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Abstract. Extreme hydrometeorological conditions typically
impact ecophysiological processes of terrestrial vegetation

::
on

:::
land. Satellite based observations of the terrestrial biosphere
provide an important reference for detecting and describing
the spatiotemporal development of such events. However, in-5

depth investigations of ecological processes during extreme
events require additional in-situ observations. The question is
if

::::::
whether

:
the density of existing ecological in-situ networks

is sufficient for analyzing the impact of extreme events, or
what are expected event detection rates of ecological in-situ10

networks of a given size. To assess these issues, we build a
baseline of extreme reductions in the Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR), identified by
a new event detection method tailored to identify extremes
of regional relevance. We then investigate the event detec-15

tion success rates of hypothetical networks of varying sizes.
Our results show that large extremes can be reliably detected
with relatively small network

:::::::
networks, but also reveal a lin-

ear decay of detection probabilities towards smaller extreme
events in log-log space. For instance, networks with ≈10020

randomly placed sites in Europe yield a 90
::::::
≥ 90%

::::::
chance

::
of

:::::::
detecting

:::
the

::
8
::::::
largest

::::::::
(typically

::::
very

:::::
large)

:::::::
extreme

::::::
events;

:::
but

::::
only

:
a
::::::
≥ 50%

::::::
chance

:::
of

::::::::
capturing

:::
the

::
39

::::::
largest

::::::
events.

:::::
These

::::::::
findings

:::
are

::::::::::
consistent

:::::
with

:::::::::::::::::
probability-theoretic

::::::::::::
considerations,

:::
but

:::
the

::::::
slopes

::
of

:::
the

:::::
decay

:::::
rates

::::::
deviate

:::
due 25

::
to

:::::::
temporal

:::::::::::::
autocorrelation

:::
and

:::
the

:::::
exact

:::::::::::::
implementation

::
of

::
the

:::::::
extreme

:::::
event

::::::::
detection

::::::::
algorithm.

::::::
Using

::
the

::::::::
examples

::
of

:::::::::
AmeriFlux

:::
and

:::::::
NEON,

:::
we

::::
then

::::::::::
investigate

::
to

::::
what

::::::
degree

::::::::
ecological

::::::
in-situ

::::::::
networks

::::
can

:::::::
capture

:::::::
extreme

::::::
events

::
of

:
a
:::::
given

::::
size.

:::::::::
Consistent

::::
with

::::
our

:::::::::
theoretical

::::::::::::
considerations, 30

::
we

::::
find

::::
that

::::::
today’s

:::::::::::::
systematically

:::::::
designed

:::::::::
networks

:::
(i.e.

::::::
NEON)

:::::::
reliably

::::::
detect

::::
the

::::::
largest

::::::::
extremes,

::::
but

::::
that

:::
the

::::::
extreme

:::::
event

::::::::
detection

:::::
rates

:::
are

:::
not

::::::
higher

::::
than

::::::
would

::
be

:::::::
achieved

:::
by

::::::::
randomly

::::::::
designed

:::::::::
networks.

:::::::::::::
Spatio-temporal

:::::::::
expansions

::
of

:::::::::
ecological

:::::
in-situ

::::::::::
monitoring

::::::::
networks

:::::
should 35

:::::::
carefully

::::::::
consider

::::
the

::::
size

::::::::::
distribution

:::::::::::::
characteristics

::
of

::::::
extreme

::::::
events

::
if
:::
the

::::
aim

::
is

::::
also

::
to

:::::::
monitor

:::
the

:::::::
impacts

::
of

::::
such

:::::
events

::
in

:::
the

::::::::
terrestrial

:::::::::
biosphere.

:

1 Introduction

:::::
Many

:::::
lines

::
of

::::::::
evidence

::::::
point

:::::::
towards

:::
an

::::::::::::
intensification 40

::
of

::::::::
certain

::::::::::::::::::::
hydrometeorological

::::::::::
extreme

::::::::
events,

::::
such

:::
as

:::::
hot

:::::::::::
temperature

:::::::::
extremes

::::
or

:::::::::
droughts

:::
in

::::
many

::::::::
regions

::::
of

:::::
the

:::::::
world

:::::
over

:::::
the

:::::
next

:::::
few
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::::::
decades

:::::
(?).

::::::::::::::
Consequently,

::::::
much

:::::::::
research

::::::::
focuses

::
on

:::::::::::::
understanding

::::::
how

:::::::::
extreme

::::::::::::::::::
hydrometeorological

:::::
events

:::::::
affect

::::::::::::
ecosystems

::::::
and

::::::
their

::::::::::::
functioning

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(overviews of the state of research and concepts are given e.g. in ????).

:::
For

::::::::
instance,

:::::::::
ecosystem

::::::::
responses

::::::
could

::
be

::::::::::
manifested

::
in

::::::
extreme

:::::::::
anomalies

::
of

:::::::::
phenology

::::
(?),

:::::::::::::
biogeochemical

:::::
fluxes5

:::
(?),

::
or

:::::
even

::
in

::::::
altered

:::::::::
ecosystem

::::::::
structure

::::
due

::
to

:::::::
induced

:::::::
mortality

::::
(?).

::::::
Global

:::::::
analyses

::
of

:::
the

:::::::::::
geographical

:::::
extent

:::
and

::::::::
integrated

:::::::::
anomalies

::
of

::::::::
extremes

::
in

:::
the

::::::::
terrestrial

::::::::
biosphere

:::::
reveal

::::
that

::::
only

::
a
:::::

very
::::
few

::::::::
extremes

::::::
affect

:::::
large

:::::
areas,

:::::::
whereas

::::
most

::::::
events

:::
are

:::::
only

::
of

:::::
very

::::
local

:::::::::
relevance

:::
(?).10

:::::::::::
Nevertheless,

:::
the

:::::::::
integrated

::::::
effects

::
of

:::::::
extreme

::::::
events

::::
may

::::
have

:::::
global

:::::::::
relevance.

::::
For

:::::::
instance,

:::::::::
? showed

:::
that

:::::::
extreme

::::::::
anomalies

:::
in

:::::
gross

:::::::
primary

::::::::::
production

::::::
(GPP)

:::
to

:
a
:::::

large

:::::
extent

::::::
explain

::::::
global

::::::::::
inter-annual

:::::::::
variability

::
in

::::
gross

::::::
carbon

::::::
uptake.15

::::
Earth

::::::::::::
observations

::::::
(EOs),

::::::::::
especially

:::::::
satellite

:::::::
remote

::::::
sensing

:::::
data,

:::::::
encode

:::::::
relevant

:::::::::::
information

:::
on

:::::::::
anomalous

::::::::
ecosystem

::::::::::::
functioning

::::::
(??).

::::::::::
Examples

::::::::
include

::::
the

:::::::::
exploration

:::
of

::::
soil

::::::::
moisture

::::::::::
anomalies

::
in
::::::::

tandem
::::
with

::::::
climate

::::::::
patterns

:::
to

:::::::::::
understand

::::::::::
anomalous

::::::::::
vegetation20

::::::::
responses

:::
(?),

:::::
snow

::::::
cover

:::::::
induced

::::::
albedo

:::::::::
anomalies

::::
with

:::::::::::
consequences

::::
for

:::::
local

:::::::
climate

::::
(?),

::::
and

::::
the

::::::
impact

:::
of

::::::
weather

::::::::
extremes

:::
on

:::::::::
vegetation

::::::
indices

:::
to

:::::
track

::::::::
anomalies

::
in

::::::::::
productivity

::::
and

::::::
explain

:::::::::::
vector-borne

:::::::
disease

::::::::
outbreaks

:::
(?),

::::::
among

::::::
many

::::::
others.

::::
The

::::::::::
consistent

::::
and

:::::::::
contiguous25

::::::::::::
spatiotemporal

::::
data

:::::::::
coverage,

::::
and,

:::::
more

:::::::::::
importantly,

:::
the

:::
fact

:::
that

:::::::::::
observations

::
of

:::
the

::::
land

::::::
surface

::::::::
typically

:::::::
integrate

:
a

:::::::
plethora

::
of

::::::::
processes,

:::::
make

::::
EO

::::
very

::::::::
attractive

::
for

::::::::
detecting

:::::::
extremes

::::::::
affecting

:::
the

::::
land

::::::
surface.

:

::::::::
Although

::::
EOs

::::::
enable

:::
the

:::::::::
detection

::
of

::::::::
extremes

:::
in

:::
the30

::::::::
terrestrial

:::::::::
biosphere,

::
a
:::::::

deeper
::::::::::::
understanding

:::
of

:::::::
impacts

::
on

:::::::::
ecosystem

::::::::::
functioning

::::
can

:::
be

::::::
gained

:::::
from

:::::::::
combining

:::
EOs

:::::
with

:::::::
in-situ

:::::::::::
observations

:::::
(??).

:::
In

:::::
fact,

:::::::::
ecological

:::::
in-situ

:::::::::
networks

:::::
play

::::
an

:::::::::::
increasingly

::::::::::
important

::::
role

::
in

:::::::::
analyzing

:::::::::
ecological

:::::::::::
phenomena

::::
and

::::::
often

:::::::
provide35

:
a
::::::::::::::

complementary
::::::::::
perspective

:::
on

:::::::
natural

:::::::::::
phenomena

::
to

:::
EO

:::::::::
(???) and

:::::::::::
complement

:::::::
model

::::::::
analyses

::::::
(??).

::::
One

::::::::
prominent

::::::::
example

::
is
:::::::::::

FLUXNET,
::::
with

:::
its

::::::
proven

::::::
record

::
of

:::::::::
advancing

::::
our

:::::::::::::
understanding

:::
of

::::
the

::::::::::
functioning

:::
of

::::::::
terrestrial

::::::::::
ecosystems

::::
(?).

::::::::::
FLUXNET

:::::::::
assembles

::::
data

:::
on40

::
the

:::::::::
turbulent

::::::::::::::
land-atmosphere

::::::::::
exchanges

:::
of

:::::
CO2,

:::::
H2O,

:::
and

::::::
energy

:::
via

:::
the

::::::::::::::
eddy-covariance

:::::
(EC)

::::::::
technique

::::::
(??) as

:::
they

::::
are

::::::::
collected

::
in
::::::::

regional
::::::::
networks

::
at
::::

the
:::::::
country

::
or

:::::::
continent

:::::
scale

:::::
(e.g.

:::
the

::::::::::::
pan-European

::::::::
Network

::::::::
Integrated

::::::
Carbon

:::::::::::
Observation

:::::::
System

::::::
ICOS,

::::::::::
AmeriFlux,

::::::::
AsiaFlux45

::::
etc.).

::::::
Today,

:::::
many

::::::::
additional

::::::::
networks

:::
are

:::::::::
operational

::
or

:::
are

:::::::::::
concatenating

::::
data

:::::
from

::::
past

::::::::::
campaigns.

:::
For

::::::::
instance,

:::
the

::::::::::
International

::::
Soil

::::::::
Moisture

:::::::
Network

:::::::
(ISMN)

:::::::
includes

:
a
::::
wide

::::
range

:::
of

:::::::::::
soil-moisture

:::::::::::
observations

::
at

:::::::
different

::::::
depths

::::
(??);

::::::::::
phenological

:::::::::::
observations

:::
are

::::::::
collected

::
in

:::::::::
EUROPhen

:::::
(?) or50

::::::::
Phenocam

::::
(?),

:::
and

:::
one

:::::
could

::::::
easily

:::::
extend

::::
this

:::
list.

:

:::
The

::::
site

:::::::::::
distribution

:::
in

::::::
space

:::
of

::::::::::
ecological

::::::
in-situ

:::::::::
monitoring

::::::::
networks

::
is
::::::::

typically
::::::
sparse.

