Carbon cycling on the East Siberian Arctic Shelf – a change in air-sea CO₂ flux induced by mineralization of terrestrial organic carbon

Erik Gustafsson^{1, 2}, Christoph Humborg^{2, 3}, Göran Björk⁴, Christian Stranne^{5, 6, 7}, Leif G. Anderson⁴, Marc C. Geibel^{2, 3}, Carl-Magnus Mörth^{5, 6}, Marcus Sundbom³, Igor P. Semiletov^{8, 9, 10}, Brett F. Thornton^{5, 6}, Bo G. Gustafsson^{1, 2}

¹Baltic Nest Institute, Stockholm University, Stockholm, 10691, Sweden
²Baltic Sea Centre, Stockholm University, Stockholm, 10691, Sweden
³Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, 10691, Sweden
⁴Department of Marine Sciences, University of Gothenburg, Gothenburg, 40530, Sweden
⁵Department of Geological Sciences, Stockholm University, Stockholm, 10691, Sweden
⁶Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, Sweden
⁷Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, 03824, New Hampshire, USA
⁸University of Alaska Fairbanks, International Arctic Research Center, Fairbanks, Alaska, 99775-7320, USA
⁹Tomsk Polytechnic University, Tomsk, 634050, Russia.
¹⁰Russian Academy of Sciences, Pacific Oceanological Institute, Vladivostok, 690041, Russia

Correspondence to: Erik Gustafsson (erik.gustafsson@su.se)

Contents

Table S1: Average annual runoff (km³ y⁻¹) and average runoff in June (km³) from the major rivers entering the Laptev and East Siberian Seas (data from R-ArcticNET; http://www.r-arcticnet.sr.unh.edu/v4.0/index.html).

Figure S1: Observed daily ice concentrations (upper panel) and monthly mean ice concentrations in 2010-2014 (lower panel) in the three different sub-basins.

Figure S2: Basin layout, including the four model boundaries (BC1-4) and seven model straits.

Text S1. Description of the atmospheric forcing.

Basin	River	Runoff (km ³ yr ⁻¹)	Runoff in June (km ³)
Laptev Sea	Khatanga	80	33
	Anabar	14	8.3
	Olenek	37	21
	Lena	490	160
	Yana	32	11
	Total	650	234
East Siberian Sea	Indigirka	50	15
	Alazeya	1.4	0.3
	Kolyma	100	39
	Bolshoy Anyuy	8.7	3.3
	Total	160	57

Table S1: Average annual runoff (km³ y⁻¹) and average runoff in June (km³) from the major rivers entering the Laptev and East Siberian Seas (data from R-ArcticNET; <u>http://www.r-arcticnet.sr.unh.edu/v4.0/index.html</u>).

Figure S1: Observed daily ice concentrations (upper panel) and monthly mean ice concentrations in 2010-2014 (lower panel) in the three different sub-basins (data provided by the National Snow and Ice Data Centre; Cavalieri et al., 1996).

Figure S2: Basin layout, including the four model boundaries (BC1-4) and seven model straits.

S1. Atmospheric forcing

The relative humidity (RH) was obtained from the 2 m air temperature (T) and 2 m dew point temperature (T_{dp}) by calculating the ratio between actual vapor pressure (e_a) and saturation vapor pressure (e_s), and further utilizing the relation between actual vapor pressure and saturation vapor pressure at dew point temperature (i.e., $e_a(T) = e_s(T_{dp})$):

$$RH = 100 \frac{e_s(T_{dp})}{e_s(T)}$$
(1)

The saturation vapor pressure was calculated as a function of temperature using the August-Roche-Magnus formula;

$$e_{s}(T) = c \cdot \exp\left(\frac{aT}{b+T}\right)$$
⁽²⁾

The saturation vapor pressure over water differs slightly from the corresponding value over ice, i.e., the constants a, b, and c are different in the two cases (Alduchov and Eskridge, 1996).

References

- Alduchov, O. A., and Eskridge, R. E.: Improved Magnus Form Approximation of Saturation Vapor Pressure, J. Appl. Meteorol. Clim., 35(4), 601–609, doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.
- Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H.: Sea Ice Concentrations From Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data (2010–2014), Natl. Snow and Ice Data Cent., Digital media, Boulder, Colo., doi:10.5067/8GQ8LZQVL0VL, 1996.