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Abstract. Different carbon dioxide (CO2) emitters can be distinguished by their carbon isotope ratios. Therefore measurements

of atmospheric δ13C(CO2) and CO2 concentration contain information on the CO2 source mix in the catchment area of an

atmospheric measurement site. This information may be illustratively presented as mean isotopic source signature. Recently

an increasing number of continuous measurements of δ13C(CO2) and CO2 have become available, opening the door to the

quantification of CO2 shares from different sources at high temporal resolution. Here, we present a method to compute the CO25

source signature (δS) continuously and evaluate our result using model data from the Stochastic Time-Inverted Langrangian

Transport model. Only when we restrict the analysis to situations, which fulfill the basic assumptions of the Keeling plot

method, our approach provides correct results with minimal biases in δS . On average, this bias is 0.2 ‰ with an inter-quartile

range of about 1.2 ‰ for hourly model data. As a consequence of applying the required strict filter criteria, 85 % of the data

points - mainly daytime values – need to be discarded. Applying the method to a four year data set of CO2 and δ13C(CO2)10

measured in Heidelberg, Germany, yields a distinct seasonal cycle of δS . Disentangling this seasonal source signature into

shares of source components is, however, only possible if the isotopic end members of these sources, i.e., the biosphere, δbio,

and the fuel mix, δF , are known. From the mean source signature record in 2012, δbio could be reliably estimated only for

summer to (-25.0 ± 1.0) ‰ and δF only for winter to (-32.5 ± 2.5) ‰. As the isotopic end members δbio and δF were shown

to change over the season, no year-round estimation of the fossil fuel or biosphere share is possible from the measured mean15

source signature record without additional information from emission inventories or other tracer measurements.

1 Introduction

A profound understanding of the carbon cycle requires closing the atmospheric CO2 budget at regional and global scale. For

this purpose it is necessary to distinguish between CO2 contributions from oceanic, biospheric and anthropogenic sources and

sinks. Monitoring these CO2 contributions separately is desirable for improving process understanding, investigating climatic20

feedbacks on the carbon cycle and also to verify emission reductions and designing CO2 mitigation strategies (Marland et al.,

2003; Gurney et al., 2009; Ballantyne et al., 2010). A possibility to distinguish between different CO2 sources and sinks

utilizes concurrent 12CO2 and 13CO2 observations in the atmosphere. The carbon isotope ratio can be used to identify and

even quantify different CO2 emitters if every emitter has its specific known δ13CO2 signature. For example, the CO2 fluxes

from land and ocean can be distinguished using the ratio of stable carbon isotopologue 13CO2/12CO2 in addition to CO225
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concentration measurements (Mook et al., 1983; Ciais et al., 1995; Alden et al., 2010). In other studies, measurements of
13CO2 have been used to distinguish between different fuel types (Pataki, 2003; Lopez et al. 2013; Newman et al., 2015) or to

evaluate ecosystem behavior (Torn et al., 2011), giving only a few examples of the many published in the literature.

In the last decade, new optical instrumentation have been developed, simplifying continuous isotopologue measurements.

This led to an increasing deployment of these instruments, thereby increasing the temporal and spatial resolution of 13C(CO2)5

and CO2 data (Bowling et al., 2003; Tuzson et al., 2008; McManus et al., 2010; Griffith et al., 2012; Vogel et al., 2013; Vardag

et al., 2015a, Eyer et al., 2016). These data records may lead to an improved understanding of regional CO2 fluxes, allowing

estimates of mean δ13C source signatures at high temporal resolution. Estimating mean source signatures from concurrent

δ13C(CO2) and CO2 records over time provides e.g. insight into temporal changes in the signatures of two different CO2

sources such as fossil fuels and the biosphere, if their relative share to the CO2 offset is known. This may be used to study10

biospheric responses to climatic variations like drought, heat, floods, vapor pressure deficit etc. (Ballantyne et al., 2010; , 2011;

Bastos et al., 2016). Likewise, the mean source signature can be used to separate between different source CO2 contributions,

if the isotopic end members of these sources are known at all times (Pataki, 2003; Torn et al., 2011; Lopez et al. 2013; Moore

and Jacobson, 2015; Newman et al., 2015).

Many studies have successfully used the Keeling- or Miller-Tans- plot method (Keeling, 1958; 1961; Miller and Tans, 2003)15

to determine source signatures in specific settings (e.g. Pataki, 2003; Ogée et al., 2004; Lai et al., 2004; Knohl et al., 2005;

Karlsson et al., 2007; Ballantyne et al., 2010). However, the situations in which Keeling and Miller-Tans plots yield correct

results need to be selected carefully (Miller and Tans, 2003). Only if all possible pitfalls are precluded, the Keeling intercept

(or the Miller-Tans slope) can be interpreted as gross flux-weighted mean isotopic signature of all CO2 sources and sinks in

the catchment area of the measurement site. Especially in polluted areas with variable source/sink distribution, estimation of20

isotopic signature using a Keeling- or Miller-Tans-plot requires a solid procedure, e.g. accounting for wind direction changes

or simultaneously occurring CO2 sinks and sources. In this study, we discuss the possible pitfalls of CO2 source signature

determination from a continuous data set using the Keeling plot method and follow a specific modification of this method

for automatic retrieval of mean source signature with minimal biases. We test this method with model-simulated CO2 mole

fraction and δ13C(CO2) data. Using a modeled data set where all source signatures are known, enables us to test if the calculated25

source signature is correct, which is vital when evaluating measured data with an automated routine. Having found a method

to determine the isotopic signature of the mean source correctly from measured CO2 and δ13C(CO2) data, we discuss, which

information can be reliably extracted from these results.
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2 Methods

