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Abstract. The ocean’s nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean’s

distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally

poorly constrained leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle.

Here we build a steady-state model of the ocean’s coupled phosphorus, silicon, and iron cycles embedded in a data-

assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of5

subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly

represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation

thus has only three coupled nutrient tracers whose three-dimensional distributions are found using a Newton solver. The very

efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by

minimizing the mismatch between modelled and observed nutrient and phytoplankton concentrations. Iron source and sink10

parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We

therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state

estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions.

However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely

depending on the sources.15

Both the magnitude and pattern of the phosphorus and opal exports are well constrained with global values of 8.1±
0.3 Tmol P yr−1 (or, in carbon units 10.3± 0.4 Pg C yr−1) and 171.± 3.Tmol Si yr−1. We diagnose the phosphorus and

opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by

each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf

and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction20

of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source.

Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional

contribution to the total source. Per source-injected molecule, aeolian iron supports 3.1±0.8 times more phosphorus export and

2.0± 0.5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal
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iron support 2.3± 0.6 and 3.7± 2.3 times less phosphorus export, and 1.9± 0.5 and 2.2± 1.0 times less opal export than the

other iron types.

1 Introduction

The ocean’s nutrient cycles control the primary productivity of the global marine ecosystem and the ocean’s biological carbon

pump, which are crucial components of the global carbon cycle that regulate atmospheric CO2 concentrations. The nutrient5

cycling of the ocean is governed by the interplay of the ocean’s advective-diffusive circulation, biological utilization, biogenic

particle transport, and the external sources and sinks of nutrients. The cycles of macro and micronutrients are coupled through

colimitation on biological uptake and through the scavenging of micronutrients such as iron by sinking organic matter.

We focus on dissolved iron (dFe) as a key micronutrient because of its well-documented fundamental role in primary

production (e.g., Boyd and Ellwood, 2010). Indeed, dFe was suggested to limit oceanic phytoplankton growth as early as the10

1930’s (e.g., Gran et al., 1931; Hart, 1934). Since then, numerous studies have reported that iron deficiency limits productivity

over vast areas, particularly the high-nutrient low-chlorophyll (HNLC) regions like the Southern Ocean (e.g., de Baar et al.,

1995; Lundry et al., 1997; Martin and Fitzwater, 1988; Boyd et al., 2007; Boyd and Ellwood, 2010). Martin (1990) went as far

as to suggest that perturbations in the iron cycle played a crucial role in past climate fluctuations. More recently, iron-enrichment

field experiments (e.g., Boyd et al., 2007) and model simulations (e.g., Nickelsen and Oschlies, 2015) have demonstrated the15

importance of iron for the global biological pump.

We model phosphate (PO4) because it is essential to the metabolism of all living organisms (e.g., Smith, 1984; Howarth,

1988), which allows all biological production to be keyed to phosphate utilization (e.g., Kwon and Primeau, 2008; Primeau

et al., 2013; Holzer and Primeau, 2013). Silicic acid (Si(OH)4) was considered because of the importance of diatoms in marine

ecosystems (e.g., Nelson et al., 1995; Buesseler, 1998; Moore et al., 2004; Brzezinski et al., 2011b) and because the pronounced20

silicon trapping of the Southern Ocean (e.g., Holzer et al., 2014) might be sensitive to iron availability.

With a changing climate, we expect not only changes in the ocean circulation, but also changes in the winds, hydrological

cycle, and land use, and hence in the aeolian iron supply. To understand how such changes impact the ocean’s nutrient cycles, it

is necessary to model the coupling between the nutrients mechanistically. While global biogeochemistry models have been used

extensively for this purpose (e.g., Tagliabue et al., 2014; Nickelsen and Oschlies, 2015), none of these models have been ob-25

jectively constrained by the available observations. Here, we formulate an inverse model of the ocean’s coupled macronutrient

and iron cycles embedded in a data-assimilated global circulation. The biogeochemical parameters of the model are determined

by objectively minimizing the mismatch with observed nutrient and phytoplankton concentrations. To ensure the optimization

problem remains tractable with a reasonable computational burden, we formulate a model of intermediate complexity.

The intercomparison of iron models by Tagliabue et al. (2016) showed that current models contain significant uncertainties.30

Despite the fact that the models have iron source strengths that range over nearly two orders of magnitude, all models can be

tuned to roughly the same mean dFe concentration with an inter-model variance of only 27 %. This is due to essentially un-

constrained scavenging rates so that models are free to employ different scavenging strengths to balance the sources at roughly
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comparable dFe concentrations. All the models of the intercomparison are prognostic forward models that are computationally

too expensive for exploring the biogeochemical parameter space systematically, or for computing the sensitivity with respect

to multiple parameters (e.g., Kwon and Primeau, 2006). Here we aim to close this gap in our ability to constrain the iron

cycle objectively by formulating a numerically highly efficient model of the iron cycle that is mechanistically coupled to key

macronutrient cycles and that is embedded in a data-assimilated global circulation.5

We build on the simple iron-only inverse model of Frants et al. (2016) for which biogeochemical parameters were optimized

and which allowed novel diagnostics to be computed such as the mean iron age and rigorous source attribution of dFe (Holzer

et al., 2016). Consistent with the findings of the iron-model intercomparison, Frants et al. (2016) showed that current dFe

observations cannot constrain the iron sources because of local compensation between sources and sinks. Frants et al. (2016)

therefore explored a family of state estimates corresponding to a range of aeolian source strengths, all of which are consistent10

with the currently available dFe observations.

However, in the study of Frants et al. (2016) the iron cycle could not interact with a prescribed phosphate cycle, and the

silicon cycle was not considered at all. Moreover, for the family of state estimates of Frants et al. (2016) only the aeolian source

was varied and it is unclear if the wide range of hydrothermal and sediment iron sources found in the literature is consistent

with the dFe observations. The model of Frants et al. (2016) is therefore unsuitable for investigating the effects of iron-source15

perturbations on biological production or for exploring how much export is supported by the different iron sources. Here, we

overcome these shortcomings by explicitly coupling the iron, phosphorus, and silicon cycles through their mutual colimitations

so that the macronutrients can respond to changes in dFe. We furthermore refine the modelling of the sedimentary iron source,

the representation of iron scavenging to include redissolution, and we model three phytoplankton functional classes whose

concentrations are derived from a steady-state logistic equation (e.g. Dunne et al., 2005). Through these advances we are able20

to produce, for the first time, a family of data-constrained state estimates of the coupled Fe-P-Si cycles for a wide range of not

only aeolian, but also hydrothermal and sedimentary sources. We find that these state estimates are roughly equally consistent

with the observed macronutrient and dFe concentrations regardless of the iron source strengths. Analysis of our family of state

estimates shows that the uncertainty in the iron sources stems not only from compensation between overlapping sources and

sinks, but also from the ability of the different iron source types (aeolian, hydrothermal, and sedimentary) to compensate for25

each other despite their different spatial distributions.

We use our inverse-model estimates of the coupled Fe-P-Si cycles to address an important open question about the marine

iron cycle: What are the relative contributions of the different iron sources to supporting the world ocean’s export production?

While there have been perturbation experiments with forward models (Tagliabue et al., 2009, 2010, 2014) where one type

of source (e.g., hydrothermal or sedimentary) was shut down to assess the importance of dFe from the missing source, such30

experiments cannot quantify the true contribution of hydrothermal or sedimentary iron to biological production because of the

nonlinearity of the iron cycle (Holzer et al., 2016). Moreover, these numerical experiments were conducted with definite but

highly uncertain choices of the iron sources, and the models were not objectively constrained by the observations. Thus, in

addition to presenting the first inverse model of the coupled Fe-P-Si cycles, we address the following key scientific questions:
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1. How well can the modelled dFe, PO4, and Si(OH)4 concentrations be fitted to observations for widely differing iron

sources, and are there limits on the iron source strengths that are consistent with the observed dFe concentrations?

2. What are the nutrient limitation patterns that emerge from the data-constrained estimates of the coupled nutrient cycles,

given that direct observational data on these patterns is very sparse?

3. How well constrained are the phosphorus and opal exports of optimized state estimates with widely different iron5

sources?

4. What fractions of phosphorus and opal exports are supported by aeolian, hydrothermal, and sedimentary iron, and how

do these fractions vary with the iron-source strengths?

In the following, we detail the model formulation in Section 2 and the optimization strategy in Section 3. In Section 4 we

quantify the fidelity of the family of state estimates to the nutrient observations. We examine nutrient limitation in Section 5,10

export production in Section 6, and iron-attributed export in Section 7. Caveats are discussed in Section 8 and we summarize

and conclude in Section 9.

2 Biogeochemical model

We distinguish three phytoplankton functional groups: non-diatom small and large phytoplankton as well as diatoms, with a

nominal separation between small and large at a cell diameter of 2 µm. We denote the molar PO4 uptake rate per unit volume15

of each class by Uc, where the subscript c ∈ {lrg,sml,dia} identifies functional class. The uptake rates Uc are only non-zero

in the model’s upper 73.4 m (two layers), the model’s euphotic zone.

We consider the three nutrients PO4, Si(OH)4, and dFe and denote their concentrations by χi, with i ∈ {P,Si,Fe}. We write

the steady-state tracer equations for these concentrations by keying all biological production to the uptake Uc of phosphate as

follows:20

T χP =
∑
c

(SPc − 1)Uc− γg(χP−χobs
P ) , (1)

T χSi = (SSi− 1)RSi:PUdia− γg(χSi−χobs
Si ) , (2)

T χFe =
∑
c

(SFec − 1)RFe:PUc

+ (Ss,POP− 1)JPOP + (Ss,bSi− 1)JbSi− Jdst

+ sA + sS + sH .

(3)

In (1)–(3), T is the advection-eddy-diffusion operator, the operators Sic model the biogenic transport and remineralization of

nutrient i taken up by functional class c, and the operators Ss,POP and Ss,bSi model the particle transport of scavenged iron and25

its partial redissolution at depth as the scavenging particles remineralize or dissolve (details in section 2.2). The iron scavenging

rates per unit volume are JPOP for scavenging by particulate organic phosphorus (POP), JbSi for scavenging by opal particles,
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and Jdst for scavenging by mineral dust (details in section 2.4.2). The terms sA, sS, and sH are the aeolian, sediment, and

hydrothermal iron sources (details in section 2.4.1). The factors RSi:P and RFe:P are the stoichiometric uptake ratios that allow

us to key all production to phosphorus. These ratios are functions of the nutrient concentrations as described in section 2.3.3.

The terms proportional to γg in (1)–(2) fix the global mean phosphate and silicic acid concentrations through weak relaxation

to their observed global means χobs
P and χobs

Si . This is necessary because the phosphorus and silicon cycles have no external5

sources and sinks to set the global mean in steady state. (For phosphate and silicic acid, external sources, e.g., riverine input,

and loss to sediment burial are neglected.) We choose the restoring timescale γ−1g = 106 years (“geological” restoring); there

is no sensitivity to the precise value of γg .

Equations (1)–(3) are coupled via the uptake of PO4, which depends on the concentrations of all three nutrients, via the

iron scavenging that depends on the export fluxes of organic matter and opal, and via the sedimentary release of dFe, which is10

keyed to the flux of organic matter onto the sediments (Elrod et al., 2004), as discussed in detail below.

2.1 Circulation

We use the data-assimilated, steady (non-seasonal) circulation of Primeau et al. (2013) which has a horizontal resolution of

2◦× 2◦ and 24 vertical levels whose thickness increases with depth. Temperature, salinity, radiocarbon, CFC-11, and PO4

have been used as constraints in the data assimilation. The circulation is constrained dynamically and the data assimilation15

used the wind-stress climatology of Trenberth et al. (1989) and specified horizontal and vertical viscosities of 5× 104 m2 s−1

and 10−4 m2 s−1, respectively. The circulation’s advective-diffusive transport operator has fixed horizontal and vertical eddy

diffusivities of 103 m2 s−1 and 10−5 m2 s−1, respectively. We emphasize that the circulation effectively provides a ventilation-

weighted transport because it has been optimized against PO4 and the ventilation tracers CFC-11 and radiocarbon. The steady

model circulation, which has no seasonal cycle, thus does not bias estimates of preformed nutrients in the way an annual-20

average circulation would.

2.2 Biogenic transport

Organic matter sinks as POP, dissolves, and remineralizes at depth. Inverse models of the phosphorus cycle (Primeau et al.,

2013; Holzer and Primeau, 2013; Pasquier and Holzer, 2016) suggest that dissolved organic phosphorus (DOP) represents a

relatively small fraction of the total dissolved phosphorus that we neglect here for simplicity and numerical efficiency (no DOP25

tracer). We note that our estimates of phosphorus export effectively capture the export due to DOP, despite DOP not being

explicitly represented as a separate tracer. This is because the optimization of the biogeochemical parameters minimizes the

mismatch with the observed PO4 distribution, which in the real ocean is determined by the remineralization of all organic

phosphorus, including DOP. Because the particle transport is much faster than the fluid transport across a grid box, we ap-

proximate particle transport and remineralization, which acts as an interior source of nutrients, as instantaneous. We model30

this process for each phytoplankton functional class by the “source” operator, SPc , which reassigns a “detrital” fraction fc of

the uptake rate to a remineralization rate throughout the water column, while a fraction 1− fc remineralizes in situ where the
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uptake occurred. We therefore express SPc in terms of a biogenic redistribution operator BP as

SPc = 1− fc +BPfc . (4)

(The operator BP does not have a functional class subscript c because it redistributes a unit uptake with the same profile

regardless of functional class.) We assume that the remineralization of organic matter releases dFe and phosphate in the same

ratio with which they were taken up. Therefore, SFec = SPc .5

The values of fc, which set the export efficiency of each class, are not directly constrainable by the data used here. The

nutrient concentrations constrain only the total export of all classes, while the phytoplankton concentrations constrain the

uptake, but not the export, of each class. We therefore use the optimized detrital fractions from the work of Dunne et al.

(2005): The detrital fc fractions are modelled as decreasing with temperature T so that fc = f0c e
−kfT , with kf = 0.032◦C−1

independent of class, f0sml = 0.14, f0lrg = 0.74, and we assign fdia = flrg. The large and diatom classes are thus ∼ 5 times10

more efficient at exporting organic matter than the small class. We acknowledge that Richardson and Jackson (2007) suggested

that small and large phytoplankton have similar export efficiencies. However, their very sparse data does not provide strong

evidence that fsml = flrg, only that their values are uncertain. Indeed, our state estimates using the fc values of Dunne et al.

(2005) are consistent with the data presented by Richardson and Jackson (2007). Plots of the fractional uptake of each class

versus its fractional export (not shown here) are broadly consistent with Figure 1B of Richardson and Jackson (2007).15

Following Najjar et al. (1992), we assume that the detrital production rate is fluxed as POP through the base of the euphotic

zone at ze = 73.4 m with φPOP(ze) =
∫ 0

ze
fcUcdz, and that the POP flux attenuates with depth according to the Martin power

law φPOP(z) = φPOP(ze)(z/ze)
−b due to remineralization in the aphotic zone. The operator BP therefore injects PO4 with

the divergence of φPOP into the aphotic water column. The flux into the ocean bottom is remineralized in the lowest grid box

as in the work of Primeau et al. (2013). The exponent b was determined to be b= 0.82 using a restoring-type phosphate-only20

model. (Most parameters were optimized for the full coupled model – for details of our optimization strategy see section 3.3.)

