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Abstract. As different carbon dioxide (CO2) emitters have different carbon isotope ratios, measurements of atmospheric

δ13C(CO2) and CO2 concentration contain information on the CO2 source mix in the catchment area of an atmospheric mea-

surement site. Often, this information is illustratively presented as mean isotopic source signature. Recently an increasing

number of continuous measurements of δ13C(CO2) and CO2 have become available, opening the door to quantification of CO2

shares from different sources at high temporal resolution. Here, we present a method to compute the CO2 source signature (δS)5

continuously without introducing biases and evaluate our result using model data. We find that biases in δS are smaller than

0.2 ‰ with uncertainties of about 1.2 ‰ for hourly data. Applying the method to a four year data set of CO2 and δ13C(CO2)

measured in Heidelberg, Germany, yields a distinct seasonal cycle of δS . Disentangling this seasonal source signature into its

source components is, however, only possible if the isotopic end members of these sources, i.e., the biosphere, δbio, and the

fuel mix, δF , are known. From the mean source signature record in 2012, δbio could be reliably estimated only for summer to10

(-25 ± 1) ‰ and δF only for winter to (-32.5 ± 2.5) ‰. As the isotopic end members δbio and δF were shown to change over

the season, no year-round estimation of the fossil fuel or biosphere share is possible from the measured mean source signature

record without additional information from emission inventories or other tracer measurements, such as ∆14C(CO2).

1 Introduction

A profound understanding of the carbon cycle requires closing the atmospheric CO2 budget at regional and global scale. For15

this purpose it is necessary to distinguish between CO2 contributions from oceanic, biospheric and anthropogenic sources and

sinks. Monitoring these CO2 contributions separately is desirable for improving process understanding, investigating climatic

feedbacks on the carbon cycle and also to verify emission reductions and designing CO2 mitigation strategies (Marland et al.,

2003; Gurney et al., 2009; Ballantyne et al., 2010). A possibility to distinguish between different CO2 sources and sinks

utilizes concurrent 12CO2 and 13CO2 observations in the atmosphere. The carbon isotope ratio can be used to identify and20

even quantify different CO2 emitters if every emitter has its specific known δ13CO2 signature. For example, the CO2 fluxes

from land and ocean can be distinguished using the ratio of stable carbon isotopologue 13CO2/12CO2 in addition to CO2

concentration measurements (Mook et al., 1983; Ciais et al., 1995; Alden et al., 2010). In other studies, measurements of
13CO2 have been used to distinguish between different fuel types (Pataki, 2003; Lopez et al. 2013) or to detect ecosystem

behavior (Torn et al., 2011), giving only a few examples of the many published in the literature.25
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In the last decade, new optical instrumentation has been developed, simplifying continuous isotopologue measurements.

This led to an increasing deployment of these instruments, therby increasing the temporal and spatial resolution of 13C(CO2)

and CO2 data (Bowling et al., 2003; Tuzson et al., 2008; McManus et al., 2010; Griffith et al., 2012; Vogel et al., 2013; Vardag

et al., 2015a, Eyer et al., 2016). These data records may lead to an improved understanding of regional CO2 fluxes allowing

estimates of mean δ13C source signatures at high temporal resolution. Estimating mean source signatures from concurrent5

δ13C(CO2) and CO2 records over time provides e.g. insight into temporal changes in the signatures of two different CO2

sources such as fossil fuels and the biosphere, if their relative share to the CO2 offset is known. This may e.g. give insight into

biospheric responses to climatic variations like drought, heat, floods, vapor pressure etc. (Ballantyne et al., 2010; Ballantyne

et al., 2011; Bastos et al., 2016). Likewise, the mean source signature can be used to separate between different source CO2

contributions, if the isotopic end members of these sources are known at all times (Pataki, 2003; Torn et al., 2011; Lopez et al.10

2013; Newman et al., 2015).

Many studies have successfully used the Keeling- or Miller-Tans- approach (Keeling, 1958, 1961; Miller and Tans, 2003)

to determine source signatures in specific settings (e.g. Pataki, 2003; Ogée et al., 2004; Lai et al., 2004; Knohl et al., 2005;

Karlsson et al., 2007; Ballantyne et al., 2010). However, the situations in which Keeling and Miller-Tans plots yield correct

results need to be selected carefully (Miller and Tans, 2003). Only if all possible pitfalls are precluded, the Keeling intercept15

(or the Miller-Tans slope) can be interpreted as gross flux-weighted mean isotopic signature of all CO2 sources and sinks in

the catchment area of the measurement site. Especially in polluted areas with variable source/sink distribution, estimation of

isotopic signature using a Keeling- or Miller-Tans-plot requires a solid procedure, e.g. accounting for wind direction changes

or simultaneously occurring CO2 sinks and sources. In this study, we discuss the possible pitfalls of CO2 source signature

determination from a continuous data set using the Keeling approach and follow a specific modification of this method for20

automatic and bias-free mean source signature determination. We test this method with model-simulated CO2 mole fraction

and δ13C(CO2) data. Using a modeled data set where all source signatures are known, enables us to check if the calculated

source signature is correct, which is vital when evaluating measured data with an automated routine. Having found a method to

determine the isotopic signature of the mean source signature correctly from measured CO2 and δ13C(CO2) data, we discuss,

which information can be reliably extracted from these results.25

2 Determination of source signature

2.1 Classical Keeling and Miller-Tans approach

Keeling (1958, 1961) showed that the mean isotopic signature of a source mix can be calculated by re-arranging the mass

balance of total CO2

CO2tot = CO2bg +CO2S (1)30

and of δ13C of total CO2, i.e. δtot:

δtot ·CO2tot = δbg ·CO2bg + δS ·CO2S (2)
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to:

δtot ≈ CO2bg/CO2tot · (δbg − δS) + δS (3)

where CO2bg and δbg are the concentration and δ13C(CO2) of the background component and CO2S and δS are the concentra-

tion and δ13C(CO2) of the mean source, respectively. In a graphical evaluation when plotting δtot versus 1/CO2tot, this yields

δS as the δ-intercept of the regression of all measurement points (cf. Fig.1a).5

Miller and Tans (2003) have suggested an alternative approach to determine the mean isotopic signature by re-arranging

Eqs. 1 and 2 such that δS is the regression slope when plotting CO2tot·δtot versus CO2tot:

CO2tot · δtot = δS ·CO2tot−CO2bg(δbg − δS) (4)

They argue that this approach might be advantageous since the isotopic signature does not need to be determined from extrap-

olation to 1/CO2=0, which could introduce large errors in the δS estimate. Zobitz et al. (2006) have compared the Keeling and10

the Miller-Tans approach (Eqs. 3 and 4) and found no significant differences between both approaches when applied to typical

ambient CO2 variations. We were able to reproduce this result with our model-simulated data set (cf. Sect. 3.2). Differences

between both approaches were (0.00 ± 0.04) ‰ when applying certain criteria (standard deviation of intercept < 2 ‰, CO2

range within 5 hours >5 ppm), which will be motivated in Sect. 2.3. In our study, we use a Keeling plot for calculation of the

mean source signature, but using a Miller-Tans plot seems just as good. Note that the isotopic signature of the mean source δS15

can be determined from linear regression without requiring a background CO2 and δ13C(CO2) value. However, the Keeling

and Miller-Tans approaches are only valid if the background and the isotopic signature of the source mix δS are constant during

the period investigated (Keeling, 1958, Miller and Tans, 2003). Further, the approaches are only valid when sources and sinks

do not occur simultaneously. Miller and Tans (2003) gave an example, which showed that as soon as sources and sinks of

different isotopic signature/fractionation occur simultaneously, the determination of isotopic signature of the source/sink mix20

is not per se possible. In these cases, the results cannot be interpreted as mean flux-weighted source signature anymore. This

has very unfortunate consequences, since in principle we are interested in determining the isotopic signature of the source mix

of a region during all times, i.e. also during the day when photosynthesis cannot be neglected. Pataki (2003), Miller and Tans

(2003) and Zobitz et al. (2006) compared different fitting algorithms for the regression and came to different recommendations.

