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Abstract. Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with

some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly

simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained

by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation

parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes while higher values of light5

attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through

changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing

can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly

sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback

between the Southern Ocean and low latitude Pacific that highlights the potential for regional teleconnection. Our simulations10

serve as a reminder that shifts in fundamental properties (e.g., light attenuation by phytoplankton) over deep time have the

potential to alter global biogeochemistry.

1 Introduction

Treatment of marine light availability for photosynthesis in biogeochemical compartments of ocean general circulation mod-

els (OGCMs) has largely avoided careful scrutiny until recently (e.g., Dutkiewicz et al. 2015; Kim et al. 2015; Gregg and15

Rousseaux 2016). These models typically use simplified, empirically-based parameterisations of phytoplankton growth rates

related to photosynthetically available radiation (PAR) based on the state of the science in the 1970s and 1980s. The OGCM in

the University of Victoria Earth System Climate Model (UVic ESCM; Weaver et al. 2001; Eby et al. 2009) is one example. In

it, the irradiance (I) at each depth level is calculated as:

I = Iz=0PARexp(−kwz̃− kc

z̃∫
0

(P +Diaz)dz) · [1+ ai(exp(−ki(hi +hs))− 1)] (1)20

(Schmittner et al., 2005; Kirk, 1983) where PAR stands for photosynthetically available radiation, kw, kc, and ki are light

attenuation coefficients for water, phytoplankton (diazotrophs and general phytoplankton), and ice, z̃ is the effective vertical
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coordinate, ai is the fractional sea ice cover, and hi and hs are calculated sea ice and snow cover thicknesses. Phytoplankton

concentration (P and Diaz) is expressed in a base unit of mmol N m−3. Light attenuation coefficients kw and ki have the unit

of m−1, but light attenuation by phytoplankton is dependent on phytoplankton concentration (Kirk, 1975) and kc is expressed

in units of (m mmol N m−3)−1. However, kc cannot be considered to represent the light attenuation of phytoplankton only, but

also represents the attenuation of constituents that are assumed to co-vary with phytoplankton (i.e., particulate and dissolved5

inorganic and organic materials). Light attenuation coefficients are classified as apparent optical properties (AOP) because they

represent the combined effect of the inherent optical properties (IOP) of the medium (e.g., seawater or phytoplankton cells) and

the optical properties of the radiation field (see Kirk, 1983; Falkowski and Woodhead, 1992, and associated references). Early

tests of kc (e.g., Fasham et al., 1990) demonstrated low model biomass sensitivity to parameter value choice, and this has been

the prevailing wisdom of biogeochemical modellers for over 20 years. Estimates of kc vary widely: for example, 0.014 m2(mg10

Chl a)−1 (generally applicable, Lorenzen, 1972), 0.041 m2(mg Chl a)−1 (Southern Ocean, Bracher and Tilzer, 2001), or a

range from 0.006 to 0.015 m2(mg Chl a)−1 assuming all phytoplankton represent mixes of specific species of dinoflagellates,

calcifiers, or diatoms (Falkowski et al., 1985). Even the assumption that kc varies predictably with chlorophyll concentration

can be considered highly simplistic because the co-varying constituents might cause this ratio to fluctuate (Siegel et al., 2005).

In practice, any value assigned to kc is going to be highly model-dependent (e.g., 0.058 m2(mg Chl a)−1 in Wang et al., 2008)15

because of the wide range of observational estimates and the necessary conversion from chlorophyll to model nutrient units,

which requires some assumptions that depend on model structure.

While it was recognized early on that a rigorous description of the spectral composition of the underwater light field must

separate effects of IOP from the radiation field, early measurements emphasized AOP because of technological limitations as

well as for a lack of data resolving the IOP of seawater constituents (Kirk, 1983). Research into the IOP of these constituents20

has since benefited from continuously improving analytical tools including satellite remote sensing, whose algorithms depend

on their resolution (Sathyendranath and Platt, 2007). Phytoplankton IOP are species-specific (e.g., Stramski et al., 2001). Of

the major seawater constituents, detrital particles contribute the most to light scattering and attenuation, and picoplankton are

the primary phytoplankton light absorbers (Stramski et al., 2001; Fujii et al., 2007), though their contribution to absorption is

possibly exceeded by coloured dissolved organic matter (CDOM) (Siegel et al., 2005; Fujii et al., 2007).25

Recent work has highlighted what we potentially miss in our OGCMs, and hence our earth system models (ESMs) as well,

by neglecting explicit radiative transfer and IOP. Decomposing the calculation of underwater irradiance into IOP, resolving a

variable number of radiative wavebands, and then testing three parameterisations of light limitation of phytoplankton growth

in a one dimensional ecosystem model comparable to observational data show that a model resolving multiple wavebands

and a spectral sensitivity in photosynthesis outperformed a simple parameterisation similar to Equation 1 (Kettle and Mer-30

chant, 2008). Choice in parameterisation of spectral resolution can contribute percentage errors of up to 200% (Kettle and

Merchant, 2008). Not including a radiative transfer model in an OGCM can reduce global nitrate by 33% and chlorophyll by

24%, and bring about large changes in phytoplankton biogeography, even when there is no change in total irradiance (Gregg

and Rousseaux, 2016). Dutkiewicz et al. (2015) offer the most complicated model analysis, and demonstrate that explicitly

resolving radiative transfer and the IOP of phytoplankton types, detritus, and CDOM in a three-dimensional ocean model can35
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improve model performance against observational data. Their sensitivity analysis demonstrates complex feedbacks between

light, phytoplankton attributes, and biogeochemistry (Dutkiewicz et al., 2015).

