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Abstract 19 

Agroforestry is an increasingly popular farming system enabling agricultural diversification 20 

and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) 21 

stocks are generally increased, but it is difficult to disentangle the different factors responsible 22 

for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition 23 

rates may be modified owing to microclimate, physical protection, or priming effect from roots, 24 

especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees 25 
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(Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum), and an adjacent 26 

agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root 27 

senescence, crop residues, and tree row herbaceous vegetation -, and measure SOC stocks down 28 

2 m depth at varying distances from the trees. We then proposed a model that simulates SOC 29 

dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial 30 

heterogeneity. The model was calibrated to the control plot only. 31 

Measured OC inputs to soil were increased by about 40% (+ 1.11 t C ha-1 yr-1) down to 2 m 32 

depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 33 

6.3 t C ha-1 down to 1 m depth. The model was strongly validated, describing properly the 34 

measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed 35 

that the increased inputs of fresh biomass to soil explained the observed additional SOC storage 36 

in the agroforestry plot. Moreover, only a priming effect variant of the model was able to 37 

capture the depth distribution of SOC stocks. This result questions the potential of soils to store 38 

large amounts of carbon, especially at depth. Deep-rooted trees modify OC inputs to soil, a 39 

process that deserves further studies given its potential effects on SOC dynamics. 40 

 41 

1 Introduction 42 

Agroforestry systems are complex agroecosystems combining trees and crops or pastures 43 

within the same field (Nair, 1993, 1985; Somarriba, 1992). More precisely, silvoarable systems 44 

associate parallel tree rows with annual crops. Some studies showed that these systems could 45 

be very productive, with a land equivalent ratio (Mead and Willey, 1980) reaching up to 1.3 46 

(Graves et al., 2007). Silvoarable systems may therefore produce up to 30% more marketable 47 

biomass on the same area of land compared to crops and trees grown separately. This 48 

performance can be explained by a better use of water, nutrients and light by the agroecosystem 49 

throughout the year. Trees grown in silvoarable systems usually grow faster than the same trees 50 
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grown in forest ecosystems, because of their lower density, and because they also benefit from 51 

the crop fertilization (Balandier and Dupraz, 1999; Chaudhry et al., 2003; Chifflot et al., 2006). 52 

In temperate regions, farmers usually grow one crop per year, and this association of trees can 53 

extend the growing period at the field scale, especially when winter crops are intercropped with 54 

trees having a late bud break (Burgess et al., 2004). However, after several years, a decrease of 55 

crop yield can be observed in mature and highly dense plantations, especially close to the trees, 56 

due to competition between crops and trees for light, water, and nutrients (Burgess et al., 2004; 57 

Dufour et al., 2013; Yin and He, 1997).  58 

Part of the additional biomass produced in agroforestry is used for economical purposes, such 59 

as timber or fruit production. Leaves, tree fine roots, pruning residues and the herbaceous 60 

vegetation growing in the tree rows will usually return to the soil, contributing to a higher input 61 

of organic carbon (OC) to the soil compared to an agricultural field (Peichl et al., 2006).  62 

In such systems, the observed soil organic carbon (SOC) stocks are also generally higher 63 

compared to a cropland (Albrecht and Kandji, 2003; Kim et al., 2016; Lorenz and Lal, 2014). 64 

Cardinael et al., (2017) measured a mean SOC stock accumulation rate of 0.24 (0.09-0.46) t C 65 

ha-1 yr-1 at 0-30 cm depth in several silvoarable systems compared to agricultural plots in 66 

France. Higher SOC stocks were also found in Canadian agroforestry systems, but measured 67 

only to 20 cm depth (Bambrick et al., 2010; Oelbermann et al., 2004; Peichl et al., 2006).  68 

To our knowledge, we are still not able to disentangle the factors responsible for such a higher 69 

SOC storage. This SOC storage might be due to higher OC inputs but it could also be favored 70 

by a modification of the SOC decomposition owing to a change in SOC physical protection 71 

(Haile et al., 2010), and/or in soil temperature and moisture. 72 

The introduction of trees in an agricultural field modifies the amount, but also the distribution 73 

of fresh organic carbon (FOC) input to the soil, both vertically and horizontally (Bambrick et 74 

al., 2010; Howlett et al., 2011; Peichl et al., 2006). FOC inputs from the trees decrease with 75 
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increasing distance from the trunk and with soil depth (Moreno et al., 2005). On the contrary, 76 

crop yield usually increases with increasing distance from the trees (Dufour et al., 2013; Li et 77 

al., 2008). Therefore, the proportions of FOC coming from both the crop residues and the trees 78 

change with distance from the trees, soil depth, and time. 79 

Tree fine roots (diameter ≤ 2 mm) are the most active part of root systems (Eissenstat and Yanai, 80 

1997) and play a major role in carbon cycling. In silvoarable systems, tree fine root distribution 81 

within the soil profile is strongly modified due to the competition with the crop, inducing a 82 

deeper rooting compared to trees grown in forest ecosystems (Cardinael et al., 2015a; Mulia 83 

and Dupraz, 2006). Deep soil layers may therefore receive significant OC inputs from fine root 84 

mortality and exudates. Root carbon has a higher mean residence time in the soil compared to 85 

shoot carbon (Kätterer et al., 2011; Rasse et al., 2006), presumably because root residues are 86 

preferentially stabilized within microaggregates or adsorbed to clay particles. Moreover, 87 

temperature and moisture conditions are more buffered in the subsoil than in the topsoil. The 88 

microbial biomass is also smaller at depth (Eilers et al., 2012; Fierer et al., 2003), and the spatial 89 

segregation with organic matter is larger (Salomé et al., 2010) resulting in lower decomposition 90 

rates. Deep root carbon input in the soil could therefore contribute to a SOC storage with high 91 

mean residence times. However, some studies showed that adding FOC – a source of energy 92 

for microorganisms - to the subsoil enhanced decomposition of stabilized carbon, a process 93 

called « priming effect »  (Fontaine et al., 2007). The priming effect is stronger when induced 94 

by labile molecules like root exudates than by root litter coming from the decomposition of 95 

dead roots (Shahzad et al., 2015). Therefore, the net effect of deep roots on SOC stocks has to 96 

be assessed, especially in silvoarable systems. 97 

Models are crucial as they allow virtual experiments to best design and understand complex 98 

processes in these systems (Luedeling et al., 2016). Several models have been developed to 99 

simulate interactions for light, water and nutrients between trees and crops (Charbonnier et al., 100 
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2013; Duursma and Medlyn, 2012; van Noordwijk and Lusiana, 1999; Talbot, 2011) or to 101 

predict tree growth and crop yield in agroforestry systems (Graves et al., 2010; van der Werf et 102 

al., 2007). However, none of these models are designed to simulate SOC dynamics in 103 

agroforestry systems and they are therefore not useful to estimate SOC storage. Oelbermann & 104 

Voroney (2011) evaluated the ability of the CENTURY model (Parton et al., 1987) to predict 105 

SOC stocks in tropical and temperate agroforestry systems, but with a single-layer modeling 106 

approach (0-20 cm). The approach of modeling a single topsoil layer assumes that deep SOC 107 

does not play an active role in carbon cycling, while it was shown that deep soil layers contain 108 

important amounts of SOC (Jobbagy and Jackson, 2000), and that part of this deep SOC could 109 

cycle on decadal timescales due to root inputs or to dissolved organic carbon transport (Baisden 110 

and Parfitt, 2007; Koarashi et al., 2012). The need to take into account deep soil layers when 111 

modeling SOC dynamics is now well recognized in the scientific community (Baisden et al., 112 

2002; Elzein and Balesdent, 1995), and several models have been proposed (Braakhekke et al., 113 

2011; Guenet et al., 2013; Koven et al., 2013; Taghizadeh-Toosi et al., 2014; Ahrens et al., 114 

2015). Using vertically discretized soils is particularly important when modeling the impact of 115 

agroforestry systems on SOC stocks, but to our knowledge, vertically spatialized SOC models 116 

have not yet been tested for these systems. 117 

 118 

The aims of this study were then twofold: (i) to propose a model of soil C dynamics in 119 

agroforestry systems able to account for both vertical and lateral spatial heterogeneities and (ii) 120 

to test whether variations of fresh organic carbon (FOC) input could explain increased SOC 121 

stocks both using experimental data and model runs. 122 

For this, we first compiled data on FOC inputs to the soil obtained in a 18-year-old agroforestry 123 

plot and in an agricultural control plot in southern France, in which SOC stocks have been 124 

recently quantified to 2 m depth (Cardinael et al., 2015b). FOC inputs comprised tree fine roots, 125 
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tree leaf litter, aboveground and belowground biomass of the crop and of the herbaceous 126 

vegetation in the tree rows. We compiled recently published data for FOC inputs (Cardinael et 127 

al., 2015a; Germon et al., 2016), and measured the others (Table 1). 128 

 129 

We then modified a two pools model proposed by Guenet et al., (2013), to create a spatialized 130 

model over depth and distance from the tree, the CARBOSAF model (soil organic CARBOn 131 

dynamics in Silvoarable AgroForestry systems). Based on data acquired since the tree planting 132 

in 1995 (crop yield, tree growth), and on FOC inputs, we modeled SOC dynamics to 2 m depth 133 

in both the silvoarable and agricultural control plot. We evaluated the model against measured 134 

