

1 Hotspots of tropical land use emissions: a gross assessment of patterns, uncertainties, and

2 leading emission sources for the period 2000-2005

4 **Short title:** AFOLU greenhouse gas emissions hotspots

6 Authors affiliation:

Rosa Maria Roman-Cuesta^{1,2*}, Mariana C. Rufino¹, Martin Herold^{2*}, Klaus Butterbach-Bahl^{3,4}, Todd S. Rosenstock⁵, Mario Herrero⁶, Stephen Ogle⁷, Changsheng Li⁸, Benjamin Poulter⁹, Louis Verchot^{1,10}, Christopher Martius¹, John Stuiver², Sytze de Bruin².

11

¹² ¹ Center for International Forestry Research (CIFOR), P.O Box 0113 BOCBD, Bogor 16000,
¹³ Indonesia.

¹⁴ ² Laboratory of Geo-Information Science and Remote Sensing - Wageningen University.
¹⁵ Droevedaalsesteeg 3, 6708PB, Wageningen, The Netherlands.

¹⁶ ³ International Livestock Research Institute (ILRI) P.O. Box 30709, Nairobi 00100, Kenya

¹⁷ ⁴ Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU),
¹⁸ Garmisch-Partenkirchen, Germany

¹⁹ ⁵World Agroforestry Centre (ICRAF). PO Box 30677-00100, Nairobi, Kenya.

⁶ Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067, Australia.

⁷ Natural Resource Ecology Laboratory, Campus Delivery 1499, Colorado State University, Fort Collins, Colorado 80523-1499, USA.

⁸ Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA.

26 ⁹ Ecosystem Dynamics Laboratory. Montana State University. P.O. Box 172000.Bozeman, MT
27 59717-2000. USA.

28 ¹⁰ Earth Institute Center for Environmental Sustainability, Columbia University, New York, USA.

29 * Corresponding author: Rosa Maria Roman-Cuesta rosa.roman@wur.nl. Telephone : 0031-
30 (0)317-481276

31 **Keywords:** AFOLU, mitigation, greenhouse gases, CO₂, CH₄, N₂O, Land use emissions, tropics.

32

33 **Abstract**

34 According to the latest report of the Intergovernmental Panel on Climate Change (IPCC),
35 emissions must be cut by 41-72% below 2010 levels by 2050 for a likely chance of containing the
36 global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other
37 Land Use) roughly contributes with a quarter (~ 10 -12 PgCO₂e.yr⁻¹) of the net anthropogenic GHG
38 emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including
39 croplands, paddy rice and livestock. In spite of the importance of this sector, it is unclear where are
40 the regions with hotspots of AFOLU emissions, and how uncertain these emissions are. Here we
41 present a novel spatially comparable dataset containing annual mean estimates of gross AFOLU
42 emissions (CO₂, CH₄, N₂O), associated uncertainties, and leading emission sources, in a spatially
43 disaggregated manner (0.5°), for the tropics, for the period 2000-2005. Our data highlight: i) the
44 existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen
45 rainforest deforestation in Central and South America, fire in dry forests in Africa, and both
46 peatland emissions and agriculture in Asia; ii) a predominant contribution of forests and CO₂ to the
47 total AFOLU emissions (69%) and to their uncertainties (98%), iii) higher gross fluxes from forests
48 coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation
49 action, and iv) a lower contribution of non-CO₂ agricultural emissions to the total gross emissions
50 (ca. 25%) with livestock (15.5%) and rice (7%) leading the emissions. Gross AFOLU tropical
51 emissions 8.0 (5.5-12.2) were in the range of other databases 8.4 and 8.0 PgCO₂e.yr⁻¹ (FAOSTAT
52 and EDGAR respectively), but we offer a spatially detailed benchmark for monitoring progress on

53 reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of
54 emissions and data on their associated uncertainties, will assist national policy makers, investors
55 and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.

56

57 **1. INTRODUCTION**

58 Currently unabated CO₂e emissions need effective mitigation action (UNEP, 2015). Emissions
59 modelling suggests that to maintain the global mean temperature increase on track with the 2°C
60 target and to remain close to the 450 ppm of CO₂e by 2100, global greenhouse gas (GHG)
61 emissions must be cut in a range of 41-72% below the 2010 levels by 2050, and global emissions
62 levels must be reduced to zero (a balance between sources and sinks) by 2070 and below zero
63 through removal processes after that (IPCC, 2014; Anderson, 2015; UNEP 2015). To reach these
64 ambitious goals, it is imperative to identify regions where the mitigation of key emission sectors
65 may be most promising in terms of reducing fluxes, reducing emission trends, and/or maximizing
66 returns on mitigation investments. From all the sectors contributing to the total anthropogenic GHG
67 emissions, the Agriculture, Forestry and Other Land Use (AFOLU) sector participates with roughly
68 one quarter (10-12 PgCO₂e.yr⁻¹) of the total emissions (49 PgCO₂e.yr⁻¹) (IPCC, 2014). Optimistic
69 estimates suggest that the AFOLU sector -here used as synonym of land use sector- could
70 contribute 20 to 60% of the total cumulative abatement to 2030 through land-related mitigation
71 including bioenergy (Smith et al., 2014). However, it is unclear where are the regions with the
72 largest AFOLU emissions (hotspots of emissions), and how large their associated uncertainties
73 are.

74

75 Modelling efforts by the carbon community have long offered useful data but their focus is rather
76 global and CO₂-oriented, which omits other land use gases such as CH₄ and N₂O (Schulze et al.,
77 2009; Houghton et al., 2012; LeQuéré et al., 2012; Canadell et al., 2014; Tian et al., 2016).
78 Currently, the most used AFOLU data belong to two global multi-gas (CO₂, CH₄, N₂O) CO₂e
79 databases: FAOSTAT and EDGAR (Smith et al., 2014; Tubiello et al., 2015). While they offer very
80 valuable data, they suffer from several shortcomings: they do not provide uncertainties or
81 uncertainties are not provided at the spatial scale at which emissions are offered; they suffer from

82 untransparent documentation (e.g. EDGAR) or data are offered at inappropriate spatial scales to
83 effectively navigate mitigation implementation (e.g. country level in FAOSTAT). Thus, unlike
84 aggregated estimates, spatially explicit data favour targeted mitigation action and implementation
85 by identifying where are the areas within a country that hold the largest emissions, and what are
86 the key emission sources to address in these areas (e.g. deforestation, degradation, livestock,
87 cropland soils, paddy rice). Spatially explicit assessments of AFOLU emissions and their
88 associated uncertainties would assist national policy makers, investors and other decision-makers
89 who seek to understand the mitigation potential of the AFOLU sector, and which areas to prioritize
90 This potential is here defined as the maximum mitigation reduction that could be achieved without
91 technical or economic considerations. Better understanding of the AFOLU mitigation potentials will
92 also be important under the Paris Agreement (PA) since the fulfilment of the 2°C target is
93 dependent on the mitigation ambition presented by countries in their Nationally Determined
94 Contributions (NDCs). To safeguard this ambition a stock-take process has been defined, by
95 which countries are required to update their NDCs every five years, starting from 2020, and to
96 enhance their mitigation commitments from previous submissions (Bodle et al., 2016). It is
97 therefore imperative to improve our understanding of where and how much could countries
98 enhance their AFOLU ambition from what they have currently reported.

99

100 Mitigation action can be directed to reducing emissions by the sources, or to increasing the
101 absorptions by the sinks, or to both. While gross and net emissions are equally important, they
102 offer different information (Richter and Houghton, 2011; Houghton et al., 2012). Net land use
103 emissions represent the sum of emissions by sources and removals by sinks. Land use sinks refer
104 to any process that stores GHGs (e.g. forest growth, forest regrowth after disturbances, organic
105 matter stored in soils, etc) (see Richter and Houghton, 2011, for further details). Countries report
106 their emissions and their reduction targets based on net AFOLU balances (IPCC, 2006; Iversen et
107 al., 2014; Smith et al., 2014). Gross assessments offer separate data on emissions by sources
108 (gross emissions) and removals by sinks (gross removals), and are useful for designing mitigation
109 implementation because they offer direct information on the sources and sinks that may be acted
110 upon through policies and measures to enhance and promote mitigation. However, lack of ground

111 data makes the assessment of gross sinks much more difficult than the assessment of gross
112 sources (Lewis et al., 2009; Houghton et al., 2012; Grace et al., 2014; Brien et al., 2015) with a
113 particular gap on disturbed standing forests (Poorter et al., 2016).

114

115 For these reasons, we present here an assessment of AFOLU gross emissions only, for the tropics
116 and subtropics. We exclude sinks (e.g. regrowth of cleared forests or burned areas, and soil
117 carbon storage). We offer spatially explicit (0.5°) multi-gas (CO_2 , CH_4 , N_2O) CO_2e gross emission
118 data that help identifying the hotspots of land use emissions in the tropics and subtropics, and
119 associated uncertainties for 2000-2005. Our method uses a consistent approach to overcome
120 problems of different definitions, methods, and input data present in other approaches (e.g.
121 nationally reported data), allowing data comparability. It is a top-down approach based on
122 published spatially explicit GHG datasets for the key sources of emissions in the AFOLU sector as
123 identified in the Fifth Assessment Report of the IPCC (AR5) (Smith et al. 2014): deforestation, fire,
124 wood harvesting, crop soil emissions, paddy rice emission, enteric fermentation and manure
125 management. We address three questions at the landscape, tropical, and continental scales: 1.
126 Where are the hotspots of tropical AFOLU emissions and how uncertain are they? 2. What are the
127 main GHGs emissions behind these hotspots?, 3. What are the emission sources behind these
128 hotspots? 4. How do our gross AFOLU emissions relate to other AFOLU datasets such as
129 FAOSTAT or EDGAR?

130

131 **2. MATERIAL AND METHODS**

132 Our study area covers the tropics and the subtropics, including the more temperate regions of
133 South America (33° N to 54° S, 161° E to 117° W). It expands over a diversity of ecosystems that
134 range from dry woodlands and dry forests such as the African Miombo and South American
135 Chaco, to rainforests and moist forests such as evergreen broadleaved rainforests or montane
136 cloud forests. The years considered by our datasets varied, yet we selected the period 2000-2005
137 as the common temporal range for all the datasets. The exception was the rice emissions dataset,
138 that took 2010 as its baseline (See Table S2 in supplementary). This time period represents a
139 useful historical baseline against which countries can contrast the evolution of their AFOLU gross

140 emission performances. We consider the pixel size (0.5°) appropriate for landscape research, and
141 useful to visualize emissions hotspots. More detailed information about each data source and a
142 descriptive summary is available in the SOM (Table S2).

143

144 **2.1 Datasets**

145 Deforestation (Harris et al., 2012): Deforestation refers to gross emissions, associated to the area
146 of forest cover loss (above ground and below ground biomass) that is removed due to human or
147 natural disturbances, at 18.5 km of spatial resolution and aggregated in a 5-year period (2000-
148 2005). Deforestation areas are based on MODIS data at 18.5 km resolution, while carbon loss
149 derives from Saatchi et al., (2012) carbon map, at 1 km resolution. The disparate spatial resolution
150 of these two maps is solved by a randomization procedure (Harris et al. 2012). Information of
151 uncertainties is expressed as 5th and 95th percentiles, estimated through Monte Carlo simulations
152 and showed non-Gaussian distributions. Harris et al data defines the spatial and temporal extent of
153 our tropical AFOLU analysis.