The redistribution operator BSi similarly injects silicic acid into the aphotic water column with the divergence of the opal

flux, φbSi, which attenuates because of temperature dependent opal dissolution following Gnanadesikan (1999) and Holzer et al.

(2014). For each latitude and longitude, φbSi is computed as the solution to ∂zφbSi(z) =−(κmax
Si /wSi)exp(−TE/T (z))φbSi(z),

with the boundary condition φbSi(ze) =
∫ 0

ze
RSi:PfdiaUdiadz. We use TE = 11,481 K as Gnanadesikan (1999) and the same25

detrital fraction fdia for the opal export and diatom POP export. The parameter combination κmax
Si /wSi has nearly the same

value as determined by Holzer et al. (2014), but was re-optimized here for a simple restoring-type model that takes subgrid

topography into account (see below).

The scavenging operators Ss,POP and Ss,bSi act on JPOP and JbSi to redistribute a fraction of the iron scavenged at every

layer throughout the water column below the layer. In terms of the corresponding redistribution operators, we write30

Ss,POP = fPOPBs,POP and Ss,bSi = fbSiBs,bSi , (5)

where the fractions fPOP and fbSi were both fixed at 0.9 (see Appendix D). The operators Bs,POP and Bs,bSi in effect “recycle”

scavenged iron. They are very similar to BP and BSi but in addition to distributing scavenged iron from the euphotic zone to
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the aphotic zone, they also redistribute the scavenging rates of every aphotic layer to a source of redissolving iron with the

divergence of the scavenging particle fluxes. The flux of scavenged iron into the bottom is assumed to be lost forever so that

there would be iron loss even for 100 % efficient recycling of scavenged iron. (For details see Appendices A and B.)

To compute accurate particle fluxes for constructing all S operators, we take sub-grid topography into account (as done by

Moore and Braucher, 2008), using the high-resolution ETOPO2V2c data set (National Geophysical Data Center, 2006). This5

is done by calculating for each grid box the fractional area occupied by the sub-grid topography, which is also the fraction of

the particle flux that is intersected by the sub-grid topography. For each grid box, the fraction of the flux intersected is instantly

remineralized or dissolved (details in Appendix B).

2.3 Uptake rates

The PO4 uptake rate at a point is a function of the local temperature T , irradiance I , and nutrient concentrations. The uptake10

rate for functional class c is calculated as the product of its phytoplankton concentration, pc, and its specific growth rate, µc, as

Uc = µc pc =
pmax
c

τc
eκT (FI,cFN,c)

2
, (6)

where τc is the timescale for growth, pmax
c is the phytoplankton concentration under ideal conditions, and FI,c and FN,c are

dimensionless factors in the interval [0,1) that represent light and nutrient limitation, respectively, as defined below. We derive15

equation (6) similarly to Dunne et al. (2005) and Galbraith et al. (2010) as follows.

First, pc is calculated diagnostically by assuming steady state between growth and mortality, which avoids the need to

carry explicit plankton concentration tracers. This is justified by the coarse resolution of our model, which implies transport

timescales across a grid box much larger than the typical timescales for phytoplankton growth. Based on Dunne et al. (2005)’s

mortality formulation, pc can be modelled by a logistic equation20

∂tpc = µc pc−λ
(
pc
p∗c

)
pc , (7)

where the pc/p∗c scales the specific mortality rate λ, and p∗c has also been referred to as the “pivotal” population density (e.g.,

Dunne et al., 2005; Galbraith et al., 2010). Equation (7) has a nontrivial steady state, given by

pc =
(µc
λ

)
p∗c . (8)

We assume that all phytoplankton classes share the same specific mortality rate λ, which depends only on temperature. For25

simplicity, we follow Galbraith et al. (2010) and approximate the T dependence of λ to be identical to that of the growth rate.

We adopt a T dependence of the form eκT as determined by Eppley (1972) for the growth rate. Thus, λ= λ0 e
κT , where λ0 is

a constant and T is in ◦C.

Our formulation differs from that of Dunne et al. (2005) and Galbraith et al. (2010), who raise the ratio pc/p∗c to a power

α= 1 or α= 1/3 to differentiate between their small and large phytoplankton classes. Here, we instead differentiate between30
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classes by assigning them different half-saturation rates and maximum uptake rate constants similarly to the work of Matsumoto

et al. (2008) (details in sections 2.3.1 and 2.3.3).

We model the specific growth rate µc as multiplicatively colimited (Saito et al., 2008) by temperature, light, and nutrients:

µc =
1

τc
eκT FI,cFN,c , (9)

where τc is the growth timescale at 0◦C under ideal conditions and the temperature dependence eκT (Eppley, 1972) is identical5

to that used for the mortality rate (e.g., Galbraith et al., 2010). To group parameters for more efficient optimization, we define

pmax
c = p∗c/(λ0τc), so that diagnostic equation (8) for the phytoplankton concentration becomes

pc = FI,cFN,c p
max
c . (10)

Substituting (9) and (10) into UP
c = µc pc gives (6), which is similar to the uptake formulation of Doney et al. (2006) and

Matsumoto et al. (2008).10

We note that in the Sea of Japan the model’s circulation produces unrealistic nutrient trapping, likely due to under resolved

currents. For this reason we set the specific growth rate in the Sea of Japan to zero, effectively removing it from the computa-

tional domain of the biogeochemical model.

2.3.1 Nutrient limitation

We model the limitation of functional class c by nutrient i by a Monod function (Monod, 1942) of the concentration, χi/(χi+15

kic), where kic is the half-saturation constant that determines the scale on which the concentration influences uptake. (Because

only diatoms take up silicon kSilrg = 0 and kSisml = 0.) For the colimitation of all three nutrients, we use the type-I multiplicative

form (Saito et al., 2008)

FN,c =
∏
i

χi
χi + kic

. (11)

We chose the Monod model over the arguably more realistic quota model (e.g., Flynn, 2003) for simplicity. Moreover, the20

shortcomings of the Monod formulation likely only come into play for rapidly evolving transient blooms, which our steady-

state formulation does not attempt to capture.

Using a minimum over nutrient type i (Liebig’s rule, e.g., de Baar, 1994), rather than the product (11) is thought to fit the

observational data slightly better (e.g., Rhee, 1978; Droop, 2009). However, here we prefer the smoothness of the multiplicative

formulation because differentiability is a theoretical requirement for Newton’s method to converge (e.g., Kelley, 2003a). A25

product of PO4, dFe, and irradiance Monod terms was also used by Parekh et al. (2005) and Dutkiewicz et al. (2006) in the

uptake formulation of their coupled phosphorus-iron model.

2.3.2 Light limitation

We prescribe irradiance I and model light limitation with a simple Monod factor

FI,c =
I

I + kI,c
, (12)30
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with half-saturation constant kI,c for class c (e.g., Doney et al., 2006). We use an annual mean I derived from photosynthetically

active radiation (PAR) measured over the period 2002–2015 by the Modis Aqua satellite (NASA Goddard Space Flight Center,

2014). The surface PAR at location (x,y), denoted by I0(x,y), was converted to W m−2 using 2.77× 1018 quanta s−1 W−1

(Morel and Smith, 1974). Irradiance is modelled as exponentially attenuated with depth z so that

I(x,y,z) = I0(x,y)e−kwz , (13)5

with k−1w = 25 m.

2.3.3 Elemental uptake ratios

Because we key all biological production to PO4 utilization, we must specify the Fe : P and Si : P elemental uptake ratios for

the iron and silicon cycles. The Fe : P uptake ratio, RFe:P, is known to increase and saturate with increasing dFe concentration

(e.g., Sunda and Huntsman, 1997). We follow Galbraith et al. (2010) and model the dFe dependence as a simple Monod term10

RFe:P =RFe:P
0

χFe

χFe + kFe:P
, (14)

where RFe:P
0 is the maximal Fe : P uptake ratio. In principle, RFe:P

0 and kFe:P could be different for different functional

classes. However, constraining class-dependent Fe quotas is beyond the scope of what is possible with our inverse model:

different values of RFe:P
0 and kFe:P for each class would directly compensate for one another in the global Fe export. As noted

by Galbraith et al. (2010), this formulation ignores the effects of light limitation suggested by several studies (e.g., Sunda and15

Huntsman, 1997; Strzepek et al., 2012).

Equation (14) effectively encodes a minimum iron requirement of zero. Thus, for very low dFe concentrations, our Fe : P

ratio RFe:P would fall below a realistic cell quota, but this has no mechanistic consequence because for such low dFe concen-

trations there is essentially no uptake in our formulation. This is because RFe:P is proportional to a dFe Monod term, while

P uptake is proportional to the square of a dFe Monod term. Thus, as dFe becomes small, the uptake goes to zero faster than20

RFe:P itself. Simply put, this means that when the Fe : P ratio is unrealistically small, it does not matter because there is no P

or Fe uptake. When we introduced a nonzero minimum for RFe:P, it tended to be optimized to zero, which means that a simple

Monod factor suffices to capture the dFe dependence of the Fe : P ratio where there is significant uptake.

The Monod formulation (14) does capture luxury iron uptake (e.g., Marchetti et al., 2009a) when the half-saturation constant

of (14) exceeds the half-saturation constant of the iron limitation in (11), as made explicit by Galbraith et al. (2010). This is25

the case for our optimized value of kFe:P so that phytoplankton has the luxury to increase its iron uptake with increasing dFe

concentration even when iron is not limiting.

Our representation of the RSi:P uptake ratio takes into consideration field studies and iron enrichment experiments, which

have indicated that in HNLC regions and upwelling regions iron limitation leads to increased diatom silicification, i.e., in-

creased cellular Si : N and Si : P ratios (e.g., Takeda, 1998; Hutchins and Bruland, 1998; Franck et al., 2000; Brzezinski et al.,30

2003). However, there is no literature consensus on a mechanistic formulation of the iron dependence of silicic-acid uptake.

For example, Matsumoto et al. (2013) assume a Si : N uptake ratio inversely proportional to the dFe concentration (capped at

9



a minimum), while Jin et al. (2006) assume the Si : N ratio to depend only on the Si(OH)4 concentration. Others suggest that

the dFe concentration only impacts the diatom growth rate and not the cellular Si : C ratio, while the Si(OH)4 concentration

impacts the cellular Si : C ratio and not growth rate (e.g., Marchetti et al., 2009b; Brzezinski et al., 2011a). Here, we chose to

retain the effects of increased silicification due to iron limitation and the impact of high Si(OH)4 concentration on silicification

(Brzezinski 2016, personal communication). We model these effects with the formulation5

RSi:P =RSi
0 +

(
RSi

m −RSi
0

) kFeSi:P
χFe + kFeSi:P

χSi

χSi + kSiSi:P
. (15)

The ratio involving the χFe produces increased silicification when iron is deficient, while the Monod term for χSi produces

increased silicification in silicon-replete environments: If χFe→ 0 and χSi� kSiSi:P, then RSi:P→RSi
m, while if χFe� kFeSi:P

or χSi→ 0, then RSi:P→RSi
0 . The minimum and maximum Si : P ratios RSi

0 and RSi
m, as well as the constants kFeSi:P and kSiSi:P

were tuned rather than fully optimized to achieve the observation-based fractional uptake of each functional class (see section10

3.3 on optimization for details). (Plots of the experimental data that show increased silicification under conditions of low dFe

can be seen in Figure 6 of Franck et al. (2000) and in Figure 7 of Brzezinski et al. (2003).)

2.4 Iron model

2.4.1 Iron sources

The aeolian source, sA, is based on the spatial pattern of the surface flux of atmospheric soluble iron of Luo et al. (2008),15

obtained from an atmospheric model for current climate conditions that includes size-partitioned mineral dust, biomass burn-

ing, and industrial emissions. Because the global strength σA ≡
∫
sA(r)d3r of the aeolian source is highly uncertain (e.g.,

Tagliabue et al., 2016), we scale the global amplitude of this pattern to an initial guess of the global source strength that is

then refined in our final optimization step (see sections 3.3 and 3.4 below). We note that the model of Luo et al. (2008) esti-

mate a soluble aeolian iron flux into the ocean of σA ∼ 6 Gmol yr−1. (The global source strength of iron type k is defined as20

σk ≡
∫
sk(r)d3r.)

The sedimentary source, sS, has the pattern of the POP flux reaching the sediments (Elrod et al., 2004; Frants et al., 2016) and

accounts for both resolved and subgrid topography. The amplitude of this pattern is the global sediment iron source strength

σS, which is an optimized parameter. The dependence of the sediment redox reaction on dissolved oxygen (e.g., Galbraith

et al., 2010) is ignored here for simplicity and to avoid carrying oxygen as another tracer. Unlike in the model of Frants et al.25

(2016), the phosphorus cycle and POP flux are not prescribed but coupled to the iron and silicon cycles as described above.

To model the hydrothermal source, sH, we use the 3He source pattern of the Ocean-Carbon Cycle Model Intercomparison

Project (OCMIP) protocol (Dutay et al., 2004), and jointly optimize the hydrothermal iron source strengths σH,ATL, σH,PAC,

σH,IND, and σH,SO of the Atlantic, Pacific, Indian, and Southern Ocean ridge systems, as in the work of Frants et al. (2016).
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2.4.2 Iron sinks

Dissolved iron can be chelated by ligands or “free”. We assume that the scavenging acts only on the concentration χFe′ of

free iron so that chelation by ligands protects dFe from being scavenged. Scavenging is modelled as a first order process (e.g.,

Aumont et al., 2015) so that the scavenging rate is proportional to the product of χFe′ and the concentration of the scavenging

particles χj , for j ∈ {POP,bSi,dst}, the three types of particles considered. For each particle type, the scavenging rate per5

unit volume is thus modelled as

Jj = κjscvχ
jχFe′ , (16)

where the scavenging rate constants κPOP
scv , κbSiscv, or κdstscv are optimizable parameters.

To compute the concentration of the scavenging particles, we use the fact that the flux divergences generated by the biogenic

transport operators must be balanced by local remineralization or dissolution rates, that is,10

BP
∑
c

fcUc = κPχ
POP (17)

and

BSi fdiaUdia = κmax
Si e−TE/TχbSi . (18)

Although we use the nominal values of κP and κmax
Si listed in Table 1, note that these constants only enter the scavenging

rates (16) through the combinations κPOP
scv /κP and κbSiscv/κSi, where κPOP

scv and κbSiscv are optimized. The concentration of dust15

particles is modelled as vertically uniform due to sinking dust particles that do not dissolve or re-suspend from sediments (e.g.,

Moore and Braucher, 2008). We use the geographic pattern of the dust mass flux into the ocean provided by Luo et al. (2008),

which we convert to a particle concentration using a nominal sinking speed of wdst = 50 m day−1. The exact value of wdst

does not matter because the dust scavenging rate depends only on κdstscv/wdst and κdstscv is optimized.

The key control on shaping the free iron concentration, and hence the scavenging, is the ligand concentration L. Chemical20

equilibrium between ligands, total dFe, and free iron determines χFe′ as a quadratic function of the (total) dFe concentration

(see, e.g., Frants et al., 2016). We used the same ligand stability constant of KL = 8× 1010 kg (mol Lig)−1 as Frants et al.