SOC stocks along the profile and used this opportunity to test the importance of priming effect 135 

(PE) for deep soil C dynamics in a silvoarable system. The performance of the two pools model 136 

including PE was also compared with a model version including three OC pools. 137 

 138 

2 Materials and methods 139 

2.1 Study site 140 

The experimental site is located at the Restinclières farm Estate in Prades-le-Lez, 15 km North 141 

of Montpellier, France (longitude 04°01’ E, latitude 43°43’ N, elevation 54 m a.s.l.). The 142 

climate is sub-humid Mediterranean with an average temperature of 15.4°C and an average 143 

annual rainfall of 973 mm (years 1995–2013). The soil is a silty and carbonated (pH = 8.2) deep 144 

alluvial Fluvisol (IUSS Working Group WRB, 2007). In February 1995, a 4.6 hectare 145 

silvoarable agroforestry plot was established with the planting of hybrid walnut trees (Juglans 146 

regia × nigra cv. NG23) at a density of 192 trees ha-1 but later thinned to 110 trees ha-1. Trees 147 

were planted at 13 m × 4 m spacing, and tree rows are East–West oriented. The cultivated alleys 148 

are 11 m wide. The remaining part of the plot (1.4 ha) was kept as an agricultural control plot. 149 

Since the tree planting, the agroforestry alleys and the control plot were managed in the same 150 
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way. The associated crop is most of the time durum wheat (Triticum turgidum L. subsp. durum), 151 

except in 1998, 2001 and 2006, when rapeseed (Brassica napus L.) was cultivated, and in 2010 152 

and 2013, when pea (Pisum sativum L.) was cultivated. The soil is ploughed to a depth of 0.2 153 

m before sowing, and the wheat crop is fertilized with an average of 120 kg N ha-1 yr-1. Crop 154 

residues (wheat straw) are also exported, but about 25% remain on the soil. Tree rows are 155 

covered by spontaneous herbaceous vegetation. Two successive herbaceous vegetation types 156 

occur during the year, one in summer and one in winter. The summer vegetation is mainly 157 

composed of Avena fatua L., and is 1.5 m tall. In winter, the vegetation is a mix of Achillea 158 

millefolium L., Galium aparine L., Vicia L., Ornithogalum umbellatum L. and Avena fatua L, 159 

and is 0.2 m tall. 160 

 161 

Table 1. Synthesis of the different field and laboratory data available or measured, and their 162 

sources. 163 

Description of the data Source 

Soil texture, bulk densities, SOC stocks Cardinael et al., (2015a) 

Soil temperature and soil moisture Measured 

Tree growth (DBH) Measured 

Tree wood density (Talbot, 2011) 

Tree fine root biomass Cardinael et al., (2015b) 

Tree fine root turnover Germon et al., (2016) 

Crop yield and crop ABG biomass Dufour et al., (2013) and measured 

Crop root biomass Prieto et al., (2015) and measured 

Tree row herbaceous vegetation – ABG biomass Measured 

Tree row herbaceous vegetation – root biomass Measured 

Biomass carbon concentrations Measured 

Potential decomposition rate of roots  Prieto et al., (2016a) 

HSOC potential decomposition rate Measured 

DBH: Diameter at Breast Height; ABG: aboveground; OC: organic carbon; HSOC: humified 164 

soil organic carbon. 165 

 166 

2.2 Organic carbon stocks 167 

2.2.1 Soil organic carbon stocks  168 
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SOC data have been published in Cardinael et al., (2015b). Briefly, soil cores were sampled 169 

down to 2 m depth in May 2013, 100 in the agroforestry plot, and 93 in the agricultural control 170 

plot. SOC concentrations, soil bulk densities, SOC stocks, and soil texture were measured for 171 

ten soil layers (0.0-0.1, 0.1-0.3, 0.3-0.5, 0.5-0.7, 0.7-1.0, 1.0-1.2, 1.2-1.4, 1.4-1.6, 1.6-1.8, and 172 

1.8-2.0 m). In the agroforestry plot, 40 soil cores were taken in the tree rows, while 60 were 173 

sampled in the alleys at varying distances from the trees. Soil organic carbon stocks were 174 

quantified on an equivalent soil mass basis (Ellert and Bettany, 1995). 175 

 176 

2.2.2 Tree aboveground and stump carbon stocks  177 

Three hybrid walnuts were chopped down in 2012. The trunk circumference was measured 178 

every meter up to the maximum height of the tree to estimate its volume. The trunk biomass 179 

was estimated by multiplying the trunk volume by the wood density that was measured at 616 180 

kg m-3 during a previous work at the same site (Talbot, 2011). Then, branches were cut, the 181 

stump was uprooted, and they were weighted separately. Samples were brought to the 182 

laboratory to determine the moisture content, which enabled calculation of the branches and the 183 

stump dry mass. 184 

 185 

2.3 Measurements of organic carbon inputs in the field 186 

2.3.1 Carbon inputs from tree fine root mortality  187 

The tree fine root (diameter ≤ 2 mm) biomass was quantified and coupled with an estimate of 188 

the tree fine root turnover in order to predict the carbon input to the soil from the tree fine root 189 

mortality. A detailed description of the methods used to estimate the tree fine root biomass can 190 

be found in Cardinael et al., (2015a). In March 2012, a 5 (length) × 1.5 (width) × 4 m (depth) 191 

pit was open in the agroforestry plot, perpendicular to the tree row, at the North of the trees. 192 

The tree fine root distribution was mapped down 4 m depth, and the tree fine root biomass was 193 
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quantified in the tree row and in the alley. Only results concerning the first two meters of soil, 194 

among those obtained by Cardinael et al., (2015a) will be used here. 195 

In July 2012, sixteen minirhizotrons were installed in the agroforestry pit, at 0, 1, 2.5 and 4 m 196 

depth, and at two and five meters from the trees. The tree root growth and mortality was 197 

monitored during one year using a scanner (CI-600 Root Growth Monitoring System, CID, 198 

USA), and analyzed using the WinRHIZO Tron software (Régent, Canada). A detailed 199 

description of the methods and of results used to estimate the tree fine root turnover can be 200 

found in Germon et al., (2016). 201 

 202 

2.3.2 Tree litterfall  203 

In 2009, the crowns of two walnut trees were packed with a net in order to collect the leaf 204 

biomass from September to January. The same was done in 2012 with three other walnut trees. 205 

The leaf litter was then dried, weighted and analyzed for C to quantify the leaf carbon input per 206 

tree. 207 

 208 

2.3.3 Aboveground and belowground input from the crop  209 

Since the tree planting in 1995, the crop yield was measured 14 times (in 1995, 2000, 2002, 210 

2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012, 2013, and 2014), while the wheat straw 211 

biomass and the total aboveground biomass were measured six times (in 2007, 2008, 2009, 212 

2011, 2012, and 2014) in both the control and the agroforestry plot (Dufour et al., 2013), using 213 

sampling subplots of 1 m2 each. In the control plot, five subplots have been sampled while in 214 

the agroforestry plot five transects have been sampled. Each transect was made of three 215 

subplots, 2 m North from the tree, 2 m South from the tree, and 6.5 m from the tree (middle of 216 

the alley). In March 2012, a 2 m deep pit was opened in the agricultural control plot (Prieto et 217 

al., 2015), and the root biomass was quantified to the maximum rooting depth (1.5 m). The 218 
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root:shoot ratio of durum wheat was measured in the control plot. We assumed that the crop 219 

root biomass turns out once a year, after the crop harvest. 220 

 221 

2.3.4 Above and belowground input from the tree row herbaceous vegetation  222 

As two types of herbaceous vegetation grow in the tree rows during the year, samples were 223 

taken in summer and winter. In late June 2014, twelve subplots of 1 m2 each were positioned 224 

in the tree rows, around 4 walnut trees. In January 2015, six subplots of 1 m2 each were 225 

positioned in the tree rows, around 2 walnut trees. The middle of each subplot was located at 1 226 

m, 2 m and 3 m, respectively, from the selected walnut tree. All the aboveground vegetation 227 

was collected in each square. In the middle of each subplot, root biomass was sampled with a 228 

cylindrical soil corer (inner diameter of 8 cm). Soil was taken at three soil layers, 0.0-0.1, 0.1-229 

0.3 and 0.3-0.5 m. In the laboratory, soil was gently washed with water through a 2 mm mesh 230 

sieve, and roots were collected. Roots from the herbaceous vegetation were easily separated 231 

manually from walnut roots, as they were soft and yellow compared to walnuts roots that were 232 

black. After being sorted out from the soil and cleaned, the root biomass was dried at 40°C and 233 

measured.  234 

 235 

2.4 Carbon concentration measurements 236 

All organic carbon measurements were performed with a CHN elemental analyzer (Carlo Erba 237 

NA 2000, Milan, Italy), after samples were oven-dried at 40°C for 48 hours (Table 2). Dry 238 

biomasses (t DM ha-1) of each organic matter inputs were multiplied by their respective organic 239 

carbon concentrations (mg C g-1) to calculate organic carbon stocks (t C ha-1). 240 

 241 

Table 2. Organic carbon concentrations and C:N ratio of the different types of biomass. 242 