Explicit radiative transfer and fully resolved IOP add computational expense to already expensive ESMs. Since empirically-

based AOP parameterisations are still widely used and economical, it is useful to test their limitations and sensitivities. Includ-

ing light attenuation by phytoplankton in an OGCM amplifies the seasonal cycle of temperature, mixed layer depth and ice5

cover by about 10% over neglecting it altogether (Manizza et al., 2005). Gnanadesikan and Anderson (2009) find the inclusion

of light attenuation by chlorophyll in an OGCM alters physical water mass characteristics including a decrease in subsurface

temperatures by over 2°C in the low latitudes. Kim et al. (2015) explore the biogeochemical consequences of differentiating

light attenuation by CDOM and detrital particles from that of chlorophyll in an ESM and find these components increased

surface phytoplankton biomass by reducing levels of light at depth, which reduced deeper production and made more nutrients10

available at the surface. Two model simulations with-and-without CDOM and detrital particle light attenuation differ by 9% in

the global average biomass and 7% in the global carbon export flux at 200 meters depth (Kim et al., 2015). These are modest

changes with respect to other production and export parameters (e.g., Kwon et al. 2009 found a 5 Gt C y−1, or 50%, increase in

global carbon export by raising the export transfer efficiency exponent by 0.4), though regional sensitivities are stronger (Kim

et al., 2015).15

All of the studies mentioned above make their comparisons using models to which pre-industrial forcings are applied.

Dutkiewicz et al. (2015) highlighted the potential for complex feedbacks arising due to model treatment of light and optical

properties, therefore it stands to reason such feedbacks may compound under climate change. A recent bug fix in the imple-

mentation of Equation 1 in the UVic ESCM prompted a hasty equilibrated model re-evaluation, which then led to our more

thorough assessment including climate change. Future implementation of a more complex radiative transfer and phytoplank-20

ton IOP model may be justified based on the conclusions of the authors above (e.g., Dutkiewicz et al., 2015), however the

UVic ESCM (and other models of similar structure) is widely used in its current form and it is therefore worthwhile to assess

and report on its current sensitivities. The aim of our study is to assess the sensitivity of modelled net primary production

to phytoplankton light attenuation parameter value in an ESM using pre-industrial equilibrated, historical, and projected cli-

mate forcing. The drivers of net primary production are of scientific interest as they may respond to anthropogenic climate25

change (e.g., Kvale et al., 2015; Laufkötter et al., 2015). To our knowledge, such a simple assessment has not appeared in the

peer-reviewed domain despite there being a wide range of phytoplankton light attenuation parameter values currently in use

(described in more detail below) and a demonstrated sensitivity of primary production, export, and nutrients in OGCMs and

ESMs to how the underwater light field is modelled (described above).

2 Methods30

The University of Victoria Earth System Climate Model (UVic ESCM, Weaver et al. 2001, Eby et al. 2009) version 2.9 is a

coarse-resolution (1.8◦ × 3.6◦ × 19 ocean depth layers) ocean-atmosphere-biosphere-cryosphere-geosphere model. The bio-

geochemical compartment (Schmittner et al., 2005, 2008; Keller et al., 2012) is a nutrients-phytoplankton-zooplankton-detritus
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(NPZD) model with two phytoplankton types (general phytoplankton and diazotrophs), one zooplankton type, and chemical

tracers nitrate, phosphate, dissolved inorganic carbon, alkalinity, and oxygen. Iron limitation is accounted for using a season-

ally variable mask of dissolved iron concentrations in the upper three ocean layers (Keller et al., 2012). The biogeochemistry is

comprehensively assessed in Keller et al. (2012), however, the model has since been updated with several bug fixes and minor

adjustments. Only one of the bug fixes is relevant to our study. In previous published versions of the model, the depth was5

incorrectly calculated for the light availability equation in a way that resulted in too much light in the first ocean depth level.

This calculation is corrected here.

Our study examines model biogeochemical sensitivity to a spread of kc values at both equilibrium in a pre-industrial climate

(atmospheric CO2 concentration of 283.8 ppm) and a future projection. We use historical atmospheric CO2 concentrations,

agricultural land cover, volcanic radiative forcing, sulphate aerosol and CFC concentrations to force the model, as well as10

changes in land ice and solar forcing from year 1800 to 2005 following Machida et al. (1995); Battle et al. (1996); Etheridge

et al. (1996, 1998); Flückiger et al. (1999, 2004); Ferretti et al. (2005); Meure et al. (2006). From year 2005 to 2300 the

simulations were forced using increasing CO2 and non-CO2 greenhouse gas concentrations, projected changes to the fraction

of the land surface devoted to agricultural uses (calculated to year 2100 by Hurtt et al., 2011, and then held constant after),

and changes in the direct effect of sulphate aerosols following “business-as-usual” RCP scenario 8.5 (RCP8.5, Riahi et al.,15

2007; Meinshausen et al., 2011). Solar insolation at the top of the atmosphere, wind stress, and wind fields varied seasonally

(Kalnay et al., 1996), and the wind fields were geostrophically adjusted to air temperature anomalies (Weaver et al., 2001). The

sediment and weathering models (Meissner et al., 2012) were not used. Model equilibration was achieved by integrating over

10,000 years prior to application of climate forcing.