154

155 Fire (Van der Werf et al., 2010): Fire emissions (CO₂, CH₄, N₂O) were obtained from the Global
156 Fire Emission Database (GFED) (www1) at 0.5° resolution, based on the CASA model which
157 includes four carbon pools (above and below ground biomass, litter and coarse woody debris).
158 Only carbon from organic soils was included. Original data were of global coverage for the period
159 1997-2013. We extracted a subset for the tropics and 2000-2005. Annual uncertainties for different
160 regions are expressed in Van der Werf et al. (2010) as the 5th, 25th, 50th, 75th, and 95th
161 percentiles of 2000 Monte Carlo runs. 1 σ uncertainties (expressed as percentage of the 50th
162 percentile) were also given, and considered Gaussian distributions. To move to pixel (0.5°)
163 uncertainties, we assigned the regional 1 σ to all the pixels within each region, for each gas. Total
164 fire emissions (CO₂e) per pixel were the sum of the annual means. The uncertainties of the
165 different gases (CH₄, N₂O and CO₂) were assumed independent and estimated by square rooting
166 the sum of their variances. Fire emissions are partitioned into six classes (savannah, agriculture,
167 woodlands, forests, peatlands and deforestation), which helped us remove CO₂ emissions from
168 savannahs and agriculture since the burning of these non-woody land uses is assumed carbon

169 neutral (e.g. biomass burned gets recovered by biomass growth in the next growing season)
170 (IPCC, 2006). CH₄ and N₂O emissions were, however, retained. We also removed deforestation
171 fires, to avoid double counting with deforestation emissions from Harris *et al.* (2012). Some
172 overlapping of deforestation and soil peat burning might however occur where peat fires and
173 deforestation fires show similar fire recurrences and might be wrongly labelled (Van der Werf *et al.*,
174 2010). Some peat fires might, therefore, respond to deforestation fires and cause some double
175 counting with Harris deforestation emissions. This would only affect Indonesia since it is the only
176 country that counts on spatially explicit peatland maps (Van der Werf *et al.* 2010), and would
177 therefore represent a small bias.

178

179 Wood harvesting (Poulter *et al.*, 2015): Wood harvesting is a 1° global gridded data set, generated
180 in the frame of the GEOCARBON project. It uses National Forest Inventory data and the FAO
181 Forest Resources Assessment (FRA). Aboveground biomass data were downscaled using a forest
182 mask from the Global Land Cover (GLC) 2000, and assuming that wood harvest was distributed
183 evenly. The original data were produced at the resolution of the GLC2000 (approx. 1X1 km) and
184 finally aggregated to the 1° scale. Wood Harvesting data consisted of five layers: 1. Round wood
185 Forest Area in hectares for each cell, 2. Fuelwood forest area in hectares for each cell, 3. Round
186 wood (industrial) harvest volume in m³, 4. Fuelwood harvest volume in m³, 5. Total harvest volume
187 (round wood + fuelwood) in m³. We chose fuel and industrial round wood harvest (m³) as our
188 harvest data. Wood harvest is a gross flux since no regrowth is considered. We assumed
189 instantaneous emissions assigned to the place of removal, without considering lags in decay, nor
190 the fate of the harvested product (i.e., slash, paper, furniture, construction), nor the possible
191 substitution effects (e.g. energy production using wood biomass instead of fossil fuels). We
192 therefore acknowledge that the instantaneous flux from wood harvest would be lower if these
193 effects had been considered. Emissions were transformed from m³ to MgCO₂.yr⁻¹ using an
194 emission factor of 0.25 (Mg C/m³) (Grace *et al.*, 2014), and a C to CO₂ factor shown in Table 1.
195 The resolution of this layer was larger than our grid so wood estimates were equally distributed
196 among our 0.5° grid cells. Because wood harvesting relied on official data reported by countries to
197 FAO, the authors assumed that harvesting emissions only derive from forests remaining forests

198 (legal logging), and assigned these emissions to forested areas only. Figure S3 in SOM shows
199 different spatial locations for deforestation and wood harvesting emissions. However, this
200 assumption might be wrong and some unprecise amount of double counting may occur.
201 Uncertainties were not estimated in the original harvest emission data. Therefore, and based on
202 the authors' expert opinion, we chose a 20 percent uncertainty value, per pixel.

203

204 *Cropland soils (USEPA 2013):* Cropland emissions (N_2O and soil dSOC) (changes in soil organic
205 carbon) were produced by Ogle et al., for the Environmental Protection Agency MAC-Report
206 (USEPA, 2013), at 0.5° resolution, for time periods 2000-2030 with five-year increments, based on
207 the DAYCENT ecosystem model (Ogle et al., 2007). For our AFOLU analysis we used the annual
208 mean emission data for the period 2000-2005. The original units ($\text{g N}_2\text{O-N.m}^{-2}.\text{y}^{-1}$ and $\text{gC.m}^{-2}.\text{y}^{-1}$)
209 were transformed to $\text{CO}_2\text{e.y}^{-1}.\text{grid cell}^{-1}$ (Table 1). The original dataset included direct and indirect
210 emissions from mineral-based cropland soil processes: synthetic and organic fertilization, residue
211 N, mineralization and fixation). To be consistent with other data sets we did not include indirect
212 emissions (e.g. NO_3^- leaching, N runoff in overland water flow). Emissions estimated by the
213 DAYCENT include soil and litter pools and modelled six major crop types only (maize, wheat,
214 barley, sorghum, soybean and millet) excluding other important tropical crops (sugar, coffee,
215 cacao, cotton, tobacco, etc). As a result, the cropland area simulated by DAYCENT was about
216 61% of the global non-rice cropland areas reported by FAOSTAT, which resulted in lower cropland
217 emissions when compared to other databases (e.g. FAOSTAT and EDGAR). Moreover, due to the
218 known poor performance of the DAYCENT model over organic soils, cropland emissions over
219 drained histosols were not part of the estimated emissions. Uncertainties were offered per pixel
220 (0.5°) as standard deviations per dSOC and N_2O separately. Final CO_2e uncertainties per pixel
221 were propagated as independent data using the squared root of the summed variances. To
222 complement the emission gap from the organic cultivated soils, we used a Tier 1 approach that
223 relied on the location of the tropical areas of histosols (ISRIC's global soil database), the location of
224 cropland areas per crop types (Monfreda et al., 2008) and a Tier 1 annual emission factor for
225 cultivated organic soils ($20 \text{ MgC.ha}^{-1} \text{ yr}^{-1}$) derived from the IPCC (IPCC 2006) (Supplementary).

226

227 Paddy Rice (USEPA 2013): We used data by Li et al., from the USEPA's MAC Report (2013).
228 Emissions were estimated by the Denitrification-Decomposition (DNDC) model, which simulates
229 production, crop yields, greenhouse gas fluxes (CH_4 , N_2O) and organic soil carbon (dSOC) of
230 global paddy rice, at 0.5° resolution under “business-as-usual” (BAU) condition and various
231 mitigation strategies as explained in Li et al., (2001, 2006). This model includes soil, litter, above
232 and below ground biomass as main carbon pools. Model outputs were reported for 2010 as the
233 baseline, and used 22 years of replications to account for climate variability. The original units
234 ($\text{KgC.ha}^{-1}.\text{yr}^{-1}$ for dSOC and CH_4 and $\text{KgN.ha}^{-1}.\text{yr}^{-1}$ for N_2O) were re-projected to equal-area
235 values, and transformed to CO_2e (Table 1). Emissions were estimated using the MSF (Most
236 Sensitive Factor) method which relies on an envelope approach and estimates maximum and
237 minimum emissions based on extreme soil properties. No mean values were offered. The
238 distribution of the data were known to be right skewed, and through the authors' expert judgement
239 a log-normal approach was considered to be the best –although not perfect- fit, from where to
240 estimate the mean (50th percentile), max and min (10th and 90th percentile) for each cell.
241

242 Livestock (Herrero et al., 2013): Livestock emission data includes enteric fermentation (CH_4) and
243 manure management (N_2O , CH_4) for the year 2000, for twenty-eight regions, eight livestock
244 production systems, four animal species (cattle, small ruminants, pigs, and poultry), and three
245 livestock products (milk, meat, and eggs), at 0.1° cell resolution. The CO_2e of enteric fermentation
246 and manure management were then summed to obtain a total emission value of livestock per grid
247 cell. Since no spatially explicit uncertainty data were provided, and based on the authors' expert
248 judgement, we applied a 20% value for livestock emissions per cell and per gas. Per cell livestock
249 GHG uncertainties were estimated by square rooting the sum of their variances.
250

251 **Other AFOLU databases**

252 *FAOSTAT database:* covers agriculture, forestry and other land uses and their associated
253 emissions of CO_2 , CH_4 and N_2O , following IPCC 2006 Guidelines at Tier 1 (Tubiello et al., 2014).
254 Emissions are estimated for nearly 200 countries, for the reference period 1961–2012 (agriculture)
255 and 1990–2012 (FOLU), based on activity data submitted to and collated by FAO (www1).

256 FAOSTAT includes estimates of emissions from biomass fires, peatland drainage and fires, based
257 on geo-spatial information, as well as on forest carbon stock changes (both emissions and
258 absorptions) based on national-level FAO Forest Resources Assessment data (FRA, 2010). FOLU
259 carbon balances in FAOSTAT are emissions from afforestation, reforestation, degradation,
260 regrowth, and harvest activities. The FAOSTAT emission estimates are based on annual FAO
261 emissions updates for AFOLU (Tubiello et al., 2014).

262

263 *EDGAR database*: The Emissions Database for Global Atmospheric Research (EDGAR) provides
264 global GHG emissions from multiple gases (CO₂, CH₄, N₂O) at 0.1° and country levels. It covers all
265 IPCC sectors (energy, industry, waste management, and AFOLU), mainly applying IPCC 2006
266 guidelines for emission estimations (EDGAR, 2012). We selected EDGAR's 4.2 Fast Track 2010
267 (FT 2010) data (www2). Emissions cover the period 2000-2010 in an annual basis, at the country
268 level and are offered as Gg of gas. No uncertainties are provided. Transformation to CO₂e used
269 AR4 100year-Global Warming Potential values to be consistent with other datasets. Metadata can
270 be found at EDGAR (2012), although further transparency and more complete documentation are
271 required for this database.

272

273 **2.2 Methods**

274 *Hotspots dataset*

275 Our AFOLU assessment is based on several assumptions: we focus on human-induced gross
276 emissions only, excluding sinks. We exclude emissions and sinks from unmanaged land (e.g. CH₄
277 or N₂O emissions from unmanaged natural wetlands). We focused on direct gross emissions
278 excluding indirect emissions whenever possible (e.g. indirect emissions from nitrate leaching and
279 surface runoff from croplands). Delayed fluxes (legacies) are important (e.g. underestimations of
280 up to 62% of the total emissions when recent legacy fluxes are excluded) (Houghton et al., 2012)
281 but are frequently omitted in GHG analyses that derive from remote sensing, such as our
282 deforestation emissions from Harris et al., (2012). Wood harvesting emissions also excluded
283 legacy fluxes. Therefore, no forest regrowth of cleared, burned, or disturbed forests are included in
284 our AFOLU 2000-2005 assessment. Other important components of the overall terrestrial and

285 carbon balance such as changes in litter, coarse woody debris and soil carbon, are also not part of
286 the emissions from deforestation and wood harvesting, since these pools were not considered in
287 the original datasets (see Table S2, SOM). For the other land uses, fire, agricultural soils, and
288 paddy rice, their emission models (e.g. CASA, DAYCENT and DCDN) included temporal spin-ups
289 to guarantee the stability of the emissions for their temporal scales under analysis. Certain legacies
290 have, therefore, been considered (please see references for further understanding of these
291 models). In the case of fires, since 90 percent of tropical fires are the result of human activity
292 (Roman-Cuesta et al., 2003; Van der Werf et al., 2010), we assumed all emissions to be human-
293 induced, independently of whether they are climate-driven. This might have resulted in some
294 overestimation of fire emissions in drier ecosystems where lightning may start the fires (e.g.
295 African woodlands). However, since we have excluded deforestation fires (to avoid double
296 counting with deforestation), and we have also excluded savanna and agricultural fires (under the
297 assumption of carbon neutrality), we are quite certain that our gross fire emissions for 2000-2005
298 are rather conservative. As requested by the IPCC (Federici et al., 2016), we have included all
299 biomass burning emissions without considerations of climate extremes, even though we
300 acknowledge the role of increased frequencies and intensities of droughts, and their interaction
301 with fire in human-disturbed landscapes in the tropics (Brando et al., 2014). We assumed
302 instantaneous emissions of all carbon that is lost from the land after human action (Tier 1, IPCC
303 2006) (e.g. fire, deforestation and wood harvesting), with no transboundary considerations (e.g. the
304 emissions are assigned wherever the disturbance takes place, particularly important for the
305 Harvested Wood Products). Life-cycle substitution effects are neither considered for harvested
306 wood (Peters et al., 2012).