Type of biomass Organic C concentration 

(mg C g-1) 

C:N Number of 

replicates 
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Walnut trunk 445.7 ± 1.0 159.1 ± 25.2 3 

Walnut branches 428.6 ± 1.7 62.2 ± 11.7 3 

Wheat straw 433.2 ± 0.7 55.5 ± 2.1 5 

Wheat root 351.4 ± 19 24.8 ± 2.1 8 

Walnut leaf 449.4 ± 3.7 49.1 ± 0.4 3 

Walnut fine root 437.0 ± 3.3 28.6 ± 3.4 8 

Summer vegetation (ABG) 448.4 ± 1.9 37.8 ± 2.2 5 

Summer vegetation (roots) 314.5 ± 8.3 33.8 ± 1.7 6 

Winter vegetation (ABG) 447.7 ± 5.3 11.2 ± 0.4 3 

Winter vegetation (roots) 397.4 ± 5.0 24.7 ± 0.7 3 

The organic matter called “vegetation” stands for the herbaceous vegetation that grows in the 243 

tree row. ABG: aboveground. Errors represent standard errors. 244 

 245 

2.5 General description of the CARBOSAF model 246 

2.5.1 Organic carbon decomposition  247 

We adapted a model developed by Guenet et al. (2013) where total SOC is split in two pools, 248 

the FOC and the humified soil organic carbon (HSOC) for each soil layer (Fig. 1a). Input to the 249 

FOC pool comes from the plant litter and the distribution of this input within the profile is 250 

assumed to depend upon depth from the surface (z), distance from the tree (d), and time (t). 251 

Equations describing inputs to the FOC pool (𝐼𝑡,𝑧,𝑑) at a given time, depth, and distance are 252 

fully explained in the Results. 253 

 254 

The FOC mineralisation is assumed to be governed by first order kinetics, being proportional 255 

to the FOC pool, as given by: 256 

𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑 =  −𝑘𝐹𝑂𝐶  ×  𝐹𝑂𝐶𝑡,𝑧,𝑑  ×  𝑓𝑐𝑙𝑎𝑦,𝑧  ×  𝑓𝑚𝑜𝑖𝑠𝑡,𝑧  ×  𝑓𝑡𝑒𝑚𝑝,𝑧          (1) 257 

where FOCt,z,d is the FOC carbon pool (kg C m-2) at a given time (t, in years), depth (z, in m) 258 

and distance (d, in m), and kFOC is its decomposition rate. The potential decomposition rates of 259 

the different plant materials were assessed with a 16-week incubation experiment during a 260 

companion study at the site (Prieto et al., 2016). The decomposition rate kFOC was weighted by 261 

the respective contribution of each type of plant litter as a function of the tree age, soil depth 262 
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and distance from the tree. The rate modifiers fclay,z, fmoist,z and ftemp,z are functions depending 263 

respectively on the clay content, soil moisture and soil temperature at a given depth z, and range 264 

between 0 and 1.  265 

 266 

The fclay function originated from the CENTURY model (Parton et al., 1987): 267 

𝑓𝑐𝑙𝑎𝑦,𝑧 = 1 − 0.75 ×  𝐶𝑙𝑎𝑦𝑧         (2) 268 

where Clayz is the clay fraction (ranging between 0 and 1) of the soil at a given depth z. 269 

 270 

 271 

Fig. 1. Schematic representation of the pools and the fluxes of the (a) two pools model and (b) 272 

three pools model.  273 

 274 
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The fmoist,z function originated from the meta-analysis of Moyano et al., (2012) and is affected 275 

by soil properties (clay content, SOC content). Briefly, the authors fitted linear models on 310 276 

soil incubations to describe the effect of soil moisture on decomposition. Then, they normalized 277 

such linear models between 0 and 1 to apply these functions to classical first order kinetics. All 278 

details are described in Moyano et al., (2012). To save computing time, we calculated fmoist,z 279 

only once using measured SOC stocks instead of using modelled SOC stocks and repeated the 280 

calculation at each time step. 281 

 282 

The temperature sensitivity of the soil respiration is expressed as Q10: 283 

𝑓𝑡𝑒𝑚𝑝,𝑧 =   𝑄10

𝑡𝑒𝑚𝑝𝑧−𝑡𝑒𝑚𝑝𝑜𝑝𝑡

10       (3) 284 

with tempz being the soil temperature in K at each soil depth z and tempopt a parameter fixed to 285 

304.15 K. The Q10 value was fixed to 2, a classical value used in models (Davidson and 286 

Janssens, 2006). 287 

 288 

Once the FOC is decomposed, a fraction is humified (h) and another is respired as CO2 (1−h) 289 

(Fig. 1a) following equations (4) and (5).  290 

𝐻𝑢𝑚𝑖𝑓𝑖𝑒𝑑 𝐹𝑂𝐶𝑡,𝑧,𝑑 = ℎ ×  𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑          (4) 291 

𝑅𝑒𝑠𝑝𝑖𝑟𝑒𝑑 𝐹𝑂𝐶𝑡,𝑧,𝑑 = (1 − ℎ)  ×  𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑          (5) 292 

 293 

Two mathematical approaches are available in the model to describe the mineralisation of 294 

HSOC: a first order kinetics, as given by Eq. (6) or an approach developed by Wutzler & 295 

Reichstein, (2008) and by Guenet et al., (2013) introducing the priming effect, i.e., the 296 

mineralisation of HSOC depends on FOC availability, and given by Eq. (7): 297 

𝑑𝑒𝑐_𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑 =  −𝑘𝐻𝑆𝑂𝐶,𝑧  ×  𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑  ×  𝑓𝑚𝑜𝑖𝑠𝑡,𝑧  ×  𝑓𝑡𝑒𝑚𝑝,𝑧          (6) 298 
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𝑑𝑒𝑐_𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑 =  −𝑘𝐻𝑆𝑂𝐶,𝑧  ×  𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑  ×  (1 − 𝑒−𝑃𝐸 × 𝐹𝑂𝐶𝑡,𝑧,𝑑)  ×  𝑓𝑚𝑜𝑖𝑠𝑡,𝑧  299 

×  𝑓𝑡𝑒𝑚𝑝,𝑧       (7) 300 

where HSOCt,z,d is the humified SOC carbon pool at a given time (t, in years), depth (z, in m) 301 

and distance (d, in m), kHSOC,z is its decomposition rate (yr-1) at a given depth z, and PE is the 302 

priming effect parameter. The parameters fmoist,z and ftemp,z are functions depending respectively 303 

on soil moisture and soil temperature at a given depth z, and affecting the decomposition rate 304 

of HSOC. They correspond to the moisture equation from Moyano et al., (2012) and to Eq. (3), 305 

respectively.  The decomposition rate kHSOC,z was an exponential law depending on soil depth 306 

(z) as shown by an incubation study (see paragraph HSOC decomposition rate further in the 307 

M&M): 308 

𝑘𝐻𝑆𝑂𝐶,𝑧 = 𝑎 ×  𝑒−𝑏 × 𝑧          (8) 309 

The b parameter of this equation represented the ratio of labile C/stable C within the HSOC 310 

pool. The effect of clay on HSOC decomposition was implicitly taken into account in this 311 

equation as clay content increased with soil depth. 312 

A fraction of decomposed HSOC returns to the FOC assuming that part of the HSOC 313 

decomposition products is as labile as FOC (h) and another is respired as CO2 (Fig. 1a) in the 314 

two pools model. 315 

 316 

Finally, we also developed an alternative version of the model with three pools by splitting the 317 

HSOC pools into two pools with different turnover rates, HSOC2 being more stabilized than 318 

HSOC1 (Fig. 1b). The non-respired decomposed FOC is split between HSOC1 and HSOC2 319 

following a parameter f1. The non-respired decomposed HSOC1 is split between HSOC2 and 320 

FOC following a parameter f2 whereas non-respired decomposed HSOC2 is only redistributed 321 

into the FOC pools. The decomposition of HSOC1 and HSOC2 both follow the equation (8) 322 

but with different parameter values for a. 323 
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 324 

2.5.2 Carbon transport mechanisms  325 

The transport of C between the different soil layers was represented by both advection and 326 

diffusion mechanisms (Elzein and Balesdent, 1995), which have been shown to usually describe 327 

well the C transport in soils  (Bruun et al., 2007; Guenet et al., 2013). The advection represents 328 

the C transport due to the water infiltration in the soil, while the diffusion represents the C 329 

transport due to the fauna activity. The same transport coefficients were applied to the two C 330 

pools, FOC and HSOC. 331 

 332 

The advection is defined by: 333 

𝐹𝐴 = 𝐴 ×  𝐶          (9) 334 

where FA is the flux of C transported downwards by advection, and A is the advection rate (mm 335 

yr−1). 336 

 337 

The diffusion is represented by the Fick’s law: 338 

𝐹𝐷 = −𝐷 ×  
𝜕2𝐶

𝜕𝑧2
          (10) 339 

where FD is the flux of C transported downwards by diffusion, −D the diffusion coefficient (cm2 340 

yr−1) and C the amount of carbon in the pool subject to transport (FOC or HSOC). 341 

 342 

To represent the effect of soil tillage (z ≤ 0.2 m), we added another diffusion term using the 343 