:::::
One

:::::::
obvious

:::
and

:::::::
common

::::::::
critique

::
is
:::::

that
::::::::

networks
:::::::::

emerging
::::::

either
:::

as

::::::::
voluntary

:::::::::::
associations

::
of

:::::
sites

:::
or

::::::
being

::::::::::
constructed

:::
on 55

::
the

::::::
basis

::
of

::::::::
existing

::::
sites

::::::::::
(naturally)

::::::
cannot

:::::::
provide

:::
an

:::::::
equitable

:::::::::::::
representation

:::
of

::::
the

:::::::
world’s

::::::::::
ecosystems

::::
(?).

:::
And

:::
in

::::
fact,

::::::::::
geographic

:::::::::
clustering

:::
of

::::
sites

:::::
(?) as

:::::
well

::
as

::::::::::
incoherence

::
in
:::::

their
::::::::

temporal
::::::::::

continuity
::
is
:::::::::::

problematic.

::::::::
However,

::
it

::::
has

::::
also

:::::
been

::::::
shown

::::
that

::::
the

:::::::::
problems

::
of 60

:::::::
network

::::::::::::
spatiotemporal

:::::::::::::
representation

:::
and

::::
the

:::::::::
limitations

::
of

::::::::::::
spatiotemporal

::::::::::::
extrapolations

::::::::::::::::::::::
(“upscaling” sensu ???) are

:::::::
relatively

::::::
minor

::::::::
compared

::
to

:::
the

:::::::::
advantages

::
of

:::
the

:::::
sheer

:::
size

::
of

:::
the

:::::::
network

:::
(?).

::
In

::::
this

:::::
paper

::::
we

::::
aim

:::
to

::::::::::
understand

:::
the

:::::::::
potential

::
of 65

::::::::
ecological

::::::
in-situ

::::::::
networks

:::
of

:::::::
varying

::::
size

:::
for

:::::::::
monitoring

::
the

::::::
impact

:::
of

::::::
extreme

::::::
events.

::::
This

:::::
paper

:::::::::
addresses

:::
this

::::
issue

::
in

:::::
three

:::::
steps:

:::
1)

:::
We

::::::::
propose

::
an

:::::::::
approach

:::
for

::::::::
detecting

:::::::
extremes

::::
that

::
are

::
of
:::::::
regional

:::::::::
relevance.

::::
This

:::
step

::
is
::::::::
important

::
to

:::::
avoid

::
a
:::::

bias
:::::::

toward
::::::::::
considering

:::::::::
extremes

::::
that

::::
take 70

::::
place

::::
only

:::
in

:::::::::::
high-variance

:::::::
regions,

::::
and

::::
may

:::
be

:
a
:::::::

relevant

::::::::::
contribution

::::::
beyond

::::
our

::::::::::
application.

::
2)

:::
We

:::::::
explore

:
a
:::::
series

::
of

::::::
random

::::::::
networks

::
of

:::::::
varying

::::
sizes

::
to

:::::::
explore

:::
the

:::::::
expected

:::::::
detection

:::::
rates.

:::
We

::::
aim

::
to

::::::::::
understand

:::
the

:::::::
observed

:::::::
patterns

::::
using

:::::::::::
probabilistic

::::::::::
approaches

::::
and

::::::::
formulate

::
a
:::::::::
theoretical 75

:::::::::
expectation

:::
of

::::::::
detection

:::::::::::
probabilities

:::
of

::::::::
extremes.

:::
3)

:::
We

:::
then

:::::::
analyze

:::
the

::::::::
detection

::::::::::
probabilities

:::
in

:::
two

::::
real

:::::::
networks

::::::
(NEON

::::
and

:::::::::::
Ameriflux)

::::
and

::::::::
compare

:::::
these

:::
to

:::::::
random

:::::::
networks

:::
of

::::::::
identical

::::
size.

:::::
The

:::::
paper

:::::::::
concludes

::::
with

:::
an

::::::
outlook

:::
on

::::
how

:::
our

:::::::
remarks

:::::
could

::::
lead

::
to

::::::::::::
improvements

::
in 80

:::::::
network

::::::
design

:::
that

::::::
could

::
be

:::::::::::
implemented

:::
to

:::::::
improve

:::
the

:::::::
detection

::
of
:::::::
extreme

::::::
events.

:

2 Data

2.1
:::::

Earth
:::::::::::
observations,

::::
EO

:::
We

:::::::
required

::
a

::::::::
catalogue

::
of

::::::::
extreme

:::::
events

:::::::::::
experienced

::
by 85

::::::::
terrestrial

::::::::::
ecosystems

::
in

:::
the

::::
past

:::::::
several

:::::
years

::
to
:::::::

analyze

::
the

:::::::::
suitability

:::
of

::::::
in-situ

::::::::
networks

::::
for

::::::::
detecting

:::::
them.

:::
To

:::::
create

:::::
such

::
a
:::::::::

catalogue
:::

of
::::::::

extreme
::::::::

impacts,
:::

we
:::::

used

::::::
extreme

::::::::
negative

:::::::::
anomalies

:::
of

:::
the

::::::::
Fraction

:::
of

::::::::
Absorbed

:::::::::::::::
Photosynthetically

::::::
Active

:::::::::
Radiation,

:::::::
FAPAR.

::::::
These

:::::
values 90

::
are

::
a
::::::::::::
dimensionless

:::::::::::::
spatiotemporal

::::::::
indicator

::
of

::::
how

:::::
much

::::
solar

::::::::
radiation

::::::
energy

:::
(in

::::
the

::::
PAR

::::::::
domain)

::
is

:::::::::
effectively

:::::::
absorbed

:::
by

::::::::
vegetation

:::
i.e.

::::::::
converted

:::
by

::::::::::::
photosynthesis

::::
(??).

::::::
FAPAR

:::
is

::::::::::
considered

:::
an

:::::::::
“Essential

:::::::
Climate

::::::::
Variable 95

::::::
(ECV)”

::::::::::
(?) because

::
it
::::::::

supports
::

a
:::::
large

::::::
variety

:::
of

::::::
studies

::
on

:::
the

::::::
states

:::
and

:::::::::
variability

:::
of

:::
the

:::::::::
biosphere

::::::::::
(e.g. ??) and

::::
plays

:::
an

:::::::::::
increasingly

:::::::::
important

::::
role

:::
in

:::
the

:::::::::::
investigation

::
of

::::::
global

:::::::::::::
biogeochemical

::::::
cycles

:::
(in

::::::::
particular

:::::::
carbon

:::
and

::::
water

:::::::
fluxes).

::::
For

::::::::
instance,

:::::::
FAPAR

::::
can

:::
be

:::::::::::
conceptually 100

:::::
related

:::
to

::::
GPP

:::::::::
(typically

::::::::
estimated

:::::
from

:::::
eddy

:::::::::
covariance

::::
(EC)

::::::
tower

::::::::::::::
measurements).

::::
This

:::::::::::
relationship

:::
is

:::
of

:::
the

::::::
general

::::
form

:::::::::::::::::::::::::
GPP= ε×FAPAR×PAR,

:::::
where

::
ε

::
is

::::
some

:::::
“light

:::
use

::::::::::
efficiency”,

::::
and

::::
PAR

:::
is

:::
the

::::::::::::::::
“photosynthetically

:::::
active

:::::::::
radiation”

::::::::
(e.g. ?);

::::
one

:::::
may

:::::
also

:::::::
include

:::::
other 105



M. D. Mahecha: In-situ networks for detecting extreme events 3

::::::
limiting

:::::::
factors.

::::::::::::
Consequently,

::::::
FAPAR

::
is
:::
an

::::::::
important

::::
basis

::
for

:::::::::
empirical

::::::::
estimates

:::
of

:::::
GPP

:::::::::
(???) and

:::::
other

:::::::
relevant

::::::::::::::::::
ecosystem-atmosphere

::::::::
fluxes

:::::
e.g.

::::::::::::::
evapotranspiration

::::::::
(ET; ?) or

::
is

:::::::
directly

::::
used

:::
as

:::::
input

::
to

:::::::::
diagnostic

::::::::
biosphere

::::::
models

:::::
(??).

::::::
Given

:::
the

:::::
tight

::::
link

::::::::
between

:::::::
FAPAR

::::
and5

::::::::::
land-surface

::::::
fluxes,

::::
this

:::::::
variable

:::
has

:::::
been

::::
used

:::
in

::::::
various

::::::
studies

::
as

::
a
:::::::::

reference
:::
for

::::::::::
monitoring

::::::::
extremes

::::::::
affecting

::::::::
terrestrial

:::::::::
ecosystems

:::::
(??).

:::
The

::::::::
temporal

::::::::::
variability

:::
of

:::::::
FAPAR

:::
is

:::::::::
influenced

:::
by

::::::::
vegetation

::::::::::::
development,

::::
but

::::::::
likewise

::::::::
encodes

::::
e.g.

::::
fire10

:::::
events

::::
and

:::::
other

::::::::
extreme

:::::::::
reductions

:::
of

:::::::
FAPAR

::::
that

:::
are

:::::::
assumed

:::
to

:::::
have

::
a
:::::::::::

pronounced
::::::

effect
::::

on
:::::

GPP.
:::::

Here

::
we

::::
use

:::::::
FAPAR

:::::
data

:::::::
derived

:::
by

::::
the

::::::::
JRC-TIP

::::::::
approach

::::::::::::::
(TIP-FAPAR, ?).

:::::
These

::::::::
estimates

:::
are

:::::
based

:::
on

:::
the

:::::::
MODIS

::::::::
broadband

::::::
visible

::::
and

:::::::::::
near-infrared

::::::
surface

::::::
albedo

:::::::
products15

::::
from

:::::::
NASA

:::::::::
Collection

:::
5
:::

at
::

1
::::

km
:::::::

spatial
:::::::::

resolution

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(MCD43B.005, ?, available on demand from co-author T. Kaminski).

:::::
These

::::::
satellite

::::
data

:::::
cover

:::
the

:::::
entire

::::::
surface

:::::
every

::
16

::::
days

:::
and

::
the

::::
data

:::::
range

:::::
from

::::
2000

:::
to

:::::
2014;

::
in

:::
this

:::::
study

:::
we

:::
use

::::
data

:::::::
covering

::::::
Europe

::::
and

:::
the

:::::::::
continental

:::
US

:::::::::
(excluding

:::::::
Alaska).20

::
In

:::
the

::::::::
following

:::
we

::::::
denote

::::
this

::::
data

:::
set

::
as

::
a
:::
3D

::::
data

::::
cube

::::::::::::::::::::::::::::::::::::::::::::
X= {xuvt : ∀ u ∈ 1, . . . ,U ; v ∈ 1, . . . ,V ; t ∈ 1, . . . ,T}
:::::
where

::
u

::
is

:::
the

::::::
index

::::::
across

:::
the

::
U

::::
grid

::::::::::
longitudes,

::
v
:::
the

:::::::::::
corresponding

::::::
index

::
on

:::
V

::::::::
latitudes,

::::
and

:
t
::
is
:::
the

::::::
index

::
on

::
the

::
T
:::::

time
:::::
steps.

::::
Each

:::::::
element

::::
xuvt::

is
::::::
called

:
a
:::::
voxel

:::
and

::
is25

:::::::::::
characterized

::
by

::
a

::::::::::
well-defined

:::::::::
space-time

:::::::
volume.

:

2.2
:::::

In-situ
:::::::::
networks

::::
First,

:::
we

:::::
create

:::::::
artificial

:::::::
random

::::::
in-situ

::::::::
networks

::
in

::::
order

::
to

:::::::::::
systematically

:::::
study

:::
the

::::::
effects

::
of

:::::::
varying

:::::::
network

::::
sizes

:::
and

::
as

:
a
::::::::
reference

:::
for

:::
the

:::::::
analysis

::
of

:::::::
existing

::::::::
networks.

:::::
Then

::
we30

::::::
analyze

:::::::
existing

::
or

:::::::
recently

::::::::::
established

::::::
in-situ

:::::::
networks

:::
for

::::
their

::::::::
capability

::
to

:::::
detect

:::
the

:::::::
impacts

::
of

:::::::
extreme

::::::
events.