2.1 Keeling and Miller-Tans plot method

Keeling (1958, 1961) showed that the mean isotopic signature of a source mix can be calculated by re-arranging the mass

balance of total CO2

CO2tot = CO2bg +CO2S (1)5

and of δ13C of total CO2, i.e. δtot:

δtot ·CO2tot = δbg ·CO2bg + δS ·CO2S (2)

to:

δtot = CO2bg/CO2tot · (δbg − δS) + δS (3)

where CO2bg and δbg are the concentration and δ13C(CO2) of the background component and CO2S and δS are the concentra-10

tion and δ13C(CO2) of the mean source, respectively. Plotting δtot versus 1/CO2tot yields a y-intercept of δS (cf. Fig.1a).

Miller and Tans (2003) have suggested an alternative approach to determine the mean isotopic signature by re-arranging

Eqs. 1 and 2 such that δS is the regression slope when plotting CO2tot·δtot versus CO2tot:

CO2tot · δtot = δS ·CO2tot−CO2bg(δbg − δS) (4)

They argue that this approach might be advantageous since the isotopic signature does not need to be determined from extrap-15

olation to 1/CO2=0, which could introduce large errors in the δS estimate. Zobitz et al. (2006) have compared the Keeling and

the Miller-Tans plot method (Eqs. 3 and 4) and found no significant differences between both approaches when applied to typi-

cal ambient CO2 variations. We were able to reproduce this result with our model-simulated data set (cf. Sect. 3.1). Differences

between both approaches were (0.00 ± 0.04) ‰ when applying certain criteria (standard deviation of intercept < 2 ‰, CO2

range within 5 hours >5 ppm), which will be motivated in Sect. 2.3. Also the choice of fitting algorithm has been discussed20

in the literature. Pataki (2003), Miller and Tans (2003) and Zobitz et al. (2006) compared different fitting algorithms for the

regression and came to different recommendations. Orthogonal distance regression (ODR) and weighted total least squares fits

(WTLS) (model 2 fits) take into account errors on x and y, whereas ordinary least squares (OLS) minimization (model 1 fit)

only takes into account y-errors. Zobitz et al. (2006) have found differences between both fitting algorithms especially at small

CO2 ranges. We have also applied a model 1 (OLS) and model 2 (WTLS) fit to our simulated data and have not found any25

significant differences ((0.00 ± 0.01) ‰) between them when applying certain criteria (error of intercept < 2 ‰, CO2 range

within 5 hours >5 ppm, see Sect. 2.3). In our study, we use a WTLS-fit (Krystek and Anton, 2007) as stable algorithm for fitting

a straight line to a data set with uncertainty in x and y direction in a Keeling plot method. Note that the isotopic signature

of the mean source δS can be determined from linear regression without requiring a background CO2 and δ13C(CO2) value.

However, the Keeling and Miller-Tans plot methods are only valid if the background and the isotopic signature of the source30
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mix δS are constant during the period investigated (Keeling, 1958; Miller and Tans, 2003). Further, the approaches are only

valid when sources and sinks do not occur simultaneously. Miller and Tans (2003) gave an example, which showed that as soon

as sources and sinks of different isotopic signature/fractionation occur simultaneously, the determination of isotopic signature

of the source/sink mix may introduce biases. In these cases, the results cannot be interpreted as mean flux-weighted source

signature anymore. This has very unfortunate consequences, since in principle we are interested in determining the isotopic5

signature of the source mix of a region during all times, i.e. also during the day when photosynthesis cannot be neglected.

2.2 Moving Keeling plot method

For a continuous long-term data set, we suggest an automatic routine to determine the mean isotopic signature of the source

mix. It is similar to the moving Keeling plot for CH4 currently suggested by Röckmann et al. (2016). In our case of CO2,

we also have to take into account the possibility of simultaneously occurring sinks and sources, which is not important in the10

case of CH4. Our moving Keeling plot method is a specific case of the classical Keeling plot method (Eq. 3) (Keeling, 1961)

as it uses only five hourly-averaged measurement points of CO2 and δ13C(CO2) fitting a regression line through these five

data points (cf. Fig. 1a, illustrated only for three data points for clarity of inspection). We choose five hours as a compromise

between number of data points and thus, of robust regression and of source mix constancy. This compromise also manifests

itself in such a manner that a window size of five hours leads to maximum coverage. No background value is included in the15

regression. The moving Keeling plot method works such that, e.g. for the determination of the mean source signature at 3 pm,

we use the hourly CO2 and δ13C(CO2) measurements from 1 pm to 5 pm and fit a regression line. Next, for the determination

of the source signature at 4 pm, we use the CO2 and δ13C(CO2) measurements from 2 pm to 6 pm and so on. Note that this

approach leads to a strong auto-correlation of neighboring source signature values.