Fick’s law but with a value of D several orders of magnitude higher to represent the mixing due 344 

to tillage. It must be noted that no tillage effect on the decomposition was represented here 345 

because of the large unknowns on these aspects (Dimassi et al., 2013; Virto et al., 2012). 346 

 347 
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In this model, the flux of C transported downwards by the advection and diffusion (FAD) was 348 

represented as the sum of both mechanisms, following Elzein & Balesdent (1995):  349 

𝐹𝐴𝐷 = 𝐹𝐴  +  𝐹𝐷          (11) 350 

 351 

The FOC and HSOC pools dynamics in the two pools model correspond to: 352 

 
𝜕𝐹𝑂𝐶𝑡,𝑧,𝑑

𝜕𝑡
= 𝐼𝑡,𝑧,𝑑 +  

𝜕𝐹𝐴𝐷 

𝜕𝑧
+ ℎ × 𝑑𝑒𝑐_𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑 − 𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑(12) 353 

𝜕𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑

𝜕𝑡
=  

𝜕𝐹𝐴𝐷 

𝜕𝑧
+ ℎ ×  𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑 − 𝑑𝑒𝑐_𝐻𝑆𝑂𝐶𝑡,𝑧,𝑑          (13) 354 

 355 

Finally, the FOC, HSOC1 and HSOC2 pools dynamics in the three pools model correspond to: 356 

𝜕𝐹𝑂𝐶𝑡,𝑧,𝑑

𝜕𝑡
= 𝐼𝑡,𝑧,𝑑 +  

𝜕𝐹𝐴𝐷 

𝜕𝑧
+ ℎ × 𝑓2 × 𝑑𝑒𝑐_𝐻𝑆𝑂𝐶1𝑡,𝑧,𝑑 + ℎ ×  𝑑𝑒𝑐_𝐻𝑆𝑂𝐶2𝑡,𝑧,𝑑357 

− 𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑           (14) 358 

𝜕𝐻𝑆𝑂𝐶1

𝜕𝑡𝜕
=  

𝜕𝐹𝐴𝐷 

𝜕𝑧
+ ℎ × 𝑓1 × 𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑 − 𝑑𝑒𝑐_𝐻𝑆𝑂𝐶1𝑡,𝑧,𝑑          (15) 359 

𝜕𝐻𝑆𝑂𝐶2

𝜕𝑡
=  

𝜕𝐹𝐴𝐷 

𝜕𝑧
+ ℎ × (1 − 𝑓1)  ×  𝑑𝑒𝑐_𝐹𝑂𝐶𝑡,𝑧,𝑑 + ℎ × (1 − 𝑓2) ×  𝑑𝑒𝑐_𝐻𝑆𝑂𝐶1𝑡,𝑧,𝑑360 

− 𝑑𝑒𝑐_𝐻𝑆𝑂𝐶2𝑡,𝑧,𝑑          (16) 361 

 362 

2.5.3 Depth dependence of HSOC potential decomposition rates 363 

The shape of the function (i.e. the b parameter) describing the HSOC potential decomposition 364 

rate (Eq. (8)) was determined by incubating soils from the control, the alley and the tree row, 365 

and from different soil layers (0.0-0.1, 0.1-0.3, 0.7-1.0 and 1.6-1.8 m). Soils were sieved at 5 366 

mm, and incubated during 44 days at 20°C at a water potential of -0.03 MPa. Evolved CO2 was 367 

measured using a micro-GC at 1, 3, 7, 14, 21, 28, 35, 44 days. The three first measurement 368 

dates corresponded to a pre-incubation period and were not included in the analysis. For a given 369 

depth, the cumulative mineralised SOC was expressed as a percentage of total SOC and was 370 
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plotted against the incubation time. The slopes represented the potential SOC mineralisation 371 

rate at a given soil depth and location. The potential SOC mineralisation rates were then plotted 372 

against soil depth (Fig. S1). We used the soil incubations to determine only the b parameter of 373 

the curve: with such short term incubations, the SOC decomposition rate over the soil profile 374 

is overestimated because the CO2 measured during the incubations mainly originates from the 375 

labile C pool. The a parameter was optimized following the procedure described further. 376 

 377 

2.6 Boundary conditions of the CARBOSAF model 378 

2.6.1 Annual aggregates of soil temperature and soil moisture  379 

In April 2013, eight soil temperature and moisture sensors (Campbell CS 616 and Campbell 380 

107, respectively) were installed in the agroforestry plot at 0.3, 1.3, 2.8 and 4.0 m depth, and at 381 

2 and 5 m from the trees. Soil temperature and moisture were measured for 11 months.  382 

The mean annual soil temperature in the agroforestry plot was described by the following 383 

equation: 384 

𝑇 = −0.89 ×  𝑧 + 288.24        (𝑅2 =  0.99)          (17) 385 

where T is the soil temperature (K) and z is the soil depth (m). 386 

 387 

The mean annual soil moisture was described with the following equation: 388 

𝜃 = 0.05 ×  𝑧 + 0.28       (𝑅2 =  0.99)           (18) 389 

where θ is the soil volumetric moisture (cm cm-3) and z is the soil depth (m). 390 

Due to a lack of data in the agricultural plot, we assumed that the soil temperature and the soil 391 

moisture were the same in the agroforestry tree rows, alleys and in the control plot, but we 392 

further performed a sensitivity analysis of the model on these two parameters. 393 

 394 

2.6.2 Interpolation of tree growth  395 
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The tree growth has been measured in the field since the establishment of the experiment. We 396 

used the diameter at breast height (DBH) as a surrogate of the tree growth preferentially to the 397 

tree height as the field measurements were more accurate. Indeed, DBH is easier to measure 398 

than height, especially when trees are getting older. To describe the temporal dynamic of DBH 399 

since the tree planting, a linear equation was fitted on the data. 400 

Tree growth measurements enabled us to fit the following equation that was used in the model: 401 

𝐷𝐵𝐻𝑡 {
0.01,                                                                               𝑡 ≤ 3 

0.0157 ×  𝑡 − 0.0391  (𝑅2 =  0.997)           3 < 𝑡 ≤ 20
          (19) 402 

where DBHt is the diameter at breast height (m) and t represents the time since tree planting 403 

(years). 404 

 405 

2.6.3 Change of tree litterfall over time  406 

For the five walnut trees where the leaf biomass was quantified, DBH was also measured. The 407 

ratio between the leaf biomass and DBH was then calculated for the five replicates. Total leaf 408 

biomass was 8.96 ± 1.45 kg DM tree-1 and the carbon concentration of walnut leaves was 449.4 409 

± 3.7 mg C g-1 (Table 2). With a density of 110 trees ha-1, leaf litterfall was estimated at 0.73 ± 410 

0.06 t C ha-1 in 2012 and at the plot scale. The ratio between leaf biomass and DBH was 0.0277 411 

± 0.0024 t C tree-1 m-1 or 3.05 t C ha-1 m-1. The following linear relationship was therefore used 412 

in the model to describe leaf litter C input with the tree growth: 413 

𝐿𝑡 = 3.05 ×  𝐷𝐵𝐻𝑡         (20) 414 

where Lt is the leaf litter input (t C ha-1) at the year t, and DBHt the diameter at breast height 415 

(m) the year t. 416 

 417 

2.6.4 Tree fine root C input from mortality  418 
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In 2012, the measured tree fine root biomass was higher in the tree row than in the alley (Table 419 

S1). From 0 to 1 m distance from the tree (in the tree row), the tree fine root biomass was 420 

homogeneous and was 1.01 t C ha-1 down 2 m depth. 421 

In 2012 and in the alley, the tree fine root biomass (TFRB) decreased with increasing distance 422 

from the tree and was represented by an exponential function: 423 

𝑇𝐹𝑅𝐵 = {
1.01,                                                          0 ≤ 𝑑 ≤ 1

 1.29 ×  𝑒−0.28 × 𝑑    (𝑅2 = 0.90), 1 < 𝑑 ≤ 6.5
          (21) 424 

where TFRB represents tree fine root biomass down 2 m depth (t C ha-1), and d the distance 425 

from the tree (m). 426 

 427 

We considered a linear increase of TFRB with increasing DBH, and a linear regression was 428 

performed between TFRB in 2012 and TFRB in 1996, the first year after planting (biomass 429 

considered as negligible). The following linear relationship was used to simulate TFRB as a 430 

function of tree growth:  431 

𝑇𝐹𝑅𝐵𝑡,𝑑 = {
3.69 × 𝐷𝐵𝐻𝑡 ,                             0 ≤ 𝑑 ≤ 1

 4.70 ×  𝐷𝐵𝐻𝑡  ×  𝑒−0.28 × 𝑑, 1 < 𝑑 ≤ 6.5
          (22) 432 

where TFRBt represents the tree fine root biomass to 2 m depth (t C ha-1) at the year t, DBHt the 433 

diameter at breast height (m) at the year t, and d the distance to the tree (m). 434 

 435 

A changing distribution of tree fine roots within the soil profile was taken into account with 436 

increasing distance to the tree. For this purpose, exponential functions (𝑎 × 𝑒−𝑏 × 𝑧) were 437 

fitted in the alley every 0.5 m distance, and a linear regression was fitted between their 438 

coefficients a and b and distance from the tree. However, the distribution of TFRB within the 439 

soil profile and with the distance to the tree was considered constant with time.  440 