Orthogonal distance regression (ODR) and weighted total least squares fits (WTLS) (model 2 fits) take into account errors on25

x and y, whereas ordinary least squares (OLS) minimization (model 1 fit) only takes into account y-errors. Zobitz et al. (2006)

have found differences between both fitting algorithms especially at small CO2 ranges. We have also applied a model 1 (OLS)

and model 2 (WTLS) fit to our simulated data and have not found any significant differences ((0.00 ± 0.01) ‰) between them

when applying certain criteria (error of intercept < 2 ‰, CO2 range within 5 hours >5 ppm, see Sect. 2.2). In this study,

however, we use a WTLS-fit for the determination of the intercept and its uncertainty.30

2.2 Running Keeling approach

For a continuous long-term data set, we suggest an automatic routine to determine the mean isotopic signature of the source

mix. We call this approach the “running” Keeling approach. It is similar to the moving Keeling plot for CH4 currently suggested
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by Röckmann et al. (2016). In our case of CO2 we also have to take into account the possibility of simultaneously occuring

sinks and sources, which is not important in the case of CH4. Our running Keeling approach is a specific case of the classical

Keeling approach (Eq. 3) (Keeling, 1961) as it uses only five hourly-averaged measurement points of CO2 and δ13C(CO2)

fitting a regression line through these five data points (cf. Fig. 1a, illustrated only for three data points for clarity of inspection).

We choose 5 hours as a compromise of maximum number of data points in a minimizing period, in which the source mix5

does not change significantly. No background value is included in the regression. The running Keeling approach works such

that, e.g. for the determination of the mean source signature at 3 pm, we use the hourly CO2 and δ13C(CO2) measurements

from 1 pm to 5 pm and fit a regression line. Next, for the determination of the source signature at 4 pm, we use the CO2 and

δ13C(CO2) measurements from 2 pm to 6 pm and so on.

2.3 Filter criteria of the running Keeling approach10

In order to prevent pitfalls in the regression-based determination of mean isotopic signature, we set a few criteria for the running

Keeling plots to “filter” out situations, in which a Keeling plot cannot be performed. These filter criteria are also similar in type

to the ones introduced by Röckmann et al. (2016). We here explain why these filter criteria are needed for CO2 and how they

are set. A prerequisite for the Keeling plot is that the source mix as well as the background need to stay constant during the

investigated period (see Fig. 1a). Varying source mixes may occur when e.g. the wind direction and therewith the footprint of15

the measurement site change, or if the emission patterns themselves change over time. This may lead to strong biases of the

regression-based mean isotopic source signature (illustrated in Fig. 1b). We eliminate these cases by inspecting the error of the

determined intercept δS . If the source mix or the background significantly change within five hours, the data points will not fall

on a straight line and the error of the intercept will increase. We here set an error of 2 ‰ (in a WTLS fit) as threshold between

an acceptable and a "bad" fit, after having inspected many Keeling plots individually. Also, we demand a monotonous increase20

of CO2 within 5 hours, as a decrease of would be due to either a sink of CO2 or a breakdown of the boundary layer inversion

associated with a change of catchment area of the measurement, both biasing the resulting mean source signature.

As mentioned before, the determination of a mean isotopic signature is not per se possible during the day when CO2 sinks

and sources are likely to occur simultaneously (Miller and Tans, 2003). This can be explained in the Keeling plot by the vector

addition of CO2 source and sink mixing lines with different isotopic signatures, resulting in a vector with an intercept different25

from the expected one, leading to an isotopic signature, which can even lie outside the expected range of the isotopic source

end members (see Fig. 1c). This potential bias is stronger, the smaller the net CO2 signal is. Therefore, e.g. for evaluation

of the Heidelberg data, we demand an increase in CO2 during the 5 hour period of at least 5 ppm to exclude periods where

the photosynthetic sink is similarly strong as CO2 sources. This normally leads to an exclusion of daytime periods, when the

boundary layer inversion typically breaks up and the photosynthetic sink is most pronounced. During winter, it may happen30

that the inversion does not break up due to the cold surface temperatures, but in this season, photosynthetic activity is typically

much smaller than fossil fuel emissions and therefore biases of the regression-based mean source signature are only small. In

the next section, we show that with these filter criteria, which we chose empirically, we are able to successfully remove those
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source signatures, where the underlying assumptions for the Keeling approach are not met. In Sect. 3.2, we will also briefly

discuss how sensitive the result is to the choice of filter criteria.

3 Test of the running Keeling approach with modeled data

We apply the running Keeling method to a modeled CO2 and δ13C(CO2) data set. As also pointed out by Röckmann et al. (2016)

in their CH4 study, this has the advantage that we can test and evaluate our filter criteria as we know exactly the individual5

isotopic source signatures that created the modeled data set and thus, the contribution-weighted mean isotopic source signature

at every point in time. Details on the STILT model and on the computation of the modelled CO2 and δ13C(CO2) record as well

as of the resulting mean source signature, δSTILT
S , are given in Appendix A.

3.1 Filter criteria of modeled source signature

We apply the same filter criteria to the calculated mean source signature of the STILT modelled data set δSTILT
S , as to the10

regression-based mean source signature (Sect. 2.3). The “unfiltered” source signatures (black in Fig. 2a) are 0-2‰ more

enriched than the “filtered” source signatures (blue). This offset is mainly caused by the daytime source signatures, which are

on average more enriched than nighttime source signatures (Fig. 2b), but more likely to be filtered out based on the criteria of

Sect. 2.3.

