice, I.C.:
Multiple greenhouse-gas feedbacks from the land biosphere under future climate change
scenarios, Nat. Clim. Change, 3, 666-672, doi: 10.1038/nclimate1864, 2013.

Sultan, S.E.: Phenotypic plasticity for plant development, function and life history, Trends Plant Sci., 5,
537-542, doi: 10.1016/S1360-1385 (00) 01797-0, 2000.

Takashima, T., Hikosaka, K. and Hirose, T.: Photosynthesis or persistence: nitrogen allocation in leaves
of evergreen and deciduous Quercus species, Plant Cell Environ., 27, 1047-1054, 2004.

Thornton, P.E., Lamarque, J.F., Rosenbloom, N.A. and Mahowald, N.M.: Influence of carbon-nitrogen
cycle coupling on land model response to CO, fertilization and climate variability, Glob.
Biogeochem. Cycles, 21, GB4018, doi:10.1029/2006GB002868, 2007.

Van Bodegom, P.M., Douma, J.C. and Verheijen, L.M.: A fully traits-based approach to modeling
global vegetation distribution, Proc. Natl. Acad. Sci. U.S.A., 111, 13733-13738, 2014.

White, A., Sparrow, B., Leitch, E., Foulkes, J., Flitton, R., Lowe, A. J. and Caddy-Retalic, S.: AusPlots
Rangelands Survey Protocols Manual, Version 1.2.9., University of Adelaide Press, 2012.
Wohlfahrt, G., Bahn, M., Haubner, E., Horak, 1., Michaeler, W., Rottmar, K., Tappeiner, U. and
Cernusca, A.: Inter-specific variation of the biochemical limitation to photosynthesis and related
leaf traits of 30 species from mountain grassland ecosystems under different land use, Plant Cell

Environ., 22, 1281-1296, 1999.

Wright, 1.J. and Cannon, K.: Relationships between leaf lifespan and structural defences in a
low-nutrient, sclerophyll flora, Funct. Ecol., 15, 351-359, 2001.

Wright, 1.J. and Westoby, M.: Leaves at low versus high rainfall: coordination of structure, lifespan and
physiology, New Phytol., 155, 403-416, 2002.

Wright, 1.J., Reich, P.B. and Westoby, M.: Least-cost input mixtures of water and nitrogen for
photosynthesis, Am. Nat., 161, 98-111, 2003.

Wright, 1. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J.,
Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J.,

Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets,

21



U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. L., Roumet, C., Thomas,
S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.: The worldwide leaf economics spectrum,
Nature, 428, 821-827, 2004.
Wright, 1.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Groom, P.K., Hikosaka, K., Lee, W., Lusk,
5 C.H., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Warton, D.I and Westoby, M.:
Modulation of leaf economic traits and trait relationships by climate, Global Ecol. and Biogeogr.,
14, 411-421, 2005.
Xu-Ri and Prentice, I.C.: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model,
Glob. Chang. Biol., 14, 1745-1764, 2008.
10  Zaehle, S. and Friend, A.D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1.
Model description, site-scale evaluation, and sensitivity to parameter estimates, Glob.

Biogeochem Cycles, 24, GB1005, doi:10.1029/2009GB003521, 2010.

22



Table 1. Linear regression coefficients for In Ny, (g mfz) as a function of ¢;.c, (from 813C), In (mean

canopy PAR, 7;) (umol m?2s"), MAT (°C), In LMA (g m ) and the factor ‘N-fixer’ at species level.

Estimated Predicted P R?
CiiCa —0.611+0.252 —0.615 <0.01
In [, 0.874 +0.096 1 <0.001
MAT —0.047 £ 0.007 —0.048 <0.001 55%
InLMA | 0.415+0.036 n/a <0.001
‘N-fixer’ | 0.306 +0.041 n/a <0.001
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Table 2. Linear regression coefficients for community-mean (simple average) values of In Nyeq (g m™2)

as a function of c;.c, (from 8'°C), In (mean canopy PAR, 7;) (umol m7?s™"), MAT (°C) and In LMA (g

m ).
Estimated Predicted P R?
CitCq —1.60 £ 0.94 —0.615 n.s.
InI, 0.70 £0.23 1 <0.001
82%
MAT —0.035+£0.016 —0.048 <0.001
In LMA 0.57+0.19 n/a <0.001
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Table 3. Linear regression coefficients for N,., as a function of independently predicted values of

Nrupisco a0d Nygyenre (all in g m'z) at species level.

N, rubsico

Nvtructure

Notructure: ‘N—ﬁxer’

Estimated
9.5+2.0
1.2+0.2
1.0+£0.3

Predicted
6-20
1
n/a

<0.001
<0.001
<0.01

RZ

52%
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Figures.

Fig 1 Site locations, climate and leaf trait distributions: Mean annual precipitation (MAP, mm), mean

annual temperature (MAT, °C), mean incident daytime photosynthetically active radiation (PAR, pmol

m 2 s, moisture index (MI). Site mean Nyyeq (g m?) and LMA (g m™) are also shown.
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Fig 2. Partial residual plots for the regression of In Ny, (g m'z) as a function of c;.c, (from 813C), In
(mean canopy PAR, ;) (umol m?s™"), MAT (°C), In LMA (g m™) and the factor ‘N-fixer’ at species

level. Note the logarithmic scale of the y-axis.
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Fig 3. Partial residual plots for the linear regression of N,., as a function of independently predicted

values of Nupisco and Nyyenire (all in g m’z) at species level. Blue: N-fixers, red: non-N-fixers.
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Fig 4. Trait means and regression lines for all 243 C; plant species in the 27 study sites. Note the

logarithmic scales for Ny, (g m™~) and LMA (g m™). Thin red dashed lines represent individual

within-species regression lines of non-N-fixer species. Thin blue lines represent individual

within-species regression lines of N-fixer species. The black dashed line represents the overall

regression line, which has a slope of unity by definition. Grey dots denote

individual species-site

combinations. Common within-species slopes are 0.53 £ 0.11 (In Nyeq), 1.02 £ 0.12 (ciic,) and 0.55 £

0.11 (In LMA)
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