(2016). The ligand concentration itself is modelled to have a uniform background value Lb that can be enhanced in old waters

(Misumi et al., 2013) and in hydrothermal plumes (e.g., Bennett et al., 2008; Hawkes et al., 2013), similar to the formulation

of Frants et al. (2016). Specifically, we use25

L= max(LH +Lsw,Lb) , (19)

where the LH and Lsw are the elevated hydrothermal and aged “sea water” ligand concentrations, which we model as follows.

The hydrothermal ligand plumes are computed from the source-sink balance

T LH =− 1

τb
LH−

∆v

τv
(LH−Lv) , (20)
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where ∆v is a mask that is unity for grid boxes containing vent sites (taken from the OCMIP 3He source (Dutay et al., 2004))

and zero elsewhere. The timescale τv = 1 s clamps the ligand concentration to Lv at the vents, and the timescale τb controls

the plume spread by setting the rate with which LH decays away from the vents. The ligand concentration Lsw is enhanced in

old waters according to

Lsw(r) =
Γ(r)

Γmax
Lmax , (21)5

where Γ(r) is the ideal mean water age (easily computed for our model), we choose Γmax = 1600 yr following Frants et al.

(2016), and Lmax together with τb, Lv, and Lb are optimizable parameters.

As is the case for most iron models, there is no need to explicitly represent the chemical precipitation of dFe. This is

because in most formulations the scavenging rates increase rapidly when dFe exceeds a certain threshold. For our model this

threshold is set by the ligand concentration L: in chemical equilibrium χFe′ and hence the scavenging rate rise rapidly when10

dFe concentrations exceed L.

3 Numerical method, parameter optimization, and family of state estimates

3.1 Steady state solution

All three-dimensional fields (e.g., the concentrations χi) are discretized on our model grid and organized into column vectors

(length n= 191169 at our resolution). Linear operators such as T , Sic, and Ss,j are correspondingly organized into n×n sparse15

matrices. The steady-state tracer equations (1)–(3) then become a system of 3n× 3n equations that are nonlinear because of

the iron scavenging and the colimitation of the PO4 uptake.

The 3n×3n system is solved efficiently using Newton’s method (e.g., Kelley, 2003a, b). Convergence of the Newton method

depends on the initial guess for the solution and is not guaranteed. For the initial guess of χP and χSi we use the annual mean

fields of the World Ocean Atlas (WOA13, Garcia et al., 2014) interpolated to our grid, and for the initial guess of χFe we20

use the dFe fields estimated by Frants et al. (2016). The Newton solver typically converges to numerical precision in ∼ 10

iterations.

3.2 Cost function

We optimize the model parameters by systematically minimizing a quadratic cost function of the mismatch between modelled

and observed fields. For PO4 and Si(OH)4, for which gridded climatologies are available, we define the weights based on the25

grid-box volumes, organized into vector v, as

wP =
v

(χobs
P )2V

, and wSi =
v

(χobs
Si )2V

, (22)

where we have normalized the weights by the total ocean volume V and the squared global mean observed concentrations.

This non-dimensionalizes the quadratic cost terms and scales them to the same order of magnitude. For dFe, for which only
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sparse observations are available, we also define weights wFe based on grid box volumes, but observations that are part of a

vertical profile receive additional weight as detailed in Appendix C.

With diagonal weight matrix Wi = diag(wi) for the ith nutrient, its cost for the mismatch with observations is then given

by

Ei = δχT
i Wi δχi , (23)5

where δχi ≡ χi−χobs
i . For χobs

P and χobs
Si we use WOA13 fields interpolated to our grid, and for χobs

Fe we used the GEO-

TRACES intermediate data product (Mawji et al., 2015) and the data set compiled by Tagliabue et al. (2012).

The cost terms for the nutrient mismatch do not provide a strong constraint on the relative sizes of the phytoplankton class

because the nutrients are determined by their combined export. We therefore include additional terms in our cost function

that constrain the phytoplankton concentrations pc to the recent satellite derived estimates of Kostadinov et al. (2009). These10

estimates provide phytoplankton concentrations for picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm),

and microphytoplankton (20–50 µm), which we identify with our small, large, and diatom functional classes. We use the entire

mission composite data set as the satellite climatology (Kostadinov et al., 2016).

Because of the large dynamic range of the phytoplankton concentrations, we consider mismatches in the log of the concen-

trations, that is, δπc ≡ log[(pc + εc)/p0]− log[(pobsc + εc)/p0] , where εc = pobsc is introduced to limit the logarithm where the15

phytoplankton concentration falls to zero. For each class, we construct normalized weight vectors

wc =
v

[log(pobsc /p0)]2Veup
, (24)

where Veup is the global euphotic volume, and p0 = 1 mg C m−3 nondimensionalizes the argument of the logarithm.

Organizing mismatches and weights into vectors and diagonal matrices, we calculate the cost for the phytoplankton concen-

tration mismatch as20

Eplk =
∑
c

δπT
c Wc δπc , (25)

and combine the costs for the nutrient and plankton mismatches into the total cost

Etot = ωPEP +ωSiESi +ωFeEFe +ωplkEplk , (26)

which we minimize to constrain our model parameters by the available observations. In (26) the ω weights were chosen such

that the four cost terms contribute roughly equally to the total cost for a typical member of our family of state estimates. This25

was achieved with (ωP,ωSi,ωFe,ωplk) = (1,0.47,0.044,0.30), the smaller weight for dFe reflecting its larger root-mean-square

(RMS) mismatch and hence much larger cost EFe.

3.3 Optimization strategy

Our model has ∼ 50 biogeochemical parameters that can in principle be determined through objective optimization given ap-

propriate observational data. However, even with perfect data, some parameters can compensate for others (e.g., two parameters30
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appearing as a ratio) so that not all parameters are independent. Other parameters cannot be optimized because the mismatch

with available nutrient and phytoplankton data is not sensitive to their value. In practice, it therefore is not possible to optimize

all parameters, and care is needed to optimize only those parameters that independently shape the nutrient and phytoplankton

concentrations.

The parameters associated with the remineralization of phosphate and dissolution of opal are well constrained by the high-5

quality climatologies of PO4 and Si(OH)4. However, the iron cycle is relatively poorly constrained because the dFe data is

much more sparse in both time and space, and estimates of the iron sources range over two orders of magnitude (e.g., Tagliabue

et al., 2016). Moreover, the ligand field that determines the scavengable free iron is highly uncertain. Given these challenges,

the recent inverse model of the iron cycle by Frants et al. (2016) considered a family of state estimates for a range of external

source strengths, an approach we will follow here for our coupled model.10

Another key consideration is computational cost. Even with the numerically efficient Newton Solver, optimization typically

requires hundreds of solutions of equations (1)–(3) per optimized parameter. We therefore optimized no more than 13 pa-

rameters at a time. We acknowledge that the minimum attained by sequentially optimizing groups of independent parameters

is generally different than jointly optimizing all independent parameters, but computational and practical considerations de-

manded a sequential approach. We justify this a posteriori by the fact that we are able to achieve fits to the observed nutrient15

concentration fields with RMS mismatches similar to those of other recent data-constrained models (e.g., Primeau et al., 2013;

Holzer et al., 2014; Frants et al., 2016). Given these considerations, we adopted the following strategy:

(i) Parameters that are measurable and considered well-known, as well as parameters that are unconstrainable by our cost

function or whose value is not critical because they are strongly compensated by other parameters, were assigned values

from the literature as collected in Table 1. The considerations that entered our choice of prescribed parameters are detailed in20

Appendix D.

(ii) The parameters that set the phosphate remineralization and opal dissolution profiles were optimized by minimizing the

mismatch with PO4 and Si(OH)4 concentration data from the WOA13 using separate single-nutrient models. For the Si cycle,

we used the model of Holzer et al. (2014) and verified that the opal sinking speed parameter wSi was not affected by the

inclusion of sub-grid topography (Appendix B). For the P cycle, we used a similar conditional restoring model without POP,25

but with subgrid topography, and optimized the Martin exponent b. The resulting values of wSi and b (Table 1) were held fixed

for all optimizations of the coupled nutrient cycling model.

(iii) The remaining parameters were optimized using our coupled model. We first assign initial values for all these parameters

and then sequentially update these initial values by optimizing subsets of parameters as detailed in Appendix D. Both initial

and final optimized parameter values are collected in Table 2. (For the parameters of the iron cycle, Table 2 gives the values of30

our typical state estimate and the range across a family of state estimates, different members of which have different external

iron sources.)
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Table 1. Parameters that were prescribed from the literature, or that were separately optimized in a submodel.

Parameter Description Value Unit Source

κ Growth and mortality temperature coefficient 0.063 (◦C)−1 Eppley (1972)

kw Irradiance attenuation coefficient 0.040 m−1 Dutkiewicz et al. (2005)

KL Ligand stability constant 8× 1010 kg (mol Lig)−1 Galbraith et al. (2010)

Γmax Age coefficient for ligand parameterization 1600. yr Frants et al. (2016)

fPOP Recyclable fraction of POP-scavenged dFe 0.90 – Moore and Braucher (2008)

fbSi Recyclable fraction of opal-scavenged dFe 0.90 – Moore and Braucher (2008)

f0
dia Diatom class detrital fraction at 0◦C 0.74 – Dunne et al. (2005)

f0
lrg Large class detrital fraction at 0◦C 0.74 – Dunne et al. (2005)

f0
sml Small class detrital fraction at 0◦C 0.14 – Dunne et al. (2005)

κP POP remineralization rate constant 0.03 d−1 Kriest and Oschlies (2008)

κmax
Si Opal dissolution rate coefficient 13× 1015 d−1 Gnanadesikan (1999)

TE Temperature scale for opal dissolution 11481. K Gnanadesikan (1999)

kSidia Diatom class Si(OH)4 half-saturation constant 1.0 mmol Si m−3 Matsumoto et al. (2013)

wSi Opal sinking speed 40. m d−1 Submodel optimization

b POP flux Martin exponent 0.82 – Submodel optimization

3.4 Family of state estimates

Figure 1 shows the quality of the fit to nutrient and phytoplankton data for all our optimized state estimates, which span a

wide range of source strengths. For ease of presentation, state estimates are divided at σH = 1 Gmol yr−1 into low and high

hydrothermal cases, with σH spanning a range from 0.073 to 11.Gmol yr−1. For high σH, we focused on correspondingly

higher aeolian and sedimentary source regimes. Source-parameter space was not explored uniformly because (i) the final step5

of our optimization adjusted our initial choice of sources, and because (ii) some source choices produced spurious numerical

difficulties for the Newton solver.

All state estimates fit the macronutrient fields about equally well, but the overall quality of fit as quantified by the square

root of the quadratic mismatch (“total cost”, top panels of Figure 1) gets systematically worse with increasing aeolian source

strength, σA, especially for high hydrothermal sources. This worsening fit for high σA is reflected in the mismatch of all10

three nutrients. We define our family of state estimates as the set of state estimates whose total cost remains within ∼ 5 %

of the smallest misfit (total cost less than 15.4), which essentially eliminates state estimates with σA & 22 Gmol yr−1 and

σH & 5 Gmol yr−1 (black crosses in Figure 1). (If we include the “crossed-out” state estimates for plots of subsequent sections

that show scatter across the family of state estimates, the visual impact is virtually imperceptible.) While it is clear from Figure
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Table 2. Optimized parameters and range across family of state estimates.

Parameter Description Initial Optimized Range Unit

Value Value

kI,dia Diatom class irradiance half-saturation rate 20. 8.1 – W m−2

kI,lrg Large class irradiance half-saturation rate 20. 9.0 – W m−2

kI,sml Small class irradiance half-saturation rate 20. 8.8 – W m−2

RSi
m Diatom maximum Si : P 160. 220. – mol Si (mol P)−1

RSi
0 Diatom minimum Si : P 8.0 13. – mol Si (mol P)−1

kSiSi:P Silicon half-saturation constant in Si : P 30. 4.0 – mmol Si m−3

kFeSi:P Iron hyperbolic constant in Si : P 1.0 0.077 – nM Fe

kFe:P Iron half-saturation constant in Fe : P 0.74 0.74 – nM Fe

kPdia Diatom class PO4 half-saturation constant 0.39 0.72 – mmol P m−3

kPlrg Large class PO4 half-saturation constant 0.39 0.72 – mmol P m−3

kPsml Small class PO4 half-saturation constant 0.030 0.13 – mmol P m−3

kFedia Diatom class dFe half-saturation constant 0.10 0.30 – nM Fe

kFelrg Large class dFe half-saturation constant 0.10 0.29 – nM Fe

kFesml Small class dFe half-saturation constant 0.010 0.11 – nM Fe

pmax
dia Diatom class maximum concentration 23. 42. – mg C m−3

pmax
lrg Large class maximum concentration 23. 61. – mg C m−3

pmax
sml Small class maximum concentration 23. 21. – mg C m−3

τdia Maximal diatom growth timescale 6.0 0.65 – d

τlrg Maximal large growth timescale 6.0 1.5 – d

τsml Maximal small growth timescale 6.0 7.4 – d

RFe:P
0 Maximum Fe : P uptake ratio 5.0 2.0 0.52–3.0 mmol Fe (mol P)−1

κPOP
scv POP scavenging rate constant 0.13 1.0 0.015–7.9 (mmol POP m−3)−1 d−1

κbSi
scv Opal scavenging rate constant 3.1 1.3 0.85–13. (mol bSi m−3)−1 d−1

κdst
scv Dust scavenging rate constant 10000. 9.4 8.5–10. (g dust m−3)−1 d−1

Lb Background ligand concentration 1.0 0.51 0.40–0.72 nM Lig

Lv Maximal hydrothermal vent ligand conc. 3.0 1.2 0.68–1.4 nM Lig

τb Hydrothermal vent plume restoring timescale 10. 5.7 3.0–7.5 yr

Lmax Maximal age-enhanced ligand conc. 2.3 0.97 0.82–1.3 nM Lig

σA Aeolian source strength 1.9 5.3 0.63–22. Gmol Fe yr−1

σS Sedimentary source strength 4.2 1.7 0.11–22. Gmol Fe yr−1

σH,ATL Hydrothermal source strength, Atlantic 0.098 0.19 0.00013–0.50 Gmol Fe yr−1

σH,PAC Hydrothermal source strength, Pacific 0.21 0.42 0.035–2.9 Gmol Fe yr−1

σH,IND Hydrothermal source strength, Indian O. 0.066 0.13 0.011–0.80 Gmol Fe yr−1

σH,SO Hydrothermal source strength, Southern O. 0.066 0.13 0.011–1.2 Gmol Fe yr−1
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Figure 1. Total cost metric and RMS mismatch of the nutrient concentrations as a function of the aeolian, hydrothermal, and sedimentary

iron source strengths (σA,σS,σH) plotted for all our optimized state estimates. state estimates whose total cost exceed 15.4 are indicated by

black crosses and were excluded from our family. Plots on the left show state estimates for which σH < 1 Gmol yr−1, while for plots on

the right σH ≥ 1 Gmol yr−1. (a) Square root of the total cost expressed as a nominal percentage representative of the mean RMS mismatch

of the nutrient and phytoplankton concentrations. (b) RMS mismatch of the PO4 concentration as a percentage of the global mean PO4

concentration. (c) As (b) for Si(OH)4. (d) As (b) for dFe. (e) The value of the hydrothermal source σH for each family member.
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1 that high-σA state estimates are less likely, we hasten to add that the cost threshold for inclusion in the family is arbitrary as

we do not have a formal error covariance to convert the cost into a likelihood.