3.2 Evaluation of running Keeling approach15

We can now evaluate the running Keeling method and the filter criteria based on the model data and test if they allow a bias-free

retrieval of the mean source signature. In Fig. 3a, we compare the regression-based source signatures to the filtered reference

source signature of Fig 2a, which we have extracted from the model. We do not only compare the mean difference of the mean

source signature, but the hourly differences of the mean source signature as well as the smoothed difference. This enables us

to clearly state how well we are able to determine the hourly mean source signature and its long-term trend.20

Fig. 3a displays the filtered seasonal changes of the source signature for the year 2012. The running Keeling approach is

able to extract the seasonal variability of the mean isotopic signature correctly. The median difference (and inter-quartile range)

between smoothed regression-based (red) and smoothed modeled (blue) approach (both smoothed with 50% percentile filter

with window size of 100 hours, no smooting 50 points in front of large data gaps) is 0.0 ± 0.4 ‰. On a shorter diurnal time

scale, we also compare individual hourly results for the source signature (stars in Fig. 3b,c). The inter-quartile range of the25

filtered hourly difference between both the reference δSTILT
S and the running Keeling signature is ca. 1.2 ‰ throughout the

year, but the median difference is small (0.2 ‰). The source signature of the model reference and running Keeling source

signature show the same temporal pattern both, in summer and in winter. Further, we find that if we do not apply all of the

criteria described in Sect. 2.2 (unfiltered data in Fig. 3b,c), we see larger differences between regression-based source signature

(from the running Keeling plot) and the STILT reference values. Note, however, that with the criteria established in Sect. 2.3,30

we have rejected about 85% of all estimated source signatures. Depending on the application, it may be worthwhile to loosen

5

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



the filter criteria to increase the data coverage. For example, if one sets no criteria for the minimal CO2 range, but only for the

error of the slope (< 2‰), about 60% of all data remain for the estimated source signature, but the median difference between

model- and Keeling-based results increases to 0.3 ‰ and the interquartile range increases to 2.4‰ (hourly data), which is about

twice of what we found before. Withdrawing all filter criteria, but using only night time values, leads to a coverage of about

35% (night time) and an interquartile range of 3.5 ‰. The filter criteria, which we use here (Sect. 2.3) are, thus, rather strict,5

but we are confident to precisely extract the correct source signature from the δ13C(CO2) and CO2 record at highest temporal

resolution.

4 Application of the running Keeling approach

4.1 The measured source signature record in Heidelberg

We now apply this approach to real measured data. We use the Heidelberg CO2 and δ13C(CO2) record on hourly time res-10

olution (Fig. B1) to compute the isotopic source signature via regression (Fig. 4). The quality of the Heidelberg CO2 and

δ13C(CO2) record is assessed in the Appendix B. We observe a distinct seasonal cycle of the mean isotopic source signature

in Heidelberg. Smoothed minimum values of about -32 ‰ are reached in winter. Maximum values of about -26 ‰ occur in

summer. This principal pattern is reproduced every year. Additionally, the first year shows a more enriched summer maximum

source signature. A number of data points (less than 0.5%) lie outside the range of realistic end members between -20 and15

-45 ‰ of any source in the catchment area (see Table 1). These outliers can be explained statistically by the uncertainty of

the running Keeling approach. From the model analysis, we expect the inter-quartile range of δS for the Heidelberg catchment

area to be about 1.2 ‰, in accordance to Fig. 4 (1.8 ‰). Our record of the mean source signature in Heidelberg provides a first

insight into the source characteristics at the measurement station. It reaches its minimum in winter when we expect residential

heating (mainly isotopically depleted natural gas, see Tab. 1) to contribute significantly to the source mix. The source signature20

reaches its maximum in summer when more enriched biospheric fluxes are expected to dominate the CO2 signal. This observed

seasonal cycle in Heidelberg (Fig. 4) is very similar to the filtered modelled source signature (Fig. 3a) in amplitude as well as

phase.

4.2 Extracting information on the isotopic end members δbio and δF from δS

We now want to elaborate what quantitative information can be drawn from the mean source signature record in Heidelberg25

about its components. Details on the Heidelberg measurement site and catchment area can be found in Vogel et al. (2010).

4.2.1 Formulation of question

For a continental measurement site such as Heidelberg, we have to assume that there are at least two main source types of CO2

in the catchment area: Fuel CO2 and CO2 from the biosphere. In this simplest case, we essentially have one equation (δS , Eq.

6
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6) with three unknown variables (δbio, δF and the fuel (or biosphere) share fF ) and only if two of these variables are known,

the third variable can be quantified from the measurements:

δS =
CO2F

∆CO2
· δF +

∆CO2−CO2F

∆CO2
· δbio (5)

= fF · δF + (1− fF ) · δbio (6)

Which of the variables is the one to be estimated depends, of course, on the research question. If the fossil fuel share and5

end members are well known from inventories, one could be especially interested in determining the isotopic end member δbio

in order to study biospheric processes and their feedback to climatic parameters (Ciais et al., 2005; Ballantyne et al., 2010;

Salmon et al., 2011). Contrary, one may be interested in determining the relative share of fossil fuel CO2 in the catchment area

(with known δbio and δF ) to monitor emission changes independently from emission inventories. In our discussion, we focus

on the determination of the fossil fuel share, but the arguments for most parts are analog for other research questions.10

As noted, a quantification of the relative shares of fossil fuel and the biospheric CO2 at continental stations is only possible

if information on the isotopic end members of both source categories are available. For example, Vardag et al. (2015b) used the

isotopic signatures of δbio (assumed to be known within a fixed uncertainty) and δF (obtained by calibration with ∆14C(CO2))

to calculate the fossil fuel CO2 contribution from the (continuously) measured CO2 and δ13C(CO2) signal. However, knowing

the isotopic signatures δbio and δF over the entire course of the year, requires an extensive number of measurements at the15

relevant sources throughout the year and further assumptions how to extrapolate the source signature of the point measurements

to a mean source signature of all relevant sources. Therefore, we ask here, if we can obtain information on these end members

from our measured source signature record, despite the fact that we have three unknown variables and only one equation. In

the following, we discuss this question exemplary for the year 2012, for which we have modeled data, inventory information

and an almost complete measurement record.20

4.2.2 One source approximation

In general, in order to obtain information on δbio (δF ), we require information on the fuel CO2 share and δF (on the fuel CO2

share and δbio). However, in cases where the relative share of the biosphere (fossil fuels) is negligible, the isotopic signature of

δF (δbio) would equal the mean isotopic signature. In these cases, the number of unknown variables would be reduced to one

as the fossil fuel (biospheric) share is ≈ 100% and δbio (δF ) does not contribute significantly to the mean source signature. In25

a typical catchment area, the relative share of fossil fuels and of the biosphere will not be negligible throughout the year, but

in winter, fossil fuel CO2 will dominate while in summer the biospheric CO2 will dominate the CO2 offset compared to the

background. E.g. from the STILT model results for Heidelberg (Sect. 3.2 and Appendix A), we perceive that on cold winter

days in Heidelberg, the fossil fuel share can be about 90 to 95% of the total CO2 offset. In summer, it reaches a minimum

at about 20%. We may, thus, be able to obtain information about the isotopic end members of δF in winter (δbio in summer),30

when the mean source signature is dominated by the fossil fuel (biospheric) share.
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To calculate the resulting isotopic end members of δi from the measured source signature (and with that to solve Eq. 6), we

require the fossil fuel CO2 share from STILT and the bottom-up emission inventory EDGAR. However, as we only require the

share and not the absolute concentration, we are largely independent from potentially large model transport errors. We assume

an absolute uncertainty of 10 % of the fossil fuel share (and of the biospheric share respectively).