A decreasing exponential function best represented the changing distribution of tree fine roots 441 

within the soil profile with increasing distance to the tree: 442 
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𝑝𝑇𝐹𝑅𝐵,𝑧,𝑑 = {
13.92 ×  𝑒−1.39 × 𝑧     (𝑅2 = 0.68),             0 ≤ 𝑑 ≤ 1

 𝑎 × 𝑒−𝑏 × 𝑧,                                                        1 < 𝑑 ≤ 6.5
          (23) 443 

and 444 

𝑎 = 10.31 − 1.15 ×  𝑑      (𝑅2 = 0.69)          (24) 445 

𝑏 = −1.10 + 0.19 ×  𝑑      (𝑅2 = 0.51)          (25) 446 

Finally, 447 

𝑝𝑇𝐹𝑅𝐵,𝑧,𝑑 = {
13.92 × 𝑒−1.39 × 𝑧,                                                            0 ≤ 𝑑 ≤ 1

 (10.31 − 1.15 ×  𝑑)  × 𝑒−(−1.10+0.19 × 𝑑) × 𝑧,                  1 < 𝑑 ≤ 6.5
         (26) 448 

where pTFRB,z,d is the proportion (%) of the total tree fine root biomass (TFRB) at a given depth 449 

z (m), and at a distance d from the tree (m). 450 

 451 

To finally estimate the tree fine root input due to the mortality, TFRB was multiplied by the 452 

measured root turnover. The tree fine root turnover ranged from 1.7 to 2.8 yr-1 depending on 453 

fine root diameter, with an average turnover of 2.2 yr-1 for fine roots ≤ 2 mm and to a depth of 454 

2 m (Germon et al., 2016). 455 

 456 

2.6.5 Aboveground and belowground input from the crop  457 

As there were more crop yield measurements (14) than straw biomass measurements (6), the 458 

effect of agroforestry on the crop yield with time was used as an estimate for change in the 459 

aboveground and belowground wheat biomass.  460 

For this, the relative yield (𝑅𝑒𝑙 𝑌𝐴𝐹) in the agroforestry system was calculated for each year as 461 

the ratio between the agroforestry yield and the control yield (𝑌𝐶).  462 

The average annual crop yield in the control plot was 𝑌𝐶 = 3.79 ± 0.40 t DM ha-1 for the 14 463 

studied years. In the agroforestry plot, the average relative yield decreased linearly with time 464 

(increasing DBH) and was described using the following linear equation (Fig. 2): 465 

𝑅𝑒𝑙 𝑌𝐴𝐹𝑡
=  −93.33 × 𝐷𝐵𝐻𝑡 + 100          (𝑅2 = 0.12, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.02)          (27) 466 



21 

 

where 𝑅𝑒𝑙 𝑌𝐴𝐹𝑡  is the average relative crop yield (%) in the agroforestry plot compared to the 467 

control plot at year t, and DBHt is the diameter at breast height (m) at year t. 468 

 469 

The variation of crop yield with distance from the trees was described with a quadratic equation 470 

(Fig. 2). But as we aimed to predict SOC stocks up to 6.5 m distance from the trees (middle of 471 

the alley), a linear increase of crop yield with increasing distance from the tree gave similar 472 

results as the quadratic equation over the 6.5 m distance and was more parsimonious: 473 

𝑅𝑒𝑙 𝑌𝐴𝐹𝑑
=  4.39 ×  𝑑 + 64.57     (𝑅2 = 0.24),          1 < 𝑑 ≤ 6.5           (28) 474 

where 𝑅𝑒𝑙 𝑌𝐴𝐹𝑑  is the relative crop yield (%) in the agroforestry plot at a distance d (m) from 475 

the tree compared to the control plot. 476 
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 477 

Fig. 2. Top: Relative yield (𝑅𝑒𝑙 𝑌𝐴𝐹𝑡
) in the agroforestry plot compared to the control plot as a 478 

function of tree growth, represented by the diameter at breast height (DBH) at year t. Bottom: 479 

Relative yield (𝑌𝐴𝐹𝑡,𝑑
) as a function of the distance from the tree. 480 

 481 

Finally, the crop yield in the agroforestry plot was modeled as follows: 482 

𝑌𝐴𝐹𝑡,𝑑
= 𝑅𝑒𝑙 𝑌𝐴𝐹𝑡

× 𝑌𝐶  × 𝑅𝑒𝑙 𝑌𝐴𝐹𝑑
      (𝑅2 = 0.19),          1 < 𝑑 ≤ 6.5           (29)  483 

where 𝑌𝐴𝐹𝑡,𝑑
 is the crop yield (t DM ha-1) in the agroforestry plot at the year t and at a distance 484 

d (m) from the tree. Because three linear equations were used to describe the crop yield in the 485 
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agroforestry plot, errors were accumulated and we finally came up with a standard 486 

underestimation of the crop yield in the agroforestry plot that we corrected by multiplying our 487 

equation by 1.2. 488 

 489 

The ratio between the straw biomass and the crop yield was calculated as the average of the six 490 

measurements, and was considered constant with time. This ratio was used to convert crop yield 491 

into straw biomass. In the agroforestry plot, the carbon input to the soil from the aboveground 492 

crop biomass was: 493 

𝐴𝐵𝐶𝑐𝑟𝑜𝑝,𝑡,𝑑 = 𝑌𝐴𝐹𝑡,𝑑
× (𝑠𝑡𝑟𝑎𝑤 𝑏𝑖𝑜𝑚𝑎𝑠𝑠: 𝑐𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑)  ×  𝐶𝑠𝑡𝑟𝑎𝑤  ×  (1 − 𝑒𝑥𝑝𝑜𝑟𝑡)          (30) 494 

where ABCcrop,t,d is the aboveground carbon input from the crop (t C ha-1) at the year t and 495 

distance d from the tree, 𝑌𝐴𝐹𝑡,𝑑
 is the agroforestry crop yield. The average ratio between the 496 

straw biomass (t DM ha-1) and the crop yield (t DM ha-1) equaled 1.03 ± 0.11 (n=6). The wheat 497 

straw was exported out of the field after the harvest, but it was estimated that 25% of the straw 498 

biomass was left on the soil, thus export=0.75. In the control plot, 𝑌𝐴𝐹𝑡,𝑑
 was replaced by 𝑌𝐶.  499 

To estimate fine root biomass of the crop, we hypothesized that the root:shoot ratio of the durum 500 

wheat was the same in both the agroforestry and agricultural plot, in the absence of any 501 

published data on the matter. In the agroforestry plot, the belowground crop biomass was 502 

represented by: 503 

𝐵𝐸𝐶𝑐𝑟𝑜𝑝,𝑡,𝑑 = 𝑌𝐴𝐹𝑡,𝑑
× (𝑠ℎ𝑜𝑜𝑡: 𝑐𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑)  × (𝑟𝑜𝑜𝑡: 𝑠ℎ𝑜𝑜𝑡)  ×  𝐶𝑟𝑜𝑜𝑡          (31) 504 

where BECcrop,t,d is the belowground crop biomass (t C ha-1) at the year t and at a distance d 505 

from the tree, 𝑌𝐴𝐹𝑡,𝑑
 is the agroforestry crop yield. The average ratio between the total crop 506 

aboveground biomass (shoot) and the crop yield equaled 2.45 ± 0.15 (n=6). In 2012, total fine 507 

root biomass was 2.29 ± 0.32 t C ha-1 in the control (Table 3).  508 

 509 

Table 3. Wheat fine root biomass in the agricultural control plot in 2012.  510 
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 Wheat fine root biomass 

Soil depth (m)  (kg C m-3)  (t C ha-1) 

0.0-0.1 0.48  ± 0.05 0.48  ± 0.05 

0.1-0.3 0.34  ± 0.04 0.69  ± 0.09 

0.3-0.5 0.22  ± 0.04 0.44  ± 0.08 

0.5-1.0 0.10  ± 0.04 0.52  ± 0.20 

1.0-1.5 0.03 ± 0.04 0.17 ± 0.19 

Total - 2.29 ± 0.32 

Errors represent standard errors. 511 

 512 

Therefore, the wheat root:shoot ratio equaled 0.79 ± 0.12 (n=1). The carbon concentration of 513 

wheat root was Croot = 35.14 ± 1.90 mg C g-1. In the control plot, 𝑌𝐴𝐹𝑡,𝑑
 was replaced by 𝑌𝐶. 514 

 515 

In 2012, no wheat roots were observed below 1.5 m, and root biomass decreased exponentially 516 

with increasing depth (Table 3). The distribution of crop roots within the soil profile was 517 

described as follows: 518 

𝑝𝐶𝑅𝐵𝑐,𝑧 = {
26.44 × 𝑒−2.59 × 𝑧      (𝑅2 = 0.99), 𝑧 ≤ 1.5
0,                                                                     𝑧 > 1.5

          (32) 519 

where 𝑝𝐶𝑅𝐵𝑐,𝑧 is the proportion (%) of total crop root biomass in the control plot at a given 520 

depth z (m). 521 

Since the same maximum rooting depth of the crop was observed in the agroforestry plot and 522 

in the control plot, we inferred that the wheat root distribution within the soil profile was not 523 

modified by agroforestry, but only its biomass. The crop root turnover was assumed to be 1 yr-524 