2.3 Filter criteria of the moving Keeling plot method20

In order to prevent pitfalls in the regression-based determination of mean isotopic signature, we set a few criteria for the moving

Keeling plots to “filter” out situations, in which a Keeling plot cannot be performed. These filter criteria are also similar in type

to the ones introduced by Röckmann et al. (2016). We here explain why these filter criteria are needed for CO2 and how they

are set. A prerequisite for the Keeling plot is that the source mix as well as the background need to stay constant during the

investigated period (see Fig. 1a). Varying source mixes may occur when e.g. the wind direction and therewith the footprint of25

the measurement site change, or if the emission patterns themselves change over time. This may lead to strong biases of the

regression-based mean isotopic source signature (illustrated in Fig. 1b). We eliminate these cases by inspecting the error of the

determined intercept δS . If the source mix or the background significantly change within five hours, the data points will not fall

on a straight line and the error of the intercept will increase. We here set an error of 2 ‰ (in a WTLS fit) as threshold between

an acceptable and a "bad" fit, after having inspected many Keeling plots individually. Also, we demand a monotonous increase30

of CO2 within 5 hours, as a decrease would be due to either a sink of CO2 or a breakdown of the boundary layer inversion

potentially associated with a change of catchment area of the measurement, both biasing the resulting mean source signature.
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As mentioned before, the determination of a mean isotopic signature is not per se possible during the day when CO2 sinks

and sources are likely to occur simultaneously (Miller and Tans, 2003). This can be explained in the Keeling plot by the vector

addition of CO2 source and sink mixing lines with different isotopic signatures, resulting in a vector with an intercept different

from the expected one, leading to an isotopic signature, which can even lie outside the expected range of the isotopic source

end members (see Fig. 1c). This potential bias is stronger, the smaller the net CO2 signal is. Therefore, e.g. for evaluation of5

the Heidelberg data, we demand an increase in CO2 during the five hour period of at least 5 ppm to exclude periods where

the photosynthetic sink is similarly strong as total CO2 sources. This normally leads to an exclusion of daytime periods,

when the boundary layer inversion typically breaks up and the photosynthetic sink is most pronounced. Therefore, we are

mainly rejecting periods, in which isotopic discrimination during photosynthesis dominates the mean isotopic source signature.

During winter, it may happen that the inversion does not break up due to the cold surface temperatures, but in this season,10

photosynthetic activity is typically much smaller than fossil fuel emissions and therefore biases of the regression-based mean

source signature are only small.

In the next section, we show that with these filter criteria, , i.e. (i) error of the Keeling plot intercept < 2 ‰, (ii) monotonous

increase during five hours and (iii) increase of > 5ppm during five hours, which we chose empirically, we are able to successfully

reject those source signatures, where the underlying assumptions for the Keeling plot method are not met. In Sect. 3.1, we will15

also briefly discuss how sensitive the result is to the choice of filter criteria. Note that the filter criteria may differ for different

measurement sites depending on the source heterogeneity and footprint of the catchment areas. Therefore, respective filter

criteria need to be designed individually for each measurement station.

3 Results and Discussion

3.1 Evaluation of the moving Keeling plot method20

We apply the moving Keeling plot method to a modeled CO2 and δ13C(CO2) data set. As also pointed out by Röckmann

et al. (2016) in their CH4 study, this has the advantage that we can test and evaluate our filter criteria as we know exactly

the individual isotopic source signatures that created the modeled data set and thus, the contribution-weighted mean isotopic

source signature at every point in time. Details on the STILT model (Lin et al., 2003) and on the computation of the modelled

CO2 and δ13C(CO2) record as well as of the resulting mean source signature, δSTILT
S , are given in Appendix A.25

We apply the same filter criteria to the calculated mean source signature of the STILT modelled data set δSTILT
S , as to

the regression-based mean source signature (Sect. 2.3). The “unfiltered” source signatures (black in Fig. 2a) are 0-2 ‰ more

enriched than the “filtered” source signatures (blue). This offset is mainly caused by the daytime source signatures, which are

on average more enriched than nighttime source signatures (Fig. 2b), but more likely to be filtered out based on the criteria of

Sect. 2.3.30
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We have now evaluated the moving Keeling plot method and the used filter criteria based on the model data and tested if

they allow a bias-free retrieval of the mean source signature. In Fig. 3a, we compare the regression-based source signatures

to the filtered reference source signature of Fig. 2a, which we have extracted from the model. We do not only compare the

mean difference of the mean source signature, but the hourly differences of the mean source signature as well as the smoothed

difference. This enables us to clearly state how well we are able to determine the hourly mean source signature and its long-term5

trend.

Fig. 3a displays the filtered seasonal changes of the source signature exemplary for the year 2012. The moving Keeling

plot method is able to extract the seasonal variability of the mean isotopic signature correctly. The median difference (and

inter-quartile range) between smoothed regression-based (red) and smoothed modeled (blue) approach (both smoothed with

50% percentile filter with window size of 100 hours, no smoothing 50 points in front of large data gaps) is 0.0 ± 0.4 ‰. A10

smoothing window size of 100 hours (ca. 4 days) was chosen, so that synoptical and seasonal variations of δS can be seen while

diurnal variations are supressed. On a shorter diurnal time scale, we compare individual hourly results for the source signature

(stars in Fig. 3b, c). The inter-quartile range of the filtered hourly difference between the reference δSTILT
S and the moving

Keeling plot signature is about 1.2 ‰ throughout the year, but the median difference is small (0.2 ‰). The source signature of

the model reference and moving Keeling plot source signature show the same temporal pattern both, in summer and in winter.15

Further, we find that if we do not apply all of the criteria described in Sect. 2.2 (unfiltered data in Fig. 3b, c), we see larger

differences between regression-based source signature (from the moving Keeling plot) and the STILT reference values.