For a small fraction of our state estimates, the optimization pushed the maximum possible Fe : P ratio RFe:P
0 to near-zero

values. These cases are unrealistic because zeroRFe:P
0 means significant P uptake and export are maintained without Fe uptake.

We therefore also exclude cases for which the optimized RFe:P
0 < 0.5 mmol Fe (mol P)−1 from our family of state estimates.5

Removing these unphysical outliers has negligible visual impact on plots that show the family of state estimates.

In terms of total cost, there is little sensitivity to the strength of the sedimentary source — scavenging can be optimized for

a sedimentary source ranging over two orders of magnitude for an overall similar quality of fit. For low σH, there are small

opposing RMS mismatches for PO4 and dFe, with a slightly better PO4 fit for higher sedimentary source and a slightly better

dFe fit for lower sedimentary source, although the variation in the mismatch is less that 1 % of the global mean concentrations.10

While the mismatch for dFe is substantial at ∼ 45 % of the global mean dFe concentration, the smallest dFe mismatch

occurs when all three sources are low. The dFe mismatch rapidly increases with σA, consistent with the findings of the much

simpler model of Frants et al. (2016). The overall cost and the mismatch for each nutrient are insensitive to the strength of the

hydrothermal source.

While Figure 1 shows some variations with the source strengths in the overall quality of the fit, it is clear that the iron15

sources and scavenging sinks are poorly constrained by the available nutrient and phytoplankton observational data. Given

the uncertainties in the sources and the small cost differential between family members, it is not appropriate to single out the

state estimate with the numerically lowest cost as the most realistic state estimate. We therefore use the entire family of state

estimates below to assess the robustness of our results and to elucidate the systematic variations of the carbon and opal exports

with the fractional source of each iron type (aeolian, sedimentary, hydrothermal). The uncertainty in the value of any metric is20

assigned from its spread across the family of state estimates.

As a typical representative of our family of state estimates, for which we plot patterns and typical results below, we selected

the state with (σA,σS,σH) = (5.3,1.7,0.9) Gmol Fe yr−1. This state is typical in that it lies at the mode of the distribution of

overall RMS misfit values and, for most quantities, tends to lie in the middle of the range across the family.

We emphasize that the variations across the family of state estimates explored here are variations of the fully optimized25

biogeochemical states. These variations cannot be used to infer the system’s response to dFe perturbations for which the other

biogeochemical parameters would not change. Such perturbations, which are of great interest in themselves, are beyond the

scope of this paper and will be examined in a separate publication.

4 Fidelity to observations

We now examine in more detail how well our state estimates match the observations against which they were optimized. We30

focus here on the nutrient fields which contribute the bulk of the cost function. The phytoplankton fields contribute only∼ 10 %

to the cost function and serve primarily to differentiate the uptake of small phytoplankton from that of large phytoplankton

— a comparison between estimated and observed phytoplankton concentrations is provided in Appendix E. Where there is

18



0

20

40

60

80

100

0 1 2 3 4
0

1

2

3

4

0 50 100 150 200
0

50

100

150

200

0 0.5 1 1.5 2
0

0.5

1

1.5

2

RMS = 0.11 µM

(~5.0% of <χ
P

obs
>)

RMS = 10 µM

(~12% of <χ
Si

obs
>)

RMS = 0.29 nM

(~44% of <χ
Fe

obs
>)

(a) PO
4
 mismatch

Observed PO
4
 (µM)

M
o
d
e
le

d
 P

O
4
 (

µ
M

)

(b) Si(OH)
4
 mismatch

Observed Si(OH)
4
 (µM)

M
o
d
e
le

d
 S

i(
O

H
) 4

 (
µ

M
)

(c) dFe mismatch

Observed dFe (nM)

M
o
d
e
le

d
 d

F
e
 (

n
M

)

Percentile

Figure 2. Joint distribution of the volume-weighted observed and modelled concentrations of PO4 (a), Si(OH)4 (b), and dFe (c). The

percentiles of the cumulative distribution are defined such that x% of the distribution lies outside the x-percentile contour. Large percentiles

thus correspond to high densities. For PO4 and Si(OH)4, the WOA13 observations were interpolated to our model grid. The dFe observations

were interpolated to our model grid from the data compilation of Tagliabue et al. (2012) and the GEOTRACES data (Mawji et al., 2015).

little variation across the family, we focus on our typical state estimate. For iron-related quantities that have by construction

significant spread across the family, we will focus on the systematic variations of the optimized states with the dFe sources.

4.1 Nutrient concentrations

The nutrient concentrations are well constrained for all members of our family of state estimates. We quantify the overall fit

of the modelled nutrient concentrations in terms of the joint probability density function (pdf) of the modelled and observed5

concentrations. This joint pdf may be thought of as the binned scatter plot of the modelled versus observed values for all grid

boxes. The binning for a given nutrient was weighted by the corresponding weights of the associated mismatch cost. These

joint pdfs are shown in Figure 2 for all three nutrients for our typical state estimate. Both the PO4 and Si(OH)4 pdfs fall close

to the 1 : 1 line, showing high fidelity to observations. For PO4 the cost-weighted RMS error is 5.0 % of its global mean of

2.17 µM. In comparison, Primeau et al. (2013) achieved an RMS mismatch of 3 % by jointly optimizing the uptake rate of each10

grid box with the circulation. Silicic acid has a slightly larger RMS mismatch of 12.% relative to its global mean 89.1 µM. This

is similar to the 13 % RMS error reported by Holzer et al. (2014), who used the same circulation but a much simpler model of

the silicon cycle.

The global mean dFe concentration is well constrained within the narrow range of 0.56–0.68 nM across the family of state

estimates. For iron, the joint probability is by necessity computed using only those grid boxes that contain dFe observations.15

The scatter from the 1 : 1 line is much larger than for the macronutrients with a substantial RMS mismatch of 0.29 nM, or 44 %

of the mean. This mismatch is comparable to that of other models (e.g., Tagliabue et al., 2016). Compared to the simpler model

of Frants et al. (2016), the joint pdf shows that our dFe field has a wider, more realistic dynamic range. We note that while

Frants et al. (2016) report an RMS mismatch of only 0.19 nM, they also employed different weights for the model-observation
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Figure 3. Basin-wide, cost-weighted average profiles of the (red) observed and (grey) modelled dFe concentrations for the Atlantic and

Pacific oceans (both north of 40◦S), and the Southern Ocean (south of 40◦S). The profiles of our typical state estimate are highlighted in

black. The error bars represent the combined standard error associated with the spatial standard deviation from the basin-mean profile and

the observational standard deviation for each grid box. These were added in weighted quadrature using the weights for dFe mismatch from

our cost function.

mismatch. If we re-compute the RMS mismatch of the optimized dFe field of Frants et al. (2016) using the weights of this20

work, we also obtain a 0.29 nM mismatch.

The relatively large mismatch for dFe not only quantifies model deficiencies, but to a large degree also reflects the fact that

we are comparing snapshot observations against a steady-state coarse-resolution climatological model. The dFe observations

have difficult-to-quantify temporal and spatial sampling biases, and dFe being a trace element it is sensitive to episodic events

in the aeolian source (e.g., Croot et al., 2004), and possibly to internal episodic events such as submarine volcanism (e.g.,25

Massoth et al., 1995).

4.2 dFe Profiles

To quantify the spatial structure of the dFe mismatch, we examine vertical profiles for each basin. For both model and ob-

servations, we only use the grid boxes that contain observations and average horizontally over the basins using the EFe cost

weights. The resulting profiles are shown in Figure 3. The family of model profiles generally overlaps with the observational30

uncertainties. The estimates are particularly close to the observations near the surface. In the abyssal oceans, the spread in the

family of profiles is larger. The spread across the family is in part a reflection of the weights in our cost function. Most dFe

observations are available in the upper ocean, implying a small variance of the mean concentration and hence large weights,

while deep observations tend to be sparser with smaller weights (for details on the weights see Appendix C).
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Figure 3 also shows systematic biases in the inferred dFe concentrations. Biases are particularly strong in the Pacific where

the observations tend to be underpredicted by as much as ∼ 0.3 nM above ∼ 1500 m and overpredicted by ∼ 0.2 nM below

∼ 2000 m depth. The typical estimated Pacific profiles is too linear in the upper 1500 m, with vertical gradients that are too5

weak above ∼ 300 m and too strong below ∼ 1000 m. In the Atlantic, a smaller low bias of ∼ 0.15 nM can be seen between

∼ 500 and ∼ 1300 m depth.

These biases could be due to deficiencies in our model such as, for example, oversimplified ligand parameterization, but

one must also keep in mind that there are hard-to-quantify biases in the observations. The observations are too sparse to form

a reliable climatology, and it is remarkable that we can fit the available observations as well as we do. The larger biases in10

the Pacific could well be due to the absence of Pacific transects in the GEOTRACES Intermediate Data Product 2014, which

means that mismatches in the Pacific incur a relatively smaller penalty in our cost function.

Figures 1d, 2c, and 3 are appropriate quantitative comparisons between estimated and observed dFe, given that essentially

raw bottle data is compared with a coarse-resolution steady-state model. For completeness, Appendix G also compares the

main transects included in the GEOTRACES Intermediate Data Product with our typical state estimate.15

5 Limiting nutrients

For a given phytoplankton functional class, different nutrients are known to limit biological production in different parts of the

ocean (e.g., Moore et al., 2001). These geographic limitation patterns are a fundamental fingerprint of upper-ocean ecosystem

dynamics. Knowledge of the limitation patterns is important for understanding how the global nutrient cycles operate in the

current climate and for assessing possible future changes of the global ocean ecosystem.20

Limiting nutrients can be determined observationally (e.g., Moore et al., 2013), and from biogeochemical models (e.g.,

Moore et al., 2004). Here, we estimate the limitation patterns from our optimized inverse-model state estimates. In our model,

the biological uptake of each functional class (6) is limited through FN,c, the product defined in (11) of three Monod terms,

one for each nutrient. We define the deficiency Di
c of functional class c in nutrient i as the complement of the corresponding

Monod factor, i.e., as Di
c ≡ 1− χi

χi+kic
. We deem nutrient i to be “limiting” class c if Di

c > 0.5 or, equivalently, if χi < kic, i.e.,25

if the nutrient concentration falls below its half-saturation value for uptake.

To display the pattern of the nutrient limitations, we could use the fact that we have three nutrients to define an RGB color

as (DP
c ,D

Si
c ,D

Fe
c ). However, because the resulting colors vary continuously, it is hard to quantify the resulting patterns. We

therefore define the limiting RGB color as (LP
c ,L

Si
c ,L

Fe
c ), where Lic = 1 if Di

c > 0.5 and Lic = 0 otherwise. This partitions

the RGB color cube into eight possible colors that define and identify the eight nutrient limitation regimes shown in Figure 4.30

Specifically, the resulting colour is black (0,0,0) if all nutrients are available in sufficient quantities so that none are deemed

limiting, white (1,1,1) if all three nutrients are limiting, red (1,0,0) if only dFe is limiting, green (0,1,0) if only Si(OH)4

is limiting, and blue (0,0,1) if only PO4 is limiting. The remaining three possibilities correspond to two nutrients being

colimiting: magenta (1,0,1) if dFe and PO4 are colimiting, cyan (1,1,0) if PO4 and Si(OH)4 are colimiting, and yellow

(0,1,1) if Si(OH)4 and dFe are colimiting. Only a few grid boxes in the Arctic are solely limited by silicic acid (green).
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Figure 4. The patterns of limiting nutrients for each phytoplankton functional class. The colour cube at the bottom right shows the eight

possible limitation regimes of our inverse model: Red corresponds to dFe limitation, blue to P limitation, and green to Si limitation. Cyan,

yellow, and magenta correspond to colimitations of P and Si, dFe and Si, and P and dFe, respectively. White corresponds to colimitation of

all three nutrients while black indicates no limitation. (See text for the definitions of the deficiencies DP
c , DSi

c , and DFe
c of the cube axes.)

Figure 4 shows the limitation patterns of all three phytoplankton classes. The large and diatom classes have similar patterns

of iron limitation in the Southern Ocean, eastern tropical Pacific, and North Pacific. For both classes, the Indian Ocean and

North Atlantic are largely PO4 limited. The subtropical gyres of the Indian Ocean and North Atlantic are PO4 limited for the5

large class, and PO4–Si(OH)4 colimited for diatoms. The differences between the large and diatom classes come from the

Si(OH)4 dependency of diatoms. Because the large class requires zero silicic acid, its limitation map show no areas where all

three nutrients are limiting (white). The subtropical gyres of the Pacific and South Atlantic are dFe and PO4 colimited for the

large class, while for diatoms the centre of these gyres are limited in all three nutrients. For diatoms, the eastern margins of the

Pacific subtropical gyres show Si–Fe colimitation (yellow). The completely nutrient replete regions of the Arctic and Weddell10

Sea reflect the low biological utilization there driven in our model by light limitation through the prescribed PAR irradiance

field.

The small phytoplankton class shows a much simpler limitation pattern. Limitation occurs primarily in the subtropical oceans

with small patches of iron limitation also in the Southern Ocean and tropical Pacific. Iron limitation dominates the subtropical

South Pacific, while PO4 limitation occurs primarily in the subtropical gyres of the south Indian Ocean and North Atlantic.15

The rest of the ocean is largely nutrient replete for the small functional class.

The broad features of the limitation pattern of Figure 4 are robust across all members of our family of state estimates, with

areas of each type of limitation generally varying by ±5 % or less across the family of state estimates.
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The general features seen in Figure 4 broadly agree with the observational data (in situ and bottle nutrient addition ex-

periments) reported by Moore et al. (2013). Like our estimates, the observations show Fe limitation in the Southern Ocean,20

subpolar North Pacific, and eastern tropical Pacific. The observations also indicate Fe limitation in the North Atlantic, which

for our state estimates is also present in small patches in the western subpolar North Atlantic and becomes slightly more pro-

nounced for the family members with higher total iron source. Moore et al. (2013) report Si limitation in the Pacific sector

of the Southern Ocean at its northern boundary, where the silicic acid concentration sharply decreases. This is consistent with

our yellow region of joint Si and Fe limitation along the eastern edge of the Pacific subtropical gyres. Consistent with our25

estimates, the observations show PO4 limitation in the North Atlantic subtropical gyre and in the equatorial Atlantic.

Our limitation patterns can also be compared to those calculated for summer conditions in the BEC model of Moore et al.

(2004). However, it must be kept in mind that (i) the BEC model has a different circulation and a different representation of the

ocean’s biogeochemical cycles (e.g., explicitly representing the nitrogen cycle and diazotrophs) and that (ii) Moore et al. (2004)

define limitation in terms of the minimum Monod factor, while we use a threshold of 1/2 for the Monod factors and jointly30

consider three Monod terms to define the type of limitation. For diatoms, the Fe limitation pattern reported by Moore et al.