The simplistic nature of Equation 1 makes our study highly idealized. Parameter kw represents light attenuation of water and20

is fairly well-constrained to about 0.04 m−1 (Lorenzen, 1972), which is its assigned value in our model. The light attenuation

of ice parameter is not examined here: any primary production sensitivity to variation in ki is likely to have effects relegated

to the high latitudes. Light attenuation by phytoplankton also implicitly accounts for attenuation of light by co-varying factors,

with the current default model value applied to both diazotrophs and the single general phytoplankton type (Eqn. 1). The

Schmittner et al. (2008) kc value of 0.03 (m mmol N m−3)−1 was increased in Keller et al. (2012) to 0.047 (m mmol N25

m−3)−1. Light attenuation parameters are measured based on chlorophyll (commonly Chlorophyll a) concentration but the

model uses nitrogen units, necessitating the application of a conversion factor also implicit to kc. Conversion of the range of

kc values given above (0.006 to 0.041 m2(mg Chl a)−1) to carbon and then nitrogen units using the maximum Chl a to carbon

ratio for non-diatom phytoplankton in Table 4 of Dutkiewicz et al. (2015) and the Redfield C:N ratio used in our model (6.625)

yields a range of 0.008 to 0.054 (m mmol N m−3)−1 in the observationally-based literature (though higher values in models30

exist- Evans and Parslow 1985 used a value of 0.12 (m mmol N m−3)−1). For our test, we employ eight separate simulations

using kc = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08 (m mmol N m−3)−1. Increasing the light attenuation parameter

value increases the self-shading effect of the phytoplankton biomass, reducing the amount of light available for photosynthesis.

In the following analysis they will be referred to as ‘K1-8’, as we assess the impact of parameter choice on model net primary

production, carbon and nutrient distributions in a model equilibrated to pre-industrial climate conditions and then forced with35

4



historical and projected greenhouse gas concentrations. Gridded observations from the World Ocean Atlas climatology (Garcia

et al., 2010a, b) (phosphate, nitrate, and oxygen) and GLODAP (Key et al., 2004) (DIC and alkalinity) are compared to the

pre-industrial model.

3 Results

3.1 Pre-industrial equilibrium simulations5

Patterns of equilibrated net primary production (NPP) in the UVic ESCM are sensitive to kc within the tested range. Depth-

integrated zonally and annually averaged NPP, and horizontally and annually averaged NPP are shown in Figure 1. The sim-

ulation spread is smallest between 20° and 40°, where phytoplankton biomass is low. The tropics and regions between 40°

and 75°, particularly in the Southern Ocean, show the largest differences in NPP with varying kc. In the tropics, the differ-

ences in simulated zonal mean NPP between end members K1 and K8 exceeds 200 g C m−3y−1, while regional differences10

in depth-integrated NPP exceed 200 g C m−3y−1 over large parts of the Southern Ocean and tropics (Fig. 2). In the Southern

Ocean, K1 zonally averaged primary production rates can exceed those of K8 by more than a factor of 3 because phytoplank-

ton in K1 do not self-shade as strongly during the Austral summer, thereby allowing for a stronger seasonal cycle. South of

this region (around 60°S) UVic ESCM primary production transitions to being light-limited from being nutrient-limited to the

north (annually averaged limitation regimes are shown in Fig. 3) and so reducing the self-shading increases primary production15

in the light-limited regime. The transition zone between light and nutrient limitation is well-mixed, and lateral advection of

regenerated nutrients from the light-limited regime boosts NPP in the nutrient-limited regime in low-kc value simulations. In

the more stratified (and nutrient-limited) tropics, the effect is opposite in that K8 yields zonally averaged NPP of up to double

K1 because stronger self-shading inhibits deeper photosynthesis (see the globally averaged NPP depth profile plot in Fig. 1,

which is dominated by the low latitude response), making more regenerated nutrients available at the surface (Figs. 2 and 4, and20

similar to the effect of light attenuation by CDOM described previously by Kim et al. 2015). Higher nutrient concentrations at

the tropical surface in K8 cause a net increase in depth-integrated primary production because of the temperature dependency

of primary production and respiration in the model (the warmer surface increases the production and remineralisation rates,

resulting in higher NPP). Simulation differences in the tropical eastern Pacific upwelling region arise from processes similar

to those described in the Southern Ocean. While the eastern Pacific upwelling zone is nutrient-limited in our model (like the25

rest of the tropics, Fig.3), a weak near-surface temperature gradient reduces primary production in the surface layer. Higher

light availability in K1 therefore allows for deeper utilization of upwelled nutrients, resulting in higher depth-integrated NPP

in K1 compared to K8. Three distinct regional responses to kc parameter value choice are therefore apparent. In regions that

are light-limited, reducing the light attenuation parameter results in higher NPP (Southern Ocean and Arctic). In regions that

are nutrient-limited, reducing the light attenuation parameter results in lower NPP when combined with a strong vertical tem-30

perature gradient near the surface (tropics and subtropical gyres). In regions that are nutrient-limited and are characterized by

a weak vertical temperature gradient near the surface, reducing the light attenuation parameter results in higher NPP (eastern

Pacific, western boundary currents). The northern hemisphere midlatitudes do not show as clear a zonally-averaged NPP-kc
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relationship as can be seen in the southern hemisphere and the tropics because the western boundary currents and oligotrophic

regions oppose each other in the north Atlantic and north Pacific.