To determine δF in addition to the fuel CO2 share, we require a value for δbio. Here we use a typical mean value of the5

isotopic end member of δbio= -25 ‰ and assume a seasonal cycle as determined for Europe by Ballantyne et al. (2011) (see

Fig. 2 and 3 in Ballantyne et al. (2011)) displayed in Fig. 5a as solid green line. We show δbio with two possible uncertainties of

0.5 and 2 ‰. As expected, the uncertainty of the unknown δF is only acceptably small when the relative share of the biosphere

becomes negligible, which is the case in winter (Fig. 5a). The isotopic end member of δF in winter is about (-31 ± 2.5) ‰ in

January to March 2012 and decreases to (-32.5 ± 2.5) ‰ in November to December 2012. Further, Fig. 5a shows that the best10

estimate of the resulting isotopic signature δF is more depleted in summer than in winter. This curvature is opposite from what

we would expect from EDGAR (2010) transported by STILT (see assumed δF in Fig. 5b). Only when assuming an uncertainty

of the biospheric end member of ± 2 ‰ or more, the uncertainty range of the estimated δF allows more enriched δF signature

in summer than in winter. This suggests that the isotopic source signature of the biosphere in summer is most probably more

depleted (by about 2 ‰) than the previously assumed δbio value based on Ballantyne et al. (2011).15

To estimate δbio (Fig. 5b), we require (besides the fossil fuel share) the isotopic source signature δF . Here we use δF

calculated with the STILT model on the basis of EDGAR emissions and source signatures according to Tab. 1. Its annual mean

value is -31 ‰ and it shows a seasonal cycle with more enriched signatures in summer than in winter. We show the results

for δbio for two possible δF uncertainties of 1 and 3 ‰ (see Fig. 5b). The best-estimate of the isotopic end member of δbio

in summer is about -25.0 ± 1 ‰ in June to August 2012. This reinforces the presumption that δbio is more depleted than the20

assumed δbio value based on Ballantyne et al. (2011) during summer.

4.2.3 Evaluation of the precision

The uncertainty of the isotopic end members in Fig. 5a and b has three components: 1) The uncertainty of the fossil fuel CO2

share estimated from STILT, which we assume to be about 10% (absolute) in our case, 2) the uncertainty of the other known

isotopic end member (0.5 and 2 ‰ for δbio or 1 and 3 ‰ for δF ) and 3) the uncertainty of the measured mean source signature25

itself (ca. 0.5 ‰, see Sect. 3.2). Note, that an uncertainty of 10% of the fossil fuel share is at the low end of uncertainties.

However, an uncertainty of 20% of the fossil fuel share would increase the uncertainty in the unknown isotopic end members

by only 0.2 - 0.4 ‰ for δbio in summer and δF in winter, respectively.

The derived uncertainty of δF in winter is about 2.5 ‰ and that of δbio in summer is about 1.5 ‰. An uncertainty of ± 2.5

‰ for δF is rather large if we want to use this observation-based top-down result for further quantitative source apportionment.30

Vardag et al. (2015b) showed that a misassignment of 2.5 ‰ in δF leads to a bias in the continuous fuel CO2 estimate of about

15% for an urban measurement site like Heidelberg. The observation-based biospheric end member δbio has an uncertainty of

only about 1 ‰ in June to August 2012, which is a very well constraint value for this period.
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4.2.4 Evaluation of accuracy

If both isotopic end members stayed constant over the course of one year, we would now be able to actually estimate the fossil

fuel CO2 share (and its uncertainty) continuously throughout the year without requiring any additional information, such as

inventories or ∆14C(CO2) for calculation of δF from the mean source signature. However, from bottom-up information, we

would neither expect the isotopic value of the biosphere nor that of the fossil fuel mix to remain constant throughout the year.5

In contrary, we would expect the biosphere to show a distinct seasonal pattern e.g. due to the change in fraction of respiration

from C3/C4 plants over the course of the year or influences of climatic conditions on biospheric respiration (e.g. Still et al.,

2003; Ciais et al., 2005). A seasonal cycle of δF is also expected with more enriched values in summer, when the contribution

of residential heating (and therewith of depleted natural gas) is much smaller than in winter. Therefore, if we have varying

isotopic end members of δF and δbio, we cannot estimate the fossil fuel share correctly for the entire year. But, if the amplitude10

of these changes is small, the biases in fossil fuel CO2 will be small as well. Vardag et al. (2015b) have shown that from a

limited number of 14C(CO2) grab samples distributed over the year, the true annual mean value of δF can be obtained. Here

we show that from the mean δ13C source signature only a reliable winter value is obtained, potentially introducing summer

biases (as well as annual averaged biases) into the fuel CO2.

4.2.5 Possible strategy to obtain δF and δbio15

To determine δbio, one can take the summer value of δbio from the source signature record following Sect. 4.2.2. As no reliable

determination of δbio is possible during the rest of the year based only on atmospheric observations, there must be either very

good bottom-up literature values for the catchment area of interest or frequent measurement campaigns at the sources must

be performed. However, the disadvantage of using a bottom-up approach is that usually only information from few specific

sites are available, which need then to be upscaled correctly such that they are representative of the entire catchment area. For20

a determination of δF in the entire year, one can use ∆14C(CO2) measurements (following Vardag et al. (2015b)) or rely on

the bottom-up inventory information. To obtain correct source signatures of the different fossil fuel categories, measurements

close to these sources are required to support or refute the inventory-model based estimates. These measurements again need

to be upscaled correctly.

5 Conclusions25

Many measurement stations are currently being equipped with new optical instruments, which measure δ13C(CO2) aiming at

a more quantitative understanding of the carbon fluxes in their catchment area. If this additional δ13C(CO2) data stream is not

directly digested in regional model calculations, the mean isotopic source signature is often computed from the δ13C(CO2)

and CO2 records for the analysis of the source composition. Essentially, this source signature provides the same degree of

information as the measured δ13C and CO2 records themselves, but is a more intuitive and therefore common form for further30

interpretations.
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We re-emphasize here that a bias-free determination of source signature requires carefully selecting the data for situations,

in which determination of source signature with a Keeling plot can provide reliable results. This excludes periods, when

sinks and sources occur simultaneously, when the source mix changes or when the signal-to-noise ratio is too low (Keeling,

1958; Keeling, 1961; Miller and Tans, 2003). We therefore developed filter criteria and show that the routine and accurate

determination of 13C(CO2) source signature is possible, if the introduced filter criteria are applied. As suggested by Röckmann5

et al. (2016), we use a modeled data set for validation of the approach. We find that for a station like Heidelberg, the bias

introduced by our analysis is only (0.2 ± 1.2) ‰ for hourly data. The uncertainty decreases in the long-term to (0.0 ± 0.4) ‰.

We are therefore able to estimate the source signature correctly. However, as the filter criteria are such that the source signatures

are more likely to be filtered out during the day than during the night, the long-term source signature is not representative of

real daily averages, but only of periods, where the data was not filtered out (mainly nighttime). This problem does not occur10

for CH4, which has only weak daytime sinks.