:

:::
We

:::
use

::::
the

:::::::::::
geographical

::::::::
locations

:::
of

::::::::::::::
eddy-covariance

:::
flux

::::::
tower

:::::::::
networks

::::
but

:::
to

::::
the

::::::
actual

:::::::::::::
measurements.

:::
Our

:::::::
main

::::::::
target

:::::
is

::::::::::::
FLUXNET

:
,
::::

a
::::::::

global35

::::::::
collection

:::::
of

:::::::
eddy

::::::::::::
covariance

::::::
data

::::::::::
collected

:::::::::::::::::::::::::::::::::::::::::::
(www.fluxdata.org; for in-depth descriptions see ??).

:::::::::
FLUXNET

::
is
::

a
:::::::::
bottom-up

::::::::
initiative

:::
of

:::::::
regional

::::::::
networks

:::::
which

:::::::
decided

::
to
::::::

bring
::::
their

::::
data

:::
to

::
a

::::::
central

:::::::::
repository.

::::::
Hence,

:::::
there

::
is

:::
no

:::::::::
systematic

:::::::::
sampling

::::::
design,

::::::::
resulting40

::
in

::::::::::
unbalanced

:::::::
spatial

::::::::
coverage

:::::::
biased

::::::::
towards

::::::
central

::::::
Europe

:::
and

::::
the

:::::::::
contiguous

:::
US

::::
(?).

::
In
::::

the
::::
US,

:::::::::
FLUXNET

:
is
:::::::

mainly
:::::::::

composed
:::

of
:::
the

::::::::
regional

::::::::
network

:::::::::
Ameriflux

https://ameriflux.lbl.gov/
:::
and

::::
we

::::
use

::::
the

::::::::::::
geographical

:::::::::
coordinates

:::
of

::::::
their

:::::::
towers.

:::
In

::::::::
Europe,

:::
an

:::::::::
overview45

::
of

::::
the

:::::
most

:::::::
widely

:::::
used

::::
EC

:::::
can

:::
be

::::::
found

:::
in
::::

the

::::::::
European

:::::::
Fluxes

::::::::
database http://www.europe-fluxdata.eu,

:::::
which

::::
will

:::
be

::::::
partly

::::::::::
maintained

::
in

::::
the

:::::
future

:::
by

::::::
ICOS

https://www.icos-cp.eu.
:::::
Here,

:::
we

:::
rely

:::
on

:::
the

:::
site

:::::::::
distribution

::::::::
described

::
in

:::
the

:::::::
LaThuile

::::
data

:::
set

:::
(?).

:
50

:::
The

::::::::
National

:::::::::
Ecological

:::::::::::
Observatory

:::::::::
Network,

::::::
NEON

:::::::::::::::::::::::::
(http://www.neoninc.org/; ?) is

::::
an

::::::::
initiative

:::
to
::::::::

monitor

:::::::::
ecosystems

::
of

::::
the

::::::
United

:::::
States

::::
and

:::
was

::::::::::
constructed

:::::
using

:
a
:::::::::
systematic

::::::::
sampling

::::::
design

::::::
chosen

::
to

::::::::
equitably

::::::::
represent

::
the

:::::::::
dominant

::::::::::
ecoregions

::::::
across

::::
the

::::
US.

:::::::::::
Comparable

::
to55

:::::::::
Ameriflux,

::::::
NEON

::::
sites

:::
are

::::::::
equipped

:::::
with

::::
eddy

:::::::::
covariance

::::::
towers,

:::
but

::::
also

::
a

::::
large

:::::
suite

::
of

:::::::::
additional

:::::::::::::
instrumentation

:::
(?),

:::
and

::::::::::::
human-based

:::::::::::
observations

:::
are

:::::::
recorded

:::::::::
frequently

:::
(?).

:::
We

::::
also

:::
use

::::
the

:::
site

::::::::::
coordinates

::
of

:::::::
NEON

::
to

:::::::
compare

::::
these

::::
with

:::::::::
Ameriflux

::
in

:::
the

:::
US.

:
60

Figure 1.
:::
The

:::
top

::::
three

:::::::
principal

:::::::::
components

::
of

::
the

:::::
mean

::::::
seasonal

::::
cycles

:::
of

::::::
FAPAR

::::
over

::::::
Europe

::::::::
visualized

::
as

:::
red

::::
(R),

:::::
green

:::
(G),

:::
blue

::::
(B)

:::::::
channels.

::::
The

::::
first

:::::::::
component

:::::::
accounts

:::
for

:::::
84%

::
of

::
the

::::::::
variance.

::::
The

:::::::::
cumulative

::::::::
explained

::::::::
variances

::
in

:::
the

::::
first

:::
two

::::::::
component

::::::
explain

:::::
95%

::
of

:::
the

:::::::
variance,

:::
and

:::
the

::::
first

::::
three

:::::::::
components

::::
sum

::
up

::
to
:::::

97%.
::::::
Similar

::::
RGB

::::::
colour

::::::::::
combinations

::::::
indicate

:::::::::
comparable

::::
mean

::::::::::
phenological

::::::
patterns.

:::::
These

::::::::
similarities

::
are

::::
used

::
to
:::::

define
::::::::::

overlapping
::::::
regions

::
of

:::::::::
comparable

::::::::
phenology.

:::::
Within

::::
each

:::::::::
phenological

::::::
region

::
we

:::::::
estimate

::::::
suitable

:::
and

::::::
spatially

:::::
varying

:::::::::
thresholds

::
as

:::::::::
references

:::
for

::::::
flagging

::::::::
potential

::::::
extreme

:::::::
reductions

::
in
:::::::
FAPAR.

3 Methods

3.1
:::::::

Regional
:::::::
extreme

:::::
event

::::::::
flagging

:::
The

:::::::::
question

:::
of

:::::
how

:::
to
:::::::

define
::::::::

extreme
:::::::

events
:::

in

::::::::::::
spatiotemporal

:::::
data

:::::
cubes

:::::
(see

::::
eq.

::::
2.1)

:::
is

::::
key

:::
to

:::
the

::::::::
evaluation

:::
of

:::
the

:::::::::
suitability

::
of

:::::::::
ecological

::::::
in-situ

::::::::
networks. 65

:::
One

::::::::
approach

::::::
would

::
be

::
to

::::::
define

::::
some

::::::
global

::::::::
threshold

:::
and

::::::
identify

::::::
values

::::::::
exceeding

:::
this

::::::::
threshold

::
as

::::::::
potential

:::::::
extremes

:::::
(“peak

::::
over

::::::::::
threshold”).

:::::::::
Choosing

:
a
::::::
global

::::::::
threshold

:::::
setting

:
is
:::::::
suitable

:::::
when

:::
the

:::::::
question

:
is
:::::
about

::::
how

::::::::
extremes

:::
add

::
up

::
to

:::::
global

:::::::::
anomalies

:::
(?),

:::
i.e.

::::
when

::::
one

:
is
::::::::
working

::::
with

:::::::
extensive 70

:::
data

:::::::::
properties

:::::
where

:::
the

:::::
target

::
is

:::
the

::::::
integral

::::
over

:::::
space

:::
and

::::
time.

::::::::
However,

:::
the

:::::::::::
consequence

::
of

::::::
setting

:
a
:::::
global

::::::::
threshold

:
is
::::
that

:::::
values

::::
that

:::
are

::::::
flagged

::
as

:::::::
potential

::::::::
extremes

::::
will

::::
occur

:::::::::
exclusively

::
in

:::::
high

:::::::
variance

:::::::
regions,

:::::::
whereas

::::
low

:::::::
variance

::::::
regions

::::
will

:::::::::
apparently

::::::
never

:::::::::
experience

::::::::
extreme

::::::
events. 75

::
An

::::::::::
alternative

:::::
would

:::
be

:::::
using

::::
only

::::::
highly

::::
local

:::::::::
thresholds

:::::::
(defined

::::
over

::::
time

::
at

::::
each

::::::
spatial

:::::
point

:::::
xuv).

::::::::
However,

:::
the
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::::
latter

::::::::
approach

::::::
would

::::::::::
necessarily

::::
lead

::
to
:::

an
:::::
equal

::::::
spatial

:::::::::
distribution

::
of

:::::::
extreme

:::::
event

:::::::::::
occurrences,

:::::
which

::
is
::::
also

:::
not

::::::::
desirable.

:::
We

::::
want

::
to

::::::
define

:::::::
extremes

:::::::
relative

::
to

::::::
regions

:::
that 80

::
are

::::::::::::
characterized

:::
by

:
a
:::::::

similar
::::::::::::
ecophysiology

::::
i.e.

:::
we

::::
want

::
to

:::::::
compare

:::::
each

::::
grid

:::
cell

::::
with

:::::
other

::::
grid

:::::
cells

:::
that

:::::
have

:
a

:::::::::
comparable

:::::::::
phenology

::::
and

:::::
search

:::
for

::::::::
extremes

::::::
across

::::
these

::::::::::
geographical

:::::::::
locations.

:::::::::
However,

::
as

::::
our

::::::::
approach

::::::
should

::
be

:::::::
entirely

::::
data

::::::
driven,

:::
we

::::::
refrain

::::
from

:::::
using

:::::::::::
precomputed 85

::::::::
definitions

:::
of

:::::::::
ecoregions.

:

::
In

:::
the

::::::::
following

:::
we

::::::
develop

::
a

::::::
strategy

::
to

::::::
define

::::::::
thresholds

::
of

:::::::
regional

::::::::
relevance.

::::
This

::
is

::
an

::::::
attempt

::
to

::::
find

:
a
::::::::::
compromise

:::::::
between

::::
fully

::::
local

::::
and

:::::
global

:::::::::::
thresholding.

::::
Our

::::
idea

:::::
builds

::
on

::::
the

:::::::
concept

:::
of

::::::
optical

:::::
types

::::
(?),

:::
as

:::::
they

::::
have

:::::
been 90

::::::::
concretely

:::::::::
elaborated

::::
for

::::
EOs

:::
by

::
?.

::::
The

::::
key

::::
idea

::::::
offered

::
by

:::::
them

::
is

::::
that

::::::
similar

:::::::::::::
autocorrelation

::::::::
functions

::::::
allows

::
to

::::::
classify

::::::::::
ecosystems

:::::::::
according

::
to

:::::
their

::::::::
temporal

::::::::
dynamics

::::::::::
(see also ?).

:::::
? use

:::
the

::::::
leading

::::::::
principal

:::::::::::
components

::
of

:::
the

::::::::::::
autocorrelation

::::::::
estimated

::
at
:::::
each

::::
pixel

::::::
across

::::::::
time-lags.

:::
We 95

::::
have

:::::::::
developed

:
a
::::::
similar

:::::::
scheme

::
to
:::::::

identify
:::::::

regions
::
in

:::
the

:::
EOs

::::
that

:::
are

::
of

::::::
similar

:::::::::
dynamics,

:::
but

:::
we

:::
use

:::::
mean

:::::::
seasonal

:::::
cycles

::::::
instead

:::
of

:::
the

::::::::::::
autocorrelation

::::::::
patterns.

::::
The

:::::::
rationale

::
of

:::
our

::::::
choice

::
is
::::

that
:::::

want
::
to
::::

also
::::::::

maintain
::::::::::

differences
::
in

::::::::
amplitude

:::
and

::::::::
phasing.

:::
The

:::::
main

::::
steps

:::::::
applied

::
for

::::::::
obtaining 100

:
a
:::::::
regional

::::::::
threshold

:::
are

:::
the

::::::::
following

::::
(for

::
a

:::
full

:::::::::
description

::
of

:::
the

:::::::
regional

::::
event

::::::::
detection

:::::::
method

:::
see

::::::::
Appendix

:::
A):

:

1.
:::::::
Estimate

:::::
mean

::::::::
seasonal

::::::
cycles

::
of

::::
the

:::::::
datasets

:::::
under

::::::
scrutiny

::
at
::::
each

::::
grid

:::
cell

::::
u,v.