Carbon and nutrient distributions in the UVic ESCM are also sensitive to kc because parameter choice affects the efficiency

of the biological pump (Fig. 1), leading to a redistribution of nutrients (Fig. 4). Low-value kc simulations experience a greater

proportion of global NPP in the high latitudes (regions with higher sequestration efficiency; DeVries et al. 2012), and increasing5

the kc value shifts NPP towards the tropics (a region of lower sequestration efficiency; DeVries et al. 2012). As a consequence,

more nutrients and carbon end up in the abyssal Pacific Ocean in low-value kc simulations than in higher value ones. Increased

storage of nutrients in this deep ocean basin reduces the inventory available for subduction in the northern Atlantic (e.g.,

Kwon and Primeau, 2006; Kwon et al., 2009; Kriest et al., 2012), where water column concentrations of nitrate and phosphate

decline (Fig. 4). Increasing kc values reduces average surface alkalinity (Fig. 4) by about 50 µmol kg−1 globally, a response10

to increasing low latitude NPP (including a stronger carbonate pump) with higher kc values. In low-value kc simulations,

alkalinity is higher in the Atlantic as a result of the decline of the Atlantic biological pump. Deep ocean alkalinity is less

sensitive to kc value, though the average deep Pacific also shows a range of about 50 µmol kg−1 and the Southern Ocean varies

by about 25 µmol kg−1. Deep ocean DIC, however, is more sensitive to choice of kc value (Fig. 4). K4-K8 DIC range in basin

averages less than 30 µmol kg−1 but sensitivity increases at lower kc values. K1 deep DIC values are about 40 µmol kg−115

higher in the global average, Pacific, and Southern Ocean basins than K2. These higher deep DIC values are a consequence of

higher NPP in the high latitudes owing to a weaker self-shading effect, which increase carbon and nutrient export to the deep

ocean. Phosphate and nitrate basin-averaged profiles show a range of values generally proportionate to the range in DIC, with

drivers of the differences being the same (lower kc values yield higher global NPP, lower surface nutrients, and higher deep

ocean nutrients, as well as a shift in NPP to higher latitudes, Fig. 4). Likewise, deep ocean oxygen is lower for lower kc values20

because there is more deep ocean remineralisation (Fig. 4). The global average deep ocean oxygen concentration has a range

of about 100 mmol m−3, which is about half of the average deep ocean content. The Southern Ocean and Pacific show similar

oxygen sensitivity.

Which kc value performs the “best” with respect to biogeochemical observations is not thoroughly quantified here, but

generally K4 and above perform better with respect to deep ocean nutrients and oxygen, K2 to K5 do better with respect to25

global DIC, and K1 and K2 outperform the others with respect to global alkalinity (see global RMSE values in Fig. 4). As

discussed in Section 1, selection of a single model kc value to represent all ocean biology and co-varying factors is fairly

ad-hoc, and consequentially, the range of values we selected for this sensitivity comparison are as well. Based on Figures 1

and 4, the two lowest kc values we selected perform anomalously with respect to the others (higher Southern Ocean NPP, deep

ocean DIC, nitrate, and phosphate and much lower deep ocean oxygen). Therefore we will examine two groups of K values in30

Section 3.2, K1-K8 (the full range tested) and K3-K8 (the subset better reproducing modern deep ocean biogeochemistry).

3.2 RCP 8.5 transient simulations

Figure 5 plots the increase in atmospheric CO2 concentration from 283.8 ppm to 1962 ppm over the course of the transient

integration. The physical response is the same across all simulations and closely follows that described in Kvale et al. (2015).
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Zonally averaged ocean surface temperatures rise by as much as 10°C, North Atlantic maximum meridional overturning re-

duces from 20 to 9 Sverdrups (not shown), and widespread near-surface stratification occurs (Fig. 5). The phytoplankton and

zooplankton respond to surface warming by increasing metabolic rates, and microbial fast recycling in the near-surface in-

creases (Kvale et al., 2015). Stratification reduces the availability of nutrients in the near-surface. The global response in NPP

until about the year 2100 depends on the simulation, with K1-K6 showing a decline, and K7 and K8 showing no change and5

an increase in NPP, respectively. After about year 2100, global NPP in K4-K8 increases linearly, while global NPP increases

at a declining rate in K1-K3.