307
308 Figure 1 describes the steps followed to produce our spatially explicit layers of gross AFOLU
309 emissions and uncertainties. We first assessed all possible emissions, land uses and human
310 activities under the framework of the IPCC 2006 AFOLU guidelines. We then selected the key
311 AFOLU emissions sources as identified in the IPCC Fifth Assessment Report (AR5) (Smith et al.,
312 2014). There were seven key emission sources, three within the forest sector: deforestation, fire,
313 and wood harvesting (these last two were considered as forest degradation), and four within

314 agriculture: cropland soils, paddy rice, enteric fermentation and manure management (aggregated
315 as livestock). We chose 100-year global warming potentials as provided in the Fourth Assessment
316 Report (AR4) (IPCC, 2007) (Table 1) because all emission datasets were prior to the launching of
317 AR5. We have preserved their choice to be consistent with their published estimates and with
318 emissions that could not be reproduced. To promote the spatial assessment we produced an
319 empty grid with cells of $0.5^\circ \times 0.5^\circ$ in a World Geographical reference System (WGS-84, lat-lon). To
320 correct for the unaccounted Earth distortions that come with a geographical system we used equal
321 area re-projected values whenever we needed area-weighted estimates of the emissions. This grid
322 was then populated with the seven emission sources, unit transformed and quality controlled and
323 assessed (see Supplementary). We used Monte Carlo simulations to aggregate the gross AFOLU
324 emissions and their uncertainties and produced four final estimates, per cell: mean annual AFOLU
325 emissions (50^{th} percentiles) ($\text{CO}_2\text{e.y}^{-1}$), associated variance, and 5^{th} and 95^{th} confidence intervals.
326 Data were then aggregated to continental, and tropical scales. When aggregating uncertainties at
327 the pixel level we assumed emission sources to be mutually uncorrelated. However, when the
328 aggregation of the uncertainties included a change of spatial support (e.g. pixel to continental, or
329 pixel to tropical) we assumed data complete dependence, which offered a conservative (worst-
330 case) scenario approach for the final aggregated uncertainties (see supplementary for further
331 information). To understand which emission sources (e.g. deforestation, degradation, livestock,
332 paddy rice, etc) contributed the most to the final uncertainties at the continental scale, we used the
333 variance data produced per pixel and aggregated them using the dependence assumption
334 expressed above. The attribution of the uncertainty was then estimated as percentages of the final
335 aggregated variance, for each emission source.

336

337 *Database comparison*

338 We contrast our hotspots of gross AFOLU emissions against the FAOSTAT and EDGAR
339 databases. We run the comparisons at the country level, and produce the estimates selecting the
340 same countries, years, emission sources, assumptions (e.g. carbon neutrality of grasslands and
341 agricultural waste), and rules (e.g. only direct emissions) to guarantee comparability.

342

343 **3. RESULTS AND DISCUSSION**

344 **3.1 AFOLU hotspots of emissions and uncertainties**

345 Tropical AFOLU hotspots were located on all continents but spatially concentrated in a few areas
346 only, with 25% of the tropical area responsible for 70% of the tropical AFOLU emissions (Figure
347 2a). Gross fluxes reached values of up to $90 \text{ MgCO}_2 \text{e ha}^{-1} \text{ yr}^{-1}$ in the hotspots, with Brazil, India,
348 Indonesia, Democratic Republic of Congo, Angola, Central African Republic, Mozambique,
349 Zambia, Malaysia, Sudan and Bangladesh, as the major contributors of tropical AFOLU emissions.
350 Hotspots were mainly led by forest emissions, both by deforestation and degradation, with large
351 hotspots over humid rainforests in the arch of deforestation in Brazil, and over the Miombo-Mopane
352 dry forests of Africa. Deforestation and peatland fires were important in Indonesia, combined with
353 agricultural hotspots from livestock and paddy rice. Agricultural emissions contributed less to the
354 hotspots, with Asia, particularly India and Bangladesh, as main emitting regions with different
355 relative contributions from livestock, paddy rice and cropland emissions (Figure 3). Southern Brazil,
356 northern Argentina and southeastern Paraguay also showed agricultural hotspots, mainly related to
357 livestock. Main GHGs followed these patterns, with CO_2 dominating the emissions from forest
358 activities, turning this gas into the main target for mitigation action. CH_4 dominated rice and
359 livestock emissions, while N_2O explained high cropland emissions (Figure 4).

360

361 Emissions uncertainties were the highest for the hotspot regions, reaching values of up to 30% of
362 the mean AFOLU emissions (Figure 2b), which is lower than the reported uncertainties for global
363 AFOLU values (e.g. 50 percent) (Smith et al., 2014). The coincidence of high AFOLU emissions
364 and high uncertainties is not surprising since the emissions from the hotspots were led by forests,
365 and forests host the largest emission uncertainties, in particular humid tropical forests undergoing
366 deforestation, such as Brazil and Indonesia, and forests with high fire emissions such as dry
367 Miombo ecosystems in Africa or peatlands in Asia. Deforestation has long been identified as a
368 main source of emissions uncertainties in the tropics due to the combined effect of uncertain areas
369 and uncertain carbon densities (Houghton 2010, Baccini et al., 2012, Houghton et al., 2012). High
370 uncertainties in fire emissions relate to biomass, burned soil depths, and combustion
371 completeness, which are the most uncertain components of Van der Werf et al.(2010)'s fire

372 emission model. Consequently, equatorial Asia and the African continent were the regions with the
373 largest fire uncertainties of the globe (Van der Werf et al., 2010) (Fig S5 in Supplementary).

374

375 Areas with high gross emissions that also host high uncertainties (e.g. forests) complicate the
376 effectiveness of the mitigation action. Thus, while these areas have higher mitigation potentials
377 (e.g. high emissions that could potentially be reduced) their uncertainties affect the reliability of
378 their emissions estimates and, therefore, the effectiveness to implement actions to stabilize
379 atmospheric GHGs (Grassi et al., 2008). For this reason, from a climate mitigation perspective and
380 without economic nor technical considerations, optimal mitigation scenarios would rather focus on
381 areas with large gross fluxes and low(er) uncertainties. These areas would include agricultural
382 hotspots (croplands, paddy rice and livestock) without much contribution from forest emissions
383 such as parts of India, Southeastern Brazil, Northern Argentina, and Central and Southern Africa
384 (southern DRC, Zambia, Angola) (Figure 5). Carter et al. (2015) identified that agricultural
385 intensification and the use of available non-forest land offer opportunities for agricultural mitigation
386 of up to 1 PgCO₂e. This value coincides with sectorial analyses of mitigation targets for 2030 that
387 would keep agricultural emissions in line with the 2 degree target (Wollenberg et al. 2016).

388 However, food security and economic development in countries with agro-businesses make
389 supply-based agricultural mitigation challenging (Smith et al., 2008; 2013). Moreover, as discussed
390 in Wollenberg et al. (2016) more transformative technical and policy options will be needed to help
391 agriculture achieve this 1 PgCO₂e target. Mitigation in the agricultural sector is further complicate
392 by being technically more complex and more expensive than forest mitigation (USEPA, 2013,
393 Smith et al., 2014). For these reasons, and in spite of their higher uncertainties, forests still remain
394 high in the mitigation agenda, as recently seen in the Paris Agreement, associated COP decisions,
395 and the New York Declaration on Forests.

396

397 **3.2 Tropical AFOLU emissions**

398 AFOLU data from the AR5 (e.g. Figure 11.2 in Smith et al., 2014) show how the tropics have
399 contributed with $\geq 70\%$ of the global AFOLU emissions in the last decades, making this region the
400 right place to search for hotspots of land use emissions. Our aggregated gross AFOLU emissions

401 estimates of 8.0 (5.5-12.2) PgCO₂e.yr⁻¹ were in the range of other gross estimates for the same
402 region and time period: 8.4, and 8.0 PgCO₂e.yr⁻¹ for FAOSTAT and EDGAR respectively (Table 2).
403 In spite of this good agreement, databases disagreed on the relative contribution of the leading
404 emissions sources (Figure 6). Forests emissions showed the largest divergences, particularly
405 forest degradation (fire and wood harvesting emissions). This outcome was expected since forest
406 emissions were responsible for ≥70% of the tropical gross AFOLU emissions in all the databases
407 (Table 2). Gross degradation emissions –rather than deforestation- led the forest emissions in our
408 AFOLU gross emissions (39% vs 36% of the tropical emissions, respectively) (Table 2), with a
409 degradation to deforestation emission ratio of 108%, reinforcing the great importance of reducing
410 degradation for effective mitigation. Ratios above 100% for gross degradation vs deforestation had
411 already been reported by Houghton et al. (2012) and Federici et al. (2015). Lower ratios have been
412 observed in smaller areas (e.g. 40% Amazon, 47% Peruvian Amazon) (Asner et al., 2010;
413 Berenguer et al., 2014) or when the ratio focuses on net fluxes of degradation (e.g. 25-35% of the
414 net LULCC flux, if wood harvesting and shifting cultivation were not considered, and an extra 11%
415 over the net LUCC flux when excluding peatland fire emissions in Southeast Asia alone)
416 (Houghton et al., 2012).

417
418 In our hotspots analyses, fire led forest degradation in the tropics with almost a quarter (24.6%) of
419 the gross AFOLU emissions. Since we had excluded deforestation fires, most of our fire emissions
420 relate to woodlands and forest degradation. Their exclusion or incomplete inclusion would
421 therefore result in large emission omissions in gross AFOLU assessments, and their management
422 are key for reducing tropical emissions. Fire degradation emissions are recurrently omitted in
423 global AFOLU assessments under the assumption of carbon neutrality of the affected burned
424 areas (e.g. whatever carbon is emitted through fire will be fixed again by regrowth and recovery).
425 (Houghton et al., 2012; Le Quéré et al., 2012; Canadell et al., 2014; Smith et al. 2014). This
426 assumption does not consider current evidence of non-steady states after fire due to climatic
427 pressures, humanized landscapes (fragmented, multi-disturbed), and increased frequencies of
428 fires (Cochrane et al., 1999; Roman-Cuesta et al., 2014; Alencar et al., 2011, 2015; Brando et al.,
429 2014; Oliveras et al., 2014; Pütz et al., 2014). Halted successional pathways and vegetation shifts

430 represent a large, yet unknown proportion of the burned forest ecosystems in the tropics that
431 require further research. Recent estimates suggest that post-fire carbon recoveries in the Amazon
432 are leading to degradation emissions in the order of $46\pm29.9 \text{ MgC.ha}^{-1}$ (Balch et al., under review).
433 In spite of our incomplete knowledge of forest post-disturbance recovery pathways (e.g. poorly
434 understood processes, omitted emissions, missing pools, unconsidered GHGs), the importance of
435 the forest sector for mitigation action is evidenced by the large amount of countries explicitly
436 mentioning it in their INDCs (60%) (Grassi et al., 2015). Moreover, countries count on financial
437 support to minimize their forest emissions and enhance their sinks, at national scale, through the
438 REDD+ mechanism, which has now become part of the Paris Agreement (Climate Focus, 2015).

439

440 In the agricultural sector, our emissions reached estimates of $1.9 (1.5\text{-}2.5) \text{ PgCO}_2\text{e.yr}^{-1}$, in the
441 range of the other databases ($2.5, 2.1 \text{ PgCO}_2\text{e.yr}^{-1}$ for FAOSTAT and EDGAR respectively). These
442 values, represent a relatively small part of the AFOLU emissions in the tropics (25-30%) but an
443 attribution of the forest emissions to their drivers would highlight back the importance of agriculture
444 as the main engine behind tropical forest loss and emissions. Thus, for the period 1980-2000,
445 83% of the agricultural expansion in the tropics was at the expense of forests (Gibbs et al., 2010),
446 calling for integrated mitigation programmes that simultaneously include forestry and agriculture
447 (Carter et al., 2015). Our agricultural estimates represented only ca. half of the agricultural
448 emissions reported globally for 2000-2009 ($5\text{-}6 \text{ PgCO}_2\text{e.yr}^{-1}$) (Smith et al., 2014; Tubiello et al.,
449 2015). This highlights the major role of agriculture in non-tropical countries and emergent
450 economies like China, although agricultural emissions are rising faster in developing countries than
451 in developed ones (Smith et al., 2014). The agricultural sector is the largest contributor to global
452 anthropogenic non-CO₂ GHGs, accounting for 56 % of emissions in 2005 (USEPA, 2013). Enteric
453 fermentation and agricultural soils are globally the main sources of agricultural emissions (Smith et
454 al., 2014), and show a strong rising trend since the 70's (1% per decade) due to increases in
455 animal heads and the use of synthetic fertilizers (Tubiello et al., 2015). Areas with growing
456 emission trends are attractive for land-based mitigation action and countries are engaging in
457 agricultural mitigation in their INDCs through climate smart initiatives (Richards et al., 2015).
458 However, more transformative technical and policy options and higher level of financial support will

459 be needed for further achievements in this sector (Wollenberg et al., in press). The most prominent
460 agricultural mitigation practices include improved cropland and grazing land management,
461 restoration of degraded lands, and cultivated organic soils. Lower, but still significant mitigation
462 potential is provided by water and rice management, livestock management and manure
463 management, set-aside, land use change and agroforestry (Smith et al., 2008).