1, root mortality occurring mainly after crop harvest. 525 

 526 

 527 

2.6.6 Aboveground and belowground input from herbaceous vegetation in the tree rows  528 

The distance from the trees had no effect on the above and belowground biomass of the 529 

herbaceous vegetation (data not shown), therefore average values are presented. The summer 530 
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aboveground biomass was almost three times higher than in winter, whereas the belowground 531 

biomass was two times higher (Table 4). The total aboveground carbon input was 2.13 ± 0.14 t 532 

C ha-1 yr-1 and the total belowground carbon input was 0.74 ± 0.05 t C ha-1 yr-1 to 0.5 m depth. 533 

 534 

Table 4. Aboveground and belowground biomass of the herbaceous vegetation in the tree rows.  535 

  Herbaceous biomass (t C ha-1) 

 Soil depth (m) Summer Winter 

Aboveground - 1.57 ± 0.11 0.56 ± 0.09 

Belowground 

0.0-0.1 0.22 ± 0.03 0.17 ± 0.01 

0.1-0.3 0.16 ± 0.02 0.06 ± 0.01 

0.3-0.5 0.09 ± 0.04 0.04 ± 0.01 

Total 0.46 ± 0.04 0.27 ± 0.02 

Errors represent standard errors. 536 

 537 

The belowground carbon input from the tree row vegetation (BECveg,z, t C ha-1) at a given depth 538 

z (m) was described by the following equation: 539 

𝐵𝐸𝐶𝑣𝑒𝑔,𝑧 = {
0.44 × 𝑒−3.12 × 𝑧,             𝑧 ≤ 1.5
0,                                          𝑧 > 1.5

          (33) 540 

We assumed for simplification that the aboveground and belowground biomasses of the 541 

herbaceous vegetation in the tree row were constant over time. 542 

 543 

2.7 Optimization procedure 544 

Depending on the model variant, four to five parameters were optimized with a Bayesian 545 

statistical method (Santaren et al., 2007; Tarantola, 1987, 2005) using measured SOC stocks 546 

from the control plot only. These parameters were A, the advection rate, D, the diffusion 547 

coefficient, h the humification yield, a the coefficient of the kHSOC rate from Eq. (10), and PE 548 

the priming coefficient. These four or five parameters were calibrated so that equilibrium SOC 549 

stocks, i.e. after 5000 years of simulation, equaled SOC stocks of the control plot in 2013. The 550 

associated uncertainty was estimated with the 93 soil cores sampled in the control plot (see 551 
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section 2.2.1). Due to a lack of relevant data, we assumed that the climate and the land use were 552 

the same for the last 5000 years, and that SOC stocks in the control plot were at equilibrium at 553 

the time of measurement. Therefore, SOC stocks at the end of the 5000 years of simulation 554 

equaled SOC stocks in the control plot. Three different calibrations were performed, 555 

corresponding to the three different models that were used: one calibration with the two pools 556 

model without the priming effect, one calibration with the two pools model with the priming 557 

effect, and one calibration with the three pools model. 558 

Each model variant was fitted to the control SOC stocks data using a Bayesian curve fitting 559 

method described in Tarantola (1987), after a conversion from SOC stocks in kg C m-2 to SOC 560 

stocks in kg m-3 due to the different soil layers’ thickness. We aimed to find a parameter set 561 

that minimizes the distance between model outputs and the corresponding observations, 562 

considering model and data uncertainties, and prior information on parameters. With the 563 

assumption of Gaussian errors for both the observations and the prior parameters, the optimal 564 

parameter set corresponds to the minimum of the cost function 𝑱(𝒙): 565 

𝑱(𝒙) = 0.5 × [(𝒚 − 𝑯(𝒙))𝑡 × 𝑹−1 × (𝒚 − 𝑯(𝒙)) + (𝒙 − 𝒙𝑏)𝑡  × 𝑷𝑏
−1 × (𝒙 − 𝒙𝑏)]  (34) 566 

that contains both the mismatch between modelled and observed SOC stock and the mismatch 567 

between a priori and optimized parameters. 𝒙 is the vector of unknown parameters, 𝒙𝑏  the 568 

vector of a priori parameter values, H() the model and 𝑦  the vector of observations. The 569 

covariance matrices Pb and R describe a priori uncertainties on parameters, and observations, 570 

respectively. Both matrices are diagonal as we suppose the observation uncertainties and the 571 

parameter uncertainties to be independent. To determine an optimal set of parameters which 572 

minimizes 𝑱(𝒙), we used the BFGS gradient-based algorithm (Tarantola, 1987). For each model 573 

variant, we performed 30 optimizations starting with different parameter prior values to check 574 

that the results did not correspond to a local minimum.  As the BFGS algorithm does not directly 575 
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calculate the variance of posteriors, they were quantified using the curvature cost function at its 576 

minimum once it was reached (Santaren et al., 2007). 577 

 578 

2.8 Comparison of models 579 

Model predictions with and without priming effect were compared calculating the coefficients 580 

of determination, root mean square errors (RMSE) and Bayesian information criteria (BIC). 581 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

          (35) 582 

where i is the number of observations (1 to N), 𝑥𝑖 is the predicted value and �̅� is the mean 583 

observed value. 584 

𝐵𝐼𝐶 =  𝑘 × ln(𝑁) − 2 × 𝑙𝑛(�̂�)          (36) 585 

where N is the number of observations, k is the number of model parameters, and �̂� is the 586 

maximized value of the likelihood function of the model (Schwarz, 1978). 587 

 588 

The model was run at a yearly time step using mean annual soil temperature and moisture and 589 

annual C inputs to the soil. In the agroforestry, the model was run from the ground (0 m) to 2 590 

m depth, and from the tree (0 m) to 6.5 m from the tree (middle of the alley). The model was 591 

applied separately across locations of a tree-distance gradient having varying OC inputs, each 592 

soil column was considered independent from another. SOC pools were initialized after a spin-593 

up of 5000 years in the control plot. At t0, SOC stocks in the agroforestry plot therefore equaled 594 

SOC stocks of the control plot. The model was then run from t0 to t18 (years) after tree planting. 595 

The spatial resolution was 0.1 m both vertically and horizontally. The model was developed 596 

using R 3.1.1 (R Development Core Team, 2013). Partial-differential equations were solved 597 

using the R package deSolve and the ode.1D method (Soetaert et al., 2010). 598 
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 599 

3 Results 600 

3.1 Organic carbon inputs and SOC stocks: a synthesis from field measurements  601 

In the alleys of the18-year-old agroforestry system, measured organic carbon (OC) inputs from 602 

the crop residues and roots were reduced compared to the control plot due a lower crop yield 603 

(Fig. 3). This reduction in crop OC inputs was offset by OC inputs from the tree roots and tree 604 

litterfall. Total root OC inputs in the alleys (crop + tree roots) and in the control plot (crop roots) 605 

were very similar, respectively 2.43 and 2.29 t C ha-1 yr-1. Alleys received 0.60 t C ha-1 yr-1 606 

more of total aboveground biomass (crop residues + tree litterfall) than the control, which was 607 

added to the plough layer. Tree rows received 2.35 t C ha-1 yr-1 more C inputs in the first 0.3 m 608 

of soil compared to the control plot, mainly from the herbaceous vegetation. Down the whole 609 

soil profile, tree rows received two times more OC inputs compared to the control plot (Fig. 3), 610 

and 65% more than alleys. Overall, the agroforestry plot had 41% more OC inputs to the soil 611 

than the control plot to 2 m depth (3.80 t C ha-1 yr-1 compared to 2.69 t C ha-1 yr-1). In the 612 

agroforestry plot, the largest aboveground OC input to the soil comes from the herbaceous 613 

vegetation, and not from the trees. In the control plot, 85% of OC inputs are wheat root litters. 614 

In the agroforestry plot, root inputs represent 71% of OC inputs in the alleys, and 50% in the 615 

tree rows. 616 

In the first 0.3 m of soil, SOC stocks were significantly higher in the alleys than in the control 617 

plot, but the difference was small (2.1 ± 0.6 t C ha-1). Between 0.3 and 1.0 m, the difference of 618 

SOC stocks was smaller but still significant. However, between 1 and 2 m depth, SOC stocks 619 

were significantly lower in the alleys than in the control. As a consequence, there was no 620 

significant difference of total SOC stocks between the two locations down the whole soil 621 

profile. In the tree rows, topsoil organic carbon stocks (0.0-0.3 m) were much higher than in 622 

the control (+ 17.0 ± 1.4 t C ha-1). This positive difference of SOC stocks decreased with depth 623 
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but remained significantly positive down 1.5 m depth. The opposite was observed between 1.5 624 

and 2.0 m depth. Delta of total SOC stocks between the tree rows and the control plot was 20.1 625 

± 1.6 t C ha-1. At the plot scale, total SOC stocks were significantly higher in the agroforestry 626 

plot compared to the control plot down 2 m depth (+ 3.3 ± 0.9 t C ha-1). 627 

 628 

 629 
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 630 

Fig. 3. Measured soil organic carbon stocks and organic carbon inputs to the soil a) in the 631 

agricultural control plot, b) in the 18-year-old agroforestry plot. Associated errors are 632 

standard errors. Values are expressed per hectare of land type (control, alley, tree row). 633 