Model spread in global NPP response generally increases with radiative forcing. Change in global NPP differs by 2.5 Pg C

y−1 by 2100 (more than 100% of the total change in NPP at 2100 for all simulations) and kc parameter choice can determine

the sign of the change. This applies even if only considering the subset of kc parameters offering the better fits to pre-industrial10

nutrient and carbon observations (K3-K8) and excluding K1 and K2. By 2300 this spread has increased to 7 Pg C y−1 across all

simulations, and 5 Pg C y−1 between K3 and K8. By 2300, the spread between K3 and K8 is roughly equal to the all-simulation

average change in NPP since 1800, suggesting choice of kc value can have a significant and increasing effect on global NPP

response to climate forcing.

Before the year 2100, physical limitation of nutrients is the dominant driver of changes in global NPP (Kvale et al., 2015).15

Over this time, choice of kc parameter value affects the magnitude and direction of how NPP in different regions responds.

Increasingly oligotrophic conditions expand the extent of nutrient-limited regions, with phosphate limitation arising in the

tropics in lower kc value simulations (shown for K1 and K3 in Fig. 3). More nutrient limitation results in declining global NPP

in the simulations with weaker self-shading (K1-K6). In these simulations, lower starting concentrations of surface nutrients

causes the biology in these simulations to be more sensitive to an increase in stratification. Figure 6 (left plot) shows some20

decline between years 1800 and 2100 in tropical depth-integrated NPP between 10° and 20° for all simulations, with the

declines generally increasing with decreasing kc. Declines in low latitude NPP in simulations K1-K6 are not fully offset by

increasing NPP in the Southern Ocean, which is driven by regional increasing temperature, wind-driven overturning, and

nutrient remineralisation (Kvale et al., 2015). K1 and K2 demonstrate a particularly strong increase in NPP in the Southern

Ocean around 60°S, for reasons discussed below. Along the Antarctic margin (around 80°S), local freshening causes large25

local declines in NPP in simulations using weaker self-shading, though the region is not nutrient-limited in our model. The

mechanism for the decline is a drop of seawater temperature in the second ocean depth layer, which disproportionately affects

simulations that have deeper NPP. Simulations K7 and K8 are relatively less sensitive to increasing stratification (and associated

nutrient limitation) because their high kc values raise primary production higher in the water column, thereby raising surface

nutrient concentrations and allowing the phytoplankton to be less reliant on resupply of nutrients from deeper waters. Pre-210030

global NPP increases in K8 are therefore attributable to increased biological rates due to warming. All simulations show an

increase in NPP north of about 50°N to 60°N, which is driven by warming temperatures in all light attenuation tests.

After year 2100, physical limitation of nutrients becomes a less important driver of changes in global NPP than temperature-

enhanced biological processes (Kvale et al., 2015). Increasing global NPP in lower kc simulations is dominated by increasing

NPP in the Southern Ocean, and in higher kc simulations is a combination of increasing NPP in the Southern Ocean and low35
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latitudes. The drivers of change in NPP after year 2100 in the Southern Ocean are the same as those mentioned earlier, with

alleviation of light limitation (Fig. 3) and warming seawater temperatures increasing production rates, to particular effect on

low-value kc simulations. The driver of change in NPP after year 2100 in the tropics is the increase in temperature-enhanced

biological processes. Increasing divergence in zonal mean NPP between simulations is shown in Figure 6 (right plot). At year

1800, Southern Ocean depth-integrated and zonally-averaged NPP in K1 exceeds that in K8 by 180 g C m−3y−1 at most. By5

year 2100, this difference has increased to 250 g C m−3y−1, and by year 2300 it is over 300 g C m−3y−1 (corresponding to

more than 150% of K1 pre-industrial Southern Ocean zonal mean NPP). The pattern is similar but opposite in the low latitudes,

where depth-integrated and zonally-averaged NPP in K8 exceeds that in K1 by about 200 g C m−3y−1 in year 1800, around

250 g C m−3y−1 in year 2100, and more than 300 g C m−3y−1 in year 2300. Divergence in depth-integrated and zonally

averaged NPP for K3 and K8 follows the same pattern with smaller magnitudes- K3 exceeds K8 in the Southern Ocean by as10

much as 75 g C m−3y−1 (year 1800) and 100 g C m−3y−1 (year 2300, a difference of 60% of the highest pre-industrial K3

Southern Ocean zonal NPP value), and K8 exceeds K3 in the low latitudes by up to about 130 g C m−3y−1 (year 1800) and

over 200 g C m−3y−1 (year 2300). Throughout the simulations, northern hemisphere differences between K1 and K8 and K3

and K8 are relatively small, as the regional trends in responses to nutrient limitation are less cohesive than in the other regions.