464

465 In terms of gases, CO₂ led the AFOLU emissions in the tropics with ca.70% of the tropical
466 emissions 5.5 (3.3-9.5) PgCO₂e.yr⁻¹ (Table 2, Figure 4). The remaining non-CO₂ contribution (30%)
467 was mainly led by CH₄ 1.5 (1.1-1.9) PgCO₂e.yr⁻¹, due to livestock and rice. Non-CO₂ emissions
468 from biomass burning (N₂O and CH₄), represented 15-34% of the CO₂ emissions in the tropics
469 (Table 2). These values reinforce the need to run multi-gas assessments (CO₂, CH₄, N₂O) for the
470 AFOLU sector in order to gain a more coherent understanding on how the land affects the
471 atmospheric composition and forces the climate. Thus, while temperature rise by around the end of
472 this century will relate to the total emissions of long-lived greenhouse gases between 2000 and
473 2100 (e.g. CO₂) (Anderson 2012) recent research concludes that cumulative warming capacity of
474 concurrent biogenic CH₄ and N₂O emissions is about a factor of 2 larger than the cooling effect
475 resulting from the global land CO₂ uptake in the 2000s (Tian et al., 2016). This results in a net
476 positive cumulative impact of the three GHGs on the planetary energy budget, which calls for
477 shorter-term mitigation initiatives (Tian et al., 2016).

478

479 At the aggregated tropical scale, uncertainties were higher (up to 50% of the mean emissions) than
480 at the landscape scale (0.5°) (30%), in line with other reports (Smith et al., 2014; Tubiello et al.,
481 2015). The spatial scale of the emission assessments influences, therefore, the final uncertainties
482 due to assumptions about the spatial correlation of the errors. Several authors have suggested the
483 importance of working at more detailed spatial scales (e.g.30m) to reduce the uncertainties,
484 particularly of forest emissions, by having more accurate data on forest area changes and carbon
485 densities (Houghton, 2005; Grassi et al., 2008; Asner et al., 2010; Baccini et al., 2012; Houghton et
486 al., 2012).

487

488 To better understand the uncertainty role of the different emission sources at the tropical
489 aggregated scale, we ran a partitioning of the tropical uncertainty. We found a disproportional
490 contribution of deforestation to the tropical uncertainty budget (92.5%) (Table 2), which agreed with
491 the results from other researchers (Morton et al., 2011) but left the remaining emission sources
492 with a surprisingly modest contribution to the final uncertainty (7.5%). As it was the case for the
493 hotspots, untangling the relative contribution of the emission sources to the tropical uncertainty
494 budget brings in trade-offs between prioritizing mitigation action on sources that are large emitters
495 but are highly uncertain (e.g. deforestation is responsible for 36% of the emissions but carries
496 almost all the tropical emission uncertainty (92.5%) (Table 2) or choosing emitters that contribute
497 less to the total emissions but are more certain (e.g. livestock contributed less to the tropical
498 emissions (15%) but had a very small part on the uncertainty budget (1.4%) (Table 2) (Figure 5).
499

500 **3.3 Continental AFOLU emissions**

501 Continents contributed similarly to the tropical AFOLU gross emissions: 2.7 (1.8-4.5), 2.8 (1.9-4.0),
502 2.5 (1.7-3.8) PgCO₂e.yr⁻¹, for Central and South (CS) America, Africa, and Asia, respectively
503 (Table 2). Area-weighted emissions would, however, turn Asia into the largest continental source
504 with a mean of 3.2 MgCO₂e.ha⁻¹. yr⁻¹ followed by Africa and CS America with 1.3 and 1.35
505 MgCO₂e.ha⁻¹. yr⁻¹, each. The leading sources for the continental emissions disagreed among
506 databases but our hotspot research suggested that African emissions were dominated by fire over
507 dry forests (52.6% of the African emissions, Table 2) which corroborates its description as “the fire
508 continent” (Figure 7) (Mbow, 2014). Any effective mitigation action will therefore need to consider
509 fire management, particularly in Miombo dry forests and Sudano-Sahelian woodlands, which are
510 the most affected forests and the largest contributors to emissions hotspots. Contrastingly, Central
511 and South America were mainly led by deforestation (60% of the continental emissions) and forest
512 degradation (20%), mostly affecting humid forests. And while deforestation in Brazilian rainforests
513 has since reduced, it has increased in dry forest in the region (e.g. the Chaco region in Argentina,
514 Paraguay, and Bolivia) (Hansen et al., 2013), and forest degradation has also increased (Brando et
515 al., 2014; Federici et al., 2015). The Asian emissions were the most diverse and were similarly led
516 by different sources: i) paddy rice (Asia is the world’s largest rice-producing region and is

517 responsible for over 80% of the total CH₄ emissions) (USEPA 2013); ii) livestock activities
518 (Tubiello et al., 2014); iii) deforestation (Hansen et al., 2013), and iv) fire over peatlands,
519 particularly in Indonesia (Van der Werf et al., 2010; Gaveau et al., 2014) (Table 2). Moreover, the
520 Asian continent has the peculiarity of emitting almost half of the tropical non-CO₂ emissions (47%,
521 Table 2), as observed by other authors (USEPA, 2013) and still has positively growing emission
522 trends (Tubiello et al., 2014). Effective mitigation action on non-CO₂ emissions is therefore key for
523 Asian and global mitigation.

524

525 The partitioning of the tropical AFOLU uncertainty at continental level showed that CS America
526 contributed with half of the variance (48%, Table 2), which was expected since the emissions of
527 this continent are led by the most uncertain source (deforestation). Africa and Asia contributed
528 similarly to the rest of the uncertainty (27.3% and 24.7% respectively). Based on the uncertainty of
529 the emissions, mitigation investments in CS America, would be, therefore, less effective than
530 investing in Africa and Asia, particularly out of the forests.

531

532 **4. CONCLUSIONS**

533 Our dataset offers novel landscape scale information on the spatial distribution of hotspots of
534 AFOLU gross emissions and their uncertainties, disaggregated by gases and by leading emission
535 sources. This AFOLU analysis can be useful as a benchmark against which countries can assess
536 their progress on reducing their AFOLU gross emissions, in a comparable and comprehensive
537 manner across the tropics. Moreover, gross assessments offer useful insights on potential drivers
538 behind the emission sources, which can then lead to policies and measures to reduce these
539 emissions, through appropriate mitigation actions. Aggregated gross emissions at the country level
540 are offered in the Supplementary Material. Our data highlight: i) the existence of AFOLU emissions
541 hotspots on all continents, with particular importance of evergreen rainforest deforestation in
542 Central and South America, fire in dry forests in Africa, and both peatland emissions and
543 agriculture in Asia; ii) a predominant contribution of forests and CO₂ to the total AFOLU emissions
544 (69%) and to their uncertainties (98%), iii) higher gross fluxes from forests coincide with higher
545 uncertainties, making agricultural hotspots appealing for effective mitigation action, however iv)

546 agricultural non-CO₂ emissions are much lower (ca. 25% of the total gross emissions in the tropics
547 for 2000-2005) than forests, with livestock (15.5%) and rice (7%) leading the emissions. Gross
548 AFOLU tropical emissions 8.0 (5.5-12.2) were in the range of other databases 8.4 and 8.0
549 PgCO₂e.yr⁻¹ (FAOSTAT and EDGAR respectively).

550

551 It is worth remarking that under gross assessments, sustainable wood harvesting and fires not
552 leading to long-term declines in carbon storage would still be considered as hotspots of emissions
553 since the subsequent recovery of carbon stocks is not considered. Moreover, gross emission are
554 not to be confused with the overall net land-to-atmosphere flux due to human land use, because
555 legacy effects and changes in litter and soil organic matter are not included. Independently of
556 whether we are working with gross or net emissions, the time scale under analysis (e.g. 5 years in
557 our study) and the selected methodological assumptions, will strongly influence the final AFOLU
558 estimates (e.g. exclusion of indirect emissions, exclusion of non-managed land, exclusion of legacy
559 emissions, consideration of instantaneous emissions, exclusion of transboundary effects) and
560 mitigation options (e.g. exclusion of substitution effects).

561

562 Net assessments of AFOLU emissions would be closer to what countries are requested to report
563 under the UNFCCC but, how different would it be from our gross hotspots results? We argue that,
564 under our short-term temporal analysis (5 years), the spatial location of our gross AFOLU hotspots
565 would not differ much, although the absolute emission estimates could be lower. Thus, for
566 agricultural driven hotspots (crops, livestock, rice), gross and net assessments would result in the
567 same hotspots of AFOLU emissions because only soil organic storage acts as a sink to
568 compensate against agricultural non-CO₂ emissions, and soil carbon storage rates are small and
569 short-lived (Smith et al., 2008). For areas with extended forests, gross and net AFOLU hotspots
570 can differ. This would not be the case for areas affected by large scale deforestation and/or intense
571 degradation, because the 5-year time frame of our study would not allow for significant carbon
572 recovery after disturbance. Most of the differences between gross and net assessments would
573 then concentrate in two forested areas: i) those undergoing large scale, high density removals (e.g.
574 afforestation/ reforestation processes) such as in China –not included in this research-, Viet Nam

575 and India, and in ii) forested areas affected by smaller scale disturbances and less intense carbon
576 processes that do not lead to deforestation, where forest emissions could be compensated by
577 removals from the standing forests. Main differences between gross and net land use hotspots
578 assessments in the tropics would then concentrate on areas with extended forests undergoing
579 small-scale mid-level disturbances: Amazonian areas out of the arch of deforestation, wood
580 harvesting in the Congo Basin, and lower impact disturbances in Mesoamerica, including Mexico.

581

582

583 This study also contributes to the debate on tropical mitigation potentials of agriculture and
584 forestry. Thus, even if global estimates of agriculture and forestry emissions have roughly similar
585 mitigation potentials (Smith et al., 2014; Tubiello et al., 2015), economic feasibilities differ. Forests
586 have two to three-fold greater economic mitigation potentials than agriculture (e.g. 0.2-13 vs 0.3-
587 4.6 PgCO₂e.yr⁻¹ respectively) at prices up to 100 USD/MgCO₂e (Bajzelj et al., 2014; Havlik et al.,
588 2014; Smith et al., 2014). This means that for the same price, more emission reductions can be
589 achieved in the forest sector. These unequal results relate to forests sector being much more
590 carbon dense, to lower costs per area unit to monitor and implement actions against deforestation
591 and degradation, but also to concerns about food security and adaptation needs (Smith et al.,
592 2013; Havlik et al., 2014, Wollenberg et al, 2016). Thus, notwithstanding the importance of
593 agricultural mitigation, forests are more cost effective alternatives and, although uncertain, their
594 multiple ecosystem services will keep them high as desirable mitigation targets in the political
595 arena.

596

597 **5. REFERENCES**

598 Alencar, A., Asner, G., Knapp, D., Zarin, D.: Temporal variability of forest fires in eastern
599 Amazonia. *Ecol. Appl.*, 21, 2397-2412, 2011.

600 Alencar, A., Brando, P., Asner, G., Putz, F.: Landscape fragmentation, severe drought, and the
601 new Amazon forest fire regime. *Ecol Appl.*, 25, 1493-1505, 2015.