(2004) is similar to ours including bands of Si limitation surrounding the tongue of Fe limitation in the tropical eastern Pacific.

For non-diatom phytoplankton, there are also broad similarities, such as iron limitation in the eastern tropical Pacific, subpolar

North Pacific, and Southern Ocean. In the BEC model, most of the Atlantic is phosphate or nitrate limited. While we do not

model nitrate, nitrate limitation in our estimates would be reflected as phosphate limitation, and our limitation patterns show35

most of the Atlantic deficient in phosphate. The BEC model’s small phytoplankton class shows nitrogen limitation surrounding

the tropical tongue of iron limitation in the Pacific, while with our definitions there is very little PO4 limitation in the Pacific

for the small class, which is iron limited or nutrient replete in most of the Pacific. Finally, we note that the annual-mean nature

of our estimates is another possible reason for differences.

6 Export production5

A key metric of the nutrient cycles is their export production, which determines the strength of the biological pump (e.g.,

Pasquier and Holzer, 2016). Export production is not directly available from satellite measurements, but observationally con-

strained estimates are easily calculated from our inverse model. The phosphorus export flux, ΦP, is simply the flux of organic

phosphorus into the aphotic zone that is remineralized there, which we compute using the operators SPc (sinking and reminer-

alization) as10

ΦP =

3∑
c=1

∫
a

dz SPc Uc . (27)

For plotting, we convert ΦP to a carbon export flux using a constant C : P ratio of 106 : 1. We acknowledge that this simple unit

conversion underestimates the true C export because we do not explicitly represent DOC. Semilabile DOC has a longer typical

lifetime than DOP, resulting in effect in a larger C : P ratio for dissolved organic matter (DOM) than for particulate organic

matter. Using the data-assimilated phosphorus cycle of Primeau et al. (2013), which explicitly carries both PO4 and DOP, and15
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applying a C : P ratio of 225 : 1 for DOP (as determined by the DOM OPT simulation of Letscher et al. (2015) for semilabile

DOM), we estimate that the simple unit conversion of the POP export (27) underestimates the carbon export by ∼ 12 %.

We similarly calculate the opal export as

ΦSi =

∫
a

dz SPdiaRSi:P
dia Udia , (28)

and the iron export associated with the remineralization of organic matter as20

ΦFe =

3∑
c=1

∫
a

dz SPc RFe:PUc , (29)

where the vertical integrals are over the model aphotic zone (bottom to 73.4 m depth).

Figure 5a shows a map of the phosphorus export flux (converted to carbon units), together with its zonal integral for each

member of our family of state estimates. The spatial pattern shows some differences with the estimate of Primeau et al. (2013)

(blue curve in Figure 5a). Our estimate of the carbon export has 1.5–2 times larger tropical and high latitude peaks, but is25

closer to the satellite-derived estimates of Dunne et al. (2007). Our estimate also has sharper meridional gradients, which can

also be seen in satellite-derived estimates of production (e.g., Frants et al., 2016). Our globally integrated phosphorus export

of 7.5–8.6 Tmol P yr−1 (9.5–11.Pg C yr−1) is also larger than the 7.4± 2.5 Pg C yr−1 estimate of Primeau et al. (2013).

The differences with the estimate of Primeau et al. (2013) are likely due to very different uptake parameterizations: Primeau

et al. (2013) consider the phosphorus cycle in isolation and optimize a single spatially varying uptake timescale for each grid

box, while we explicitly represent three phytoplankton functional classes with different, optimized globally uniform uptake

timescales, τc. We note that if we use the same growth timescale for each phytoplankton class, our model’s P export remains

close to that of Primeau et al. (2013).5

Our estimates of export production compare well with the satellite-based estimates of 9.7–12.Pg C yr−1 by Gnanadesikan

et al. (2004). Our estimates also lie within the wide range of 9.–28.Pg C yr−1 of the Ocean-Carbon Cycle Model Intercom-

parison Project 2 (OCMIP-2, Najjar et al., 2007), and compare well the OCMIP-2 mean particle export of 13± 3 Pg C yr−1.

(Because our model does not carry DOM, we compare our phosphorus export in carbon units to both the export production

and the particle export reported by OCMIP-2.)10

Our estimates of P export in the subtropical gyres compare well to the POP exports of Letscher et al. (2016) in spite of

the fact that we do not explicitly represent DOP. Using the same masks to define the subtropical gyres, we estimate a global

mean subtropical P export of 10.± 1.mmol P m−2 yr−1 (mean and standard deviation across our family of estimates), while

the estimate of Letscher et al. (2016) is 10.±2.mmol P m−2 yr−1. This underscores the fact that our inverse model implicitly

captures the effects of DOP lateral transport and utilization, which Letscher et al. (2016) estimate to contribute 29±9 % of the15

subtropical P export.

Figure 5b shows a map of the opal export, together with its zonal integral. As expected, opal export is most pronounced at

high latitudes, particularly in the Southern Ocean. In spite of our relatively complex formulation of silicic acid utilization in

terms of colimitations, the spatial pattern of the opal export and its global total of 164–177 Tmol Si yr−1 compare well with
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a) C−export ~10.33 (9.49−10.98) PgC yr
−1 Zonal Integral

b) Si−export ~172. (164.−177.) Tmol Si yr
−1 Zonal Integral

c) Fe−export ~3.58 (0.87−5.63) Gmol Fe yr
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Figure 5. Local export production for each nutrient (maps on the left) and its zonal integral (curves on the right). Maps are shown for our

typical state estimate, while we plot the zonal integral of each family member (scaled for dFe) in grey and the typical state estimate in black.

(a) Phosphorus export, expressed in carbon units using C : P = 106 : 1. The blue zonal integral is the export production estimate of Primeau

et al. (2013). (b) Opal export, where the blue zonal integral is the estimate of Holzer et al. (2014). (c) Iron export, with its zonal integrals

expressed as a percentage of the global iron export.

the estimates by Holzer et al. (2014) (171± 31 Tmol Si yr−1). Other estimates of the global opal export range from 69 to20

185 Tmol Si yr−1 (e.g., Moore et al., 2004; Sarmiento et al., 2007; Heinze et al., 2003).

There is very little spread in the carbon and opal export production across our family of state estimates as can be seen

by the tightly clustered zonal integrals plotted in grey in Figures 5a,b. This shows that the carbon and opal exports are well

constrained despite the wide range of iron inputs. Note, however, that export productions are sensitive to the parameters that

set the biological uptake rate, which were optimized before generating the family of optimal state estimates with different iron25

sources.

Figure 5c shows a map of the iron export associated with organic matter, but not including the iron export carried by

scavenging particles. The phosphorus and iron exports have broadly similar patterns, with differences that reflect variations

in the local Fe : P uptake ratio. In the iron-deficient Southern Ocean, the Fe : P ratio is smaller than its global mean, which
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results in Southern Ocean iron export that is less efficient than that of phosphorus (for iron, the peak Southern Ocean export30

relative to the tropical peak is lower than for phosphorus). As expected from the widely varying iron source strengths across

our family of state estimates, the globally integrated iron export covers a wide range of 0.87–5.6 Gmol Fe yr−1. However, the

geographic pattern of the iron export is robust across the family: the zonally integrated iron exports normalized by their global

integrals collapse onto a well-defined cluster of curves. The spread in the thus normalized iron export is similar to the spread

in the (un-normalized) phosphorus export, but slightly larger due to variations in the Fe : P ratio.35

All export fields of Figure 5 show near-zero export in the Weddell Sea, in contrast to what restoring-type models tend to

show. For example, the opal export estimated by Holzer et al. (2014) has a local maximum in the Weddell Sea. The Weddell

Sea minimum here is due to near-zero satellite measurements of photosynthetically active radiation in this region. This may

well be an artifact of the satellite data, for which the irradiance in the Weddell Sea varies substantially depending on which

years are averaged.5

7 Iron cycle

Here we document some of the key features of the iron cycle as constrained by our inverse model. Certain features such as the

dFe concentration field are robustly constrained by the observations regardless of iron source strengths, while other features

such as, e.g., the relative importance of hydrothermal iron, vary systematically with the source strengths.

7.1 Iron sources and sinks10

The pattern of the aeolian source is identical for all family members because we only vary its global source strength, σA. The

sediment source is keyed to export production, which is well constrained across the family of state estimates. Therefore, the

sedimentary iron source patterns are very similar across all state estimates, with only the global strength σS of the pattern

varying among state estimates. The initial hydrothermal pattern is set by the OCMIP 3He source (Dutay et al., 2004), but for

total hydrothermal sources larger than ∼ 0.5 Gmol yr−1, the optimized contributions from each basin changed substantially.15

Across our family of state estimates the mean and standard deviations of the percentage contributions from each basin to the

total hydrothermal source are (15± 9) % for the Atlantic, (52± 6) % for the Pacific, (16± 2) % for the Indian Ocean, and

(17± 3) % for the Southern Ocean (south of 40◦S). For reference, the vertically integrated iron sources of our typical state

estimate are plotted in Appendix H.

Because of the small variations in the source patterns, the vertically integrated total sinks of dFe,
∫
dz(1−SPs )JPOP,20 ∫

dz(1−SSis )JbSi, and
∫
dzJdst, have patterns that also vary little across the family of state estimates (see Appendix H for plots

of the vertically integrated sinks of our typical state estimate). Note that these sinks balance the total source exactly because

we are in steady state. For our typical state estimate, scavenging by POP and opal each account for about half of the total iron

sink. The patterns of POP and opal scavenging are determined by the phosphorus and opal exports and by the concentration

of free iron. Consequently, the POP scavenging sink is strongest in the tropics, and the opal scavenging sink is strongest in the25

Southern Ocean. The sink due to mineral dust scavenging reflects the pattern of the aeolian dust input modulated by the free
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iron concentration. However, for our family of state estimates, the sink due to dust scavenging is essentially negligible, being

about three orders of magnitude smaller than the POP and opal scavenging.

We note that the partition of scavenging among the different particle types cannot be inferred robustly from our inverse

model. This is because the nutrient and phytoplankton data used do not provide separate constraints on the scavenging by30

each particle type, only on the total amount of scavenging. Moreover, scavenging by one particle type can be compensated by

another type because of overlap in their spatial patterns. However, the partition among particles types does vary systematically

across our family of estimates. Scavenging by dust is negligible for all state estimates, while the fraction scavenged by POP

ranges from ∼ 10 % for the lowest iron sources to saturation near 100 % for the highest iron sources. (The complementary

fraction is due to opal scavenging.)

7.2 dFe Concentration and source attribution

Figure 6 shows our typical state estimate’s zonally averaged dFe concentration for each basin and for the global ocean. For5

each zonal average, we also show the corresponding profile of horizontally averaged dFe for each member of our family of

state estimates. The profiles are tightly clustered showing that the large-scale features of the dFe field are well constrained

despite the large variations of the iron sources. The inverse model fits the observed dFe field for widely different sources by

adjusting the corresponding scavenging. While these adjustments keep the total dFe field close to the observations, the relative

contributions from the aeolian, sediment, and hydrothermal sources are unconstrained and can vary widely.10

We calculate dFe concentrations due to each source following Holzer et al. (2016) by replacing the dFe concentration

tracer equation (3) by an equivalent linear diagnostic system that has the same solution. This linear system, corresponding

to a given solution of the full nonlinear system, is obtained by replacing the iron uptake and scavenging by linear operators.

Specifically, the dFe uptake RFe:PUc is replaced with LU,cχFe and the scavenging rate Jj with LJ,j χFe, where the linear

operators, organized into matrix form, are simply specified from the uptake and scavenging rates of the nonlinear solution as15

LU,c = diag(RFe:PUc/χFe) and LJ,j χFe ≡ diag(Jj/χFe). The dFe concentration χkFe due to source sk (with k ∈ {A,S,H})
is then computed by replacing the total source in the linear equivalent system by the source sk of the component of interest and

computing the corresponding concentration.

Figure 6 also shows the profiles of the individual source components of dFe, colour coded according to the fractional

strength of the aeolian source. In contrast to the profiles of the total dFe, these individual source components vary widely20

across the family of state estimates, but in such a way that the total concentration χFe = χA
Fe +χS

Fe +χH
Fe is tightly constrained.

For example, for low aeolian sources (yellow profiles in Figure 6), the concentration of aeolian iron χA
Fe is relatively low,

but largely compensated by a relatively larger sediment contribution χA
Fe. The concentrations of hydrothermal iron vary less

systematically with the aeolian source, but all family members have very similarly shaped hydrothermal dFe profiles. However,

the amplitudes of the hydrothermal dFe profiles can be seen to vary by roughly an order of magnitude across the majority of25

state estimates, effectively fine tuning the total dFe concentration to be as close to the observations as possible.
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Figure 6. Estimates of the dFe concentration in each basin (ATL, PAC, IND) and globally (GBL). The zonal averages in latitude-depth space

on the left show the total dFe field of our typical state estimate. The corresponding horizontally averaged profiles of total dFe are shown in

grey for each family member and in black for the typical state estimate. The three columns of plots on the right show the source-partitioned

dFe profiles, i.e., the profiles of the aeolian, sedimentary, and hydrothermal component of dFe for each family member. The individual

source-partitioned profiles are colour coded according to the percent contribution of the aeolian iron source to the total iron source, with our

typical state estimate in black.

7.3 Iron-type attributed export

7.3.1 Phosphorus export

We quantify the contribution of each iron type to the export production as follows. In our formulation, non-zero dFe is nec-

essary for non-zero phosphate uptake Uc. The uptake Uc(r) inferred at point r is supported by the dFe concentration at r,30

which is a mixture of aeolian, sedimentary, and hydrothermal dFe. Thus, the uptake supported by iron type k is given by

(χkFe(r)/χFe(r))Uc(r), that is, the local uptake supported by dFe of type k must be in proportion to the concentration fraction
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Figure 7. Phosphorus export supported by each iron type [aeolian (a), sedimentary (b), hydrothermal (c)] normalized by its global mean.

The maps show our typical state estimate, while zonal averages of the normalized phosphorus export are shown for each family member in

grey, with the typical state estimate in black.

χkFe/χFe. (Note that
∑
kχ

k
Fe/χFe = 1.) For a given nonlinear solution, the phosphorus export production supported by iron

type k, denoted by ΦP
k , is therefore calculated by replacing the uptake Uc in (27) with (χkFe/χFe)Uc(r).

While the total export production is well constrained regardless of the chosen iron source strengths, the production supported

by a given iron type varies substantially with the magnitude of the corresponding source. (Summing over the three iron types

yields the well-constrained total.) However, regardless of the source amplitudes, the patterns of the export supported by each5

iron type is similar across the entire family of state estimates.

Figure 7 shows Φ̂P
k ≡ ΦP

k /〈ΦP
k 〉, which is the export flux supported by iron type k normalized by the global mean export

〈ΦP
k 〉. The Φ̂P

k patterns are plotted for our typical state estimate, together with zonal averages of Φ̂P
k for all family members.

The patterns can be seen to differ little among family members. Even the pattern of the export supported by hydrothermal dFe,
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which varies most across the family, has the broadly similar features of peak export in the Southern Ocean, with secondary10

peaks in the tropics and in the Northern Hemisphere subpolar oceans, for all family members.