The biogeochemical consequences of kc parameter choice at years 1800 and 2300 are shown for major ocean basins in Figure15

7. Most biogeochemical quantities retain the pre-industrial spread in global profiles with increasing CO2 forcing (for both K1-

K8 and K3-K8), with changes on basin-scale canceling out in the global mean. This observation likely relates to the asymmetry

in Southern Ocean/tropical trends in NPP K1-K8 differences noted in the previous paragraph (NPP rates in K1 exceed those

of K8 in the Southern Ocean roughly equally to the amount NPP rates in K8 exceed those of K1 in the tropics). Basins reveal

increasing changes with time. In particular, biogeochemical quantities in the deep Southern Ocean display increasing sensitivity20

to light attenuation parameter choice with time. At 5000 meters depth, by year 2300 the K1-K8 difference in average Southern

Ocean alkalinity is 50 µmol kg−1 (compared to 25 µmol kg−1 at year 1800), while the difference in DIC has increased to 170

µmol kg−1 (110 µmol kg−1 at year 1800). Alkalinity and DIC are higher in the K1 simulation because of higher NPP and

stronger associated carbon export to the deep Southern Ocean compared to K8. Phosphate concentration differences at year

2300 and 5000 m depth equal 0.8 mmol m−3 (0.5 mmol m−3 at year 1800), nitrate concentration differences exceed 10 mmol25

m−3 at year 2300 (9 mmol m−3 at year 1800), and oxygen concentration differences equal 180 mmol m−3 at year 2300 (120

mmol m−3 at year 1800).

All simulations experience a loss in oxygen due to warming and increasing remineralisation, but K1 and K2 additionally

experience denitrification in the Southern Ocean (not shown) as a result of very high primary production in the region and

already lower oxygen concentrations at pre-industrial equilibrium. This denitrification establishes a nutrient feedback with the30

low latitude Pacific and Indian Oceans that reduces Southern Ocean oxygen further (Fig. 8), thus producing a strong regional

decline in oxygen despite K1 and K2 showing weaker global NPP trends than the other simulations. The feedback starts with

increased stratification in the low-latitude Pacific and Indian Oceans (to which low kc simulations are particularly sensitive),

which limits nitrate availability for local primary production. As a result, more phosphate begins to advect into the Southern

Ocean, where it fertilizes phytoplankton growth. The regional loss of phosphate in the western Pacific and Indian Oceans35
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in K1 and K3 can be seen in Figure 3 as expanding phosphate-limited regimes. Warming seawater increases both primary

production and remineralisation rates. Phytoplankton in K1 and K2 are only weakly inhibited by self-shading and take full

advantage of warmer temperatures and imported nutrients, and the resulting large increases in primary production leads to

the consumption of enough oxygen that denitrification establishes in the Southern Ocean. Denitrification reduces the flow of

nitrate in intermediate water back into the low latitude Pacific and Indian basins, which become even more nitrate-limited.5

Excluding the K1 and K2 simulations in which Southern Ocean denitrification occurs, differences between K3 and K8

biogeochemical quantities change less over time, though the spread in Southern Ocean intermediate and deep nitrate concen-

trations increases by about 50% (Fig. 7).

4 Discussion

The pre-industrial equilibrium simulations demonstrate a sensitivity in zonally averaged NPP, and global and basin profiles of10

biogeochemistry to choice of kc value for the range tested. Simulation spread is greatest in the Southern Ocean and tropics.

Simulation differences arise from a complex interplay of factors. Higher light attenuation values have a stronger self-shading

effect on phytoplankton, which acts to increase NPP in stratified, nutrient-limited regions (the low latitudes in our model).

This is because strong self-shading raises the depth profile of primary production into the warmest surface ocean layer by

reducing the amount of light available in lower layers. Biological processes have a temperature dependency in the UVic ESCM,15

so reduced nutrient utilization in deeper layers increases nutrient availability at the surface, increasing surface net primary

production. This finding somewhat agrees with Kim et al. (2015) who found a decoupling between nutrient concentrations and

biomass when light attenuation of CDOM was accounted for in their ESM. Including light attenuation of CDOM (therefore

raising total model light attenuation) increased surface nutrient concentrations in their model through a similar mechanism

(shoaling of the biomass and production profiles), however they found CDOM light attenuation decreased depth-integrated20

biomass and attributed the increasing surface nutrients to less total production. Our model demonstrates an increase in depth-

integrated NPP with increasing light attenuation. The Kim et al. (2015) model allowed biological light attenuation to reduce

shortwave heating of the water column while our model does not account for this. Including a reduction of near-surface

temperatures with strong self-shading might reduce the increase we find in NPP with higher values of kc, though Manizza et al.

(2005) found inclusion of a shortwave feedback to NPP can also enhance spring sea surface temperatures and reduce sea ice.25

Our model is also nutrient-limited in the tropical eastern Pacific upwelling zone, but this region is also well-mixed (near-

surface shoaling of the nutrient profile is weaker and the near-surface temperature gradient is lower) so greater light inhibition

of deeper photosynthesis results in less NPP with higher kc values. In the Southern Ocean, higher NPP is the result of lower

light attenuation values, which allow phytoplankton in the light-limited regions to produce deeper in the water column. In

simulations with lower light attenuation values, NPP also increases in the northern parts of the Southern Ocean, which are30

nutrient-limited in our model. This may be a response to nutrient advection from locally increased near-surface remineralisation

arising from higher NPP in the light-limited regions, and highlights the important point that light attenuation parameter choice

can potentially have surprising effects on nutrient transport by changing the depth of primary production. Keller et al. (2016)
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found a similar effect at this latitude by suppressing primary production around Antarctica, which caused a northward advection

of nutrients, raising local NPP. In this particular region, higher vertical resolution might reduce the overall NPP response

of the Southern Ocean to decreasing light attenuation parameter by reducing advected regenerated nutrients and reducing

preformed nutrients made available for primary production by reduced self-shading. In the stratified low latitudes, higher

vertical resolution might reduce the nutrient shoaling effect of strong self-shading.5