Note, that with the criteria established in Sect. 2.3, we have to reject about 85% of all estimated source signatures. This

seems to be an intrinsic problem for an urban setting with any different sources and sinks. Obviously, in many situations

the prerequisites of the Keeling plot method are not fulfilled and if not filtered out, these data would introduce biases in the20

retrieved mean source signature. Depending on the application, it may be worthwhile to loosen the filter criteria to increase

the data coverage. For example, if one sets no criteria for the minimal CO2 range, but only for the error of the offset (< 2‰),

about 60% of all data remain for the estimated source signature, but the median difference between model- and Keeling-based

results increases to 0.3 ‰ and the interquartile range increases to 2.4‰ (hourly data), which is about twice of what we found

before. Withdrawing all filter criteria, but using only night time values, leads to a coverage of about 35% (night time) and an25

interquartile range of 3.5 ‰. The filter criteria, which we use here (Sect. 2.3) are, thus, rather strict, but we are confident to

precisely extract the correct source signature from the δ13C(CO2) and CO2 record at highest temporal resolution.

3.2 The measured source signature record in Heidelberg

We now apply this approach to real measured Heidelberg data. We use the CO2 and δ13C(CO2) record on hourly time

resolution (Fig. B1) to compute the isotopic source signature via regression (Fig. 4). The quality of the CO2 and δ13C(CO2)30

record is assessed in Appendix B. The measurement site and its surrounding catchment area is described by Vogel et al. (2010).

We observe a distinct seasonal cycle of the mean isotopic source signature in Heidelberg. Smoothed minimum values of about

-32 ‰ are reached in winter. Maximum values of about -26 ‰ occur in summer. This annual pattern is reproduced every year
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and is similar to annual patterns observed by e.g. Schmidt (1999) for Schauinsland, Germany or by Sturm et al. (2006) for Bern,

Switzerland. Additionally, the first year shows a more enriched summer maximum source signature. A number of data points

(less than 0.5 %) lie outside the range of realistic end members between -20 and -45 ‰ of any source in the catchment area (see

Table A1). These outliers are not unusual in an urban setting, as the inter-quartile range of the modelled δS for the Heidelberg

catchment area is about 1.2 ‰ for hourly (non-smoothed) data, which is only about 30 % higher than the inter-quartile range5

of the measured data (see Fig. 4 (1.8 ‰). The slightly lower variability in the model may be due to a lower variability in the

coarse resolution emission inventory used in STILT (0.1◦x 0.1◦).

Our four-year record of the mean source signature in Heidelberg (see Fig. 4) provides a first insight into the source charac-

teristics at the measurement station. It reaches its minimum in winter when we expect residential heating (mainly isotopically

depleted natural gas, see Tab. A1) to contribute significantly to the source mix. The source signature reaches its maximum10

in summer when more enriched biospheric fluxes are expected to dominate the CO2 signal. This observed seasonal cycle in

Heidelberg is very similar to the filtered modelled source signature in amplitude as well as in phase.

3.3 Information content derived from δS

We now want to elaborate what quantitative information can be drawn from the mean source signature record in Heidelberg

about its components. For an urban continental measurement site , we have to assume that there are at least two main source15

types of CO2 in the catchment area: Fuel CO2 and CO2 from the biosphere. In this simplest case, we essentially have one

equation for δS , (Eq. 6) with three unknown variables (δbio, δF and the fuel (or biosphere) share fF ); only if two of these

variables are known, the third variable can be quantified from the measurements:

δS =
CO2F

∆CO2
· δF +

∆CO2−CO2F

∆CO2
· δbio (5)

= fF · δF + (1− fF ) · δbio (6)20

Which of the variables is the one to be estimated depends, of course, on the research question. If the fossil fuel share and

end members are well known from inventories, one could be especially interested in determining the isotopic end member δbio

in order to study biospheric processes and their feedback to climatic parameters (Ciais et al., 2005; Ballantyne et al., 2010;

Salmon et al., 2011). Contrary, one may be interested in determining the relative share of fossil fuel CO2 in the catchment area

(with known δbio and δF ) to monitor emission changes independently from emission inventories.25

As noted, a quantification of the relative shares of fossil fuel and the biospheric CO2 at continental stations is only possible

if information on the isotopic end members of both source categories are available. For example, Vardag et al. (2015b) used the

isotopic signatures of δbio (assumed to be known within a fixed uncertainty) and δF (obtained by calibration with ∆14C(CO2))

to calculate the fossil fuel CO2 contribution from the (continuously) measured CO2 and δ13C(CO2) signal. However, knowing

the isotopic signatures δbio and δF over the entire course of the year, requires an extensive number of measurements at the30

relevant sources throughout the year and further assumptions how to scale up these point measurements to a mean source

signature of all relevant sources. Therefore, the question, which we adress here, is whether it is possible to obtain information
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on these end members from our measured source signature record, despite the fact that we have three unknown variables and

only one equation. In the following, we discuss this question exemplary for the year 2012, for which we have modeled data,

inventory information and the mean measured isotope signature. We restrict the discussion to a single year as we focus on

discussing, which information can principally be obtained from a year-round mean source signature record..