::::
The

:::::
mean

:::::::
seasonal

:::::
cycles

::
are

::::::::
centered

::::::
around

:
a
:::::
mean

::
of

:::::
zero. 105

2.
::::::
Reduce

::::
the

::::::::
temporal

::::::::::::::
dimensionality

:::
of

::::
the

:::::
mean

:::::::
seasonal

::::::
cycles

::::::::
(MSCs)

:::
by

::
a
::::::::

principal
::::::::::

component

::::::
analysis

:::::
such

:::::
that

:::::
each

::::::::
principal

::::::::::
component

:::::
(PC)

::::::::
represents

::
a
::::::

main
:::::::
feature

::::::::::
underlying

:::
the

::::::::
seasonal

:::::
cycles.

:::::
The

::::::::::
orthogonal

:::::
basis

::::
for

::::
the

::::
PCs

::::
can

:::
be

:::::::::::
approximated

::::::
using

:::
a

:::::::
random

:::::::
subset

:::
of

:::::::
MSCs,5

::::::::
rendering

:::
the

::::::::
approach

::::
very

::::::::
efficient

::
in

:::::::
dealing

::::
with

:::
this

::::
very

:::::
large

::::
data

:::
set.

::::::
Figure

::
1
::::::
shows

:::
the

::::
first

::::
three

:::
PCs

:::
as

::
an

:::::
RGB

::::::
image

::::
map

:::
for

:::::::
Europe.

::::::::
Although

:::
the

::::::::::
nonlinearity

::
of

::::
color

:::::::::
perception

:::
by

::
the

::::::
human

:::
eye

:::::
limits

::
the

:::::::::::
quantitative

::::::::::
informative

:::::
value

::
of

:::
the

:::::
map,

::::::
similar10

:::::
colors

::::
still

::::::::
represent

:::::::
regions

:::
of

::::::
similar

:::::::::::
phenological

::::::::
dynamics

::
in

:::::::
FAPAR,

::
so

::::
one

:::
can

::::
gain

:::
an

:::::::::
impression

::
of

:::::::::::
environmental

::::::::::::
heterogeneity

::
in

:::
the

::::::::::
investigated

::::
area.

:

3.
::::::
Identify

::::::
pixels

:::
of

::::::::::
comparable

:::::::::
phenology

:::
by

:::::::
binning

::
the

::::::
scores

:::
of

:::
the

::::::
MSCs

:::
on

:::
the

:::::
three

:::::::
leading

::::
PCs

::
as15

::::::::
illustrated

::
in

::::
Fig.

:::
A1

::::
into

::::
bins

::
of

:::::
equal

::::
size.

:::::
Note

:::
that

::
the

:::::
bins

:::
are

::::
very

:::::
small

:::::::::
compared

::
to

:::
the

::::::
length

::
of

:::
the

:::
PC,

:::::::::::
guaranteeing

:
a
::::
very

::::
fine

:::::::
binning.

4.
:::::::
Estimate

::
a

:::::::::::
characteristic

:::::::
FAPAR

:::::::
anomaly

::::::::
threshold

::
in

::::
each

:::
bin,

::::::::::
considering

:::
all

:::
grid

::::
cell

:::
u,v

:::::::::
belonging

::
to

:::
this20

:::
bin

:::
and

::::
grid

::::
cell

::::
u,v

::
in

::::
the

:::::::
adjacent

:::::
bins.

:::::
Note

:::
that

::
in

:::
the

::::
case

::
of

:::::::
binning

:::
the

:::::::
leading

::
3

::::
PCs,

:::
we

:::::
have

::
all

:::
grid

::::
cell

:::
u,v

::
in

:::
27

::::
bins

::
to

:::::::
estimate

::
an

:::::::
FAPAR

:::::::
anomaly

:::::::
threshold

:::
as

::
a
::::::::

quantile
:::
of

:::
the

::::::::::
anomalies.

::::::
Figure

::
2

::::::::
illustrates

:::
the

::::::::
resulting

:::::::
regional

:::::::::
threshold

::
of

:::::::
FAPAR25

:::::::::
anomalies.

::
In

::::::::
southern

::::::::
European

:::::::::::
ecosystems,

::::::
smaller

:::::::
negative

:::::::::
anomalies

::
of

::::::::
FAPAR

::::
(i.e.

::::::
higher

::::::
values

::
in

:::
Fig.

:::
2)

::::::
would

:::
be

:::::
used

:::
to

::::
flag

::::::
values

:::
as

::::::::
potential

::::::::
extremes.

:::
The

::::::
overall

:::::::::::
geographical

::::::
pattern

:::::::
suggests

:::
that

::::::::::
low-variance

:::::::
regions

::::
(i.e.

:::::
arid

::::::::::
ecosystems)

::::::::
typically30

::::::
require

::::::
smaller

:::::::::
deviations

::::
from

:::
the

::::::::
expected

::::::::
variability

::
to

::
be

:::::::::
considered

::::::::
abnormal

:::::::::
situations.

Figure 2.
:::
Map

::
of
:::

the
::::::::

regionally
:::::::

varying
::::::
FAPAR

:::::::
threshold

::::
used

::
for

:::::::
detecting

:::::::
extreme

:::::
events.

:::::
These

::::::::
thresholds

:::
are

::::::
derived

:::::
within

:::
each

::::::::
subregion

::
as

::::::
defined

::
by

:::
the

:::::
leading

::::
PCs

::
of

::
the

:::::
mean

::::::
seasonal

:::::
cycles.

:::
The

::::::
gradient

:::::::
between

:::::
central

:::
and

:::::::
southern

::::::
Europe

::::::
indicates

:::
that

:::
we

:::
may

:::::::
classify

::
an

:::::
event

::
as

::::::
extreme

::
in
::::

one
::::::::
ecosystem

:::
that

::::
would

:::
be

::::::::
considered

::::
part

::
of

:::
the

:::::
normal

::::::::
variability

:::::::::
elsewhere,

::
i.e.

:::
arid

:::::::::
ecosystems

::::
have

::::
lower

::::::::
thresholds

:::
of

:::::::::
extremeness

::
in
::::::
FAPAR

:::::::
compared

::
to

:::::
humid

:::::
areas.

:::
The

::::::::
rationale

:::::::
behind

::::
this

:::::::::
approach

::
is
:::::::::

primarily
::::

that

::::::
similar

:::::
mean

:::::::
seasonal

::::::
cycles

:::::::
indicate

::::::
which

:::::
pixels

:::::
form

:
a

:::::::::::
“phenological

::::::::
cluster”,

::::::::
requiring

:::
the

::::::::::
application

::
of

::::::
similar35

::::::::
quantiles.

:::::::::::
Additionally,

:::
the

::::::::::::
identification

::
of

:::::
these

:::::::
clusters

:::::
based

:::
on

::::
the

:::::::
leading

::::
PCs

:::::::
avoids

::::::::::::
complications

:::
of

:::
an

::::::::
analogous

:::::::
analysis

:::
in

:::::::::::
geographical

:::::
space

:::::
where

:::::::
regions

::
of

::::::
similar

:::::::::
phenology

::::::
might

:::
be

:::::::
spatially

:::::::::
separated

:::
by

:::::
some

:::::
barrier

::::
like

:
a
::::::::
different

::::
land

:::::
cover

::::
type,

:::::::::
orography,

::
or

::
a
::::
body40

::
of

:::::
water.

3.1.1
::::::::::
Contiguous

:::::::::::::
spatiotemporal

::::::::
extremes

:::::
Based

:::
on

::::
the

::::::::
regional

:::::::
extreme

:::::::::
threshold

:::::
(Fig.

:::
2)

::::
one

:::
may

:::::
flag

::::::::::
individual

::::::
events

:::
as
:::::::::

potential
::::::::::::

(“candidate”)

::::::::
extremes.

::::::::::
However,

::::::
these

:::::::::
initially

::::::::
flagged

:::::::
values45

:::
may

:::::::::
likewise

:::::::
reflect

::::::::::::
observational

:::::::
noise.

::::::::::
? therefore

:::::::
proposed

:::::
only

:::::::::::
considering

::::::
events

:::
as

::::::::
extremes

:::
if

:::::
larger

::::::::::
geographical

::::::
areas

::::
are

::::::::::::::
synchronously

::::::::
affected

:::
or

:::
if

::
the

:::::::::
extreme

::::::::
persists

:::::
over

::::::
some

:::::::::
temporal

:::::::::
threshold
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(a very similar idea was proposed in the context of monitoring droughts by ?).50

::::
This

:::
idea

::
is
:::::::
realized

:::
by

:::::::::
identifying

:::::::
clusters

::
in

:::
the

::::
data

::::
cube

:::::
where

:::
the

::::::
spatial

::
or

::::::::
temporal

:::::
voxel

:::::::::
neighbors

:::
are

:::::::
likewise

::::::
flagged

::
as

::::::::
potential

::::::::::::
(“candidate”)

::::::::
extremes.

:::::
Each

::
of

:::::
these

::::::
clusters

::
is
::::::::::::

subsequently
:::::::::
considered

::
a

:::::::
singular

::::::
event;

:::
for

:
a

:::::::::
conceptual

:::::::::
illustration

:::
see

::::
Fig.

::
3. 55

Figure 3.
::::::::
Conceptual

::::::::::
visualization

::
of

::
the

::::::::
presented

::::::::
approach.

::
An

::::::
extreme

:::::
occurs

::::
over

:
a
::::::::::
well-defined

:::::::::::
spatiotemporal

::::::
domain

:::::
(which

::::
could

::
be

:::::::::
asymmetric

:::
as

:::::
shown

::::
here

:::
e.g.

::
on

:::
the

:::::::::::::
latitude/longitude

::::::::
projection).

::::
The

:::
rank

:::
of

::
an

::::::
extreme

:::
can

::
be

:::::::::
determined

:::
e.g.

:::
by

::
the

::::::
anomaly

::::::::
integrated

::
by

::
the

:::
red

::::::
voxels,

:
or
:::
the

::::::::
maximum

:::::
spatial

::::
extent

::::
(gray

:::::
area),

::
or

:::
the

:::::::
duration

:::::
along

:::
the

::::
time

::::
axis,

:::::::
amongst

::::
other

::::::::
properties.

::::
Black

::::
lines

:::::::
indicate

::
the

:::::
spatial

:::::::
position

:::
and

:::::
active

:::
time

:
of
:::::

three
:::::
in-situ

::::::::::
measurement

::::::
stations.

::
In

:::
this

:::::::
example,

:::
only

:::
one

:::
site

::::
would

::::
have

::::::::
coincided

:::
with

:::
the

::::::
extreme

:::
and

:::::
would

::
be

::::::::
considered

::
as

:
a
:::::::
potential

::::
basis

::
for

:::::::
exploring

:::
the

:::::
in-situ

:::::
effects

::
of
:::
the

:::::
event.

:
A
:::::::

critical
::::

step
:::

of
::::

this
:::::::

process
:::

is
::::::::

defining
:::
the

::::::
search

::::
space

:::::::
around

:::::
each

:::::
voxel

:::
for

::::::::
detecting

::::::::
potential

::::::::
neighbor

:::::::
extremes

::::
that

:::::
should

:::
be

:::::::::::
concatenated.

::::::::::
Throughout

:::
this

:::::
paper

::
we

::::::::
consider

:::
the

:::::
direct

::::::::::::
neighborhood

::::::
around

:
a
::::::
central

:::::
voxel

::
as

:::::::
follows: 60

–
:::
We

:::::
define

:
a
::::::
spatial

::::::
search

::::
space

::
z.
::::
Two

::::::
voxels

::::
xuvt:::

and

:::::
xu′v′t :::::::

(u 6= u′;
::::::
v 6= v′)

:::
are

::::::::
connected

::
if

::::::::::
|u−u′| ≤ z

:::
and

:::::::::
|v− v′| ≤ z

::
to
::::::
obtain

:
a
::::::
spatial

::::::::::
connectivity

::::::::
structure

::
for

:
a
:::::
given

:
t.
:

–
:::
We

::::
also

::::::
define

::
a
::::::::

temporal
:::::::

search
:::::::
horizon

::
τ
:::::

from 65

::
the

:::::::
central

:::::
voxel

:::
to

:::::::
compare

:::::
xuvt::::

and
:::::
xuvt′ ::::::

(t 6= t′)

:::::::::
connecting

::::
them

::
if

::::::::::
|t− t′| ≤ τ .