Figure 7a shows that aeolian iron supports export primarily in the tropics and in the subpolar oceans. The tropics receive

direct input of fresh aeolian iron, while the subpolar oceans receive upwelling regenerated iron (Holzer et al., 2016). The

aeolian-iron-supported export pattern is very similar to the pattern of the total export flux shown in Figure 5a. (Note that here

we plot zonal averages, while Figure 5 shows zonal integrals.) For sedimentary dFe to support export it must be transported15

from the ocean bottom into the euphotic zone. Consequently, the pattern of the export supported by sedimentary dFe (Fig.

7b) is dominated by regions of upwelling in the tropical and subpolar oceans and by regions of shallow depth (both resolved

and subgrid) where there is high organic matter flux, such as the seas around Indonesia. The meridional gradients of the

sedimentary-iron-supported export are much sharper than for the aeolian-iron-supported export, presumably because of the

lack of large-scale direct surface input for sedimentary dFe. The pattern of export supported by hydrothermal dFe (Fig. 7c)20

is dominated by the Southern Ocean, where most of the density classes into which hydrothermal fluid is injected outcrop.

Secondary regions of hydrothermal-iron-supported export are associated with upwelling in the tropics and in the subpolar

oceans of the Northern Hemisphere.

Underscoring the similar source distribution of hydrothermal dFe and mantle 3He, the pattern of hydrothermal-iron-supported

export production is similar to the pattern with which mantle 3He outgases to the atmosphere (e.g., Holzer et al., 2017). We do25

not expect an exact correspondence in the patterns because hydrothermal dFe is subject to scavenging losses, while 3He is not,

and our ratio of hydrothermal dFe source to mantle 3He source is different for different basins. (The ranges of the ratio of the

optimized hydrothermal iron source to the mantle 3He source across the family of inverse-model estimates were 0.00087–3.3,

0.098–8.1, 0.2–15., and 0.025–2.8 in units of Mmol Fe (mol 3He)−1, for the Atlantic, Pacific, Indian, and Southern Ocean

basins, respectively.)30

While the total phosphorus export is well constrained and varies little across our family of state estimates, the magnitude of

the iron-type-supported export production varies systematically with the relative source strength of each iron type. To quantify

these systematic variations, Figure 8 plots the fraction φ̂Pk ≡ 〈ΦP
k 〉/〈ΦP〉 of the globally averaged iron-type-k-supported export

to the total global export as a function of the corresponding fractional global iron source strengths σ̂k ≡ σk/σtot, where

σtot ≡
∑
k σk. Note that if a given source strength σk constitutes 100 % of the total, then it must support 100 % of the export35

and that if σk = 0 then it supports 0 % of the export, i.e., the relationship between φ̂Pk and σ̂k must pass through the points

(0,0) % and (100,100) %.

Figure 8 shows a number of interesting systematic features of our family of state estimates. First, aeolian dFe supports

∼ 20–100 % of the global export, with the low end of the range corresponding to an aeolian source of only ∼ 5 % of the total

source. (We did not explore lower fractional aeolian sources.) Sedimentary iron supports ∼ 0–80 % of the global export, with5

the high end of the range corresponding to a sediment source as high as∼ 90 % of the total source. Hydrothermal iron supports

the least export ranging from ∼ 0–18 % for fractional hydrothermal sources as large as ∼ 45 % of the total source.

The key point of Figure 8 is that aeolian iron can be considered to be the most efficient type of iron for supporting export

production: For a given fraction of the total source, the fraction of export supported by aeolian iron is larger (i.e., the aeolian
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Figure 8. Percent global phosphorus export (equivalently carbon export) supported by each iron type (aeolian, sedimentary, hydrothermal)

versus the corresponding fractional source of that iron type. The superposed lines are least-squares fits to theoretical relationships with fixed

relative export-support efficiencies. (See text for details.)

points all lie above the 1 : 1 line by as much as 30 %). In other words, per source-injected dFe molecule, aeolian iron supports10

more export than the other iron types. Sedimentary and hydrothermal dFe make fractional contributions to export that are less

than their fractional sources (the sedimentary and hydrothermal points lie below the 1 : 1 line by as much as ∼ 20 %).

The fact that the scatter plots of φ̂k versus σ̂k in Figure 8 are reasonably compact suggests a simple underlying relationship.

If we define a given source-type’s efficiency in supporting phosphorus export by εPk ≡ φ̂Pk /σ̂k, we see from Figure 8 that

εPk varies with σ̂k. However, one might expect the efficiency of source type k relative to the efficiency of the other sources15

to be more constant: This relative export-support efficiency is controlled by dFe transport pathways and by scavenging, in

turn controlled by the well constrained organic-matter export. To investigate this possibility, we note that the export-support

efficiency of the sources other than sk is given by ε̃Pk ≡ (1− φ̂Pk )/(1− σ̂k) so that the export-support efficiency of source sk

relative to the other sources is ePk = εPk /ε̃
P
k . If ePk is constant, then it follows algebraically that φ̂Pk = ePk σ̂k/[1 + (ePk − 1)σ̂k],

i.e., the relationship between φ̂Pk and σ̂k is determined by the single parameter ePk . Note that ePk is the slope of this theoretical20

φ̂k versus σ̂k relationship at the origin. Nonlinear least-squares fits of this functional form to the (φ̂Pk , σ̂k) pairs of our family of

states approximate the scatter plots well (lines in Figure 8) and result in relative export-support efficiencies of ePA = 3.1± 0.8,

ePS = 0.4± 0.2, and ePH = 0.3± 0.1, where the uncertainty for each source type is the standard deviation of the corresponding

residuals. Thus, per source-injected molecule, aeolian iron supports 3.1± 0.8 times more phosphorus export than the other
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sources, while sedimentary and hydrothermal iron support 1/eS = 2.3± 0.6 and 1/eH = 3.7± 2.3 times less export than the25

other sources.

The ability of aeolian iron to make disproportionately large contributions to supporting organic-matter export, quantified

here by a relative export-support efficiency greater than unity, is presumably due to fresh aeolian iron being directly injected

into the euphotic zone. The less-than-unity relative export-support efficiencies of sedimentary and hydrothermal iron reflect the

fact that iron from interior sources is generally subject to scavenging before it even reaches the euphotic zone. Because most30

large sedimentary sources are relatively shallow, a typical sedimentary dFe molecule will undergo less scavenging en route

to the euphotic zone than a typical hydrothermal dFe molecule, which is quantified here by the lower relative export-support

efficiency of hydrothermal iron. These arguments are supported by the fact that if we calculate φ̂Pk only for the Southern Ocean,

where the aeolian source is small and most aeolian iron is supplied as upwelled regenerated iron (Holzer et al., 2016), then all

(φ̂Pk , σ̂k) pairs lie closer to the 1 : 1 line. (In terms of relative export-support efficiencies, ePA is reduced to 2.0± 0.5, while ePS
and ePH are increased to 0.5± 0.1 and 0.6± 0.2, respectively.)

7.3.2 Opal export

The opal export supported by each iron type can be calculated analogously, and the corresponding geographic patterns are

shown in Figure 9. Similar to the total opal export (Figure 5b), the patterns of the opal export supported by each iron type5

emphasize regions with high diatom concentrations, namely the Southern Ocean and subpolar North Pacific and North Atlantic

where there is also upwelling and/or vertical mixing. Aeolian-iron-supported opal export (Fig. 9a) is large in the Southern

Ocean, but most pronounced in the subpolar North Pacific, where both diatom production is significant and aeolian input is

high downwind from Asia’s deserts. While tropical opal export is of secondary importance, the tropics are most pronounced for

aeolian-supported export, again because of the direct source there. The pattern of sedimentary-iron-supported opal export (Fig.10

9b) is broadly similar to that for aeolian dFe, but weaker in the tropics. The pattern of hydrothermal-iron-supported opal export

(Fig. 9c) is dominated by the Southern Ocean, where diatom production is high and where most hydrothermal iron upwells.

The patterns of iron-type-supported opal export have tightly clustered zonal means with a similar spread across the family as

for the phosphorus export.

The amplitude of the opal-export patterns varies systematically with the iron source strength as summarized in Figure 10,15

which shows the fractional iron-type-supported opal export, φ̂Sik ≡ 〈ΦSi
k 〉/〈ΦSi〉, as a function of the corresponding fractional

dFe source, σ̂k. While aeolian dFe is still the most efficient iron type for supporting opal export, aeolian dFe is less efficient for

opal export than for phosphorus export (the aeolian points fall closer to the 1 : 1). Conversely, sedimentary iron is slightly more

efficient in supporting opal export than in supporting phosphorus export, and hydrothermal dFe is only slightly less efficient

than sedimentary dFe.20

Similarly to our analysis of phosphorus export in the previous section, we define the relative opal export-support efficiencies

by eSik ≡ εSik /ε̃Sik , where εSik ≡ φ̂Sik /σ̂k and ε̃Sik = (1− φ̂Sik )/(1− σ̂k). Nonlinear least-squares fit result in relative opal export-

support efficiencies of eSiA = 2.3± 0.5, eSiS = 0.5± 0.2, and eSiH = 0.5± 0.2. Per source-injected molecule, aeolian iron is thus

32



0 200 400 600
%

%
0 100 200 300 400 500

L
a

ti
tu

d
e

90S

60S

30S

Eq

30N

60N

90N

L
a

ti
tu

d
e

90S

60S

30S

Eq

30N

60N

90N

L
a

ti
tu

d
e

Longitude
60E 120E 180 120W 60W 0

90S

60S

30S

Eq

30N

60N

90N

a) χ
Fe

A
 supported Si−export pattern, Φ

Si

A
 / <Φ

Si

A
>

b) χ
Fe

S
 supported Si−export pattern, Φ

Si

S
 / <Φ

Si

S
>

c) χ
Fe

H
 supported Si−export pattern, Φ

Si

H
 / <Φ

Si

H
>

[Φ
Si

A
 / <Φ

Si

A
>]

[Φ
Si

S
 / <Φ

Si

S
>]

[Φ
Si

H
 / <Φ

Si

H
>]

Figure 9. Opal export supported by each iron type [aeolian (a), sedimentary (b), hydrothermal (c)] normalized by its global mean. The map

is for our typical state estimate, while zonal averages of the normalized opal export are shown for each family member in grey, with the

typical state estimate in black.

2.3± 0.5 times more efficient in supporting opal export than the other sources, while sedimentary and hydrothermal iron are

1.9± 0.5 and 2.2± 1.0 times less efficient, respectively, than the other sources.25

The lower per-source efficiency of aeolian iron for supporting opal export is consistent with the fact that opal export occurs

primarily in the Southern Ocean, where direct aeolian input is small. Similarly, the greater per-source efficiency of sedimentary

and hydrothermal iron is consistent with the bulk of the opal export occurring in the upwelling regions of the Southern Ocean

where access to deep iron sources is greatest. This is supported by the fact that plots of φ̂Pk and φ̂Sik for the Southern Ocean

only versus σ̂k (not shown) are both nearly identical to the plot of fractional global opal export of Figure 10. (The relative30

Southern-Ocean-only opal export-support efficiencies are eSiA = 1.9± 0.5, eSiS = 0.5± 0.2, and eSiH = 0.7± 0.2.)
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Figure 10. Percent global opal export supported by each iron type (aeolian, sedimentary, hydrothermal) versus the corresponding fractional

source of that iron type. Lines represent fits to theoretical curves with fixed relative export-support efficiencies. (See text for details.)

8 Discussion and caveats

Our approach has a number of limitations that must be kept in mind. Most importantly, inverse-model estimates are only as

good as the data used to constrain them. The dFe observations are too sparse in space and time to construct a gridded annual

mean climatology like those available for PO4 and Si(OH)4. We averaged the available dFe data to minimize observational

biases, but in many places observations are only available for one time of the year and likely contain seasonal biases. Other5

biases are likely introduced when dFe measurements aliase episodic source events such mineral dust downwind from the

major deserts (e.g., Croot et al., 2004; Johnson et al., 2010). In the near future, GEOTRACES will release an expanded data

product that will include Pacific transects that were not available for the intermediate data product used here. The additional

dFe observations will help constrain the hydrothermal sources, particularly the strength of the Pacific source relative to that of

the other basins.10

Important non-nutrient observational fields for our inverse model are the satellite-measured photosynthetically active radi-

ation (PAR) and ocean-colour-derived estimates of the size-partitioned phytoplankton concentrations. Small-scale features of

the PAR field, e.g., in the Weddell Sea where ice and cloud cover play a role, are uncertain with the PAR for different time

averages showing different features. The satellite-based estimates of phytoplankton concentrations also carry unquantified un-

certainties due to a number of assumptions (Kostadinov et al., 2016). In our inverse model, these estimates provide crucial15
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constraints on how organic-matter export is partitioned among the different functional classes. The unquantified uncertainties

warrant re-evaluation as independent satellite-derived estimates become available in the future.

Most biogeochemical parameters are determined through objective optimization against available observations, but the con-

struction of the cost function, and the choice of which parameters are optimized and which are prescribed, necessarily involves

subjective choices. For example, choosing a different set of weights (ωP,ωFe,ωSi,ωplk) to combine the four terms of the cost20

function would result in different optimal parameters. Similarly, assigning greater weight to dFe data measured as part of a

vertical profile introduces another arbitrary weight. As for any nonlinear least-squares problem, it is also important to recognize

that any minimum of the cost function found numerically is not guaranteed to be the global minimum and it is always possible

that a better fit exists for a different set of parameters. Conversely, depending on the choice of initial state, the optimizer may

find a local minimum that has grossly unrealistic features and must be rejected.25

We addressed the uncertainty in our estimates that results from the nearly unconstrained strengths of the external iron sources.

The uncertainty in key metrics (e.g., global phosphorus export) was quantified in terms of their spread across our family of state

estimates and in terms of systematic variations with the iron source strengths. While our efficient numerics allow us to easily

determine the linear sensitivities of any metric with respect to all parameters (from which one can also estimate uncertainty),

we did not do so here because the spread in the metric across the family is more relevant. Given the large set of parameters30

xj and several interesting metrics Mi, a detailed investigation of all the sensitivities ∂Mi/∂xj evaluated at the optimal states

is beyond the scope of this study. In principle, one can estimate the uncertainty of the optimal parameters themselves using a

Bayesian framework (e.g., Teng et al., 2014). However, this requires the construction of suitable covariances and is also beyond

the scope of this study.

A key limitation of our approach is that seasonality is ignored and we use a steady circulation. This circulation is con-

structed so that its transport reproduces the annual-mean observed temperature, salinity, CFC-11, radiocarbon, and PO4 fields

with minimal error. The circulation is hence not a simple average, but an effective ventilation-weighted mean. However, we

acknowledge that effects due to the seasonal covariance of biological production and circulation cannot be captured.

Our model of the nutrient cycles makes a number of simplifying assumptions. We ignore external inputs of silicic acid and5

therefore also neglect permanent burial of opal in sediments. While this approximation has been shown to have negligible

impact on particle fluxes (Sarmiento et al., 2007), we acknowledge that our estimates will miss features such as, e.g., silicic-

acid plumes due to crustal fluid venting (Johnson et al., 2006). The uncertainty of the silicon cycle that is most difficult to

quantify stems from our simple parameterization of opal dissolution, which does not account for partial frustule protection

by decaying organic material or the effect of digestion by zooplankton. Another key uncertainty lies in our parameterization10

of the Si : P uptake ratio, particularly its dependence on dFe. While our empirical formulation captures known dependencies

qualitatively, a first-principles derivation based on cell biology is currently lacking. These remarks apply equally to the Fe : P

uptake ratio.