To get the values per hectare of agroforestry, data from alley and tree row have to be 634 

weighted by their respective surface area (i.e., 84% and 16%, respectively) and then 635 

added up. OC: organic carbon; SOC: soil organic carbon. SOC stocks data are issued 636 

from Cardinael et al., (2015a), data of tree root OC inputs are combined from Cardinael 637 

et al., (2015b) and from Germon et al., (2016). 638 

 639 

3.2 HSOC decomposition rate 640 

The soil incubation experiment showed that the HSOC mineralization rate decreased 641 

exponentially with depth (Fig. S1) and could be described with: 642 
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𝑘𝐻𝑆𝑂𝐶,𝑧 = 6.114 ×  𝑒−1.37 × 𝑧     (𝑅2 = 0.76)        (37) 643 

where z is the soil depth (m), and where the a (yr-1) coefficient (a = 6.114) was further optimized 644 

(Table 5). 645 

646 
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Table 5. Summary of optimized model parameters. 647 

Model 

parameter 

Meaning Prior range 

(log)* 

Posterior values ± variance  

(prior values) 

   2 pools - without PE 2 pools - with PE 3 pools – without PE 

a coefficient from Eq. (8) of the 

HSOC decomposition (yr-1) 

-12.52-1.29 0.01e-2 ± <10-4 

(0.01e-2) 

0.01e-2 ± <10-4 

(0.01e-2) 

- 

a1 coefficient from Eq. (8) of the 

HSOC1 decomposition (yr-1) 

-12.52-1.29 - - 0.01e-2 ± <10-4 

(0.01e-2) 

a2 coefficient from Eq. (8) of the 

HSOC2 decomposition (yr-1) 

-12.52-1.29 - - 0.83e-2 ± 0.17e-2               

(0.83e-2) 

D diffusion coefficient (cm2 yr−1) -13.82-0 4.62e-4 ± 5.95e-4               

(9.64e-4) 

5.63e-4 ± 1.42e-4               

(9.01e-4)       

5.24e-4 ± 7.62e-4               

(9.64e-4) 

A advection rate (mm yr-1) -13.82-0 21.25e-4 ± 5.02e-4               

(8.54e-4) 

6.63e-4 ± 2.38e-4               

 (4.27e-4)  

21.60e-4 ± 2.24e-4               

(8.54e-4) 

h humification yield -4.61-0 0.32 ± <10-4                 

(0.34) 

0.25 ± 1.00e-4                 

(0.13) 

0.34 ± 0.03 

(0.34) 

PE priming coefficient -2.30-5.08 - 9.66 ± 1.49 

(102.95) 

- 

f1 fraction of decomposed FOC 

entering the HSOC1 pool 

0-1 - - 0.99 ± 0.18 

(0.86) 

f2 fraction of decomposed HSOC1 

entering the FOC pool 

0-1 - - 0.94 ± 1.10e-3               

(0.80) 

The prior range represents the range in which prior values were sampled for the 30 optimizations per model variant. The prior values presented in 648 

brackets in the posterior column represent the prior values that minimized the J(x) value (Eq. (34)). * Except for f1 and f2. 649 

 650 



33 

 

3.3 Modeling results 651 

3.3.1 Optimized parameters and correlation matrix  652 

The optimized parameters and their prior modes are presented in Table 5. For the two pools 653 

model without priming effect, the most important correlation was observed between h and A 654 

which control the humification and the transport by advection. Concerning the two pools model 655 

with priming effect, the most important correlations were observed between h and PE which 656 

controls the effect of the FOC on HSOC decomposition, and between h and A. A and PE were 657 

also positively correlated (Fig. S2). For the three pools model, f1 and f2 were by definition 658 

negatively correlated, but f2 and A were also correlated. Considering the method used to 659 

optimize the parameters, these important correlation factors hinder the presentation of the 660 

model output within an envelope. Therefore, we presented the model results using the optimized 661 

parameter without any envelope. 662 

 663 

3.3.2 Modeled SOC stocks  664 

As a reminder, SOC stocks of the agroforestry plot were not part of model calibration (that used 665 

the control plot only) but were used here for validation. Observed SOC stocks were not well 666 

represented by the two pools model without priming effect, with RMSE ranging from 1.00 to 667 

1.07 kg C m-3 (Fig. 4, Table S2). The model performed better when the priming effect was 668 

taken into account, with RMSE ranging from 0.41 to 0.95 kg C m-3, and the SOC profile was 669 

well described. The representation of SOC stocks was not improved by the inclusion of a third 670 

C pool in the model. Overall, the two pools model with priming effect was the best one, as 671 

shown by the BICs (Fig. 4, Table S2). For all models, SOC stocks below 1 m depth were better 672 

described than above SOC stocks (Table S2). The spatial distribution of SOC stocks and of 673 

additional SOC storage was also well described (Fig. 5), with a very high additional SOC 674 

storage in the topsoil layer in the tree row. Most modeled SOC storage in the agroforestry plot 675 
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was located in the first 0.2 m depth, but SOC storage was slightly higher in the middle of the 676 

alleys than in the alleys close to the tree rows. 677 

 678 

Fig. 4. Measured and modeled soil organic carbon contents (kg C m-3) in an agricultural control 679 

plot and in an 18-year-old silvoarable system with a two pools model without priming effect 680 

(no PE), with a two pools model with priming effect (PE) and with a three pools model without 681 
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PE. Gray shaded bands represent standard deviations of measured SOC stocks (n=93 in the 682 

control, n=40 in the tree rows, and n=60 in the alleys). 683 

 684 

Fig. 5. Spatial distribution of control SOC stocks (top), agroforestry SOC stocks (middle), and 685 

additional SOC storage (t C ha-1) in an 18-year-old silvoarable system compared to an 686 

agricultural control plot and represented by the two pools model with priming effect. The  687 

scale used in the middle and bottom panels are not continuous due to the  688 

large stocks predicted by the model in the top layer in the tree-row.689 
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 690 

4 Discussion 691 

4.1 OC inputs drive SOC storage in agroforestry systems 692 

Increased SOC stocks in the agroforestry plot compared to the control may be explained either 693 

by increased OC inputs, or decreased OC outputs by SOC mineralization, or both. In the alleys, 694 

higher SOC stocks in the topsoil could be explained by inputs from litterfall and tree roots 695 

despite a decrease in crop inputs. Most of additional SOC storage in the agroforestry plot was 696 

found in the topsoil in the tree rows. The same distribution was observed for OC inputs to the 697 

soil. Inputs from the herbaceous vegetation had an important impact on SOC storage. The 698 

increased SOC stocks in the tree rows were largely explained by an important above-ground 699 

carbon input (2.13 t C ha-1 yr-1) by the herbaceous vegetation between trees. This result had 700 

already been suggested by Cardinael et al., (2015b) and by Cardinael et al., (2017) who showed 701 

that even young agroforestry systems could store SOC in the tree rows while trees are still very 702 

small. These “grass strips” indirectly introduced by the tree planting in parallel tree rows have 703 

a major impact on SOC stocks of agroforestry systems. Increased SOC stocks below the plough 704 

layer could be explained by higher root inputs, but these inputs could also have contributed to 705 

decrease SOC stocks below 1.5 m due to priming effect. At the plot scale, measured organic 706 

carbon inputs to the soil were increased by 40% (+1.1 t C ha-1 yr-1) down 2 m depth in the 18-707 

year-old agroforestry plot compared to the control plot, resulting in increased SOC stocks of 708 

3.3 t C ha-1. Increased OC inputs in agroforestry systems has been shown in other studies but 709 

they were only quantified in the first 20 cm of soil (Oelbermann et al., 2006; Peichl et al., 2006). 710 

This study is therefore the first one also quantifying deep OC inputs to soil. In this study and 711 

due to a lack of data, soil temperature and soil moisture were considered the same in both plots 712 

so that abiotic factors controlling SOC decomposition were identical. Reduced soil temperature 713 

is often observed in agroforestry systems (Clinch et al., 2009; Dubbert et al., 2014), but effect 714 
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of agroforestry on soil moisture is much more complex. The soil evaporation is reduced under 715 

the trees, but soil water is also lost through the transpiration of trees (Ilstedt et al., 2016; Ong 716 

and Leakey, 1999). These opposing effects vary with the distance from the tree (Odhiambo et 717 

al., 2001). Moreover, increased water infiltration and water storage has been observed under 718 

the trees after a rainy event (Anderson et al., 2009). Therefore, the effect of agroforestry on soil 719 

moisture is variable in time and space, and should be investigated more in details. Interactions 720 

between soil temperature and soil moisture on the SOC decomposition are known to be complex 721 

(Conant et al., 2011; Moyano et al., 2013; Sierra et al., 2015). A sensitivity analysis performed 722 

on these two boundary conditions showed that the model was not very sensitive to soil 723 

temperature and soil moisture (Fig. S3), but the real effect of these two parameters on SOC 724 

dynamics under agroforestry systems should be specifically investigated in future studies. 725 