:::::::
Visually

::::::::
speaking,

::::
we

::::::
search

::
a
:::::::

square
:::

in
:::::
space

::::
and

::
a

::::
short

::::
line

::::::::
structure

::
in

::::
time

::::::::
centered

:::
on

::
a

::::::
locally

:::::::
detected

::::::
extreme

:::::::
event.

:::::
Note

::::
that

::
a
::::::

wide
::::::

range
:::
of

:::::::::
alternative 70

::::::::::::
spatiotemporal

:::::::::::
connectivity

:::::::::
structures

:::::
could

:::
be

:::::
used,

:::
for

:::::::
instance

::::::::::
emphasizing

:::
the

::::::::
temporal

:::::::::
dimension

:::
by

::::::::
extending

::
the

:::::::
search

:::::
space

:::::
along

::::
the

::::::
t-axis.

::::
Our

:::::::
choices

:::
of

:::::
z = 5

::::::::::::
(corresponding

:::
to

::::::
25km)

:::
and

::::::
τ = 1

::::::::
(16days)

:::
are

:::::::
adjusted

::::::
ad-hoc

::
to

:::
the

:::::::
specific

:::::::::
properties

:::
of

:::
the

:::::::::::
TIP-FAPAR

::::
data 75

::::
with

::
its

::::::::
relatively

:::::
high

::::::
spatial

:::::::::
resolution.

:::
By

::::::
setting

:::::
z = 5

::
we

:::::::::
guarantee

:::
that

::::
e.g.

::::::
similar

:::::::::
vegetation

:::::
types

:::::
(from

:::::
which

::
we

::::::
would

::::::
assume

::
a
::::::
similar

::::::::::::
responsiveness

:::
to

::::
some

:::::::
extreme

:::::
event)

:::::
could

:::
be

:::::::::::
concatenated

::
to

::::
one

:::::::
extreme,

:::::
even

::
if

::::
these

::::::::
vegetation

:::::
types

::::
are

:::::::
spatially

::::::::::
fragmented

::::
due

::
to

::
a
::::::
mosaic 80

::
of

::::
land

:::::
cover

::::::
types.

::
In

::::
time

::::
we

::::::
search

::::
only

:::::::
starting

::::
from

::
the

:::::::
central

::::::
voxel,

:::
but

:::::
given

::::
that

::::
we

:::
do

:::
this

:::
at

::::
each

::::
v,u

::::::::::
combination,

:::::::::
relatively

::::::::
complex

:::::::::::::
spatiotemporal

::::::::
structures

::
are

::::::::
allowed.

::::
Each

:::::
event

::::
may

:::::::
consist

::
of

:
a
:::
set

::
of

::::::
voxels

::::
with

:::::::::::
characteristic

::::::::
geometric

:::::::::
properties

::::
such

::
as

:::
the

:::::
event

::::::
average 85

::
or

:::::::::
maximum

:::::::
duration

::::::
across

:::
all

:::::::
affected

::::
grid

:::::
cells,

::
or

:::
the

::::::::
maximum

:::::
areal

::::::
extent.

:::::::
Another

:::::::::
interesting

::::::::
property

::
is
:::
the

::::::
average

:::::::
duration

::
of

:::
an

::::::
extreme

:::
per

:::::::
affected

::::
grid

:::
cell.

:::::::
Another

:::
way

:::
of

:::::::
looking

::
at

:::::
these

::::::
events

::
is

::
to

::::::::
integrate

:::
the

:::::::
variable

:::::::
anomaly

::::
over

:::
the

::::::
voxels

::::::
affected

:::
by

::
an

::::::
event,

:::
and

:::
one

:::::
could 90

:::
also

::::::
define

::::::::
additional

:::::::
metrics.

3.1.2
:::::::
Specific

::::::
setting

:::
for

:::
this

::::::
study

::
In

::::::::
summary,

::
in

:::
this

:::::
study

:::
we

::::
used

:::
the

::::::::
following

::::::::
settings:

–
:::::
Mean

:::::::
seasonal

:::::
cycles

:::::::::
computed

::::
over

:
a
:::::::::

time-span
::::
from

::::
2001

::
to

:::::
2014.

:
95

–
:::
The

::::
first

:::::
three

:::
PCs

::::::
binned

:::::
using

::
a
:::::
grain

:::
size

:::
of

:::
4%

::
of

::
the

:::::
range

:::
of

::
the

::::
first

::::
PC.

–
:::
For

::::
each

:::
bin

::
in

:::
the

::
PC

:::::
space

::::
and

::
its

::::::::::
surrounding

::
26

::::
cells

::
we

:::::::
estimate

:::
the

:::::::
quantile

::::::::
= 0.025.

:::
The

::::::::::::::
FAPAR-anomaly

:::::
values

::::::::::::
corresponding

::
to

:::
this

:::::::
quantile

:::
are

:::::::
assigned

::
as
:::
the 100

:::::::
threshold

:::
for

:::
the

::::
grid

::::
cells

::::::::::::
corresponding

::
to

:::
this

::::::
central

:::
bin.

:

–
:::
The

:::::::
search

:::::
space

::::
for

:::::::::
detecting

:::::::
extreme

:::::::
events

::
is

:::::::::::
parameterized

::::
with

:::::
z = 5

::::
and

:::::
τ = 1

:::::::::::
corresponding

::::
here

::
to

:
a
::::::
search

::::
space

:::
of

:::
±5

:::
km

:::
and

::::
±16

:::::
days.

3.2
:::::::::

Coinciding
::::::
in-situ

:::::::::::
observations

::::
and

:::
3D

::::::::
extremes

:::::
In-situ

:::::::::::
observations

:::::::
typically

::::::
capture

:::::::::::
subgrid-level

::::::::
processes

::
or

::::::::
footprints.

::::
For

:::
the

::::
sake

::
of

:::::::::
simplicity,

::::
here

::
we

:::::::
assume

:::
that

::::
each

:::::
point

:::::::::::
measurement

::
is

::::::::::::
representative

::
of

::::
one

:::::
pixel

:::
xuv5

[
:
1

::::
km2]

:::
and

:::
we

:::::::
intersect

:::::::::::
geographical

::::::::
positions

::
u

:::
and

::
v
::
of

::
the

::::::
in-situ

::::
data

:::::
with

:::
the

::::::::::
occurrences

::
of
::::

3D
::::::::
extremes.

::::
This

:::::::
approach

::::::
allows

:::
us

::
to

:::::::
answer

:::
the

::::::::::
hypothetical

::::::::
question

::
of

::::::
whether

::
a
::::::
certain

::::::::::
observation

::::
site

::::::
would

::::
have

::::::::
detected

::
an

::::::
extreme

:::
in

:::
the

:::::
past.

:::
An

::::::::::
intersection

:::::::::::
considering

:::
the

::::
time10

::::::
domain

::
as

::::
well

::::::
would

:::::
allow

::
us

:::
to

:::::::::
understand

::
if

::
an

:::::::
extreme

:::
had

:
a
::::::
chance

::
of

:::::
being

:::::::::
effectively

::::::::
observed.

:::::
Along

:::::
these

::::
lines,

::
we

::::
can

:::
also

:::::::::
investigate

:::::::
whether

:::::::
random

::::::::
placement

:::
of

:::::
towers

:::::
would

::::
have

::::::::
improved

:::
or

::::::::::
deteriorated

:::
the

::::::::
capability

::
to

:::::
detect

::::::
extreme

::::::
events.

:
15

4 Results

4.1
:::::::

Random
::::::::
networks
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::
To

:::::
better

:::::::::
understand

::::::::
expected

:::::::
extreme

:::::
event

::::::::
detection

::::
rates,

::
we

:::::::
initially

:::::::
explore

::::::
random

::::::::
networks

::::
and

::::
their

::::::::::
hypothetical

::::::::
capability

::
to

::::::
detect

:::::::
extreme

:::::::
FAPAR

::::::::::
reductions.

:::
We

:::::
focus20

::
on

::::::
Europe

::::
and

::::
vary

:::
the

:::::::
network

::::
sizes

::::
from

::::::::::::::
n= 5, . . . ,10000

::::
sites

::
on

:
a
::::::::::
logarithmic

:::::
scale,

::::::
asking

:::
how

:::::
many

::
of

:::
the

:::::::
detected

:::::::
extremes

:::
can

:::
be

::::::::
identified

::
for

::::
each

::::
size

:::::
class.

::::
More

::::::::
precisely,

::
we

:::::::::
investigate

:::
the

:::::::::
probability

::::
that

::
an

:::::::
extreme

::::
event

::
of

::
a

::::
given

:::
size

::
m

:::::::::
(measured

::
in
:::::
terms

:::
of

:::::::
affected

::::
area)

::::
will

::
be

:::::::
detected25

::
by

::
n

:::::::::::
hypothetical

::::::
towers

::::::::
P (m,n).

:::
All

:::::::::
following

:::::::
analyses

::
are

::::::
based

:::
on

::::::::
repeating

:::
the

:::::
tower

:::::::::
placement

::::
100

:::::
times

:::
per

:::
size

:::::
class.

:::
We

::::::
mimic

::::
real

:::
site

:::::::::
placement

::
by

::::::::
assuming

::::
that

:
a

:::::
tower

:
is
::::
not

::::::
mobile,

:::
i.e.

::
it

:::::::
remains

:::::
active

::
at

:
a
:::::
given

:::::::
location

:::
over

:::
the

:::::
entire

::::::
period

:::::::
covered

::
by

:::
the

:::::::
FAPAR

:::::::::::
observations. 30

:::::
Figure

::
4
::::::

shows
:::
the

:::::::
average

:::::::::
detection

::::::
success

:::::
rates

:::
for

::
the

:::::::
random

:::::::::
networks.

::::
The

::::::
ranks

:
r
:::::::

shown
::
in

::::
Fig.

:::
4a

:::
are

::::::
derived

::::
here

:::::
from

::::
the

:::::::::
integrated

:::::::::::::
spatiotemporal

:::::::
FAPAR

::::::::
anomalies

::::
(i.e.

:::
the

::::
total

::::::::
impact);

:::
the

:::::
latter

:::
are

::::::::
displayed

::
in

:::
Fig.

:::
4b.

:::::::
Across

:::::::
network

::::
sizes

::::
we

:::
find

::::
that

::::::::
empirical

:::::
event 35

:::::::
detection

:::::::::::
probabilities

::::::::
increase

::::
with

::::::
event

:::::::
impact.

:::::
These

:::::::
increases

::::::::
typically

::::::
follow

:
a
:::::::

straight
::::
line

::
in

:::
the

:::::::
log-log

:::
plot

:::::::::::::
(power-law-like

::::::::
behavior)

:::
for

:::::
small

::::::::
extremes

:::
and

::::
then

::::
level

::
off

:::
for

::::
very

:::::
large

::::
event

:::::
sizes.

:::
To

:::::
better

:::::::
illustrate

::::
this

::::::
pattern,

::
we

::::::::
selected

:::
the

::::::::
network

:::
of

::::
size

:::::::
n= 103

::::
and

:::::::
display

::
it 40

::
as

:::::
black

:::::
lines

::
in

::::
Fig.

::
4.
:::::

This
:::::::
specific

:::::::
network

::::
size

::::
has

:
a

::::::::
P ≥ 90%

::::::
chance

::
of

::::::::
detecting

::::
the

:
8
::::::

largest
::::::::

extreme
:::::
events

:::::::::
(according

::
to

:::
the

:::::
ranks

:::
of

::::::::
integrated

:::::::
FAPAR

::::::::
anomaly,

:::
see

:::
Fig.

::::
4a).