We have noted that in order to obtain information from δS on δbio (δF ), we require information on the fuel CO2 share and5

δF (on the fuel CO2 share and δbio). However, in cases where the relative share of the biosphere (fossil fuels) is negligible,

the isotopic signature of δF (δbio) would equal the mean measured isotopic signature. In these cases, the number of unknown

variables would be reduced to one, as the fossil fuel (biospheric) share is ≈ 100% and δbio (δF ) does not contribute to the

mean source signature. In a typical catchment area, the relative share of fossil fuels and of the biosphere will not be negligible

throughout the year, but in winter, fossil fuel CO2 will dominate while in summer the biospheric CO2 will dominate the CO210

offset compared to the background. E.g. from the STILT model results for Heidelberg (Sect. 3.1 and Appendix A), we perceive

that on cold winter days in Heidelberg, the fossil fuel share can be about 90 to 95% of the total CO2 offset. In summer, it

reaches a minimum of about 20%. We may, thus, be able to obtain information about the isotopic end members of δF in winter

(δbio in summer), when the mean source signature is dominated by the fossil fuel (biospheric) share.

3.4 Evaluation of δS in Heidelberg15

To calculate the isotopic end members of δi from the measured source signature in Heidelberg (and with that to solve Eq.

6), we require the fossil fuel CO2 share , which we take here from STILT and the bottom-up emission inventory EDGAR.

However, as we only require the share and not the absolute concentration, we are largely independent from potentially large

model transport errors. We thus, assume an absolute uncertainty of 10 % of the fossil fuel share (and of the biospheric share

respectively).20

To determine δF in addition to the fuel CO2 share, we require a value for δbio. Here we use a typical mean value of the

isotopic end member of δbio= -25.0 ‰ and assume a seasonal cycle as determined for Europe by Ballantyne et al. (2011) (see

Fig. 2 and 3 in Ballantyne et al. (2011)) displayed in Fig. 5a as solid green line. We show δbio with two possible uncertainties

of 0.5 and 2.0 ‰. As expected, the uncertainty of the unknown δF is only acceptably small when the relative share of the

biosphere becomes negligible, which is the case in winter (Fig. 5a). The isotopic end member of δF in winter is about (-31.0±25

2.5) ‰ in January to March 2012 and decreases to (-32.5± 2.5) ‰ in November to December 2012. Further, Fig. 5a shows that

the best estimate of the resulting isotopic signature δF is more depleted in summer than in winter. This curvature is opposite

to what we would expect from EDGAR (2010) transported by STILT (see assumed δF in Fig. 5b). Only when assuming an

uncertainty of the biospheric end member of ± 2 ‰ or more, the uncertainty range of the estimated δF allows more enriched

δF signature in summer than in winter. This suggests that the isotopic source signature of the biosphere in summer is most30

probably more depleted (by about 2 ‰) than the previously assumed δbio value based on Ballantyne et al. (2011).

To estimate δbio (Fig. 5b), we require (besides the fossil fuel share) the isotopic source signature δF . Here we use δF

calculated with the STILT model on the basis of EDGAR emissions and source signatures according to Tab. A1. Its annual
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mean value is -31.0 ‰ and it shows a seasonal cycle with more enriched signatures in summer than in winter. We show the

results for δbio for two possible δF uncertainties of 1.0 and 3.0 ‰ (see Fig. 5b). The best-estimate of the isotopic end member

of δbio in summer is about -25.0 ± 1.0 ‰ in June to August 2012. This reinforces the presumption that δbio is more depleted

than the assumed δbio value based on Ballantyne et al. (2011) during summer.

The uncertainty of the isotopic end members in Fig. 5a and b has three components: (1) The uncertainty of the fossil fuel5

CO2 share estimated from STILT, which we assume to be about 10% (absolute) in our case, (2) the uncertainty of the other

known isotopic end member (0.5 and 2 ‰ for δbio or 1.0 and 3.0 ‰ for δF ) and (3) the uncertainty of the measured mean

source signature itself (ca. 0.4 ‰, see Sect. 3.1 for interquartile range of difference between smoothed regression-based and

smoothed modelled source signature). Note, that an uncertainty of 10% of the fossil fuel share is at the low end of uncertainties.

However, an uncertainty of 20% of the fossil fuel share would increase the uncertainty in the unknown isotopic end members10

by only 0.2 - 0.4 ‰ for δbio in summer and δF in winter, respectively.

The derived uncertainty of δF is about 2.5 ‰ in winter and that of δbio is about 1.0 ‰ in summer. An uncertainty of ± 2.5

‰ for δF is rather large if we want to use this observation-based top-down result for further quantitative source apportionment.

Vardag et al. (2015b) showed that a misassignment of 2.5 ‰ in δF leads to a bias in the continuous fuel CO2 estimate of about

15% for an urban measurement site like Heidelberg. The observation-based biospheric end member δbio has an uncertainty15

of only about 1.0 ‰ in June to August 2012, which is a very well constraint value for this period. We cannot assume that

the isotopic end members δbio and δF remain constant over the course of the year: δbio typically shows a seasonal cycle

possibly due to seasonal changes in the fraction of respiration from C3/C4 plants as well as due to influences of meteorological

conditions on biospheric respiration. Likewise, δF typically shows more enriched values in summer, when the contribution

of residential heating (and therewith of depleted natural gas) is much smaller than in winter. Therefore, also no year-round20

estimation of fuel CO2 share is possible from CO2 and δ13C(CO2) only.