By applying the running Keeling plot procedure to a real measured data set in Heidelberg, we are able to determine the

source signature over the course of four years. We find a distinct seasonal cycle of the mean source signature with values of

about -26 ‰ in summer and about -32 ‰ in winter. This general behavior was expected due to the larger relative contribution

of more depleted fossil fuel CO2 in winter. For a unique interpretation of the mean source signature, possible sources in the15

catchment area need to be identified. As soon as there are more than one source, the source signature is a function of the

isotopic end members of all sources, as well as of their relative shares. Therefore, to study the seasonal and diurnal changes

of fossil fuel shares at a continental station, information on the isotopic end members of the fossil fuel mix as well as of the

biosphere are required on the same time resolution. Unfortunately, the isotopic end members are often not known with high

accuracy. The uncertainty of the isotopic end members often impedes or even prevents a unique straightforward determination20

of the source contribution in the catchment area (e.g. (Pataki, 2003; Torn et al., 2011, Lopez et al. 2013; Röckmann et al.,

2016) and calls for elaborated statistical models based on Bayesian statistics . This important fact is sometimes mentioned, but

the consequences for quantitative evaluations are rarely emphasized, preserving the high expectations associated with isotope

measurements.

We showed that for the urban site Heidelberg, we can use the observation-based mean source signature record to estimate25

the isotopic end member δF in winter and the isotopic end member δbio in summer within the uncertainties of ±2.5 ‰ and ±1

‰, respectively, when assuming an uncertainty of ±10 % for the fossil fuel and biospheric CO2 share and an uncertainty of

the other isotopic end member δF of ±3 ‰ and δbio of ±2 ‰. However, in the winter season we cannot obtain any reliable

information on δbio and in summer we cannot study δF . If the isotopic end members would not change within seasons, it would

be possible to determine these constant isotopic signature from our obtained estimates. However, this is not a valid assumption.30

Finally, we could show, that even though it is not possible to determine the isotopic end members throughout the year, it is

possible to refute certain literature values. E.g. a respiration signature of -23 ‰ in August and September 2012 as reported by

Ballantyne et al. (2011) is most likely too enriched as this would lead to more depleted δF values in summer than in winter,

which is in contrast to what we would expect based on emission inventories.
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Appendix A: The STILT model

We use the Stochastic Time Inverted Lagrangian Transport (STILT) model (Lin et al., 2003) to evaluate our running Keeling

approach. The STILT model computes the CO2 mole fraction by time-inverting meteorological fields and tracing particles

emitted at the measurement location back in time to identify where the air parcel originated. This so-called footprint area

is then multiplied by the surface emissions in the footprint to obtain the CO2 concentration at the site in question. Photo-5

synthesis and respiration CO2 fluxes are taken from the vegetation photosynthesis and respiration model (VPRM, Mahade-

van et al., 2008). Anthropogenic emissions are taken from EDGARv4.3 emission inventory (EC-JRC/PBL, 2015) for the

base year 2010 and further extrapolated to the year 2012 using the BP statistical review of World Energy 2014 (available

at: http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html). Additionally,

we use seasonal, weekly and daily time factors for different emission categories (Denier van der Gon et al., 2011). Since the10

EDGAR inventory is separated into different fuel types, we obtain a CO2 record for each fuel type as well as for respiration

and photosynthesis. This allows us, to construct a corresponding δ13C(CO2) record by multiplying the isotopic signature of

every emission group i to its respective CO2 mole fraction δ13C(CO2)i·CO2,i (see Tab. 1), adding these to a far-field boundary

value of δ13C(CO2)·CO2 and dividing it by the total CO2 at the model site. The CO2 far-field boundary value for STILT is

the concentration at the European domain border (16°W to 36°E and from 32°N to 74°N) at the position where the backwards15

traced particles leave the domain. The concentration at the domain border is taken from analyzed CO2 fields generated with

TM3 (Heimann and Körner, 2003) based on optimized fluxes (Rödenbeck, 2005). The isotopic boundary value is then con-

structed artificially by fitting the linear regression between CO2 and δ13C(CO2) in Mace Head (year 2011 from World Data

Center for Greenhouse Gases, (Dlugokencky et al., 2015)) and applying the function of the regression to the boundary CO2

values in the model. Since, in reality, we also have measurement uncertainties of CO2 and δ13C(CO2) we also include a random20

measurement uncertainty of 0.05 ppm and 0.05 ‰, respectively to the modeled data sets. The CO2 and δ13C(CO2) records are

used to calculate the regression-based mean source signature following the running Keeling approach (Sect. 2.2).

A1 Computation of mean modeled source signature

For the reference modeled mean source signature we use a “running” background. In particular, we chose the minimum CO2

value within 5 hours centered around the measurement point as the background value and all contributions from fuel CO225

(cF,i), respiration (cresp) and from photosynthesis (cphoto) are computed as offsets relative to the background (cbg). This is

then comparable to the regression-based running Keeling approach as the lowest and highest CO2 values within five hours span

the Keeling plot. We are then able to define and compute the reference modeled mean source signature as:

δSTILT
S =

∑
i δF,i|cF,i|+ δresp|cresp|+ δphoto|cphoto|∑

i|cF,i|+ |cresp|+ |cphoto|
(A1)

Note that we use absolute values of all contributions since photosynthetic contributions (cphoto) are generally negative while30

source contributions (cresp and cF,i) are generally positive, but both should lead to a negative source signature in a Keeling

plot. The calculated source signature δSTILT
S (from Eq. A1) can be seen in Fig. 2a (blue). If we would not take into account
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the different signs of respiration and photosynthesis, we would construct isotopic signatures, which are counter-intuitive and

not interpretable as mean source signature (Miller and Tans, 2003) as the denominator could converge against zero. When

calculating the isotopic source following Eq. A1, we can interpret δSTILT
S as gross flux weighted mean isotopic signature of

sources and sinks.

Appendix B: CO2 and δ13C(CO2) measurements in Heidelberg5

A necessary prerequisite of determining the mean source signature correctly at a measurement site is a good quality of CO2

and δ13C(CO2) measurements. Therefore, we briefly describe here the instrumental set-up in Heidelberg, assess the precision

of the CO2 and δ13C(CO2) measurements and finally present our four years’ ambient air record of CO2 and δ13C(CO2) in

Heidelberg.

B1 Instrumental set-up and intermediate measurement precision10

Since April 2011, atmospheric trace gas mole fractions are measured with an in-situ Fourier Transform-InfraRed (FTIR)

spectrometer at three-minute time resolution at the Institut für Umweltphysik in Heidelberg (Germany, 49°25’N, 8°41’E, 116

m a.s.l +30 m a.g.l.) (see Fig. B1 for CO2 and δ13C(CO2). A description of the measurement principle can be found in Esler

et al. (2000) and Griffith et al. (2010, 2012). Hammer et al. (2012) describe the Heidelberg-specific instrumental set-up in

detail and Vardag et al. (2015a) describe modifications to this set-up and the calibration strategy for the stable isotopologue15

measurements.

The intermediate measurement precision of the FTIR is about 0.05 ppm for CO2 and 0.04 ‰ for δ13C(CO2) (both 9 minute

averages) as determined from the variation of daily target gas measurements (Vardag et al., 2014; Vardag et al., 2015a).