602 Anderson, K.: The inconvenient truth of carbon offsets. *Nature*, 484, 7, 2012.

603 Anderson, K.: Duality in climate science. *Nature Geoscience*, 8, 898–900, 2015.

604 Asner, G., Powel, G., Mascaro, J., Knapp, D., Clark, J., Jacobson J., Kennedy-Bowdoin T., Balaji
605 A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, Mi., Flint Hughes, R.: High resolution forest
606 carbon stocks and emissions in the Amazon. *P. Natl. Acad. Sci.*, 107, 16738-16742, 2010.

607 Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Mensashe, D., Hackler, J., Beck, P.,
608 Dubayah, R., Friedl, M., Samanta, S., Houghton, R.: Estimated carbon dioxide emissions from
609 tropical deforestation improved by carbon-density maps. *Nature Climate Change*, 2, 182-185,
610 2012.

611 Bajzelj, B., Richards, K., Allwood, J., Smith, P., Dennis, J., Curmi, E., Gilligan, C.: Importance of
612 food-demand management for climate mitigation. *Nature Climate Change*, 4, 924-929, 2014.

613 Balch, J., Andrade, R., Parsons, A., Armenteras, D., Roman-Cuesta, RM., Bulkan, J.: A synthesis
614 of tropical forest degradation scenarios and carbon stock trajectories for REDD+. Under review.

615 Conservation Biology.

616 Berenguer, E., Ferreira, J., Gardner, T., Aragao, L., Barbosa-DeCarmargo, P., Cerri, C., Durigan,
617 M., Cosme de Olivera, R., Vieira, C., Barlow, J.: A large-scale field assessment of carbon stocks
618 in human-modified tropical forests. *Glob. Change Biol.*, 20, 3713-3726, 2014.

619 Bodle, R., Donat, L., Duwe, M.: The Paris Agreement: Analysis, Assessment and Outlook. German
620 Federal Environment Agency (UBA) Research Paper. Dessau-Roßlau: Umweltbundesamt, 2016.
621 Available at: <http://ecologic.eu/13321>

622 Brando, P., Balch, J., Nepstad, D., Morton, D., Putz, F., Coe, M., Silverio, D., Macedo, M.,
623 Davidson, E., Nobrega, C., Alencar, A., Soares-Filho, B.: Abrupt increases in Amazonian tree
624 mortality due to drought-fire interactions. *P. Natl. Acad. Sci.*, 11, 6347-6352, 2014.

625 Brien, R., Phillips, O., Feldspausch, T., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., Morteagudo-
626 Mendoza, A., Malhi, Y., Lewis, S., Vasquez Martinez, R., Alexiades, M., Alvarez, E., Alvarez-
627 Loayzada, P., Zagt, R.: Long term decline of the Amazon carbon sink. *Nature*, 519, 344-361,
628 2015.

629 Canadell, J., Schulze. D. Global potential of biospheric carbon management for climate mitigation.
630 Nature Communications, 5, 5282-5293, 2014.

631 Carter, S., Herold, M., Rufino, M., Neumann, K., Kooistra, L. Verchot, L.: Mitigation of agricultural
632 emissions in the tropics: comparing forest land-sparing options at the national scale.
633 Biogeosciences,12, 4809-4825, 2015.

634 Climate Focus. Forest and land use in the Paris Agreement. Climate Focus Brief on the Paris
635 Agreement. 2015. Available at: <http://www.climatefocus.com/sites/default/files/20151223%20Land%20Use%20and%20the%20Paris%20Agreement%20FIN.pdf>

637 Cochrane, M., Alencar, A., Schulze, M., Souza, C., Nepstad, D., Lefebvre, P., Davidson, E.:
638 Positive feedbacks in the fire dynamics of closed canopy tropical forests. Science, 284, 1832-
639 1835, 1999.

640 EDGAR. The Emissions Database for Global Atmospheric Research. Part III: Greenhouse gas
641 emissions, 2012. Available at: http://edgar.jrc.ec.europa.eu/docs/IEA_PARTIII.pdf

642 FRA. Forest Resources Assessment, 2010. Available at <http://www.fao.org/forestry/fra/fra2010/en/>

643 Federici, S., Tubiello, F., Salvatore, M., Jacobs, H., Schmidhuber, J.: New estimates of CO₂ forest
644 emissions and removals: 1990-2015. Forest Ecol.Manag., 3, 89-98, 2015.

645 Federici, S., Grassi, G., Harris, N., Lee, D., Neeff, T., Penman, J., Sanz-Sanchez, M., Wolosin M.:
646 GHG fluxes from forests: an assessment of national reporting and independent science in the
647 context of the Paris Agreement. Working Paper. UCLA, San Francisco, 2016. Available at:
648 http://www.climateandlandusealliance.org/wp-content/uploads/2016/06/GHG_Fluxes_From_Forests_Working_Paper.pdf

649 Gaveau, D., Salim, M., Hergoualc'h, K., Locatelli, B., Sloan, S., Wooster, M., Marlier, M., Molidena,
650 E., Yoen, H., DeFries, R., Verchot, L., Murdisarso, D., Nasi, R., Holgrem, P., Sheil, D.: Major
651 atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence
652 from the 2013 fires. Scientific Reports, 4,6112-6119, 2014.

653 Gibbs, H., Ruesch, A., Achard, F., Clayton, M., Holmgren, P., Ramankutty, N., Foley, A.:Tropical
654 forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl.
655 Acad. Sci.,107,16732–16737, 2010.

656 Grace, J., Mitchard, E., Gloor, E.: Perturbations in the carbon budget of the tropics. Glob. Change
657 Biol., 20, 3238-3255, 2014.

659 Grassi, G., Monni, S., Federici, S., Achard, F., Mollicone, D.: Applying the conservativeness
660 principle to REDD to deal with uncertainties of the estimates. *Environ. Res. Lett.*, 3, 035005,
661 2008.

662 Grassi, G., Dentener, F.: Quantifying the contribution of the Land Use Sector to the Paris Climate
663 Agreement. The LULUCF sector within the Intended Nationally Determined Contributions. EUR
664 27561.JRC Science for Policy Report. Ispra, Italy, 2015. Available at: <http://publications.jrc.ec.europa.eu/repository/bitstream/JRC98451/jrc%20lulucf-indc%20report.pdf>

665 Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tuykavina, A., Thau, D.,
666 Stehman, S., Goetz, S., Loveland, T., Kommareddy, A., Egorov, A., Chini, L., Justice, C.,
667 Townshend, J.: High-resolution global maps of 21st-century forest cover change. *Science*, 342,
668 850-853, 2013.

670 Harris, N., Brown, S., Hagen, S., Saatchi, S., Petrova, S., Salas, W., Hansen, M., Potapov, P.,
671 Lotsch, A.: Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. *Science*,
672 336, 1576-1578, 2012.

673 Havlik, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M., Mosnier, A., Thornton,
674 P., Böttcher, H., Conant, R., Frank, S., Fritz, S., Fuss, S., Kraxner, F., Notenbaert, A.: Climate
675 change mitigation through livestock system transitions. *Proc. Natl. Acad. Sci.*, 111, 3709–3714,
676 2014.

677 Herrero, M., Havlik, P., Valin, H., Notenbaert, A., Rufino, M., Thornton, P., Blümmel, M., Weiss, F.,
678 Grace, D., Obesteiner, M.: Biomass use, production, feed efficiencies, and greenhouse gas
679 emissions from global livestock systems. *Proc. Natl. Acad. Sci.*, 110, 20888-20893, 2013.

680 Houghton, R.: Aboveground forest biomass and the global carbon balance. *Glob. Change Biol.*, 11,
681 945-958, 2005.

682 Houghton, R.: How well do we know the flux of CO₂ from land-use change? *Tellus B*, 62, 337-351,
683 2010.

684 Houghton, R.: Carbon emissions and the drivers of deforestation and forest degradation in the
685 tropics. *Curr. Opin. Environ. Sustain.*, 4, 597-603, 2012.

686 Houghton, RA., House, JI., Pongratz, J., van der Werf, G., DeFries, R., Hansen, M., Le Quere, C.,
687 Ramankutty, R.: Carbon emissions from land use and land-cover change. *Biogeosciences*, 9,
688 5125-5142, 2012.

689 IPCC. Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse gas
690 Inventories. Vol. 4: Agriculture, Forestry and Other Land Use (eds Eggleston S, Buendia L, Miwa
691 K, Ngara T, Tanabe K). IGES, Kanagawa, Japan, 2006.

692 IPCC. Changes in Atmospheric Constituents and in Radiative Forcing. In: Contribution of Working
693 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change:
694 The Physical Science Basis (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt
695 KB, Tignor M, and Miller HL). Cambridge University Press, Cambridge, United Kingdom and
696 New York, NY, USA, 2007.

697 IPCC. Intergovernmental Panel on Climate Change. Summary for Policymakers. In: Climate
698 Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
699 Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer O,
700 Pichs-Madruga R, Sokona Y, E, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S,
701 Eickemeier P, Kriemann B, Savolainen J, Schlammer S, von Stechow C, Zwickel T, Minx JC).
702 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.

703 Iversen P., Lee D., and Rocha M.: Understanding Land Use in the UNFCCC, Summary for
704 Policymakers, 2014. Available at: http://www.fcmcglobal.org/documents/Land_Use_Guide_Summary.pdf

705 Le Quéré, C., Peters, G.P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P.,
706 Houghton, R.A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker,
707 D. C.E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J.I.,
708 Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C.,
709 Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R.,
710 Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D.,
711 Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle,
712 S. Global carbon budget 2013, *Earth Syst. Sci. Data*, 6, 235-263, 2014.

714 Lewis, S., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T., Ojo, L., Phillips, O.,
715 Reitsma, J., White, L., Comiskey, J., Djuikouo, M., Ewango, E., Feldspausch, T., Reitsma, J.,
716 Wöll, H.: Increasing carbon storage in intact African tropical forests. *Nature*, 457, 1003-1007,
717 2009.

718 Li, C.: Biogeochemical concepts and methodologies: Development of the DNDC model.
719 *Quaternary Sciences*, 21, 89-99, 2001.

720 Li, C., Salas, W., DeAngelo, B., Rose, S.: Assessing alternatives for mitigating net greenhouse gas
721 emissions and increasing yields from rice production in China over the next 20 years. *J. Environ.*
722 *Qual.*, 35, 1554-1565, 2006,

723 Mbow, Ch.: Biogeoscience: Africa's greenhouse gas budget is in the red. *Nature*, 508, 192-193,
724 2014.

725 Monfreda, C., Ramankutty, N., Foley, A.: Farming the planet: Geographical distribution of crop
726 areas, yields, physiological types, and net primary production in the year 2000. *Global*
727 *Biogeochem. Cycles*, 22, 1022-1041, 2008.

728 Morton, D., Sales, M., Souza, C., Griscom, B.: Historic emissions from deforestation and forest
729 degradation in Mato Grosso Brazil: 1) source data uncertainties. *Carbon Balance Management*,
730 6, 18-31, 2011.

731 Ogle, S., Breidt, F., Easter, M., Williams, S., Paustian, K.: An empirically based approach for
732 estimating uncertainty associated with modelling carbon sequestration in soils. *Ecological*
733 *modelling*, 205, 453-463, 2007

734 Oliveras, I., Anderson, D., Malhi, Y.: Application of remote sensing to understanding fire regimes
735 and biomass burning emissions of the tropical Andes. *Global Biogeochem. Cycles*, 28, 480-496,
736 2014.

737 Peters, G., Davis, S., Andrew, R.: A synthesis of carbon in international trade. *Biogeosciences*, 9,
738 3247-3276, 2012.

739 Poorter, L., Bongers, F., Aide, M., Almeyda-Zambrano, A., Balvanera, P., Becknell, J., Boukili, V.,
740 Brancalion, P., Broadbent, E., Chazdon, R., Craven, D., de Almedida-Cortez, J., Cabral, G.,
741 deJong, B., Rozendaal, D.: Biomass resilience of Neotropical secondary forests. *Nature*, 530,
742 211-214, 2016.

743 Poulter, B.:Global Wood Harvest 2010. Operational Global Carbon Observing System -
744 GEOCARBON Project Report, 2015 (data available upon request)

745 Pütz,S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A., Metz, M.: Long-term carbon loss in
746 fragmented Neotropical forests. *Nature communications*, 5, 5037-5045, 2014.