::::
This

::::::
success

:::
rate

:::::::
declines

::::::
rapidly

:::
for

::::::
smaller

::::::
events,

:::
e.g.

:::
we

::::
have

::::
only

:
a
::::::
≥ 50%

::::::
chance

:::
of

::::::::
capturing

:::
the

:::::::
r = 39th 45

:::::
largest

::::::
event.

::
An

:::::::::
analogous

::::::
pattern

::
is

:::::
found

:::
for

:::
the

:::::::
detection

::::::::::
probabilities

::::::::
assessed

::
in

:::::
terms

:::
of

::::::
spatial

::::::
extents

:::::
(Fig.

:::
4c).

::
In

:::::::
contrast,

:::::::::::
investigating

::::
the

:::::
event

::::::::
durations

:::::
(Fig.

:::
4d)

:::
did

:::
not

:::::
reveal

:::::
such

:
a
:::::

clear
:::::::
pattern,

::::::
which

:::::
could

:::
be

::::::::
explained

::
by

:::
the

::::
fact

::::
that

:::
we

:::
are

::::::
dealing

:::::
with

:
a
::::::::
relatively

:::::
short

::::
time 50

:::::
series,

:::
in

:::::
which

:::::
only

::
a

:::
few

::::::::
discrete

:::::::
duration

:::::::
classes

:::
can

::
be

::::::::::
recognized.

::::
The

:::::
fact

::::
that

::::::
global

:::::::
impacts

:::
of

:::::::
extreme

:::::
events

::
in

:::
the

::::::::
terrestrial

::::::::
biosphere

::::::
behave

::::::::
similarly

::
to

::::
those

::
at

::::::
smaller

::::::
spatial

::::::
extents

::
is

::::::::
expected

:::::::
because

:::::
these

::::::::
properties

::
are

::::::
known

:::
to

::
be

:::::::
strongly

:::::::::
correlated

::
as

::::::
shown

:::
e.g.

::
in

::
?.

::::
This 55

::::
study

::::
also

::::::::
reported

::::
that

:::
the

::::::::
duration

::
of

:::::::
extreme

::::::
events

::
is

:::
less

:::::::
strongly

:::::::::
correlated

::::
with

::::
their

:::::::
impact,

::
as

:::
we

::::::
would

:::
also

::::::
suspect

::::
from

::::
Fig.

::
4.

:
A
::::::::
different

::::
view

::
on

::::
this

:::::::::::
phenomenon

:
is
:::::::
offered

::
by

::::
Fig.

::
C1

:::::::
showing

:::
the

:::::::
detection

:::::::::
likelihood

:::
for

:::::::
extremes

::
of

::
a

::::
given

::::
rank 60

:
r
::::::
across

::::::
varying

::::::::
network

:::::
sizes.

::::::::
Extremes

:::
of

:::
low

:::::
rank

:::
(i.e.

::::
large

::
in
:::::::

impact)
:::::

need
::::
very

::::::
small

::::::::
networks

::
to

:::
be

:::::::
detected

::::
with

::::
rates

::::
near

::
to

::::::
100%,

:::::::
whereas

::::
high

::::
rank

::::::
events

::
(of

:::::
small

::::::
impact)

::::
need

:::::
much

:::::
larger

::::::::
networks

::
to

:::::
reach

::::::
similar

:::::::
detection

::::
rates.

::::
The

:::::::::
detection

:::::::::
probability

::::::
scales

:::::::
linearly

:::
in

::::::
log-log 65

::::
space

:::::
with

:::::::
network

::::
size,

:::::::::
indicating

:::
that

::::
one

::::::
would

::::
need

::
to

:::::
inflate

::::::
in-situ

::::::::
networks

:::
by

:::::
orders

:::
of

:::::::::
magnitude

::
in

:::::
order

::
to

:::::
detect

:::::
small

::::
scale

::::::
events

::
at
::::::::::

comparable
:::::

rates
::
to

:::::::::
large-scale

::::::::
extremes.

4.1.1
::::::::
Statistical

:::::::::::::
considerations 70

:::
The

::::::
results

::::::
shown

::
in

::::
Fig.

:::
4c

:::
are

:::
an

::::::::
empirical

::::::::
approach

::
to

:::::::
describe

:::
the

::::::::
detection

:::::::::
probability

::
of

::::::::
extremes

:::::::::::
characterized

::
by

::
a

:::::
given

::::::
spatial

:::::
extent

:::
m

:::::::::
(measured

:::
e.g.

:::
in

:::::
terms

::
of

:::
the

::::::
number

::
of
::::::

pixels
::
or

::::
area

::::::::
affected

:::::
during

:::
an

::::::
event)

:::::
using

:
a

:::::::
network

:::::::::
constructed

::::
with

::
n

::::::::
randomly

::::::
placed

::::::
towers.

::
In

::::
other 75

:::::
terms,

:::
this

:::::
figure

::::::
reports

:::
the

:::::::::
probability

::::::::
P (m,n)

:::
that

::
at

::::
least

:::
one

::::
tower

:::::::
detects

:::
the

:::::::
extreme

::::
and

:
a
::::::

single
:::::::
extreme

:::::
event

::
of

::::::
spatial

:::::
extent

::
m

::
is
::::::::
detected

::
by

::
a
:::::
single

:::::::::
randomly

:::::
placed

:::::
tower

::::
with

:::::::::
probability

p=
m

mmax
,

:::::::::

(1)

:::::
where

:::::
mmax::

is
:::
the

:::::::::
maximum

:::::::
possible

:::::
extent

::
m

:::
(in

:::
our

::::
case

::
the

::::::::::
maximally

::::::
affected

::::
area

::::::
across

::
all

:::::
time

:::::
steps).

::::::::
However,

::
an

:::::::::
equivalent

::::::::
question

::
is

:::
the

::::::::::
probability

:::
that

::::
one

:::::::
extreme

:
is
::::

not
:::::::
detected

::
by

::::
any

::
of

::::
the

::
n

::::::
towers.

::::::::::
According

::
to

:::
the5

:::::::
binomial

::::::::::
distribution,

::::
the

::::
latter

::::::::::
probability

::
is

::::::::
(1− p)n,

:::
and

:::
our

::::::::
estimated

::::::::::
probabilities

::::::
should

:::
be

::::::::
described

::
by

:

P (m,n)
::::::

= 1− (1− p)n
::::::::::::

= 1−
(
1− m

mmax

)n
.

::::::::::::::::::

(2)

::::
This

::::::::::
formulation

::::
helps

:::::::
explain

:::
the

::::::
parallel

:::::::
decline

:::::
(linear10

::
in

:::::::
log-log)

::
in

:::
the

::::::::
detection

::::::::::
probabilities

:::
for

:::::
small

::::::::
extremes:

:::
We

:::
can

::::::
rewrite

:::
Eq.

::
2

::
as

P (m,n) = 1− exp

(
n ln

(
1− m

mmax

))
:::::::::::::::::::::::::::::::::

(3)

:
A
::::::
Taylor

:::::::::
expansion

::
of

:::
Eq.

::
3

:::
for

:
a
:::::
small

:::::::
number

::
of

::::::
towers

:
n

:::
and

:::::
small

:::::
event

::::
sizes

:::::::::
m/mmax ::::

(here
:::::::

realized
:::

by
::::::::
assuming15

:::
that

:::::::::::::::::::
|n ln(1− m

mmax
)| � 1)

:::::
yields

P (m,n)≈− ln

(
1− m

mmax

)
n.

::::::::::::::::::::::::::

(4)

::::::
Further

::::::::
adjusting

:::::
this

:::::::
formula

::::
for

:::::
small

:::::::::
extremes

::::
with

:::::::::
| m
mmax

| � 1
:::::
gives

:

P (m,n)≈ m

mmax
n,

::::::::::::::::

(5)20

:::::
which,

::
in
::
a
::::::::::
logarithmic

::::
form

:::::
reads

lnP (m,n)≈ lnm+ lnn− lnmmax.
:::::::::::::::::::::::::::::

(6)

:::
We

::::::
expect

:::::
that

::::
this

::::::::
equation

::::::::
explains

::::
the

::::::::::
empirically

::::::::
identified

:::::::
parallel

::::::
lines

:::
of

::::::::
positive

::::::
slope

:::
in

:::::
Fig.

::
4

:::
and

::::::::
compare

::::
our

:::::::::
empirical

::::::::
findings

::
to
:::::

this
:::::::::
theoretical25

::::::::::
expectation.

::::
Fig.

::
5
:::::::::
compares

:::
the

::::::::
expected

::::
and

::::::::
observed

:::::::
detection

::::::::::::
probabilities.

::::
The

:::::::
leveling

:::
off

::
of

:::::
event

::::::::
detection

::::::::::
probabilities

:::
for

::::
large

::::::
events

:
is
::::::
indeed

::::::::::
theoretically

::::::::
expected,
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Figure 4.
:::::::::
Comparison

::
of

::::::
average

:::::::
detection

::::
rates

::
for

::::::::
randomly

:::::
placed

:::::::
networks

::
of

::::::
different

::::
sizes

::
in

:::::
Europe

:::
for

:::
the

:::::
period

:::
from

::::
2000

::
to
:::::
2014.

:::
The

::::
color

::::
code

:::::
shows

:::
the

::::::::
moderately

::::::::::
exponentially

::::::::
increasing

::::
size

::
of

:::::::
networks

::::
under

:::::::::::
consideration.

::::
Lines

:::::
show

::
the

::::::
average

:::::::::
percentage

::
of

::::::
detected

:::::
events

::
by

:::
(a)

::::
rank,

::
(b)

::::::::
integrated

::::::
FAPAR

:::::::
anomaly,

::
(c)

::::::
affected

:::::
spatial

::::
area,

:::
and

:::
(d)

::::
event

:::::::
duration.

:::
The

:::::
black

:::
line

:::::
shows

::
the

::::
case

::
of

:
a
:::::::::
hypothetical

::::::
network

::
of
::::
103

:::::
towers.

:::
but

:::
the

::::::::
log-linear

::::::
scaling

:::
for

:::::
small

::::::
events

::
is

::::::::
expected

::
to

::
be

::::::
steeper

:::::
sensu

:::
Eq.

::
2. 30

::
In

:::::
other

::::::
words:

:::
the

::::::::
observed

::::::::
detection

:::::::::::
probabilities

:::
for

::::
small

::::::::
extremes

:::
are

::::::
higher

::::
than

::::::::
expected,

:::::::
whereas

::::::::
detection

::::::::::
probabilities

::
of

:::::
large

:::::::
extremes

:::
are

:::::
lower

::
in

:::::::
random

:::::::
networks

::::::::
compared

:::
to

:::::::::
theoretical

::::::::::::
expectations.

::::
Our

::::::::::
hypothesis

::
is

:::
that

:::::
these

::::::::::::
discrepancies

:::
are

:::::::
related

::
to

::::
the

::::::::::::
spatiotemporal 35

:::::::::
correlation

:::::::
structure

::
of

:::
the

:::::::
extreme

::::::
events,

:::::
which

::
is

:::
not

::::
taken

:::
into

:::::::
account

::
in

:::
the

:::::
above

:::::::::
theoretical

:::::::
analysis.

:
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Figure 5.
:::::::::
Comparison

::
of

:::
the

::::::
affected

:::
area

::
of
:::::::

extremes
:::::::::
(continuous

:::
lines

:::
are

::
a
:::::

subset
:::::

from
:::
Fig

:::
4c)

::::
and

:::
the

::::::::
theoretical

:::::::::
expectation

:::::::
according

::
to

:
a
:::::::
binomial

:::::::::
distribution

:::
and

::::::::::
uncorrelated

:::
data

::::::
(dashed

::::
lines)

:::
for

::::::
varying

::::::
network

::::
sizes

::::::
(shown

::
as

:::::::
different

:::::::
colours).

:::
Our

:::::::
empirical

:::::::
detection

:::::::::
probability

::
is
:::::
lower

::::
than

:::
the

:::
the

::::::::
theoretical

::::::
expected

::::
ones

:::
for

::::
large

::::::::
extremes

:::
and

:::::
higher

:::
for

:::::
small

:::::::
extremes.