In this work, we only use hourly CO2 and δ13C(CO2) values, since simulation runs often have an hourly resolution and

thus, observations and simulations can directly be compared. However, from Allan standard deviation tests, we know that20

the intermediate measurement precision of hourly measurements is only slightly better than for nine-minutely measurements

(Vardag et al., 2015a).

B2 Four years of concurrent CO2 and δ13C(CO2) measurements in Heidelberg

The CO2 concentration in Heidelberg varies over the course of the year and has its maximum in winter and its minimum in

summer (Fig. B1). This pattern is mainly driven by larger fossil fuel emissions in winter than in summer. Especially, emissions25

from residential heating are higher in the cold season. Furthermore, biospheric uptake of CO2 is lower in winter than in

summer. The minimum of the isotopic δ13C(CO2) value coincides with the maximum in CO2 concentration and vice versa.

The features are anti-correlated since almost all CO2 sources in the catchment area of Heidelberg are more δ13C-depleted than

the background concentration and therefore a CO2 increase always leads to a depletion of δ13C(CO2) in atmospheric CO2.

Also, the biospheric CO2 sink, dominating in summer, discriminates against δ13C(CO2), leaving the atmosphere enriched in30
13C(CO2), while CO2 decreases. On top of the seasonal cycle, CO2 in Heidelberg (Fig. B1) slightly increases over the course
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of four years by about 2 ppm year−1. At the same time δ13C(CO2) decreases by about 0.04 ‰ year−1. These rates are similar

to the CO2 increase and δ13C(CO2) decrease rates in Mauna Loa, Hawaii, USA (Dlugokencky et al., 2015; White et al., 2015)

and therefore reflect the global increase of CO2 from 13C-depleted sources moderated by air-sea gas exchange. It is not visible

to the eye, how the degree of depletion in δ13C(CO2) varies over the course of the year (see Fig. B1). To analyze this behavior,

the mean source signature must be computed (see Sect. 2.2 and Fig. 4).5

Author contributions. S. Vardag developed the running Keeling approach in exchange with I. Levin. S.Vardag verified this approach using

pseudo data from the STILT model and applied the approach to measured data. The measured data was partly taken by S. Hammer (until
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three authors.

Acknowledgements. This work has been funded by the InGOS EU project (284274) and national ICOS project funded by the German10

Ministry of Education and Research (Contract number: 01LK1225A). We thank NOAA/ESRL and INSTAAR for making their observational

data from Mace Head and Mauna Loa available on the WDCGG website. Further, we acknowledge the financial support given by Deutsche

Forschungsgemeinschaft and Ruprecht-Karls-Universität Heidelberg within the funding program Open Access Publishing.

13

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



References

Alden, C. B., Miller, B., J., and White, J. W.: Can bottom-up ocean CO2 fluxes be reconciled with atmospheric 13C observations?, Tellus B,

62, 369–388, doi:doi: 10.1111/j.1600-0889.2010.00481.x, 2010.

Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon Dioxide Emissions from Fossil Fuel Consumption and Cement Manufacture,

1751-1991; and an Estimate of Their Isotopic Composition and Latitudinal Distribution, Environmental Sciences, 1994.5

Ballantyne, A. P., Miller, J. B., and Tans, P. P.: Apparent seasonal cycle in isotopic discrimination of carbon in the atmosphere and bio-

sphere due to vapor pressure deficit, Global Biogeochemical Cycles, 24, n/a–n/a, doi:10.1029/2009GB003623, http://dx.doi.org/10.1029/

2009GB003623, gB3018, 2010.

Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes in atmospheric CO2: what

can atmospheric measurements teach us about processes in the biosphere?, Biogeosciences, 8, 3093–3106, 2011.10

Bastos, A., Janssens, I. A., Gouveia, C. M., Trigo, R. M., Ciais, P., Chevallier, F., Peñuelas, J., Rödenbeck, C., Piao, S., Friedlingstein, P.,

and Running, S. W.: European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling, Nature communications, 7, 2016.

Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope stud-

ies of ecosystem–atmosphere CO2 exchange, Agricultural and Forest Meteorology, 118, 1 – 19, doi:http://dx.doi.org/10.1016/S0168-

1923(03)00074-1, http://www.sciencedirect.com/science/article/pii/S0168192303000741, 2003.15

Bush, S., Pataki, D., and Ehleringer, J.: Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA, Applied geochemistry,

22, 715–723, 2007.

Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R.: A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C

ratio of atmospheric CO2, Science, 269, 1098–1102, 1995.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevalier, F.,20

De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca,

G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze,

E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , Nature, 437,

529–533, 2005.

Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A., and Visschedijk, A.: Description of current temporal emission patterns and25

sensitivity of predicted AQ for temporal emission patterns, TNP Report, EU FP7 MACC deliverable report, https://gmes-atmosphere.eu/

documents/deliverables/d-emis/MACC_TNO_del_1_3_v2.pdf, 2011.

Dlugokencky, E., Lang, P., Masarie, K., Crotwell, A., and Crotwell, M.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the

NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network Sampling Network, 1968-2014, ftp://aftp.cmdl.noaa.gov/data/

trace_gases/co2/flask/surface/., 2015.30

Esler, M. B., Griffith, D. W., Wilson, S. R., and Steele, L. P.: Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio

of CO2., Analytical chemistry, 72, 216–21, 2000.

Eyer, S., Tuzson, B., Popa, M. E., van der Veen, C., Röckmann, T., Rothe, M., Brand, W. A., Fisher, R., Lowry, D., Nisbet, E. G., Bren-

nwald, M. S., Harris, E., Zellweger, C., Emmenegger, L., Fischer, H., and Mohn, J.: Real-time analysis of δ13C- and δD-CH4 in ambient

air with laser spectroscopy: method development and first intercomparison results, Atmospheric Measurement Techniques, 9, 263–280,35

doi:10.5194/amt-9-263-2016, http://www.atmos-meas-tech.net/9/263/2016/, 2016.

14

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Griffith, D., Deutscher, N., Krummel, P., Fraser, P., Schoot, M., and Allison, C.: The UoW FTIR trace gas analyser: Comparison with LoFlo,

AGAGE and tank measurements at Cape Grim and GASLAB, Baseline atmospheric program (Australia), 2010, 2010.

Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S.: A Fourier transform infrared trace gas

and isotope analyser for atmospheric applications, Atmospheric Measurement Techniques, 5, 2481–2498, doi:10.5194/amt-5-2481-2012,

http://www.atmos-meas-tech.net/5/2481/2012/, 2012.5

Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du Can, S.: High resolution fossil

fuel combustion CO2 emission fluxes for the United States, Environmental Science & Technology, 43, 5535–5541, 2009.

Hammer, S., Griffith, D. W. T., Konrad, G., Vardag, S., Caldow, C., and Levin, I.: Assessment of a multi-species in-situ FTIR for precise

atmospheric greenhouse gas observations, AMTD, pp. 3645–3692, 2012.

Heimann, M. and Körner, S.: The global atmospheric tracer model TM3, in: Technical Report, edited by Biogeochemie, M.-P.-I. F., vol. 5,10

p. 131, Max-Planck-Institut für Biogeochemie, Jena, 2003.