4 Summary and Conclusions

Many measurement stations are currently being equipped with new optical instruments, which measure δ13C(CO2) aiming at

an improved quantitative understanding of the carbon fluxes in their catchment area. If this additional δ13C(CO2) data stream is

not directly digested in regional model calculations, the mean isotopic source signature is often computed from the δ13C(CO2)25

and CO2 records for a potential partitioning of source contributions. A bias-free determination of source signature, however,

requires carefully selecting the data for situations, in which determination of source signature with a Keeling plot method can

provide reliable results. This excludes (1) periods, when sinks and sources occur simultaneously, (2) when the source mix

changes or (3) when the signal-to-noise ratio is too low (Keeling, 1958; 1961; Miller and Tans, 2003).

We therefore developed filter criteria and show that the routine and accurate determination of δ13C(CO2) source signature30

is possible, if the introduced filter criteria are applied. As suggested by Röckmann et al. (2016), we use a modeled data set

for validation of the approach. We find that for a station like Heidelberg the bias introduced by our analysis is only (0.2 ±
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1.2) ‰ for hourly data. The uncertainty decreases in the long-term to (0.0 ± 0.4) ‰. We are, therefore, able to estimate the

source signature correctly , but 85 % of the data are rejected by the filter criteria. Further, as the filter criteria are such that

the source signatures are more likely to be filtered out during the day than during the night, the long-term source signature

is not representative of real daily averages, but only of periods, where the data was not filtered out (mainly nighttime). As a

consequence, also the isotopic end members δbio and δF , can only be estimated for these periods. This problem does not occur5

for CH4, which has only weak daytime sinks.

By applying the moving Keeling plot method to a real data set measured in Heidelberg, we were able to determine the

source signature over the course of four years. We find a distinct seasonal cycle of the mean source signature with values of

about -26 ‰ in summer and about -32 ‰ in winter. This general behavior was expected due to the larger relative contribution

of more depleted fossil fuel CO2 in winter. For a unique interpretation of the mean source signature, possible sources in the10

catchment area need to be identified. As soon as there is more than one source, the source signature is a function of the isotopic

end members of all sources, as well as of their relative shares. Therefore, to study the seasonal and diurnal changes of fossil

fuel shares at a continental station, information on the isotopic end members of the fossil fuel mix as well as of the biosphere

are required on the same time resolution. Unfortunately, the isotopic end members are often not known with high accuracy. The

uncertainty of the isotopic end members often impedes or even prevents a unique straightforward determination of the source15

contribution in the catchment area (e.g. Pataki, 2003; Torn et al., 2011, Lopez et al. 2013; Röckmann et al., 2016) and calls for

elaborated statistical models based on Bayesian statistics. This important fact is sometimes mentioned, but the consequences

for quantitative evaluations are rarely emphasized, preserving the high expectations associated with isotope measurements.

We showed that for the urban site Heidelberg, we can use the observation-based mean source signature record to estimate

the isotopic end member δF in winter and the isotopic end member δbio in summer within the uncertainties of ±2.5 ‰ and20

±1.0 ‰, respectively. Here we assumed an uncertainty of ±10 % for the fossil fuel and the biospheric CO2 share and an

uncertainty of the other isotopic end member δF of ±3.0 ‰ and δbio of ±2.0 ‰. However, in the winter season we cannot

obtain any reliable information on δbio and in summer we cannot study δF . For a year-round determination of fossil fuel share,

δbio and δF are required throughout the year. As no reliable determination of δbio and δF is possible during the entire year

based only on atmospheric observations, there is a need of either very good bottom-up information for the catchment area25

of interest or frequent measurement campaigns close to the sources. However, the disadvantage of using such a bottom-up

approach is that usually only information from few specific sites are available, which need then to be upscaled correctly such

that they are representative of the entire catchment area. For a determination of δF during the entire year, one can possibly

utilize ∆14C(CO2), CO/CO2 measurements (following Vardag et al. (2015b)) or O2/N2 measurements (e.g. Sturm et al. 2006;

Steinbach et al., 2011), all of which exhibit their own deficiencies, which are discussed elsewhere (e.g. Ciais et al., 2015);30

Vardag et al., 2015b.

Finally, we could show, that even though it is not possible to determine the isotopic end members throughout the year, it is

possible to refute certain literature values. E.g. a respiration signature of -23 ‰ in August and September 2012 as reported by

Ballantyne et al. (2011) is most likely too enriched as this would lead to more depleted δF values in summer than in winter.