:::::::
However,

:::
the

:::::
overall

:::::
pattern

::
of
:::
the

:::::::
expected

:::::::
detection

:::::::::
probabilities

:
is
::::
well

::::::
captured

:::
by

::
the

::::::::
theoretical

::::::::::
expectation.

::
In

::::
order

:::
to

:::::::::
investigate

:::
the

::::::::::
discrepancy

:::::::
revealed

::
in
::::

Fig.
::
5,

::
we

::::::::::
performed

:
a
::::::

series
::
of

::::::::::
simulations

::::::
using

:::::::
artificial

::::
data

:::
that

:::
are

:::::::::::
characterized

:::
by

:::::::
varying

::::::::::::
spatiotemporal

:::::::::
correlation 40

::::::::
structures,

::::
and

:::::::::
compared

:::::
these

:::
to

:::
the

::::::::
expected

::::::::
detection

::::
rates.

:::::
The

::::::
results

:::
of

:::::
these

:::::::::::
experiments

::::
are

::::::::
reported

::
in

::::::::
Appendix

::
B
::::

and
:::
let

:::
us

::::::::
conclude

::::
that

:::::
there

:::
are

::::
very

::::
few

::::::::
effectively

:::::::::::
independent

:::::::::::
observations

:::::::
because

:::
the

::::::::
extremes

::
are

:::::::
highly

:::::::::::::
autocorrelated

::
in
::::::

time.
:::::::

Hence,
:::::
these

::::::
strong 45

:::::::::
correlations

::::
lead

:::
to

:::
the

:::
fact

::::
that

:::
the

::::::
largest

:::::::::::::
spatio-temporal

:::::::
extremes

:::::
tend

:::
to
:::::::

occur
:::

at
::::::

some
::::::::

distance
:::::

from
::::

the

::::::::
boundary

::
of

::::
the

:::::::
domain

::::
(i.e.

:::::
from

::::
the

:::::::
coasts).

:::::::
Because

::
the

:::::::::
networks

:::
are

:::::::::
randomly

::::::
placed,

::::
i.e.

:::::::
without

::::::
regard

::
to

::
the

::::::::::::
differentiated

:::::::::
occurrence

:::::::::::
probabilities

::
of

:::::
large

::
vs.

:::::
small 50

::::::::
extremes,

::::
this

:::::
leads

:::
to

:::
the

:::::::::
observed

::::::::::::::
underestimation

::
of

:::::::
detection

:::::::::::
probabilities

:::
for

::::
large

:::::::::
extremes.

::
A

::::::
simple

::::::
thought

:::::::::
experiment

::::
can

:::::::::
intuitively

:::::::
explain

::::
this

::::::
effect:

:::::::
Imagine

::
a

::::::::
landscape

::::
that

:::::::
consists

:::
of

::
a
:::::::::::

contiguous,
::::::::
relatively

:::::
large

:::::::
mainland

::::
(e.g.

:::::::
Europe)

::::
and

:
a
:::::::
number

::
of

::::::
islands

::
or

::::::::
otherwise

::::::::::
disconnected

:::::::
regions

::::
(e.g.

:::::
Great

::::::
Britain,

:::::::
Ireland,

::::::
Sicily)

:::
that

::
are

:::
all

:::
far

:::::::
enough

:::::
from

:::
the

::::::::
mainland

::::
that

:::::::::::::
spatio-temporal

:::::::
extremes

::::
can

::
by

:::::::::
definition

:::
not

::
be

::::::::::
connected,

:::
i.e.

::::::::
exceeding

::
the

::::::
search

:::::
space

::
z.

:::
In

:::::::
addition,

:::::::
imagine

::::
that

:::
the

:::
few

::::::
largest5

:::::::
extremes

::::
that

:::::
affect

:::
the

::::::::
mainland

::::::
exceed

:::
the

::::
size

:::
of

:::
any

::
of

::
the

:::::::
islands.

:::
In

:::
this

:::::
case,

:::
any

::::::
tower

::::::::
randomly

::::::
placed

:::
on

::
an

:::::
island

::::::
cannot

:::::::::
contribute

::
to

::::::::
detecting

::::
large

:::::::::
extremes,

:::::
which

::::::::
intuitively

::::::::
illustrates

::::
why

::::
not

:::::
taking

::::
into

:::::::
account

:::
the

:::::
effects

::
of

:::::::::::::
autocorrelation

:::
and

:::::
edge

::::::
effects

:::
in

:::
our

:::::::
analysis

::::::
results10

::
in

:::::
overly

:::::::::
optimistic

:::::::::
theoretical

:::::::::
predictions

::
of

::::::::
detection

::::
rates

:::::
based

::
on

:::
the

::::::::
binomial

:::::::::
distribution

:::
for

::::
real

:::::
world

:::::::::
landscapes.

:::::::::
Contrarily,

:::
for

::::::::::::
medium-sized

:::
and

::::::
small

::::::
events,

:::
the

::::::
chosen

:::::
spatial

::::::
search

::::::
space

::
of
::::::
z = 5

:::::
leads

:::
to

:::
an

::::::::::::
overestimation

::
of

::::::::
detection

:::::::::::
probabilities

:::
in

::::
the

::::
real

::::
data

:::
as

:::::::::
compared15

::
to

:::
the

:::::::::
theoretical

:::::::::::
predictions.

:::::::::::
Nonetheless,

:::
the

:::::::::
theoretical

:::::::::
predictions

:::::::
provide

:::
an

:::::
exact

::::::::::
expectation

:::::
under

:::::::::
simplified

::::::
settings

::::
(i.e.

:::
no

::::::::
boundary

::::::
effects,

::::
and

::
an

:::::
event

::::::
search

::::
only

::
in

::::::
directly

:::::::
adjacent

::::
grid

::::
cells

:::::::
(z = 1),

:::
see

:::::::::
Appendix

:::
B);

:::
and

::
are

::::
thus

::::::
useful

:::
for

:::::::::
illustrating

:::
and

::::::::::::
understanding

:::
the

::::::
almost20
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:::::
linear

::::::
scaling

::
of

::::::::
detection

:::::
rates

:::
and

:::
the

::::
size

::
of

::::::::
extremes

::
in

::::::
log-log

:::::
space.

:

4.2
::::::
Scaling

:::::
issues

:::
One

:::::::
doubt

:::
in

:::::::::
applying

:::
a
::::::::

regional
::::::

event
:::::::::

detection

:::::::
approach

:::::
was

::::::::
whether

::::
key

::::::::
aspects

:::
of

::::::::
extreme

:::::
event25

::::::::::
distributions

::::::
would

:::
be

::::::::
affected.

::::::::::
Occurrence

:::::::::::
probabilities

::
of

::::::::
extreme

:::::::
events

:::
in

::::
the

:::::::::
terrestrial

::::::::::
biosphere

:::::
have

::::
often

:::::
been

::::::::
reported

::
to
:::::::

follow
::
a

:::::::::
power-law

:::
of

:::
the

:::::
form

:::::::::::
p(m)∝m−α

:::
in

:::
the

:::::
tails,

:::
i.e.

::::
for

:::::
some

::::::
values

::::::::
≥ mmin

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see ??, for scaling examples in FAPAR and gross primary production respectively).30

:::::
Using

::
a
:::::::::
maximum

:::::::::
likelihood

:::::::::
estimator

::
as

:::::::::
suggested

:::
by

:::::
?? we

::::::
analyze

:::
the

::::::
scaling

::::::::::::
characteristics

:::
of

:::::::::
contiguous

::::
areas

::::::
affected

:::
by

:::::::
extreme

::::::
events.

:::
We

::::
find

:::
that

:::
the

:::::
event

::::::::
properties

:::::
follow

::
a
::::::

power
::::

law
::::

(see
:::::

Fig.
::::
C3).

:::::
The

:::::::::::
probabilities

::
of

::::
areas

::::::::
affected

:::
by

::::::::
extremes

:::
in

:::::
both

::::::
areas

:::::::
decline

::::
with35

::::::::::::::
α= 1.85± 0.007

::::::::::::
(uncertainties

::::::
given

:::
as

::::::::
standard

:::::
errors

::::
from

::::
1000

::::::::
bootstrap

::::::::
samples).

:

::::::
Without

:::::::::::::::::::
over-interpreting

::::::::::
these

:::::::::::
patterns

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e. many processes could lead to the emergence of these power-laws, some of which are discussed in ?) we

:::::::
consider

::::
that

::::
this

::::::::
property

:::::
could

:::
be

::::::::
exploited

:::
to

::::::
inform40

:::::::
network

::::::
design

:::::::
issues:

:::::::::
According

:::
to

::::::::::::::::
?, and others there

::
are

::
a
:::::

few
::::::::::::
considerations

::::::::
pointing

:::
in

::::
this

:::::::::
direction:

:::
the

:::::::::
expectation

:::::
value

::::::::
E[m(r)]

::
of

::
an

:::::::
extreme

:::::
event

::
of

::::
rank

::
r

::
(in

:::
this

:::::::::::
formulation,

:::
the

::::::
largest

:::::
event

:::
has

::::
rank

::
1

::
as

::
in

::::
Fig.

:::
4a)

:::
has

:::
the

::::
form 45

E
:
[m(r)
::::

]= cr−
1

α−1 .
::::::::

(7)

:::::
where

::
α

:
is
:::
the

::::::
scaling

:::::::::
exponent,

:::
and

:
c
::
is

:::::
some

:::::::::::
normalization

:::::::
constant

:
-
::::
both

:::
can

:::
be

:::::::
obtained

:::::
from

:
a
:::
fit

::
to

:::
the

:::::::::
empirically

:::::::
obtained

::::
rank

:::::::
function

:::::
m(r).

::::::::
Applying

:::
Eq.

::
7
:::::
would

:::::
allow

::
us

::
to

:::::
study

:::
the

:::::::
network

::::::::
detection

::::::::::
probability

::
as

::
a

:::::::
function

::
of 50

::::
rank

:::
(see

:::::
Figs.

::
4a

:::
and

::::
C1)

::::
and

:::
we

:::
can

:::::
insert

:::
the

:::::::::
expressions

:::
into

:::
Eq.

::
3:
:

P (m,n)
::::::

= 1−
(
1− m(r)

mmax

)n
::::::::::::::::::

(8)

= 1−

(
1− cr−

1
α−1

mmax

)n
:::::::::::::::::::

(9)

::::::::::
Furthermore,

::::::
using

:::
the

::::::::::::
approximated

:::::::
log-log

::::
form

:::
of

:::
the 55

:::::::
network

:::::::
detection

::::::::::
probability

::::
(Eq.

::
7)

:::::
yields

lnP (m,n)≈− 1

α− 1
lnr+1lnn+ lnc− lnmmax.

::::::::::::::::::::::::::::::::::::::::::

(10)

::::
This

:::::::
equation

:::::
may

:::::::
explain

:::
the

:::::::
parallel

:::::
lines

:::
for

:::::
ranks

::
r

:::::::::::
corresponding

:::
to

::::
small

:::::::
extreme

:::::
event

::::::
extents

:::::
m(r)

::::
(see

:::
e.g.

:::::::
Fig.C1).

:::::
More

::::::::::
importantly,

:
it
::::::
relates

:::
the

::::::
scaling

::::::::
exponent

::
to 60

::
the

::::::::
expected

::::::::
detection

:::::::::::
probabilities.

::
In

:::::
other

::::::
words:

::::::
gaining

::::::
insights

:::::
about

:::
the

:::::::
scaling

::::::::
behaviour

:::
of

:::
the

:::::::
extremes

::::
can

::
be

::::
used

::
to

:::::::::
formulate

::::
clear

:::::::::::
expectations

:::::
about

:::::
event

::::::::
detection

::::::::::
probabilities

::
of

::
a

::::
given

::::
rank

::::
and

::::
size.