Karlsson, J., Jansson, M., and Jonsson, A.: Respiration of allochthonous organic carbon in unproductive forest lakes determined by the

Keeling plot method, Limnology and Oceanography, 52, 603–608, doi:10.4319/lo.2007.52.2.0603, http://dx.doi.org/10.4319/lo.2007.52.

2.0603, 2007.

Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochimica et Cosmochimica Acta,15

13, 322–224, 1958.

Keeling, C. D.: The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air., Geochim Cosmochim

Acta„ 24, 277–298, 1961.

Knohl, A., Werner, R. A., Brand, W. A., and Buchmann, N.: Short-term variations in δ13C of ecosystem respiration reveals link between

assimilation and respiration in a deciduous forest., Oecologia, 142, 70–82, doi:10.1007/s00442-004-1702-4, http://www.springerlink.com/20

content/q9qebq8u3674n2pw/, 2005.

Lai, C.-T., Ehleringer, J. R., Tans, P., Wofsy, S. C., Urbanski, S. P., and Hollinger, D. Y.: Estimating photosynthetic 13C discrimination

in terrestrial CO2 exchange from canopy to regional scales, Global Biogeochemical Cycles, 18, n/a–n/a, doi:10.1029/2003GB002148,

http://dx.doi.org/10.1029/2003GB002148, gB1041, 2004.

Levin, I., Bergamaschi, P., Dörr, H., and Trapp, D.: Stable isotopic signature of methane from major sources in Germany, Chemosphere, 26,25

161 – 177, doi:http://dx.doi.org/10.1016/0045-6535(93)90419-6, http://www.sciencedirect.com/science/article/pii/0045653593904196,

proceedings of the {NATO} advanced research workshop, 1993.

Lin, J., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the up-

stream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, Journal of Geophysical

Research, 108, 17pp, doi:10.1029/2002JD003161, 2003.30

Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201–215, 1994.

Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., Mondelain, D., Perrussel, O., Ramonet, M., Xueref-

Remy, I., and Bousquet, P.: CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010,

Atmospheric Chemistry and Physics, 13, 7343–7358, doi:10.5194/acp-13-7343-2013, http://www.atmos-chem-phys.net/13/7343/2013/,

2013.35

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A

satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM),

Global Biogeochemical Cycles, 22, 2008.

15

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Marland, G., Sr., R. A. P., Apps, M., Avissar, R., Betts, R. A., Davis, K. J., Frumhoff, P. C., Jackson, S. T., Joyce, L. A., Kauppi, P.,

Katzenberger, J., MacDicken, K. G., Neilson, R. P., Niles, J. O., dutta S. Niyogi, D., Norby, R. J., Pena, N., Sampson, N., and Xue, Y.:

The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy, Climate

Policy, 3, 149–157, doi:10.3763/cpol.2003.0318, http://www.tandfonline.com/doi/abs/10.3763/cpol.2003.0318, 2003.

McManus, J. B., Nelson, D. D., and Zahniser, M. S.: Long-term continuous sampling of 12CO2, 13CO2 and 12C18O16O in ambient air5

with a quantum cascade laser spectrometer, Isotopes in Environmental and Health Studies, 46, 49–63, doi:10.1080/10256011003661326,

http://dx.doi.org/10.1080/10256011003661326, pMID: 20229384, 2010.

Miller, J. B. and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements at various scales, Tellus, pp. 207–214, 2003.

Mook, W. G.: Environmental isotopes in the hydrological cycle - Principles and applications, Technical Documents in Hydrology, I, 2000.

Mook, W. G., Koopmans, M., Carter, A. F., and Keeling, C. D.: Seasonal, latitudinal, and secular variations in the abundance and10

isotopic ratios of atmospheric carbon dioxide: 1. Results from land stations, Journal of Geophysical Research, 88, 10 915–10 933,

doi:doi:10.1029/JC088iC15p10915, 1983.

Newman, S., Xu, X., Gurney, K. R., Hsu, Y.-K., Li, K.-F., Jiang, X., Keeling, R., Feng, S., O’Keefe, D., Patarasuk, R., Wong, K. W., Rao, P.,

Fischer, M. L., and Yung, Y. L.: Toward consistency between bottom-up CO2 emissions trends and top-down atmospheric measurements

in the Los Angeles megacity, Atmospheric Chemistry and Physics Discussions, 15, 29 591–29 638, doi:10.5194/acpd-15-29591-2015,15

http://www.atmos-chem-phys-discuss.net/15/29591/2015/, 2015.

Ogée, J., Peylin, P., Cuntz, M., Bariac, T., Brunet, Y., Berbigier, P., Richard, P., and Ciais, P.: Partitioning net ecosystem carbon exchange into

net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data,

Global Biogeochemical Cycles, 18, n/a–n/a, doi:10.1029/2003GB002166, http://dx.doi.org/10.1029/2003GB002166, gB2019, 2004.

Pataki, D. E.: The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochemical Cycles, 17,20

1022, 2003.

Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., Monteil, G., Houweling, S., Harris, E., Brunner, D., Fischer, H., Zazzeri,

G., Lowry, D., Nisbet, E. G., Brand, W. A., Necki, J. M., Emmenegger, L., and Mohn, J.: In-situ observations of the isotopic composition

of methane at the Cabauw tall tower site, Atmospheric Chemistry and Physics Discussions, 2016, 1–43, doi:10.5194/acp-2016-60, http:

//www.atmos-chem-phys-discuss.net/acp-2016-60/, 2016.25

Rödenbeck, C.: Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric

transport, http://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Publications/6.pdf, 2005.

Salmon, Y., Buchmann, N., and Barnard, R. L.: Response of δ13C in plant and soil respiration to a water pulse, Biogeosciences Discussions,

8, 4493–4527, doi:10.5194/bgd-8-4493-2011, http://www.biogeosciences-discuss.net/8/4493/2011/, 2011.

Schumacher, M., Werner, R. a., Meijer, H. a. J., Jansen, H. G., Brand, W. a., Geilmann, H., and Neubert, R. E. M.: Oxygen isotopic signature30

of CO2 from combustion processes, Atmospheric Chemistry and Physics, 11, 1473–1490, doi:10.5194/acp-11-1473-2011, http://www.

atmos-chem-phys.net/11/1473/2011/, 2011.

Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global distribution of C3 and C4 vegetation: Carbon cycle implications, Global

Biogeochemical Cycles, 17, 1–14, doi:10.1029/2001GB001807, http://dx.doi.org/10.1029/2001GB001807, 1006, 2003.

Torn, M. S., Biraud, S. C., Still, C. J., Riley, W. J., and Berry, J. A.: Seasonal and interannual variability in 13C composition of ecosystem35

carbon fluxes in the U.S. Southern Great Plains, Tellus B, 63, 181–195, doi:10.1111/j.1600-0889.2010.00519.x, http://dx.doi.org/10.1111/

j.1600-0889.2010.00519.x, 2011.

16

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Tuzson, B., Zeeman, M., Zahniser, M., and Emmenegger, L.: Quantum cascade laser based spectrometer for in situ stable carbon dioxide

isotope measurements, Infrared Physics and Technology, 51, 198–206, doi:http://dx.doi.org/10.1016/j.infrared.2007.05.006, http://www.

sciencedirect.com/science/article/pii/S135044950700059X, 2008.