Though iron availability is accounted for in the form of a seasonally-variable mask, in our model iron is not a limiting

nutrient on an annually-averaged basis. This is in contrast to evidence of iron limitation in the Southern Ocean, North Atlantic,

and eastern boundary currents and upwelling systems (see recent review by Tagliabue et al., 2017). More iron limitation of

phytoplankton growth in the UVic ESCM might damp the NPP response we show for lower light attenuation simulations

in the Southern Ocean and eastern equatorial Pacific. More iron limitation might also mitigate differences in the efficiency10

of the global biological pump between high and low-value light attenuation parameter simulations. Higher NPP in the high

latitudes in low-value light attenuation parameter simulations results in more efficient export and storage of nutrients in the

deep ocean, particularly the abyssal north Pacific (also found by DeVries et al. 2012). Model phosphate is conserved in our

simulations, thus larger deep ocean inventories result in lower concentrations in downstream surface and intermediate waters

(in qualitative agreement with Kwon and Primeau 2006; Kriest et al. 2012). The effect of enhanced deep nutrient sequestration15

is most apparent in Atlantic phosphate and nitrate profiles, where concentrations are lower for lower kc simulations and NPP is

not very much higher at the surface, in spite of being a seasonally well-mixed region. If iron was more limiting in the Southern

Ocean deep water formation regions, fewer nutrients would be sequestered in the deep Pacific and more would be available

to the north Atlantic, raising regional primary production and export (assuming no iron limitation also existed in the north

Atlantic). More iron limitation in the low latitudes might furthermore damp the NPP response of higher kc simulations in the20

thermally stratified tropics, thus increasing nutrient transport poleward and increasing high latitude NPP.

Parameter estimation and the quantification of biogeochemical model uncertainty is a major field of research (see review

by Schartau et al., 2017). Our study demonstrates the importance of considering transient model behaviour both in parameter

estimation and estimates of uncertainties for biogeochemistry in OGCMs and ESMs. Differences in the relative importance of

regional biological pumps to global NPP between high and low light attenuation simulations has a strong effect on how the25

model responds to climate change. Using a lower kc value emphasizes the Southern Ocean response, where physical drivers of

warming temperatures and increasing light availability enhance NPP, while using higher kc values place increasing importance

on the tropical drivers of warming and stratification. Thus, simulation spread increases in our transient simulations, and kc

parameter choice can determine the sign as well as the magnitude of the global NPP response, particularly in the near-term (to

year 2100), when physical changes are the dominant model drivers of NPP. Simulations K6 to K8 perform roughly equivalently30

with respect to biogeochemical observations in the pre-industrial equilibrium, and yet global NPP differences by 2100 are

around 2 Pg C y−1, with K8 showing an increase and K6 showing a decrease with respect to year 1800 NPP. A recent review

of the drivers of change in global NPP in a suite of OGCMs and ESMs to which climate forcing was applied found the low

latitudes contained the largest spread in model response, with global trends comprising a balance between increasing metabolic
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rates and increasing stratification (Laufkötter et al., 2015). Our results suggest differences between this balance across models

might be partly related to differences in the treatment of phytoplankton light attenuation.

Climate change furthermore compounds regional differences in biological pumps according to light attenuation parameter

choice, as nutrient export from the tropics to the Southern Ocean increases in low-kc value simulations due to the disproportion-

ate sensitivity of low-kc value simulations to low latitude stratification. Low-latitude nutrient recycling is strongly enhanced5

in high-kc value simulations due to surface warming and shallow NPP, reducing the availability of regenerated nutrients for

export to the high latitudes and damping increasing NPP in the Southern Ocean. Where NPP responds to climate change has

implications for long-term carbon sequestration, which can be seen as a 180 µmol kg−1 deep Southern Ocean DIC surplus and

rising DIC concentrations in the near-surface Atlantic in the K1 simulation when compared to K8 by year 2300. Furthermore,

ocean oxygen shows particular sensitivity to light attenuation parameter choice when forcing the model with future projections.10

That oxygen is sensitive to model treatment of NPP (e.g., Kriest et al., 2012), and that Southern Ocean biological processes

can affect global nutrient, carbon, and oxygen distributions (e.g., Kwon and Primeau, 2006; DeVries et al., 2012; Kriest et al.,

2012; Keller et al., 2016) are not new findings but, as far as we know, our study is the first to demonstrate the potential for

denitrification in the Southern Ocean. The nutrient exchange feedback that establishes in the two lowest kc value simulations

K1 and K2 substantially reduces Southern Ocean oxygen concentrations. Our model is highly idealized but it is worth noting15

that the nutrient exchange feedback occurs because: 1) it highlights the potential for strong biogeochemical teleconnection

between the Southern Ocean and the low latitude Pacific in the real world, and 2) light attenuation characteristics of dominant

phytoplankton (Katz et al., 2004) and ocean oxygen content (Lenton et al., 2014) and rates of change (e.g., Paleocene Eocene

Thermal Maximum; Norris et al., 2013) have changed over geologic timescales. A recent model study by Meyer et al. (2016)

explored the sensitivity of oxygen to e-folding depth of remineralisation and total phosphate inventory and hypothesized an20

increase in remineralisation depth has occurred over the Phanerozoic alongside a stabilisation of ocean oxygen inventory. Our

tests demonstrate another potential mechanism for the increase in ocean oxygen inventory in equilibrated conditions as well as

for a stabilisation of oxygen under rapid climate change- an evolved increase in light attenuation by dominant phytoplankton,

which in our model increases ocean oxygen inventory and mitigates total oxygen change with climate forcing.