Although our model of the iron cycle includes an explicit representation of the redissolution of scavenged iron, effects

of subgrid topography, and dynamic coupling to the phosphorus and silicon cycles, and is thus much more complex and15

mechanistic than the iron model of Frants et al. (2016), it was still necessary to make a number of simplifying assumptions.
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Specifically, we do not model ligands dynamically, ignore colloidal iron (e.g., Fitzsimmons and Boyle, 2014), and do not

represent some iron sources that may be locally important such as input from icebergs (Klunder et al., 2011, 2014). We also

assume that PO4 and dFe are remineralized with the same Martin curve and in the same ratio in which they were utilized. The

recent work by Twining et al. (2014) suggests that sinking diatoms release phosphorus higher in the water column than iron,20

but we do not have sufficient information to model these effects. Given the large uncertainties in the external iron sources, the

neglected details are likely of second order for estimating the large-scale dFe concentration.

Other uncertainties concern the phosphorus cycle to which the uptake of the other elements is keyed. While the optimized

phosphate fields have the smallest misfit with observations, our model of the phosphorus cycle makes several simplifying

assumptions that should be kept in mind. The Martin exponent is assumed to be globally uniform although in reality it almost25

certainly varies spatially (Weber et al., 2016), potentially leading to underestimated gradients in our model. To avoid carrying

an additional tracer, we approximated DOP to have zero lifetime. In reality, DOP has a wide range of lifetimes, and the lifetime

of semi-labile DOP is typically assumed to be a fraction of a year (e.g., Primeau et al., 2013). However, the neglect of DOP

is unlikely to seriously affect our estimates. DOP represents only a tiny fraction (less that 1 %) of the total phosphorus pool

(e.g., Pasquier and Holzer, 2016) and by using a Martin exponent optimized for a restoring model without DOP, we were able30

to match PO4 concentrations to within 5 % of the observations.

We emphasize that the carbon export reported here was simply our estimate of the phosphorus export converted to carbon

units. No effort was made to compute a more realistic carbon export such as could be achieved with an explicit representation

of the carbon cycle (which would require additional tracers and was numerically too expensive) and the C : P export ratio was

treated as globally uniform. While a globally uniform export ratio is acceptable for a unit conversion, the true C : P export ratio35

is now known to vary spatially (e.g., Galbraith and Martiny, 2015; Teng et al., 2014). Although using the regionally varying

C : P ratios would be more realistic, we find that variations in C : P have only modest effects on the globally integrated carbon

export: (i) Applying the P : C relation of Galbraith and Martiny (2015) to the P export of our typical state gives a carbon export

of 8.5±0.4 Pg C yr−1 or 9.4±0.9 Pg C yr−1 when we use their log-binned parameter values. (ii) Applying the regional C : P

inverse-model estimates of Teng et al. (2014) gives a carbon export of 10.±2.Pg C yr−1. Both this estimate and the one based5

on the log-binned regression agree within their uncertainties with our simple unit-conversion value of 10.3± 0.4 Pg C yr−1.

9 Summary and Conclusions

We have formulated a steady-state model of the coupled phosphorus, silicon, and iron cycles that is embedded in a steady data-

assimilated global circulation. The model is of intermediate complexity and couples the nutrient cycles through colimitations

on biological uptake and through the scavenging of iron by organic particles. The concentrations of the small, large, and diatom10

phytoplankton functional classes are calculated diagnostically, which avoids the need for plankton concentration tracers. We

explicitly represent iron scavenging by POP, opal, and mineral-dust particles, and the redissolution of POP- and opal-scavenged

iron. Subgrid topography is parameterized for the sedimentary iron sources and intercepts all vertical fluxes. The relative

simplicity of the biogeochemical model and the matrix formulation of the steady-state advective-diffusive transport afford

36



highly efficient numerics. Steady-state solutions are readily found using a Newton solver, which permits the model to be used in15

inverse mode to constrain many of the biogeochemical parameters through objective optimization. The optimization minimizes

the mismatch with the observed nutrient concentrations and with satellite-derived estimates of phytoplankton concentrations.

Our estimates of the macronutrient concentrations closely match the observational WOA13 climatology with volume-

weighted RMS errors of 5 % for phosphate and 12 % for silicic acid relative to the global mean. The modelled dFe concentration

has a larger cost-weighted RMS mismatch of ∼ 45 % relative to the global mean. However, the cost-weighted basin-averaged20

vertical dFe profiles for the Atlantic and Southern Ocean generally lie within the observational uncertainties. The Pacific dFe

profiles show systematic biases, in part because there are relatively few dFe observations for the Pacific, with no Pacific tran-

sect in the GEOTRACES Intermediate Data Product. The fractional global biomass of each phytoplankton functional class lies

within 7 % of the observation-based estimates by Kostadinov et al. (2009).

Because even the order of magnitude of the iron sources is uncertain, we produced a family of state estimates with a wide25

range of iron source strengths. Because different iron source strengths are compensated by optimally adjusting the scavenging

parameters, each family member fits the observations with roughly the same fidelity. This means that the available observed

dFe and phytoplankton concentrations by themselves are insufficient to constrain the sources. This conclusion can also be

gleaned from the model intercomparison of Tagliabue et al. (2016) and was reached using an inverse model by Frants et al.

(2016), who also considered a family of state estimates. However, while Frants et al. (2016) varied only the aeolian source, our30

estimates here explore a range of sedimentary and hydrothermal source strengths in addition to a much wider range of aeolian

source strengths.

We partitioned the dFe concentration field into its aeolian, sedimentary, and hydrothermal components without perturbing the

system using the approach of Holzer et al. (2016). While the individual source components vary widely depending on the source

strengths, we find that the total dFe concentration given by the sum of the source components is well constrained. Variations in

the aeolian component are compensated primarily by sedimentary dFe. Both the compensations between different iron types

and between effective sources and sinks suggest that a more dense sampling of the ocean’s dFe field by future measurement5

campaigns may not provide the information necessary for constraining the source strengths. The required information may

ultimately have to come from better direct quantification of the source and/or scavenging processes themselves.

Nutrient limitation patterns were defined by jointly considering if the PO4, Si(OH)4, and dFe concentrations fell below

their half-saturation values for uptake. Iron limitation was thus deemed to occur where only dFe fell below its half-saturation

value, phosphate–iron colimitation where both PO4 and dFe fell below their half-saturation values, and so on. The resulting10

limitation patterns are robust across our family of state estimates and broadly consistent with direct observations (Moore et al.,

2013) and with alternatively defined limitation patterns in the BEC model (Moore et al., 2004). The large and diatom functional

classes show iron limitation in the Southern Ocean, eastern tropical Pacific and subpolar North Pacific, with PO4–dFe and (for

diatoms) PO4–Si(OH)4–dFe colimitations in the Pacific and South Atlantic subtropical gyres. The Indian Ocean, tropical

Atlantic, and North Atlantic are largely iron replete (i.e., not limited in the sense defined) with PO4 limitation and for diatoms15

PO4–Si(OH)4 colimitation.
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The export productions of phosphorus and opal are well constrained across our family of state estimates, in terms of both

pattern and magnitude. Because we model three phytoplankton functional classes with distinct optimized uptake timescales,

our phosphorus export (expressed in carbon units) of 9.5–11.Pg C yr−1 is ∼ 30–45 % larger than that estimated by Primeau

et al. (2013) and closer in spatial pattern to the satellite-based estimates of Dunne et al. (2007). The opal export of 164–20

177 Tmol Si yr−1 overlaps with the estimate of Holzer et al. (2014), who used a simple restoring-type model of the silicon

cycle uncoupled from other nutrients.

We quantified the role of the iron cycle in shaping the phosphorus and opal export productions. We find that each iron

source type (aeolian, sedimentary, hydrothermal) supports phosphorus and opal exports with a distinct geographic pattern

that is robust across the family of state estimates. The export pattern supported by a given iron type reflects the nature of its25

source. Sedimentary and hydrothermal iron support phosphorus export that is dominantly shaped by the large-scale patterns of

upwelling, which brings these iron types to the surface. Aeolian iron supports export that is shaped by both the pattern of direct

aeolian input and by large-scale upwelling, which brings regenerated as well as scavenged and redissolved aeolian iron back

into the euphotic zone. For opal export, the signature of each iron type is qualitatively similar, but compared to phosphorus

export, the opal export patterns tend to be weaker in the tropics and stronger at high latitudes, especially in the Southern Ocean30

where diatom concentrations and silicon trapping are strongest.

The globally integrated export supported by a given iron type varies systematically with its fractional global source. These

variations quantify the export-support efficiency of each iron type per source-injected molecule for supporting export. Aeolian

iron is most efficient and supports a fraction of the global export that is larger than its fractional source, while sedimentary and

hydrothermal iron are less efficient, supporting fractions of the global export that are less than their fractional sources. This35

is because dFe from deeper sources is more likely to be scavenged en route to the euphotic zone. The relation between the

fractional export supported by each iron type and its fractional source reveals that the relative export-support efficiency of each

iron type is robust across our family of estimates. Per source-injected molecule, aeolian iron supports 3.1± 0.8 times more

phosphorus export and 2.3± 0.5 times more opal export than the other iron types. Conversely, sedimentary and hydrothermal

iron are respectively 2.3± 0.6 and 3.7± 2.3 times less efficient in supporting phosphorus export, and 1.9± 0.5 and 2.2± 1.05

times less efficient in supporting opal export, than the other iron types.

Our optimized model is ideally suited for investigating the response of the global ocean ecosystem to a variety of biogeo-

chemical perturbations. In the future, we will report on the model’s response to perturbations in the iron supply and on a more

comprehensive analysis of the detailed workings of the iron cycle.

10 Data availability10

The temperature, phosphate, and silicic-acid data used in this study are available from the World Ocean Atlas v2 2013 (www.

nodc.noaa.gov/OC5/woa13/woa13data.html). The dFe data used in this study, including the TFE data set, are available from

GEOTRACES (www.bodc.ac.uk/geotraces/data). The satellite estimates of the concentrations of picophytoplankton, nanophy-
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toplankton, and microphytoplankton are available from the PANGAEA data repository (doi:10.1594/PANGAEA.859005). The

yearly irradiance data from NASA’s MODIS Aqua PAR are available from the OceanColor website (oceandata.sci.gsfc.nasa.gov).15

Appendix A: Recycling operators for scavenged iron

The recycling operator for POP-scavenged iron, Bs,POP, comprises two parts: For dFe scavenged in the euphotic layer, i.e.,

above ze, Bs,POP acts identically to BP. For dFe scavenged below ze, we solve the flux equation of scavenged iron for

continuous z. We assume that iron scavenged by POP below the mixed layer continuously sinks and can be recycled in the

same grid cell in which it was scavenged. (We assume that the mixed layer coincides with the euphotic zone.) As shown by20

Kriest and Oschlies (2008), the Martin curve can be simply modeled with a sinking speed linearly increasing with depth, an

approach we follow here. The equation for the flux or iron, φPOP
Fe , that was scavenged by POP below the mixed layer is thus

∂φPOP
Fe

∂z
+
b

z
φPOP
Fe =−fPOPJPOP , (A1)

where b is the Martin exponent of the POP flux, and with the condition that φPOP
Fe = 0 for z > ze because here we only consider

dFe scavenged below ze. The solution is given by25

φPOP
Fe (z) =−

ze∫
z

( z
z′

)−b
fPOPJPOP(z′)dz′ . (A2)

And the rate per unit volume at which POP-scavenged dFe is recycled is thus given by

Bs,POPfPOPJPOP = BPfPOPJPOP +
b

z
φPOP
Fe , (A3)

where the first term is for iron that was scavenged in the euphotic zone, and the second term for iron that was scavenged in the

interior.

Similarly, the recycling operator for opal-scavenged iron, Bs,bSi, has a euphotic part identical to BSi, and an aphotic interior

part. In the interior, we solve the continuous equation for the flux of iron, φbSiFe , that was scavenged by opal below the mixed

layer. The flux obeys5

∂φbSiFe

∂z
+
κmax
Si

wSi
e−TE/T (z)φbSiFe =−fbSiJbSi , (A4)

with the condition that φbSiFe = 0 for z > ze. The solution is of the form

φbSiFe (z) =−
ze∫
z

Q(z,z′)fbSiJbSi(z
′)dz′ , (A5)

so that the flux of opal-scavenged iron at z integrates all the scavenging of dFe by opal that occurs above z (and below ze) and

that is not recycled before reaching z. This is accomplished by Q(z,z′), given by10

Q(z,z′) = exp

− z′∫
z

κmax
Si

wSi
e−TE/T (z′′)dz′′

 , (A6)

39



which removes all the recycling that occurs between the current depth z and the depth of scavenging z′. The rate per unit

volume at which opal-scavenged dFe is recycled is thus given by

Bs,bSifbSiJbSi = BPfbSiJbSi +
κmax
Si

wSi
e−TE/T (z)φbSiFe , (A7)

where the first term is for iron that was scavenged in the euphotic zone, and the second term for iron that was scavenged in the15

aphotic interior.

Appendix B: Biogenic transport operators with subgrid topography

We follow Moore and Braucher (2008) to include the effects of the more realistic, high-resolution topographic data from the

National Geophysical Data Center (2006). The subgrid topography parameterization must be reflected in the redistribution

operators. Here we explain how this is done, based on the biogenic redistribution operators BP and BSi, which link biological20

production in the euphotic zone to remineralization or redissolution in the aphotic zone. The operators BP and BSi are related

to the divergence of the aphotic particle fluxes through

BPfcUc =
∂

∂z
[Θ(z− zb)φPOP(z)] , (B1)

and

BSifdiaUdia =
∂

∂z
[Θ(z− zb)φbSi(z)] , (B2)25

where ze and zb are the height coordinates at the base of the euphotic zone, and at the ocean bottom, respectively. The Heaviside

function, Θ(z− zb), ensures that the fraction of POP that reaches zb is redissolved and remineralized there (Primeau et al.,

2013; Holzer et al., 2014).

The subgrid topography parameterization is implemented by applying equations (B1)–(B2) to the high-resolution topog-

raphy. In practice, for each model grid cell, we calculate the fraction of the flux that should remineralize where it hits the5

topography. Note, to ensure that BP and is BSi are conservative, special care is required where subgrid topography is present

within euphotic grid cells. In this case, a corresponding fraction of sinking particles must remineralize in that cell. We similarly

implemented the same subgrid topography parameterization to the scavenging redistribution operators, Bs,POP and Bs,bSi.

Appendix C: Weights for dFe mismatch

We use the dFe observations of both the global data set compiled by Tagliabue et al. (2012) and the GEOTRACES Intermediate10

Data Product v3 (Mawji et al., 2015). We combine both data sets and remove dFe observations above 2.71 nM which probably

correspond to transient states with short timescales that cannot be captured by our steady-state model. In order to compensate

the fact that most dFe observations are close to the surface, we give more weight to observations that are part of a “profile”. (A

dFe observation is deemed to belong to a “profile” if there are 10 or more observations at the same latitude and longitude, and
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if one of those was recorded deeper than 2000 m.) Because the dFe observations do not sample the seasonal cycle uniformly,15

we adopt an approach similar to Frants et al. (2016) to reduce potential sampling bias when we interpolate the data to our

model grid: If multiple dFe observations lie in the same grid cell, we first take the seasonal averages, which we then averaged

again to estimate the annual mean.