747 Richards, M., Bruun, T., Campbell, B., Huyer, S., Kuntze, V., Gregersen, L., Madsen, S., Oldvig,
748 M., Vasileiou, I.: How countries plan to address agricultural adaptation and mitigation: An
749 analysis of Intended Nationally Determined Contributions. CGIAR Research Program on
750 Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, 2015. Available
751 at:<https://cgspace.cgiar.org/rest/bitstreams/63683/retrieve>

752 Richter, D., Houghton, RA.: Gross CO₂ fluxes from land-use change: implications for reducing
753 global emissions and increasing sinks. *Carbon management*, 2, 41-47, 2011.

754 Román-Cuesta, RM., Carmona-Moreno, C., Lizcano, G., New, M., Silman, S., Knoke, T., Malhi, Y.,
755 Oliveras, I., Asbjornsen, H., Vuille, M.: Synchronous fire activity in the tropical high Andes: an
756 indication of regional climate forcing. *Glob. Change Biol.*, 20, 1929-1942, 2014.

757 Roman-Cuesta, RM., Gracia, M., Retana, J.: Environmental and human factors influencing fire
758 trends in Enso and non-Enso years in tropical Mexico. *Ecological Applications*, 13, 1177–1192,
759 2013.

760 Schulze, E., Luyssaert, S., Ciais, P., Freibauer, A., Janssens, I., Soussana, J., Smith, P., Grace,
761 J., Levin, I., Thiruchittampalam, B., Heimann, McDolman, A., Valentini, R., Bousquet, P., Peylin,
762 P., Peters, W., Gash, J.: Importance of methane and nitrous oxide for Europe's terrestrial
763 greenhouse-gas balance. *Nature Geosciences*, 2, 842-850, 2009.

764 Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F.,
765 Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V.,
766 Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J.: Greenhouse gas mitigation in
767 agriculture. *Phil. Trans. R. Soc. B.*, 363, 789-813, 2008.

768 Smith, P., Haberl, H., Popp, A., Erb, K., Lauk, C., Harper, R., Tubiello, F., Siqueira Pinto, A., Jafari,
769 M., Sohi, S., Masera, O., Bottcher, H., Berndes, G., Bustamante, M., Al Ahammad, H., Clark, H.,
770 Rose, S.: How much land-base greenhouse gas mitigation can be achieved without
771 compromising food security and environmental goals? *Global Change Biol.*, 19, 2285-2302, 2013.

772 Smith, P., Bustamante, M., Ahammad, H., Van Minnen, J.: Agriculture, Forestry and Other Land
773 Use (AFOLU) In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working
774 Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds
775 Edenhofer O, Pichs-Madruga R, Sokona Y, E, Farahani E, Kadner S, Seyboth K, Adler A, Baum
776 I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlammer S, von Stechow C, Zwickel T,
777 Minx JC). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
778 2014.

779 Tian, H., Lu, C., Ciais, P., Michalak, A., Canadell, J., Saikawa, E., Huntzinger, D., Gurney, K.,
780 Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Wofsy, S.:
781 The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. *Nature*, 531,
782 225-228, 2016.

783 Tubiello, F., Salvatore, M., Condor Golec, R., Ferrara, A., Rossi, S., Biancalani, R., Federici, S.,
784 Jacobs, H., Flammini, A.:Agriculture, Forestry and Other Land Use Emissions by Sources and
785 Removals by Sinks 1990 – 2011 Analysis. Working Paper Series ESS/14-02.FAO Statistical
786 Division. Rome, Italy, 2014. Available at: <http://www.fao.org/docrep/019/i3671e/i3671e.pdf>

787 Tubiello, F., Salvatore, M., Ferrara, A., House, J., Federici, S., Rossi, S., Biancalani, R., Condor
788 Golec, R., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz
789 Sanchez, MJ., Srivastava, N., Smith, P. The contribution of Agriculture, Forestry and other Land
790 Use Activities to Global Warming, 1990-2012. *Global Change Biol.*, 21, 2655–2660, 2015.

791 UNEP. United Nations Environmental Programme. The Emissions Gap Report 2015. Nairobi,
792 2015. Available at <http://uneplive.unep.org/theme/index/13#indcs>

793 USEPA. United States Environmental Protection Agency. Global Mitigation of non-CO₂
794 Greenhouse Gases: 2010-2030. Technical Report-430-R-13-011, 2013. Available at:
795 http://www.epa.gov/climate_change/Downloads/EPAactivities/MAC_Report_2013.pdf

796 Van der Werf, G., Randerson, J., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P., Morton, D.,
797 DeFries, R., Jin, Y., van Leeuwen, T.: Global fire emissions and the contribution of deforestation,
798 savannah, forest, agricultural, and peat fires (1997–2009). *Atmospheric Chemistry and Physics*,
799 10, 11707–11735, 2010. Available at: The Global Fire Emission Database (GFED):
800 <http://www.globalfire data.org/>

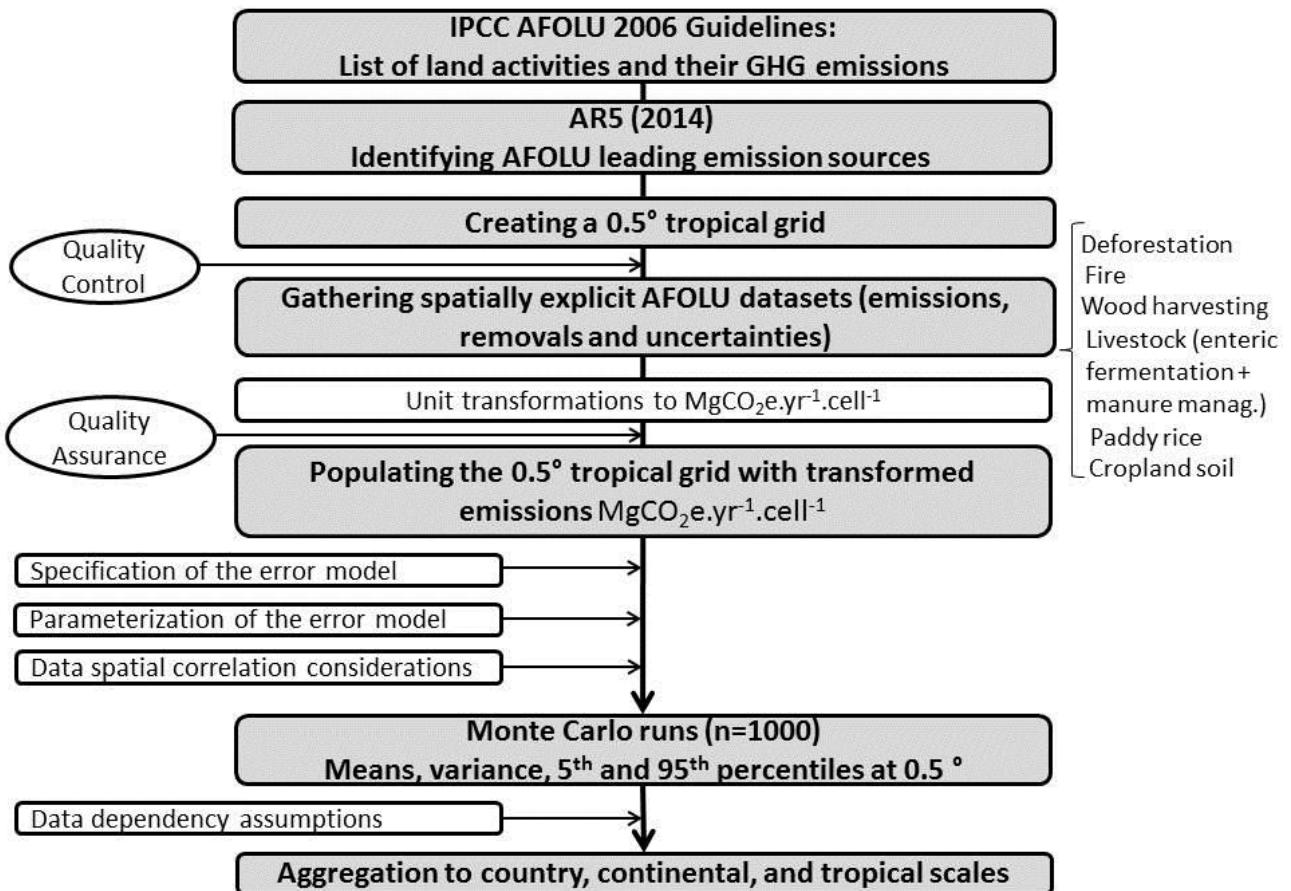
801 Wollenberg, L., Richards, M., Smith, P., Havlik, P., Obersteiner, M., Tubiello, F., Herold, M.,
802 Gerber, P., Carter, S., Reisinger, A., van Vuuren, D., Dickie, A., Neufeldt, H., Sander, B.,
803 Wassman, R., Sommer, R., Amonette, J., Falcucci, A., Herrero, M., Opio, C., Roman-Cuesta,
804 RM., Campbell, B. Reducing emissions from agriculture to meet the 2°C target. Global Change
805 Biol. DOI: 10.1111/gcb.13340.

806

807 **Websites**

808 www1: <http://faostat3.fao.org/home/E>
809 www2: <http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010>
810 www3: http://edgar.jrc.ec.europa.eu/docs/IEA_PARTIII.pdf

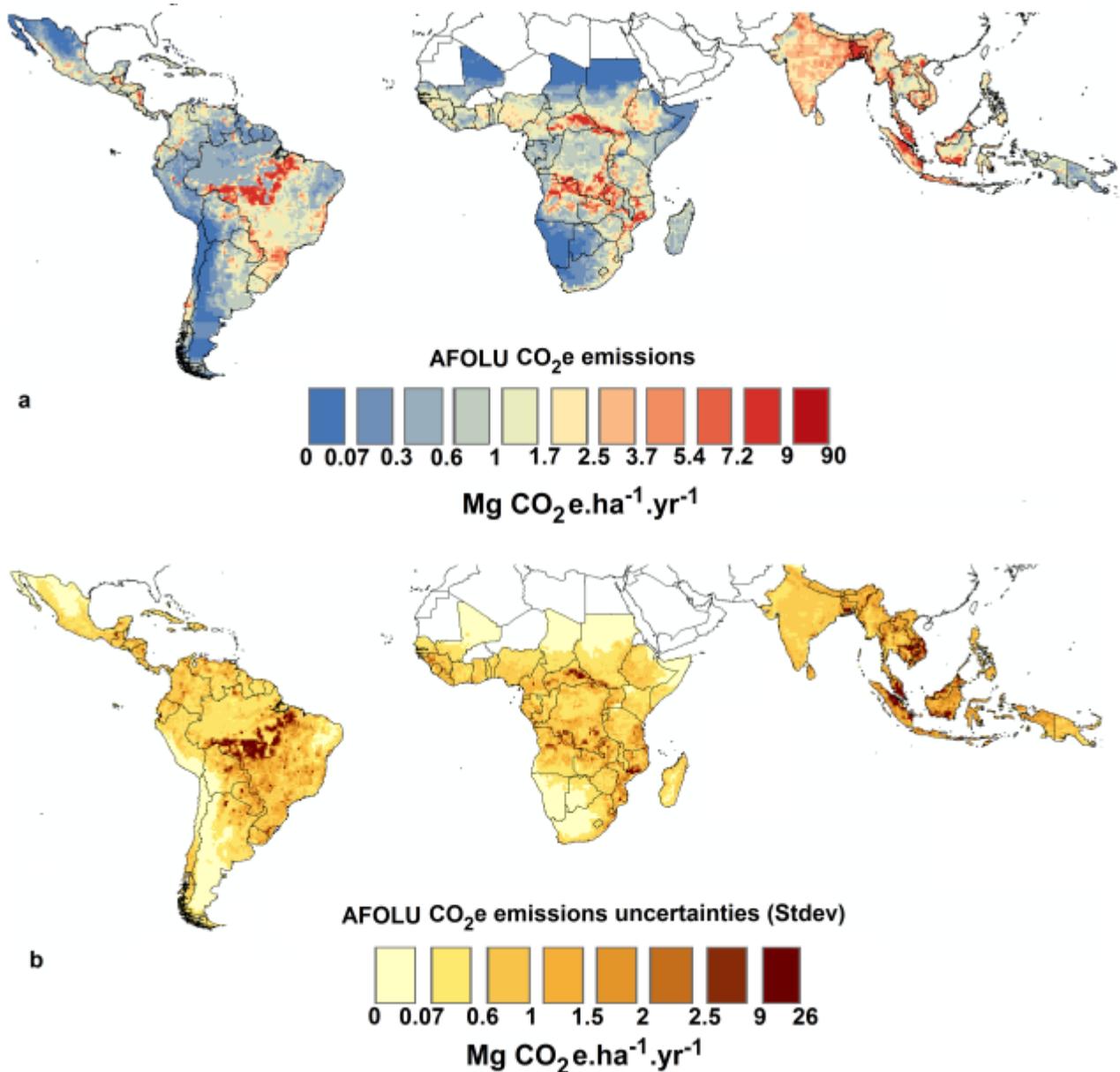
811
812 **6. CONTRIBUTIONS**


813 RMRC, MR, MH1, KBB, TR, JS, LV designed the study. RMRC, MH2, CM, CL, SO, BP provided
814 data and ran quality control, quality assessments and uncertainties expert judgements on the data
815 sets. SdB guided on statistics and developed all the scripts for the Monte Carlo aggregation of the
816 data. JS assisted with GIS analyses and scripts. RMRC, MR, MH1, KBB, TR, SdB, LV, CM, JS,
817 MH2, CL, SO, BP, discussed the results and contributed to writing.