It is possible that primary production in our model demonstrates similarly increasing sensitivity to other phytoplankton25

parameters with climate change, and that the sensitivity of NPP to kc may be damped or magnified by the choice of other

parameter values (e.g., the initial value of the photosynthesis-irradiance curve). Exploring the uncertainty associated with mul-

tiple parameter manipulations is costly and better left to offline approaches that can objectively and systematically assess the

solution space (see review by Schartau et al. 2017), though as far as we know, offline methods for 3-D models are currently

restricted to steady-state analysis. It is also possible that including a fully resolved radiative transfer model and explicit IOPs30

for multiple phytoplankton types could damp the Southern Ocean response we find in K1 and K2 and the low latitude response

we find in the higher light attenuation simulations (Gregg and Rousseaux, 2016). Lastly, the impact of phytoplankton shading

on water column heating is not considered here. This is a potentially significant omission with respect to the climate change

response of model physics as global net primary production increases strongly in all of our simulations but never contributes

to regional cooling, in contrast to the Manizza et al. (2005) finding that light attenuation by biomass can amplify the seasonal35
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cycle of temperature, mixed layer depth and ice cover by about 10% under pre-industrial conditions. From a global perspec-

tive, increasing shortwave penetration along the equator can warm regions to the south (Gnanadesikan and Anderson, 2009),

which might damp southward nutrient transport in our low-light attenuation simulations by increasing local export production.

However, increasing shortwave penetration in the Southern Ocean can enhance mode water formation from subtropical water

(Gnanadesikan and Anderson, 2009), which might enhance the positive nutrient feedback we demonstrate in low-kc simula-5

tions. Regardless, the UVic ESCM is fairly typical with respect to other ESMs in regard to the treatment of the underwater

light field, therefore our sensitivity study is useful for assessing uncertainty in models of similar structure.

5 Conclusions

The highly simplistic parameterisation of underwater light availability used in the UVic ESCM to calculate primary production

and associated chemistry (alkalinity, DIC, nitrate, phosphate, and oxygen) is sensitive to a range of light attenuation parameter10

values constrained by data. This applies both to pre-industrial equilibrium and future projections. This sensitivity can grow

with changing background climate as complex biogeochemical feedbacks develop, with primary production and ocean oxygen

being especially susceptible to parameter choice. Our study highlights the need to assess biogeochemical models under transient

as well as equilibrium conditions. In addition, the biogeochemical feedback we describe in two of our transient simulations

also serves as a reminder that even seemingly small events, like the emergence of shell-secreting phytoplankton, could have15

potentially large biogeochemical consequences just by altering the underwater light field.

6 Code availability

Model data and figure scripts are available from https://thredds.geomar.de/thredds/catalog/open_access/kvale_meissner_2017_

bg/catalog.html. Model code is available from the authors upon request.
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Figure 1. Annually and zonally averaged pre-industrial, depth-integrated NPP (left), and annually and globally averaged NPP with depth

(right).

Figure 2. Annually averaged pre-industrial differences between K1 and K8 for depth-integrated NPP (left), surface phosphate (middle) and

surface nitrate (right).
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Figure 3. K1, K3, and K8 light and nutrient limitation regions for years 1800, 2100, and 2300.
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Figure 4. Annual mean pre-industrial biogeochemical tracer profiles averaged by ocean basin for all simulations compared to gridded

observations. Global root-mean-square-error is provided for each simulation.
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Figure 5. Atmospheric CO2 concentration forcing of all simulations (top left). Zonally averaged change in sea surface temperature in all

simulations (top right). Change in global average density gradient with depth in all simulations (bottom left). Change in globally integrated

net primary production in all simulations (bottom right).

Figure 6. Change in annually and zonally averaged, depth integrated NPP between years 2100 and 1800 (left plot) and annually and zonally

averaged, depth integrated NPP differences between K1 and K8 (black lines) and K3 and K8 (red lines) at three time slices (right plot).
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Figure 7. Annual mean biogeochemical tracer profile differences between K1 and K8 (black lines) and K3 and K8 (red lines), averaged by

ocean basin for all simulations at years 1800 (solid lines) and 2300 (dashed lines).
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Figure 8. K1 and K2 feedback schematic in Southern Ocean and low latitude Pacific nutrients. Increases with climate change are represented

in bold font. Decreases with climate change are represented in italic font. Regular font indicates little or no change with climate forcing.

Bold arrows indicate the dominant factor influencing change in NPP. Dashed arrows indicate the secondary factor influencing change in NPP.

Nutrient feedback between regions is shown in coloured arrows.
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