As in equations (22) for PO4 and Si(OH)4, we use volume weights to evaluate the dFe concentration mismatch with

observations. However, because not all model grid cells contain dFe observations, we define a dFe-specific vector of grid-box20

volumes, vallFe , which has nonzero elements only for grid boxes that contain at least one dFe observation. We also define a dFe

“profile-specific” vector, vproFe , which is nonzero only for grid boxes that contain “profile” observations. The corresponding

weights are defined by

wall
Fe =

vallFe(
χobs
Fe

)2
V all
Fe

and wpro
Fe =

vproFe(
χobs
Fe

)2
V pro
Fe

, (C1)

where V all
Fe is the total volume of grid cells which contain a dFe observation, and V pro

Fe the total volume of grid cells containing25

“profile” observations. We define the total dFe weight vector, wFe, for the mismatch with observations in equation (23), by

wFe =
1

5
wall

Fe +
4

5
wpro

Fe , (C2)

where we give extra weight to the “profile” observations. The 1 : 4 ratio was manually adjusted until “profile” observations

were deemed to have sufficiently strong influence on the state estimates. We also tried different approaches to weight the

model-observation dFe mismatch, including the use of inverse variances (Frants et al., 2016), but we found no significant30

difference in our results.

Appendix D: Optimization strategy details

D0.1 Prescribed parameters

The following considerations determined which parameters were not optimized and how their values were chosen. The recy-

clable fractions of POP and opal scavenging, fPOP and fbSi, compensate with the maximum Fe : P uptake ratio, RFe:P
0 , and

thus were prescribed at 90 % (Moore and Braucher, 2008). (This compensation results from the biological iron pump having5

almost the same effect as the combination of scavenging and recycling iron.) Similarly, the detrital fractions, f0c , which set the

particle export ratio, are directly compensated by all the other parameters in the uptake formulation. We therefore followed

Dunne et al. (2005) and assigned their “small” detrital fraction to f0sml and their “large” detrital fraction to both f0lrg and f0dia.

When trying to optimize the silicon half-saturation rate kSidia, starting from a value of 1 mmol m−3 (e.g., Matsumoto et al.,

2013), we found that the optimal value always remained within a few percent of this initial value. This is in part due to the fact10

that in regions of high diatom concentration the Monod term for silicic acid is near saturation so that there is little sensitivity to

the precise value of kSidia. Moreover, there appears to be consistency across the literature that kSidia = 1 mmol m−3. We therefore

simply fixed kSidia at this value for numerical efficiency.
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D0.2 Choice of initial parameter values15

We first chose an initial set of values for the remaining parameters as collected in Table 2. The parameters of the iron cycle

were taken from of the typical state estimate of Frants et al. (2016) except for the half-saturation constant of the Fe : P ratio,

which was taken from the work of Galbraith et al. (2010), and the scavenging-rate parameters. The initial parameters for

POP and opal scavenging, κPOP
scv and κbSIscv , where determined so that the globally integrated scavenging of each process was

initially ∼ 5 Gmol Fe yr−1 (the typical total source/sink strength reported by Frants et al. (2016)). The initial value of the dust20

scavenging rate parameter, κPOP
dst , was chosen so that the sink due to dust scavenging was ∼ 10 % of the total sink of the initial

state.

The initial irradiance half-saturation constants were taken from the work of Doney et al. (2006). The initial uptake half-

saturation constants kic were taken from the work of Matsumoto et al. (2013). The uptake timescales τc were set to an initial

value of 6 days and optimized subject to the constraint τsml ≥ τlrg ≥ τdia. The initial values of the maximum phytoplankton25

concentrations were calculated as pmax
c = p∗/(λ0τc) using p∗ = 0.018 mmol P m−3 (Galbraith et al., 2010) and λ−10 = 5.26 d

(Dunne et al., 2005).

The initial values of the parameters of the Si : P ratio were set so that kFeSi:P and kSiSi:P where on the order of typical dFe

and Si(OH)4 concentrations, while RSi
0 and RSi

m were based on corresponding Si : N uptake ratios found in the literature and

converted using N : P = 16 : 1. Thus, in terms of Si : N units, RSi
0 was chosen to be on the order of the minimum Si : N uptake30

ratio used by Matsumoto et al. (2013) and RSi
m was chosen to be on the order of the maximum Si : N uptake ratio reported by

Franck et al. (2000) and Brzezinski et al. (2002).

D0.3 Sequential optimization steps

(a) We first optimized the hydrothermal iron source parameters σH,ATL, σH,PAC, σH,IND, and σH,SO forcing σH,IND = σH,SO.

Although we adjusted the overall source strength of the hydrothermal iron source when generating our family of iron cycling

estimates, we did not re-optimize the relative strength of the four basin amplitudes until the final step of our strategy.

(b) We jointly optimize the three irradiance half-saturations kIc and then keep these fixed because of potential compensation5

with the half-saturation constants kic.

(c) We jointly optimized the half-saturations kic of the nutrient-limitation Monod terms.

(d) We were not able to optimize the Si : P uptake ratio parameters, because they are not well constrained due to compensation

with the parameters that set the uptake by diatoms. We therefore separately tuned the parameters RSi
m, RSi

0 , kSiSi:P, and kFeSi:P
together with the three growth timescales τc to match the fractions of total uptake by each phytoplankton class as estimated by10

Uitz et al. (2010).

(e) Because of compensation with the maximum Fe : P uptake ratio, the associated half-saturation rate, kFe:P, was optimized

on its own.

(f) We then jointly re-optimized the 13 parameters kPc , kFec , kSidia, pmax
c , and τc.
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(g) Only the parameters of the iron cycle remain to be optimized. Iron source and sink parameters cannot jointly be optimized15

because of strong local compensation. (Although the aeolian source injects dFe at the surface, uptake and scavenging export

iron to depth, thus creating an effective interior source.) To generate our family of estimates, we therefore first assigned

the aeolian, sedimentary, and hydrothermal source-strength parameters (keeping the same ratio of basin hydrothermal source

strengths to global hydrothermal source strength), and held these fixed while jointly optimizing the parameters determining the

iron scavenging, namely RFe:P
0 , κPOP

scv , κbSiscv, κdstscv, Lv, Lmax, Lb, and τb.20

(h) As a final step, we jointly optimized all source-strength parameters σA, σS, σH,ATL, σH,PAC, σH,IND, and σH,SO primarily

to give the hydrothermal source pattern (relative strength in each basin) a chance to adjust from its initial state. We find that

if the total hydrothermal source strength, σH, is below 1 Gmol yr−1, the final optimization step hardly changes σH, while

larger hydrothermal source strengths tend to be reduced by up to ∼ 0.5 Gmol yr−1. If σH < 0.5 Gmol yr−1, the fractional

hydrothermal source strength of each basin tends to remain unchanged during this last step, while if σH ≥ 0.5 Gmol yr−1, the25

fractional hydrothermal sources for the Pacific and Southern Ocean tend to increase by order 10 %, the fractional Indian Ocean

source tends to decrease order 5 %, and the Atlantic source is typically reduced by order 10 % and for some state estimates to

near zero. The aeolian iron source strength, σA, tends to be reduced by∼ 10 %, while the sedimentary iron source strength, σS,

stays within 10 % of its previous value for most family members but can more than double for cases with high hydrothermal

and aeolian sources.30

Appendix E: Inferred versus observed phytoplankton distribution

Figure E1 shows a model–observation comparison of the phytoplankton concentration (plotted in C units using a constant

Redfield ratio of C : P = 106 : 1). Although the distinction between our phytoplankton classes is functional and not determined

by size, we compare our small, large, and diatom concentrations with the picophytoplankton (0.5–2 µm), nanophytoplankton

(2–20 µm), and microphytoplankton (20–50 µm) of the satellite-based estimates of Kostadinov et al. (2016), consistent with

the construction of our Eplk cost function.

The inverse-model estimates capture the broad global patterns of the phytoplankton concentrations reasonably well, although

some biases are also evident. The observation-based diatom and large concentration has a minimum at ∼ 60◦S, a feature our5

estimates do not capture. This may be related to the strong seasonality of the Southern Ocean, with its large variability in sea-ice

coverage, the effects of which our approach cannot capture. Our estimates for the large and small concentrations have higher

concentrations in the subtropical gyres and weaker meridional gradients with lower high-latitude and tropical concentrations

than observed. Another factor is that the phytoplankton mismatch carries less penalty in our cost than the combined misfit

terms of the three nutrient fields.10

The global mean phytoplankton concentration of each functional class was remarkably stable across all members of our fam-

ily of state estimates with ranges of pdia = (2.6–2.9) mg C m−3, plrg = (6.2–6.5) mg C m−3, and psml = (6.5–6.8) mg C m−3.

This indicates that the satellite data provides a good constraint on the global-scale ecosystem composition.
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Figure E1. Comparison of estimated (left) and observed (right) phytoplankton concentrations averaged vertically over the model euphotic

zone. The diatom concentration is shown in the top row, the large phytoplankton concentration in the middle row, and the small phytoplankton

concentration in the bottom row. Note the logarithmic colour scales with separate ranges for each functional class.

Appendix F: Partition of export production by phytoplankton class

Figure F1 shows the phosphorus export, expressed in C units, partitioned according to each functional class. The export due to15

each functional class (6.5±0.3 % for small, 53.±1.% for large, and 41.±1.% for diatoms for our state estimates), are poorly

constrained because of uncertainty and lack of consensus about the values of the detrital fractions as discussed in Section 2.2

for phytoplankton, and uncertainty on the Si : P ratio for diatoms. However, this partition between the three phytoplankton

classes is the result of the adjustments of the class-specific growth timescales, τc, and of the parameters of the Si : P ratio to

bring the fractional uptake by each class into alignment with the satellite-based estimates of Uitz et al. (2010). For our typical20

state estimate, these uptake fractions are 38 %, 42 %, and 30 % for the diatom, large, and small classes, respectively. This

compares to 32 %, 44 %, and 24 % for micro-, nano-, and picophytoplankton, respectively, in the satellite-based estimates. (We

find that if we use only a single optimized timescale for all three classes, the small phytoplankton class completely dominates

the phosphorus export, underlining the need for class-specific growth timescales.)
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Figure F1. Local export production (maps on left) and its zonal integral (curves on the right) expressed in carbon units (using C : P = 106 :

1). Maps are shown for our typical state estimate, while we plot the zonal integral of each family member in grey and the typical state estimate

in black. The export productions are plotted for each phytoplankton functional class: Small (top plots, a), large (middle plots, b), and diatom

(bottom plots, c). Note the different colour scale for the small class.

Appendix G: Comparison with select transects of the GEOTRACES Intermediate Data Product25

Figure G1 compares the main GEOTRACES transects included in the Intermediate Data Product with our typical state estimate.

The coarse-resolution model captures the large-scale features, but localized high concentrations cannot be captured at our

resolution.

We emphasize that a direct comparison with the GEOTRACES sections is subject to a number of caveats. We use a coarse-

resolution, steady-state inverse model, while the GEOTRACES sections provide snapshots in space and time. Therefore, our30

model cannot capture any transient plumes (e.g., from an African dust event) that are highly localized and episodic. Our state

estimates can only capture the long-term average concentrations, coarse-grained to 2◦×2◦ resolution. In terms of capturing

hydrothermal plumes, we note that the data-assimilated circulation used only assimilated T, S, PO4, and 14C but not 3He.
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Figure G1. Dissolved iron concentrations of the typical state estimate (contours) compared to the GEOTRACES Intermediate Data Product

(dots). The abscissa runs south to north or west to east along the transects (map).

Therefore, there are likely still some biases in the abyssal circulation (Holzer et al., 2017), which may contribute to the fact

that we do not perfectly match the observed hydrothermal iron plumes.

However, what matters for our inverse model, whose biological production is mechanistically driven by dFe and macronu-5

trient availability, is the large-scale transport into the euphotic zone, particularly the transport into iron-limited regions such as

the Southern Ocean. We have no reason to think that this large-scale transport is suspect as evidenced by realistic large-scale

patterns of production that are robust across our family of states with widely varying iron source strengths.

Appendix H: Iron source and sink patterns

Figure H1 shows the vertically integrated sources of dFe with a logarithmic colour scale. The aeolian soluble iron deposition10

pattern is identical to that of the study of Luo et al. (2008), albeit limited to the oceans. The tropical Atlantic close to the Sahara,

the Arabian Sea, and the Bay of Bengal are the regions of largest aeolian iron deposition. The hydrothermal iron sources follow

the mid-ocean ridges with the pattern of the OCMIP protocol, but independently scaled for the Atlantic, Pacific, Indian, and
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Figure H1. Vertically integrated sources of aeolian dFe (top, a), sedimentary dFe (middle, b), and hydrothermal dFe (bottom, c) for our

typical state estimate. Note the logarithmic colour scales.

Southern Ocean basins. Sedimentary iron is more intense where export production is large and in areas where oceans are

shallower, because in both cases, a large flux of organic matter (or POP in our model) reaches the sediment. The sub-grid15

topography plays a significant role in the pattern of sedimentary iron, in particular for coastal regions and large underwater

plateaus, e.g., near the Kerguelen islands or the Falkland islands. Because of unrealistic circulation features in the Sea of Japan,

we zero all sources there consistent with our zeroing out production in the Sea of Japan.

Figure H2 shows the vertically integrated sinks that balance the sources of Figure H1. The scavenging due to sinking

mineral dust particles is about three orders of magnitude smaller than the sink due to organic and opal particle scavenging and20

could be neglected without changing our estimates appreciably. Although the pattern of the scavenging sinks has significant

local variations among the members of our family of state estimates, the zonally averaged pattern (vertically integrated sink

normalized by its global mean) is broadly similar across the family.

47



0 200 400 600
%

log
10

(mol m
−2

 yr
−1

)
−9 −8 −7 −6 −5 −4

L
a

ti
tu

d
e

90S

60S

30S

Eq

30N

60N

90N

L
a

ti
tu

d
e

90S

60S

30S

Eq

30N

60N

90N

Longitude

L
a

ti
tu

d
e

60E 120E 180 120W 60W 0
90S

60S

30S

Eq

30N

60N

90N

a) POP scav., J
POP

 = 6.8 (0.3−39.7) Gmol yr
−1

c) Opal scav., J
bSi

 = 1.1 (0.3−7.0) Gmol yr
−1

b) Dust scav., J
dst

 = 6.5 (3.3−9.1) Mmol yr
−1

[J
POP

 / <J
POP

>]

[J
dst

 / <J
dst

>]

[J
bSi

 / <J
bSi

>]

Figure H2. Maps of the vertically integrated iron sinks of our typical state estimate due to (a) POP, (b) mineral dust, and (c) sinking opal

particles. Plotted to the right are the zonal averages of the vertically integrated sinks normalized by their global mean, with each family

member in grey and our typical state estimate in black.
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