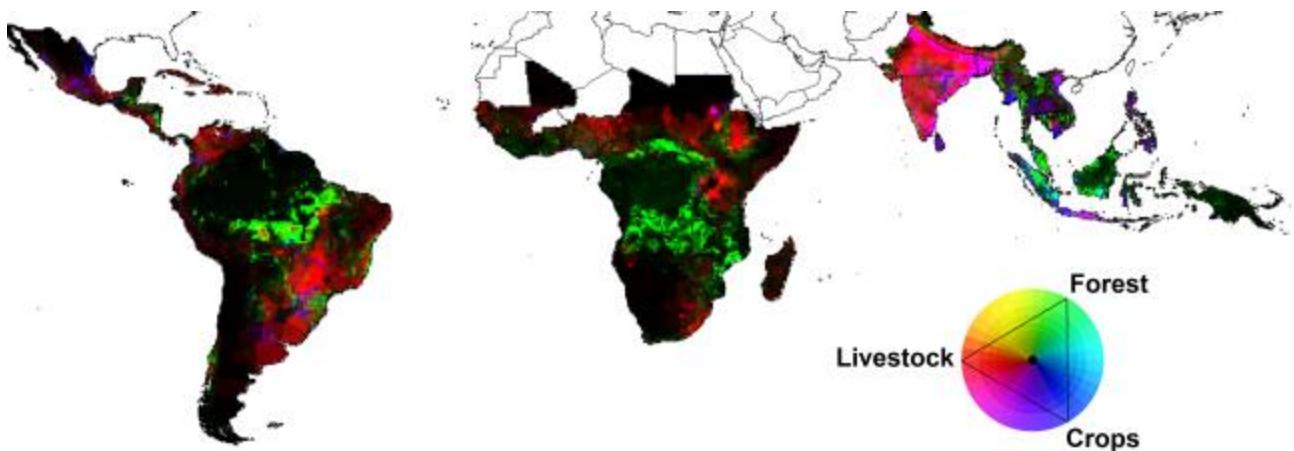
818

819 **7. ACKNOWLEDGEMENTS**

820 This research was generously funded by the Standard Assessment of Mitigation Potential and
821 Livelihoods in Smallholder Systems (SAMPLES) Project as part of the CGIAR Research Program
822 Climate Change, Agriculture, and Food Security (CCAFS). Funding also came from two European
823 Union FP7 projects: GEOCarbon (283080) and Independent Monitoring of GHG Emissions-N°
824 CLIMA.A.2/ETU/2014/0008. Partial funds came through CIFOR from the governments of Australia
825 (Grant Agreement # 46167) and Norway (Grant Agreement #QZA-10/0468). In memoriam: Dr.
826 Changsheng Li. The authors of this manuscript would like to homage Dr. Li for his life-long
827 dedication to science.


828 Figure legends

829

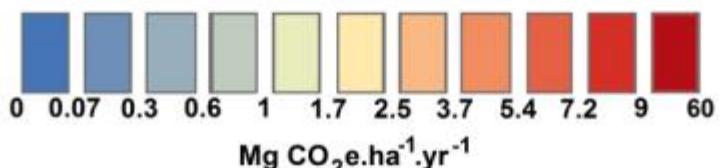
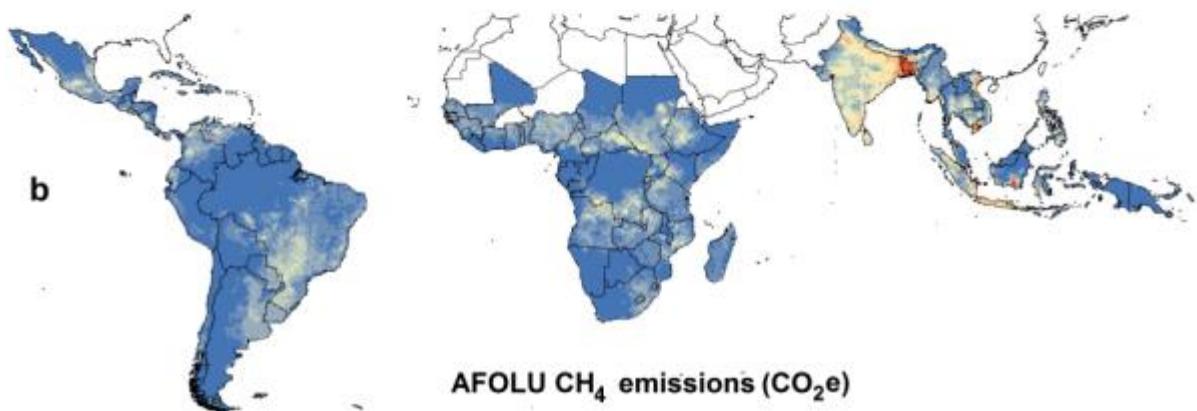
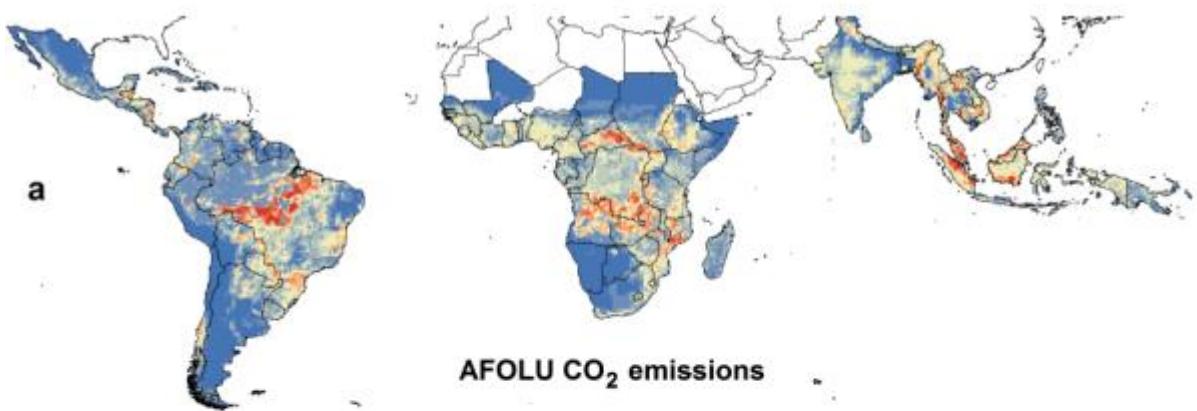

830 **Figure 1:** Methodological framework used to estimated the aggregated AFOLU emissions (annual means)
 831 and associated uncertainties (variance, 5th, 95th percentiles) at 0.5° resolution, for 2000-2005.

832

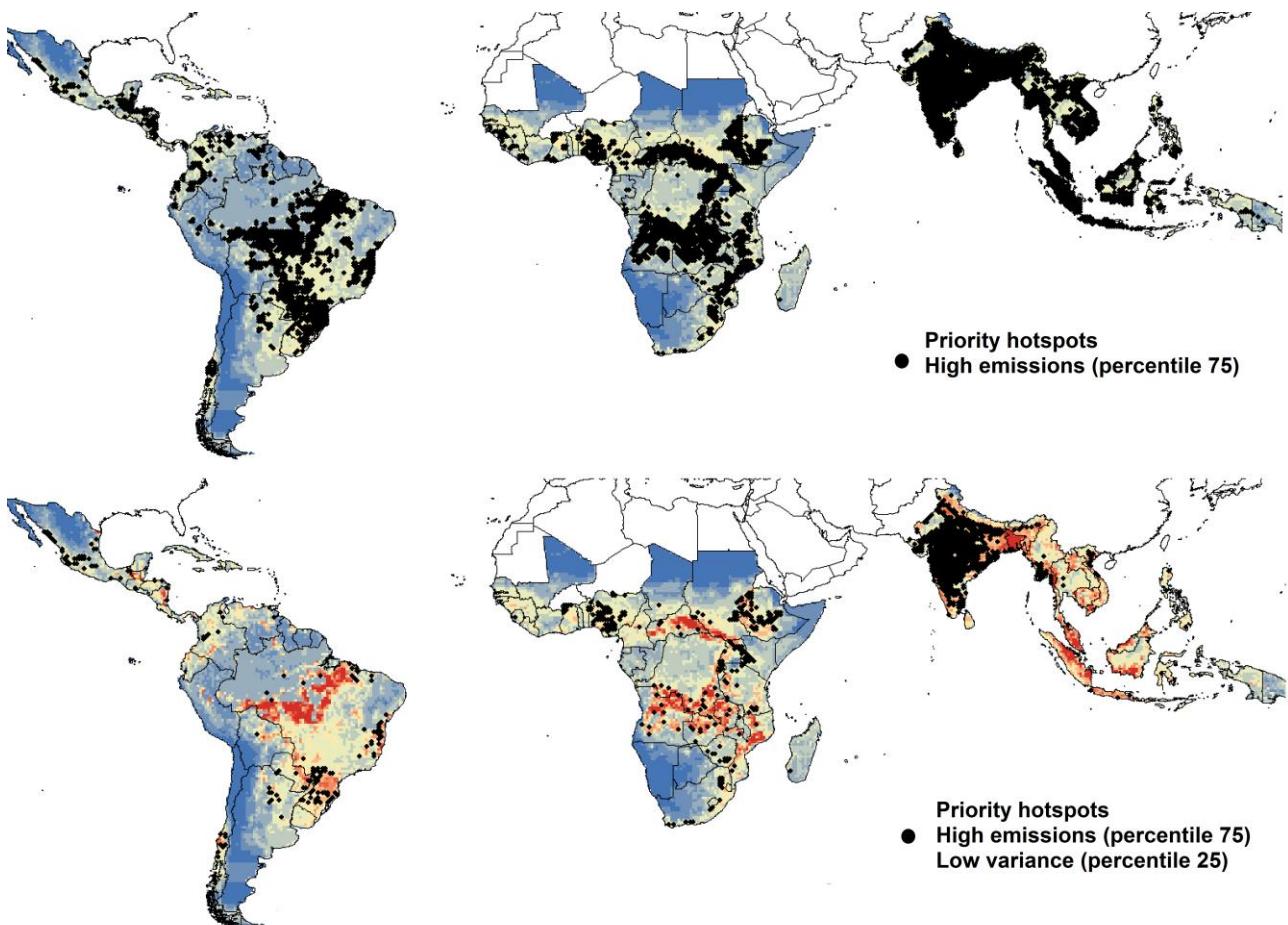
836 Figure 2: (a) Hotspots of annual AFOLU emissions (red cells) and (b) associated uncertainties (1σ) in
 837 MgCO₂e.ha⁻¹.yr⁻¹ for the tropical region, for the period 2000-2005, at 0.5°resolution. Emissions are the result
 838 of 1000 Monte Carlo simulations for the leading AFOLU emission sources (deforestation, degradation (fire,
 839 wood harvesting), soils (crops, paddy rice), livestock (enteric fermentation and manure management)
 840