Despite these simplifying assumptions on similarities in microclimate but also on vertical 726 

transport between the control and the agroforestry system, the model calibrated to the control 727 

plot was able to reproduce SOC stocks in tree rows and alleys and its depth distribution well. 728 

This strong validation also revealed that OC inputs were sufficient to explain the differences in 729 

SOC stocks at this site. Furthermore, the SOC decomposition rate could also be modified due 730 

to an absence of soil tillage in the tree rows (Balesdent et al., 1990) or to an increased aggregate 731 

stability (Udawatta et al., 2008) in the topsoil. 732 

 733 

4.2 Representation of SOC spatial heterogeneity in agroforestry systems 734 

The lateral spatial heterogeneity of SOC stocks in the agroforestry plot was well described by 735 

the two pools model including priming effect, with higher SOC stocks in the tree rows’ topsoil 736 

than in the alleys. The model treated the carbon from the tree row herbaceous litter as an input 737 

to the upper layer of the mineral soil, in the same way as inputs by roots. Introduction of 738 

nitrogen in the model could be further tested in order to take into account a lower carbon use 739 
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efficiency due to a lack of nutrients for microbial growth in this litter. For all models, SOC 740 

stocks were better described in the tree rows than in the alleys. In the alleys, the spatial 741 

distribution of organic inputs is more complex and thus more difficult to model. The tree root 742 

system is influenced by the soil tillage and by the competition with the crop roots, and thus the 743 

highest tree fine root density is not observed in the topsoil but in the 0.3-0.5 m soil layer 744 

(Cardinael et al., 2015a). In the model, we were not able to represent this specific tree root 745 

pattern with commonly used mathematical functions, and tree root profiles were modeled, by 746 

default, using a decreasing exponential. Indeed, piecewise linear functions introduce threshold 747 

effects not desirable for transport mechanisms, especially diffusion. This simplification could 748 

partly explain the model overestimation of SOC stocks in the 0.0-0.1 m layer of the alleys 749 

compared to observed data. This result suggests that it could be useful to couple the 750 

CARBOSAF model with a model describing root architecture and root growth (Dunbabin et 751 

al., 2013; Dupuy et al., 2010), using for instance voxel automata (Mulia et al., 2010). Moreover, 752 

the model described a slight increase of SOC stocks in the middle of the alleys than close to the 753 

trees in the alleys. This could be explained by the linear equation used to describe the crop yield 754 

as a function of the distance from the trees, leading to an overestimation of the crop yield 755 

reduction close to the trees. It could also be explained by the formalism used to model leaf litter 756 

distribution in the plot. We considered a homogeneous distribution of leaf inputs in the 757 

agroforestry plot, which was the case in the last years, but probably not in the first years of the 758 

tree growth where leaves might be more concentrated close to the trees (Thevathasan and 759 

Gordon, 1997). 760 

The two pools model with priming effect also represented a slight SOC storage in the 761 

agroforestry plot below 1.0 m depth, but it was not observed in the field. This could be linked 762 

to an overestimation of C input from tree fine root mortality. Indeed, a constant root turnover 763 

was considered along the soil profile, but several authors reported a decrease of the root 764 
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turnover with increasing soil depth (Germon et al., 2016; Hendrick and Pregitzer, 1996; Joslin 765 

et al., 2006). However, the sensitivity analysis showed that the model was not sensitive to this 766 

parameter (Fig. S3). 767 

 768 

4.3 Vertical representation of SOC profiles in models 769 

The best model to represent SOC profiles considered the priming effect. This process can act 770 

in two different ways on the shape of SOC profiles. It has a direct effect on the SOC 771 

mineralization and it therefore modulates the amount of SOC in each soil layer, creating 772 

different SOC gradients. This indirectly affects the mechanisms of C transport within the soil 773 

profile, as shown by a modification of transport coefficients in the case of priming effect (Table 774 

5). Contrary to what was shown by Cardinael et al., (2015c) in long term bare fallows receiving 775 

contrasted organic amendments, the addition of another SOC pool could not surpass the 776 

inclusion of priming effect in terms of model performance. Together with Wutzler & 777 

Reichstein, (2013) and Guenet et al., (2016), this study therefore suggests that implementing 778 

priming effect into SOC models would improve model performances especially when 779 

modelling deep SOC profiles.  780 

We considered here the same transport coefficients for the FOC and HSOC pools, but the 781 

quality and the size of OC particles are different, potentially leading to various movements in 782 

the soil by water fluxes or fauna activity (Lavelle, 1997). Moreover, we considered identical 783 

transport parameters in the agroforestry and in the control plot, but the presence of trees could 784 

modify soil structure, soil water fluxes (Anderson et al., 2009), and the fauna activity (Price 785 

and Gordon, 1999). However, the model was little sensitive to these parameters (Fig. S3). 786 

Further study could investigate the role of different transport coefficients on the description of 787 

SOC profiles.  788 

 789 
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4.4 Higher OC inputs or a different quality of OC? 790 

The introduction of trees in an agricultural field not only modifies the amount of litter residues, 791 

but also their quality. Tree leaves, tree roots, and the herbaceous vegetation from the tree row 792 

have different C:N ratios, lignin and cellulose contents than the crop residues. Recent studies 793 

showed that plant diversity had a positive impact on SOC storage (Lange et al., 2015; Steinbeiss 794 

et al., 2008). One of the hypothesis proposed by the authors is that diverse plant communities 795 

result in more active, more abundant and more diverse microbial communities, increasing 796 

microbial products that can potentially be stabilized. In our model, litter quality is not related 797 

to different SOC pools, but is implicitly taken into account in the FOC decomposition rate, 798 

which is weighted by the respective contribution from the different types of OC inputs. To test 799 

this, we performed a model run considering that all OC inputs in the agroforestry plot were crop 800 

inputs (all FOC decomposition rates equaled wheat decomposition rate), but results were not 801 

significantly different from the one presented here. Hence, we considered that changes in litter 802 

quality in the agroforestry plot did not significantly influence SOC decomposition rates. 803 

 804 

4.5 Possible limitation of SOC storage by priming effect 805 

Our modelling results suggested that the priming effect could considerably reduce the capacity 806 

of soils to store organic carbon. Our study showed that the increase of SOC stocks was not 807 

proportional to OC inputs, especially at depth. This result has often been observed in Free Air 808 

CO2 Enrichment (FACE) experiments. In these experiments, productivity is usually increased 809 

due to CO2 fertilization, but several authors also reported an increase in SOC decomposition 810 

but not linearly linked to the productivity increase (van Groenigen et al., 2014; Sulman et al., 811 

2014). In a long-term FACE experiment, Carney et al., (2007) also found that SOC decreased 812 

due to priming effect, offsetting 52% of additional carbon accumulated in aboveground and 813 

coarse root biomass. The priming effect intensity also relies on nutrient availability (Zhang et 814 
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al., 2013). In agroforestry systems, tree roots can intercept leached nitrate below the crop 815 

rooting zone (Andrianarisoa et al., 2016), reducing nutrient availability. This beneficial 816 

ecosystem service could indirectly increase the priming effect intensity in deep soil layers. 817 

The formalism used here to simulate priming effect assumes that there is no mineralisation of 818 

the SOC in the absence of fresh OC inputs (no basal respiration). This is a strong hypothesis, 819 

but this situation never occurs since the FOC pool is never empty (data not shown). In the alleys 820 

and below the maximum rooting depth of crops, there are no direct inputs of FOC, but OC is 821 

transported in these deep layers due to transport mechanisms. However, further studies could 822 

study the impact of the priming effect formalism on the estimation of its intensity by using 823 

explicit microbial biomass for instance (Blagodatsky et al., 2010; Perveen et al., 2014). 824 

Finally, root exudates were not quantified in this study. Several authors showed that they could 825 

induce strong priming effects (Bengtson et al., 2012; Keiluweit et al., 2015), but root exudates 826 

are also a source of labile carbon, potentially contributing to stable SOC (Cotrufo et al., 2013). 827 

These opposing effects of root exudates on SOC should be further investigated, especially 828 

concerning the deep roots in agroforestry systems. 829 

 830 

5 Conclusions 831 

We proposed the first model that simulates soil organic carbon dynamics in agroforestry 832 

accounting for both the whole soil profile and the lateral spatial heterogeneity in agroforestry 833 

plots. The two pools model with priming effect described reasonably well the measured SOC 834 

stocks after 18 years of agroforestry and SOC distributions with depth. It showed that the 835 

increased inputs of fresh biomass to soil in the agroforestry system explained the observed 836 

additional SOC storage and suggested priming effect as a process controlling SOC stocks in the 837 

presence of trees.  This study points out at processes that may be modified by deep rooting trees 838 
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and deserve further studies given their potential effects on SOC dynamics, such as additional 839 

inputs of C as roots exudates, or altered soil structure leading to modified SOC transport rates. 840 

 841 

6 Data availability 842 

The data and the model are freely available upon request and can be obtained by contacting the 843 

author (remi.cardinael@cirad.fr). 844 

 845 

Information about the Supplement 846 

The Supplement includes the walnut tree fine root biomass (Table S1), the different model 847 

performances (Table S2), the potential SOC decomposition rate as a function of soil depth (Fig. 848 

S1), the correlation matrix of optimized parameters (Fig. S2), and a sensitivity analysis of the 849 

model (Fig. S3). 850 
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