This is in contrast to what we would expect based on emission inventories.35
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Appendix A: The STILT model

We use the Stochastic Time Inverted Lagrangian Transport (STILT) model (Lin et al., 2003) to evaluate our moving Keel-

ing plot method. The STILT model computes the CO2 mole fraction by time-inverting meteorological fields and tracing

particles emitted at the measurement location back in time to identify where the air parcel originated from. This so-called

footprint area is then multiplied by the surface emissions in the footprint to obtain the CO2 concentration at the site in ques-5

tion. Photosynthesis and respiration CO2 fluxes are taken from the vegetation photosynthesis and respiration model (VPRM,

Mahadevan et al., 2008). Anthropogenic emissions are taken from EDGARv4.3 emission inventory (EC-JRC/PBL, 2015) for

the base year 2010 and further extrapolated to the year 2012 using the BP statistical review of World Energy 2014 (available

at: http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html). Additionally,

we use seasonal, weekly and daily time factors for different emission categories (Denier van der Gon et al., 2011). Since the10

EDGAR inventory is separated into different fuel types, we obtain a CO2 record for each fuel type as well as for respiration and

photosynthesis. This allows us, to construct a corresponding δ13C(CO2) record by multiplying the isotopic signature of every

emission group i to its respective CO2 mole fraction δ13C(CO2)i·CO2,i (see Tab. A1), adding these to a far-field boundary

value of δ13C(CO2)·CO2 and dividing it by the total CO2 at the model site. The CO2 far-field boundary value for STILT is

the concentration at the European domain border (16°W to 36°E and from 32°N to 74°N) at the position where the backwards15

traced particles leave the domain. The concentration at the domain border is taken from analyzed CO2 fields generated with

TM3 (Heimann and Körner, 2003) based on optimized fluxes (Rödenbeck, 2005). The isotopic boundary value is then con-

structed artificially by fitting the linear regression between CO2 and δ13C(CO2) in Mace Head (year 2011 from World Data

Center for Greenhouse Gases, (Dlugokencky et al., 2015)) and applying the function of the regression to the boundary CO2

values in the model. Since, in reality, we also have measurement uncertainties of CO2 and δ13C(CO2) we also include a random20

measurement uncertainty of 0.05 ppm and 0.05 ‰, respectively to the modeled data sets. The CO2 and δ13C(CO2) records are

used to calculate the regression-based mean source signature following the moving Keeling plot method (Sect. 2.2).

A1 Computation of mean modeled source signature

For the reference modeled mean source signature we use a “moving” background. In particular, we chose the minimum CO2

value within 5 hours centered around the measurement point as the background value and all contributions from fuel CO225

(cF,i), respiration (cresp) and from photosynthesis (cphoto) are computed as offsets relative to the background (cbg). This is

then comparable to the regression-based moving Keeling plot method as the lowest and highest CO2 values within five hours

span the Keeling plot. We are then able to define and compute the reference modeled mean source signature as:

δSTILT
S =

∑
i δF,i|cF,i|+ δresp|cresp|+ δphoto|cphoto|∑

i|cF,i|+ |cresp|+ |cphoto|
(A1)

Note that we use absolute values of all contributions since photosynthetic contributions (cphoto) are generally negative while30

source contributions (cresp and cF,i) are generally positive, but both should lead to a negative source signature in a Keeling

plot. The calculated source signature δSTILT
S (from Eq. A1) can be seen in Fig. 2a (blue). If we would not take into account

11



the different signs of respiration and photosynthesis, we would construct isotopic signatures, which are counter-intuitive and

not interpretable as mean source signature (Miller and Tans, 2003) as the denominator could converge against zero. When

calculating the isotopic source following Eq. A1, we can interpret δSTILT
S as gross flux weighted mean isotopic signature of

sources and sinks.

Appendix B: CO2 and δ13C(CO2) measurements in Heidelberg5

A necessary prerequisite of determining the mean source signature correctly at a measurement site is a good quality of CO2

and δ13C(CO2) measurements. Therefore, we briefly describe here the instrumental set-up in Heidelberg, assess the precision

of the CO2 and δ13C(CO2) measurements and finally present our four years’ ambient air record of CO2 and δ13C(CO2) in

Heidelberg.

B1 Instrumental set-up and intermediate measurement precision10

Since April 2011, atmospheric trace gas mole fractions are measured with an in-situ Fourier Transform-Infrared (FTIR) spec-

trometer at three-minute time resolution at the Institut für Umweltphysik in Heidelberg (Germany, 49°25’N, 8°41’E, 116 m

a.s.l +30 m a.g.l.) (see Fig. B1 for CO2 and δ13C(CO2)). A description of the measurement principle can be found in Esler

et al. (2000) and Griffith et al. (2010, 2012). Hammer et al. (2013) describe the Heidelberg-specific instrumental set-up in

detail and Vardag et al. (2015a) describe modifications to this set-up and the calibration strategy for the stable isotopologue15

measurements.

The intermediate measurement precision of the FTIR is about 0.05 ppm for CO2 and 0.04 ‰ for δ13C(CO2) (both 9 minute

averages) as determined from the variation of daily target gas measurements (Vardag et al., 2014; Vardag et al., 2015a).

In this work, we only use hourly CO2 and δ13C(CO2) values, since simulation runs often have an hourly resolution and

thus, observations and simulations can directly be compared. However, from Allan standard deviation tests, we know that20

the intermediate measurement precision of hourly measurements is only slightly better than for nine-minutely measurements

(Vardag et al., 2015a).

B2 Four years of concurrent CO2 and δ13C(CO2) measurements in Heidelberg

The CO2 concentration in Heidelberg varies over the course of the year and has its maximum in winter and its minimum in

summer (Fig. B1). This pattern is mainly driven by larger fossil fuel emissions in winter than in summer. Especially, emissions25

from residential heating are higher in the cold season. Furthermore, biospheric uptake of CO2 is lower in winter than in

summer. The minimum of the isotopic δ13C(CO2) value coincides with the maximum in CO2 concentration and vice versa.