841

842

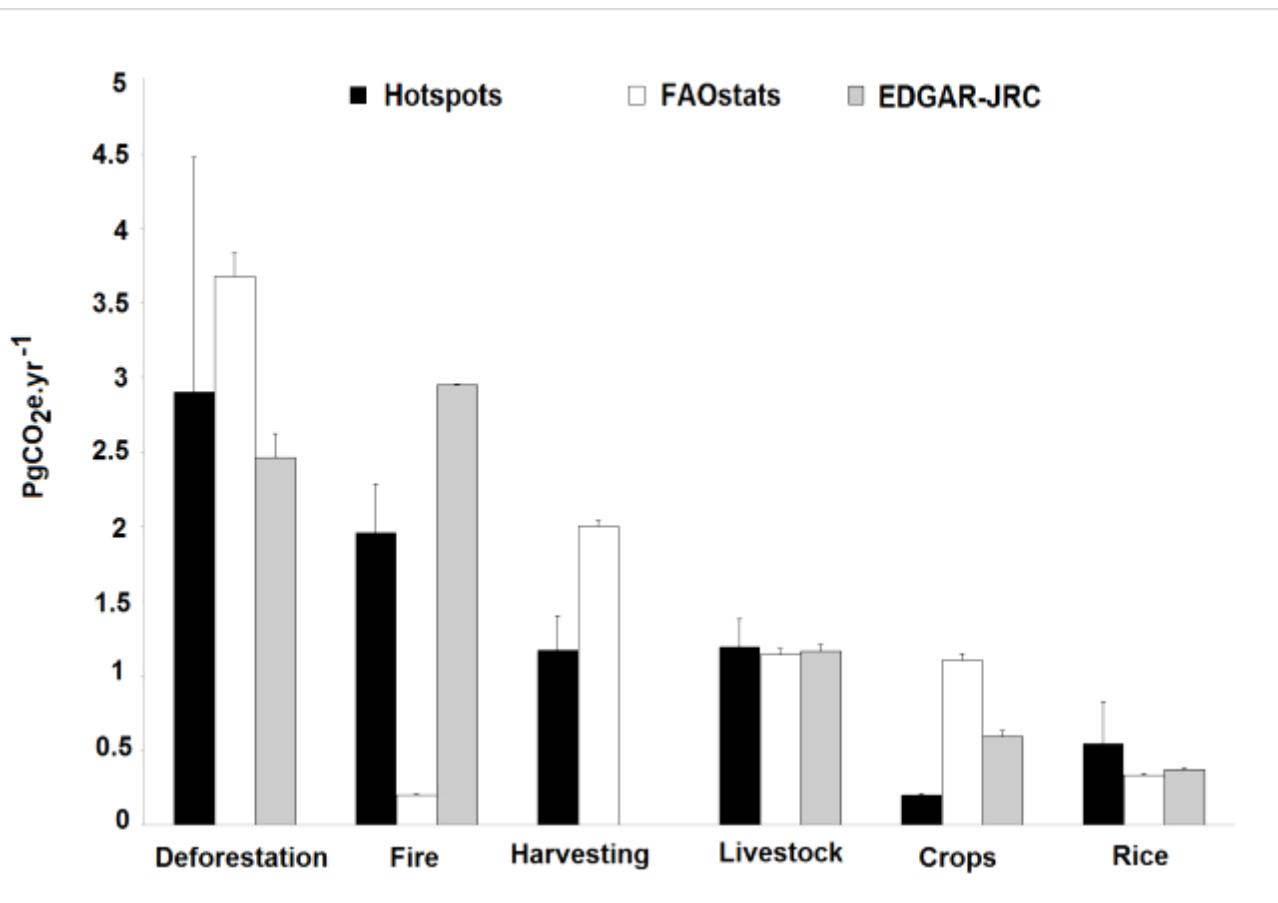



843

844 Figure 3: Contribution of the leading emission sources in percent of total emissions (grouped into forests,
845 crops and livestock) to the per pixel (0.5°), for 2000-2005. Forest emissions include fire, deforestation and
846 wood harvesting. Crops emissions includes paddy rice, cropland soil and croplands over drained histosols.
847 Livestock includes enteric fermentation and manure management emissions. This figure is an RGB image
848 where final colours represent the strength of the emissions for the three sources (e.g, fuchsia colours in Asia
849 represent equal emissions from livestock (red) and crops (blue). Dark represent areas of low emissions.


850

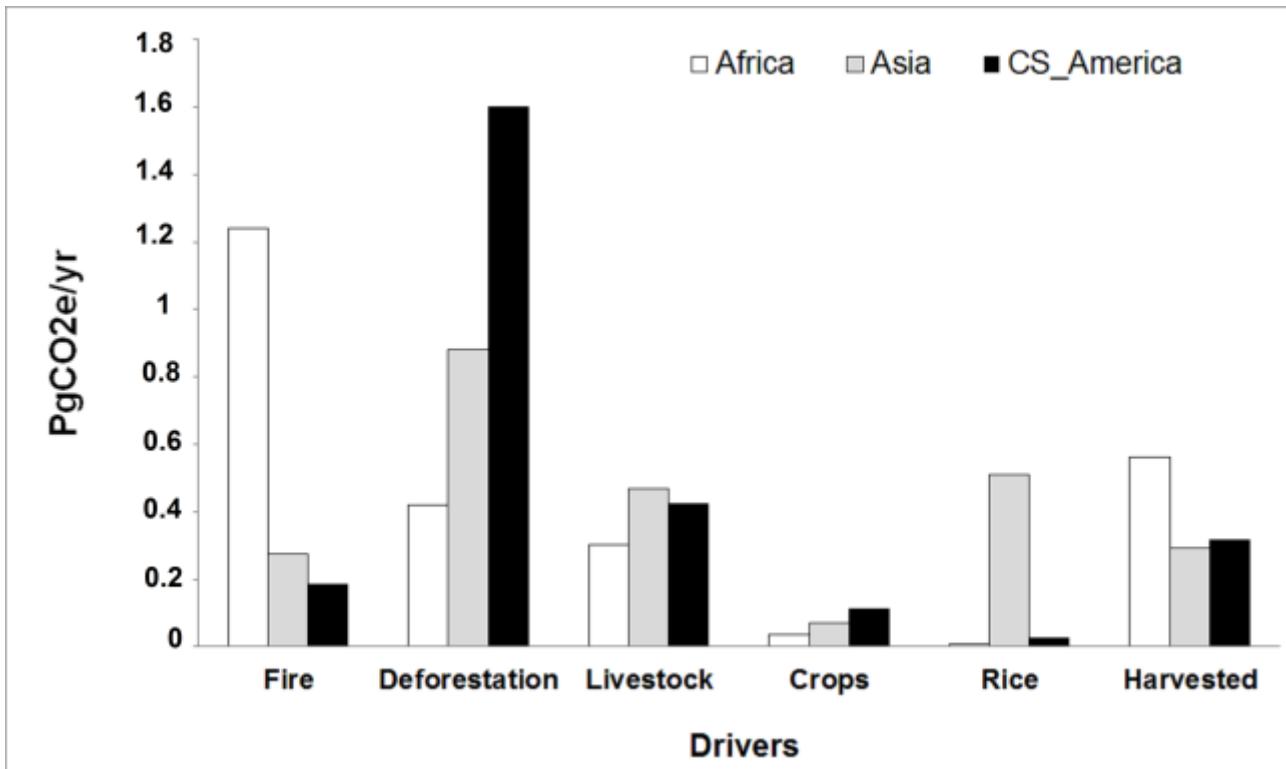
851

852



853
854 **Figure 4:** Mean annual AFOLU emissions ($MgCO_2e.ha^{-1}.yr^{-1}$), for the period 2000-2005, disaggregated by
855 greenhouse gases: a) CO_2 emissions, which are a proxy of forest emissions, (b) CH_4 , and (c) N_2O
856 emissions, which are proxies of agricultural emissions. Emissions are the result of 1000 Monte simulations
857 for the considered leading AFOLU emission sources.
858

859


860 **Figure 5:** Identification of priority regions for mitigation in the AFOLU sector in the tropics, for 2000-2005
861 considering mitigation potentials only (higher emissions, percentile 75), and degree of certainty of these
862 potentials (low uncertainties, percentile 25 of the variance). Economic feasibility would lead to different
863 priority regions.

864
865 Figure 6: Distribution of mean annual emissions per sources of emissions for the three data bases, in the
866 tropics, for 2000-2005. Bars indicate uncertainty estimates for the hotspot data base, and standard
867 deviations for FAOstats and EDGAR-JRC estimated from country data variability since no uncertainty data
868 exist for these two data bases.

869

870

871

872 Figure 7: Continental contribution of the leading emission drivers for our hotspot data base, in the tropics, for
 873 the period 2000-2005.

874

From units	To units	Molecular weights conversion	Global Warming Potentials 100-yr
kgC (dSOC)	kg CO ₂ eq.	kgC * 44 / 12	1
kgC (CH ₄)	kg CO ₂ eq.	kgC * 16 / 12	21
kgN (N ₂ O)	kg CO ₂ eq.	kgN * 44 / 28	310

876 **Table 1:** Data conversions to CO₂e for different chemical elements (C, N). dSOC is the change in Soil
 877 Organic Carbon. Molecular weights and global warming potentials use values from the Fourth Assessment
 878 Report (IPCC 2007)

879

Gross AFOLU emissions (PgCO ₂ e.yr ⁻¹)						
		CO ₂ e	CO ₂	CH ₄	N ₂ O	
Tropical		8.0 (5.5-12.2)	5.5 (3.3-9.5)	1.5 (1.1-1.9)	1 (0.8-1.2)	
Central & South America		2.7 (1.8-4.5)	2.1 (1.3-3.8)	0.35 (0.25-0.45)	0.25 (0.2-0.3)	
Africa		2.8 (1.9-4.0)	2.1 (1.4-3.2)	0.39 (0.27-0.5)	0.3 (0.22-0.39)	
Asia		2.5 (1.7-3.8)	1.3 (0.7-2.4)	0.74 (0.56-0.95)	0.41 (0.35-0.47)	
Contribution of leading emission sources to the tropical AFOLU gross emissions (%)						
	Deforestation	Fire	Rice	Wood Harvesting	Livestock	Crops
Tropical	36.3	24.6	6.9	14.6	15	2.5
Central & South America	59.6	8.2	1.1	11.9	15.9	3.4
Africa	15.2	52.6	0.3	20.3	11	0.7
Asia	34.8	11.3	20.2	11.5	18.5	3.7
Contribution of leading emission sources to total uncertainty (%)						
	Deforestation	Fire	Rice	Harvesting	Livestock	Crops
Tropical	92.5	4.5	0.2	1.4	1.4	0.0
Central & South America	98.4	0.3	0.0	0.5	0.8	0.0
Africa	69.8	25.5	0.0	3.7	1.1	0.0
Asia	91.4	2.4	2.1	1.1	2.9	0.0
Contribution of different gases to the tropical AFOLU gross emissions (%)						
		CO ₂ e	CO ₂	CH ₄	N ₂ O	
Tropical			69	19	12	
Central & South America		34	78	13	9	
Africa		35	75	14	11	
Asia		31	53	30	17	
Contribution of different gases to total uncertainty (%)						
			98.3	1.3	0.4	
Tropical						
Central & South America		48	99.4	0.5	0.1	
Africa		27.3	98.2	1.1	0.7	
Asia		24.7	95.5	3.9	0.6	

880

881 **Table 2:** i) Contribution of the different greenhouse gases (CO₂, CH₄, N₂O) to continental and tropical
 882 AFOLU annual mean gross emissions for the period 2000-2005 (in parenthesis are the 5th and the 95th
 883 percentiles of the aggregated AFOLU emissions). ii) Contribution of the different leading emission sources to
 884 the tropical and continental AFOLU gross emissions (expressed as % of emissions). And iii) partitioning of
 885 the AFOLU emissions uncertainties among the leading emission sources and the considered GHG gases
 886 (expressed as % of variance) AFOLU emissions are the result of 1000 Monte Carlo runs for the leading
 887 emission sources.