Vardag, S. N., Hammer, S., O’Doherty, S., Spain, T. G., Wastine, B., Jordan, A., and Levin, I.: Comparisons of continuous atmospheric CH4,

CO2 and N2O measurements − results from a travelling instrument campaign at Mace Head, Atmospheric Chemistry and Physics, 14,5

8403–8418, doi:10.5194/acp-14-8403-2014, http://www.atmos-chem-phys.net/14/8403/2014/, 2014.

Vardag, S. N., Hammer, S., Sabasch, M., Griffith, D. W. T., and Levin, I.: First continuous measurements of δ18O−CO2 in air with a

Fourier transform infrared spectrometer, Atmospheric Measurement Techniques, 8, 579–592, doi:10.5194/amt-8-579-2015, http://www.

atmos-meas-tech.net/8/579/2015/, 2015a.

Vardag, S. N., Gerbig, C., Janssens-Maenhout, G., and Levin, I.: Estimation of continuous anthropogenic CO2: model-based evaluation of10

CO2, CO, δ13C(CO2) and ∆14C(CO2) tracer methods, Atmospheric Chemistry and Physics, 15, 12 705–12 729, doi:10.5194/acp-15-

12705-2015, http://www.atmos-chem-phys.net/15/12705/2015/, 2015b.

Vogel, F. R., Hammer, S., Steinhof, A., Kromer, B., and Levin, I.: Implication of weekly and diurnal 14C calibration on hourly esti-

mates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany, Tellus B, 62, 512–520, doi:10.1111/j.1600-

0889.2010.00477.x, http://doi.wiley.com/10.1111/j.1600-0889.2010.00477.x, 2010.15

Vogel, F. R., Huang, L., Ernst, D., Giroux, L., Racki, S., and Worthy, D.: Evaluation of a cavity ring-down spectrometer for in situ observations

of 13CO2, Atmospheric Measurement Techniques, 6, 301–308, 2013.

White, J., Vaughn, B., and Michel, S.: Stable Isotopic Composition of Atmospheric Carbon Dioxide (13C and 18O) from the NOAA ESRL

Carbon Cycle Cooperative Global Air Sampling Network, 1990-2014, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/, 2015.

Widory, D., Proust, E., Bellenfant, G., and Bour, O.: Assessing methane oxidation under landfill covers and its contribution to the above20

atmospheric CO2 levels: The added value of the isotope (δ13C- and δ18O-CO2; δ13C- and δD-CH4) approach, Waste management, 32,

1685–1692, 2012.

Zobitz, J., Keener, J., Schnyder, H., and Bowling, D.: Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships

in carbon cycle research, Esevier-Agricultural and Forest Meteorology, 136, 2006.

17

Biogeosciences Discuss., doi:10.5194/bg-2016-93, 2016
Manuscript under review for journal Biogeosciences
Published: 16 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 1. Regression-based determination of source signature using a Keeling plot. For clarity of illustration, we only draw three data

points instead of five, which we use for our computation. a) Constant source mix during the time of source signature determination leads

to the correct isotopic signature, δS . b) Change of source mix during the period of determination of a Keeling plot due to either a temporal

change of emission characteristics or a wind direction change leads to a biased result. These situations can be usually identified by a large

error of the intercept, δS (we choose an error >2 ‰ to reject these results) c) Sources and sinks with different isotopic signatures or sink

fractionation occur at the same time and lead to a wrong apparent source signature. Strong biases are prevented by choosing a minimum net

CO2 concentration range of 5 ppm and demanding a monotonous increase of CO2 during the five hours (see text for more details). Note that

the background value is displayed for illustration, but it is not used in the running Keeling plot approach.
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Figure 2. Source signature as calculated with the STILT model following equation A1. a) Unfiltered in black and filtered (for monotonous

increase and minimal range) in blue. Only about 15% of all data points fulfill our strict criteria. However, they are distributed approximately

evenly throughout the year. b) Diurnal cycle of modeled mean source signature due to diurnally varying mean source mix. Gray areas denote

times when source signature is usually filtered out.
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Figure 3. Comparison between modeled reference source signature (blue) and the running Keeling intercept (red), which is regression-based

using the modeled CO2 and δ13C(CO2) records. a) Long term comparison for the year 2012. The smoothed lines of window size 100 are

also shown in the respective colors. b) Summer excerpt and c) winter excerpt (grey areas in a) of both reference and regression-based source

signature. The crosses denote unfiltered data and bold stars denote filtered data.
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Figure 4. Running Keeling approach-based source signature in Heidelberg from 2011 until mid of 2015. The black line is the smoothed

running Keeling signature (50%-percentile filter with window size=100 hours). Half a window size before the beginning of a large data gap

the data is not further smoothed to prevent smoothing artifacts.
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Figure 5. a) A fixed isotopic end member of the biosphere (green, ± uncertainty of 0.5 ‰ (light green area) and 2 ‰ (crosshatched green))

together with the measured source signature (black) results in δF (red, ± its uncertainty). b) A fixed isotopic end member of the fuel mix

(red, ± uncertainty of 1 ‰ (salmon pink) and 2 ‰ (crosshatched gray-pink)) together with the measured source signature (black) results in

δbio (green, ± its uncertainty). In both cases, also the fuel CO2 share (or biospheric CO2 share) is required. We here use the share calculated

with STILT on the basis of EDGAR v4.3 and assume an absolute uncertainty of 10%.
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Figure B1. Continuous Heidelberg hourly FTIR record of (a) CO2 and (b) δ13C(CO2) from April 2011- June 2015. Data gaps occur when

the instrument was away during a measurement campaign or when instrumental problems occurred. The lower (and upper) 5% envelope is

drawn for CO2 and δ13C(CO2) in dark green and light blue, respectively.
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Table 1. δ13C(CO2) source signature of fuel types and biosphere as used in the model and the range of literature values. Note, that for a

specified region, the range of possible isotopic signature can often be narrowed down, if the origin and/or production process of the fuel type

is known.

Emission source Used δF,i or δbio

[‰]

Range of literature

values δF,i or δbio

[‰]

Reference

Fuel types

Coal -23 to -27 Mook, 2000

- Hard Coal -25

- Brown coal -27

Peat -28 -22 to -29 Mook, 2000; Schumacher et al., 2011

Oil -29 -19 to -35 Andres et al., 1994; Mook, 2000; Schumacher et al.,

2011

Gas

-Natural gas -46 -20 to -100 Andres et al., 1994

-Derived gas -28 -26 to -29 Bush et al., 2007

Solid waste -28 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Solid biomass -27 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Bio liquid -29 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)

Biogas -11 0 to -16 Widory et al., 2012; Levin et al., 1993

Biosphere -20 to -30 Lloyd and Farquhar, 1994; Mook, 2000

Photosynthesis -23 -20 to -30 typical range of C3 and C4 plant mixes Mook, 2000

Respiration -25 -20 to -30 typical range of C3 and C4 plant mixes (Mook, 2000)
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