The features are anti-correlated since almost all CO2 sources in the catchment area of Heidelberg are more δ13C-depleted than

the background concentration and therefore a CO2 increase always leads to a depletion of δ13C(CO2) in atmospheric CO2.

Also, the biospheric CO2 sink, dominating in summer, discriminates against δ13C(CO2), leaving the atmosphere enriched in30
13C(CO2), while CO2 decreases. On top of the seasonal cycle, CO2 in Heidelberg (Fig. B1) slightly increases over the course

12



of four years by about 2 ppm year−1. At the same time δ13C(CO2) decreases by about 0.04 ‰ year−1. These rates are similar

to the CO2 increase and δ13C(CO2) decrease rates in Mauna Loa, Hawaii, USA (Dlugokencky et al., 2015; White et al., 2015)

and therefore reflect the global increase of CO2 from 13C-depleted sources moderated by air-sea gas exchange. It is not visible

to the eye, how the degree of depletion in δ13C(CO2) varies over the course of the year (see Fig. B1). To analyze this behavior,

the mean source signature must be computed (see Sect. 2.2 and Fig. 4).5

Author contributions. S. Vardag developed the moving Keeling plot method in exchange with I. Levin. S.Vardag verified this approach using
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Figure 1. Regression-based determination of source signature using a Keeling plot. For clarity of illustration, we only draw three data points

instead of five, which we use for our computation. a) Constant source mix during the time of source signature determination leads to the

correct flux-weighted mean isotopic signature (following Eq. A1), δS . b) Change of source mix during the period of determination of a

Keeling plot due to either a temporal change of emission characteristics or a wind direction change (transportation) leads to a biased result.

These situations can be usually identified by a large error of the intercept, δS (we choose an error >2 ‰ to reject these results) c) Sources and

sinks with different isotopic signatures or sink fractionation occur at the same time and lead to a wrong apparent source signature. Strong

biases are prevented by choosing a minimum net CO2 concentration range of 5 ppm and demanding a monotonous increase of CO2 during

the five hours (see text for more details). Note that the background value is displayed for illustration, but it is not used in the moving Keeling

plot method.
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Figure 2. Source signature as calculated with the STILT model following equation A1. a) Unfiltered in black and filtered (for monotonous

increase and minimal range) in blue. Only about 15% of all data points fulfill our strict criteria. However, they are distributed approximately

evenly throughout the year. b) Diurnal cycle of modeled mean source signature due to diurnally varying mean source mix. Gray areas denote

times when source signature is usually filtered out.
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Figure 3. Comparison between modeled reference source signature (blue) and the moving Keeling plot intercept (red), which is regression-

based using the modeled CO2 and δ13C(CO2) records. a) Long term comparison for the year 2012. The smoothed lines of window size 100

are also shown in the respective colors. b) Summer excerpt and c) winter excerpt (grey areas in a) of both reference and regression-based

source signature. The crosses denote unfiltered data and bold stars denote filtered data. The green lines in panel b) and c) give the measured

CO2 concentration during the summer and winter periods.
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Figure 4. Moving Keeling plot method-based source signature in Heidelberg from 2011 until mid of 2015. The black line is the smoothed

measured source signature and the blue line gives the smoothed modelled source signature (both 50%-percentile filter with window size=100

hours). Half a window size before the beginning of a large data gap the data is not further smoothed to prevent smoothing artifacts.

21



Figure 5. a) A fixed isotopic end member of the biosphere (green, ± uncertainty of 0.5 ‰ (light green area) and 2 ‰ (crosshatched green))

together with the measured source signature (black) results in δF (red, ± its uncertainty). b) A fixed isotopic end member of the fuel mix (red,

± uncertainty of 1.0 ‰ (salmon pink) and 2.0 ‰ (crosshatched gray-pink)) together with the measured source signature (black) results in

δbio (green, ± its uncertainty). In both cases, also the fuel CO2 share (or biospheric CO2 share) is required. We here use the share calculated

with STILT on the basis of EDGAR v4.3 and assume an absolute uncertainty of 10%.
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Figure B1. Continuous Heidelberg hourly FTIR record of (a) CO2 and (b) δ13C(CO2) from April 2011- June 2015. Data gaps occur when

the instrument was away during a measurement campaign or when instrumental problems occurred.
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Table A1. δ13C(CO2) source signature of fuel types and biosphere as used in the model and the range of literature values. Note, that for a

specified region, the range of possible isotopic signature can often be narrowed down, if the origin and/or production process of the fuel type

is known.

Emission source Used δF,i or δbio

[‰]

Range of literature

values δF,i or δbio

[‰]

Reference

Fuel types

Coal -23 to -27 Mook, 2000

- Hard Coal -25

- Brown coal -27

Peat -28 -22 to -29 Mook, 2000; Schumacher et al., 2011

Oil -29 -19 to -35 Andres et al., 1994; Mook, 2000; Schumacher et al.,

2011

Gas

-Natural gas -46 -20 to -100 Andres et al., 1994

-Derived gas -28 -26 to -29 Bush et al., 2007

Solid waste -28 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Solid biomass -27 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Bio liquid -29 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Biogas -11 0 to -16 Widory et al., 2012; Levin et al., 1993

Biosphere -20 to -30 Lloyd and Farquhar, 1994; Mook, 2000

Photosynthesis -23 -20 to -30 typical range of C3 and C4 plant mixes Mook, 2000

Respiration -25 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)
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