4.3
:::::::::

Comparing
::::::::::
AmeriFlux

::::
and

::::::
NEON 65

:::
Our

::::::
results

:::
so

:::
far

:::::
show

::::
that

:::::::
random

::::::::
networks

::::
may

:::::
differ

::::::::
somewhat

:::::
from

::::
our

::::::::
expected

::::::::
detection

:::::
rates

:::
for

:::::::
various

::::::
reasons.

:::::
But

::::
the

:::::::::::
overarching

::::::::::
hypothesis

:::
is

::::
that

:::::
even

:::::::
relatively

::::::
small

:::::::::
networks

::::
may

:::::
have

::
a
::::::

good
::::::
chance

:::
of

:::::::
detecting

:::::
large

:::::
scale

:::::::
extreme

::::::
events.

:::
We

::::::::
therefore

:::::::
consider 70

::
the

::::::::::::
configuration

:::
of

::::
real

:::::
eddy

::::::::::
covariance

:::::::::
networks.

:::
We

:::
now

::::::
focus

:::
on

:::
the

:::
US

:::::::::::
(continental

:::::
areas

:::::
only)

:::::::
instead

::
of

::::::
Europe.

:::
We

:::::
have

:::
two

::::::::
networks

::::
with

:::::
very

:::::::
different

:::::::
histories

:::
and

::::::::
therefore

::::::::::::
configuration:

:::::::::
Ameriflux

:::
and

:::::::
NEON,

:::
and

:::
we

:::::::
consider

::::
them

::::
both

::::::::
together.

::::::
Again,

:::
we

:::::::
compare

::::
our

:::::
results 75

::
to

::::::
random

::::::::
networks

::
of

:::::
equal

::::
size.

:

:::
The

:::::::
starting

:::::
point

::::
for

:::
our

:::::::::::::
considerations

::::
was

:::::::
whether

::::::::
ecological

::::::
in-situ

:::::::::
networks

::::
have

::::::::::
effectively

:::::
been

::::
able

::
to

:::::
detect

:::
the

:::::
most

::::::::
relevant

:::::::
extreme

::::::
events

:::::::::::
experienced

:::
by

:::
land

:::::::::::
ecosystems

:::
due

:::
to

:::::
their

:::::::
network

::::::::::::
construction,

::
or

::
if 80

::::
these

:::::
were

:::::
lucky

:::::::::::::
circumstances.

::::
We

::::::::
therefore

::::::
ranked

:::
the

:::
100

::::::
largest

::::::
events

::::::::
detectable

:::
in

:::
the

:::::::::
continental

:::
US

:::
by

::::
their

::::::::
integrated

:::::::
FAPAR

:::::::::
anomalies.

:::
We

::::
then

:::::::
counted

::::
the

::::::
number

::
of

:::::
events

::::
that

:::::
could

::::
have

::::
been

:::::::
detected

:::
by

::
at

::::
least

:::
one

::
of

:::
the

::::::::
Ameriflux

:::
or

::::::
NEON

::::::
towers,

:::
or,

:::
by

:::::
taking

:::::
both

:::::::
together

::
(if 85

::
all

::::::
towers

:::::
would

::::
have

:::::
been

:::::
active

::::
over

:::
the

:::::
entire

:::::::::
monitoring

::::::
period).

::::
Fig.

:
6
::::::
shows

:::
the

::::::
number

::
of

::::::::
detected

:::::
events

:::
for

::::
these

::::
three

:::::::
network

::::::::::::
configurations

::
of

::::::
NEON,

::::::::::
AmeriFlux,

:::
and

::::
both

:::::::
together,

::
as

::
a

:::::::
function

::
of

::::
their

:::::
rank.

:::
Due

:::
to
::::

its
::::::

large
::::::::

network
:::::

size,
::::::::::

AmeriFlux
:::::::

detects 90

::::
many

::::::
more

:::::::::
extremes

:::::
than

:::::::
NEON

:::::
(128

::::
vs.

:::
39

:::::
sites

::
in

:::
the

::::::::::
contiguous

:::::
US,

:::::::::
excluding

:::::::
Alaska

::::
and

::::::::
islands).

::::::::::::
Concatenating

::::
both

::::::::
networks

:::::
helps

::::::::
increase

:::
the

::::::::
detection

::::
rates

:::
for

:::::
small

::::::
events.

::::
Our

::::
next

:::::::
question

::::
was

:::::::
whether

::::
these

:::::::
detection

:::::
rates

:::
are

::::::::::
comparable

:::
to

:::::::
random

::::::::
networks

::
of

:::
the

::::
same

::::
size.

::::
For

:::
the

::::
case

:::
of

::::::
NEON

:::
we

::::
find

::::
that

:::
the

::::::
median5

:::::::
detection

::::
rate

:::
of

:::::::::
randomly

::::::::
designed

::::::::
networks

::
is
:::::::

slightly

:::::
higher

:::::::::
compared

::
to

:::
the

::::
real

:::::::
network

::
-
:::::
which

::::
still

:::::::
remains

:::::
above

:::
the

::::::::
2.5%ile.

:::
At

::::
first

::::::
glance

::::
this

::
is
:::

an
::::::::::

unexpected

::::::
finding:

:::
we

::::::
would

::::::
expect

:::
that

:::::::::
undesired

::::::
vicinity

::::
may

:::::
occur

::
by

:::::::
chance

::
in

::
a
::::::::

random
::::::::
network,

:::::::::
increasing

::::::::::
redundancy10

:::::
among

:::::::
towers

::
in

::::::
space

:::::::::
compared

::
to

:::
the

:::::
very

:::::::::
systematic

:::::::
sampling

::::::
design

::
of

::::::
NEON

::::
(?).

:::
We

::::::::
conclude

::::
here

:::
that

:::::
while

::
the

::::::
design

::::::
efforts

::::
used

::
in

::::::::::
establishing

::::::
NEON

::::
may

:::
pay

:::
off

::
for

:::::
certain

:::::::
studies,

::::
they

:::
are

:::
not

:::
an

:::::::
effective

::::::
means

::
to

::::::::
maximize

::
the

::::::::
detection

::
of

:::::::::
extremes.

::::
This

:::::::::
observation

:::::
again

::::::
reflects

:::
the15

:::
lack

::
of
::::::
spatial

::::::::
regularity

:::
in

::
the

::::::::::
occurrence

::
of

::::::::
extremes.

:

:::
The

:::::::::
equivalent

::::::::::
experiment

:::::::::
conducted

:::
on

:::
the

:::::::::
AmeriFlux

:::::::
network

:::::
yields

:::::
much

::::::
higher

::::::::
detection

::::
rates

:::
for

::::
the

::::::
random

:::::::
networks

:::::::::
compared

::
to

:::
the

::::::::::
established

:::::::
network

::::
(Fig.

:::
6).

:::
We

:::::::
attribute

:::
this

:::::::::
difference

:::
to

::::
one

::::::::
particular

::::::::::::
characteristic

::
of20

:::::::::
AmeriFlux:

:::::
many

:::
of

:::
the

::::
sites

::
in

:::
this

:::::::
network

:::
are

:::::::::
co-located

::
on

::::::::
purpose

::::
(e.g.

:::
to

:::::::
explore

:::::::
spatial

::::::::::::
heterogeneity

:::
or

::
to

::::::
monitor

::::::::
different

::::::::::
disturbance

::::::
regimes

::
in
::::::::

adjacent
:::
and

:::::
hence

:::::::::::::
climatologically

:::::::
similar

:::::::::::
ecosystems).

:::::
Fig.

::
6
::::::

shows
::::

that

:::::::::
AmeriFlux

::::
sites

:::::
have

::
a
:::::::::

relatively
::::
high

::::::
degree

:::
of

::::::
spatial25

::::::::
clustering.

::
If
:::
the

:::::
target

:::::
were

::
to

:::::::
analyze

:::::::::
continental

:::::::
extreme

:::::
events

::::
and

:::::::::
guarantee

::::::::::
monitoring

::::
the

::::::
largest

:::::::
events,

:::
the
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:::::::::
AmeriFlux

::::::::::::
configuration

::::::
would

:::
be

::::::::::
suboptimal.

:::
In

:::::
other

:::::
words:

::::
the

::::::
spatial

:::::::::::::
autocorrelation

::
in
:::

an
:::::::::

ecological
::::::

in-situ

:::::::
network

::::
that

::::
was

::::
not

:::::::::::::
systematically

:::::::::
designed

::::
can

:::
be30

:::::::::::
outperformed

::
by

::
a

::::::
random

::::
(and

:::::
hence

:::::::
spatially

:::::::::::
independent)

:::::::
network.

:

:::::::
Another

::::::
aspect

::::
to

::::::::::
investigate

::::
in

::::
this

::::::::
context

:::
is

:::::::::::
concatenating

:::::::
NEON

::::
and

:::::::::
AmeriFlux

::::::
(both

::::
data

::::
sets

:::
are

:::::::
intended

::
to

:::
be

:::::
freely

::::::::
available

::
to
::::

the
:::::::
research

::::::::::
community,35

:::
Fig.

::
6
:::::::

dashed
:::::
line).

::::
Our

::::::
results

:::::
show

::::
that

::::
this

::::::::
approach

:::::
would

:::::::::
marginally

:::::::
increase

:::
the

::::::::
detection

:::::::
capacity.

::::
One

:::::
reason

::
for

::::
this

::::::::
marginal

:::::::::::
improvement

::
is

:::::
again

:::
that

::::::::::
AmeriFlux

:::
and

::::::
NEON

::::
sites

:::
are

::::::
partly

:::::::::::::
geographically

:::::::::
co-located

::::
and

:::
that

::::::::::::::::
AmeriFlux—despite

:::
of

:::::
being

:
a
:::::::::
bottom-up

::::::::::::::
activity—already 40

:::
has

:
a
:::::::::
significant

:::::
spread

::::::
across

:::
the

::::::
country

::::
that

::
is

:::::::::
competitive

::::
with

:
a
:::::
novel

:::::::
network

::::::::
designed

:::
for

:::
the

:::::::
purpose

::
of

::::::::
capturing

::::
large

::::
scale

:::::::::
extremes.
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Figure 6.
:::::::::
Comparison

::
of

:::
the

:::::::
potential

:::
of

:::::
NEON

::::
(39

:::::::
terrestrial

::::
sites)

:::
and

:::::::::
AmeriFlux

::::
(128

:::::
sites)

:::
for

:::::::
detecting

:::::::
extremes

::::::
defined

::
by

::::::
varying

::::::::
thresholds

::
in

::
the

:::::::::
contiguous

::::::::
continental

:::
US

::::::::
(excluding

:::::
Alaska

::::
and

:::::::
islands).

:::
The

::::::
purple

::::::
dashed

::::
line

:::::
shows

::
a
::::::

merged

::::::::::::::
AmeriFlux–NEON

:::::::
network.

:::::::
Dashed

::::
lines

:::::::::
enveloped

:::
by

:
a
:::

95

:::::::
percentile

:::::
range

::
are

:::::::
detection

::::
rates

::
of
::::::

random
::::::::

networks.
:::
The

::::
sizes

:
of
:::
the

::::::
random

:::::::
networks

::::::::
correspond

::
to

:::::
NEON

:::::
(blue)

:::
and

::::::::
AmeriFlux

::::::
(brown)

:::
and

::::::::
summarize

:::
100

:::::::::
repetitions.

:::
We

:::
also

::::
show

:::
the

:::
1:1

:::
line,

::::
which

:::::
would

:::::::::
correspond

:
to
::::::
perfect

:::::::
detection

:::::::::
performance

:::
and

::
is

::
the

::::::::
theoretical

::::
limit.

5 Discussion

5.1
::::::::::
Regionalized

::::::
event

::::::::
detection 45

:::::::
Reliable

:::::
event

::::::::
detection

::::::::::
algorithms

:::
are

::
a
:::::::::::

prerequisite
::
to

:::::::::
addressing

::
the

::::::::
question

::
of

::::
how

:::::::
effective

::::::
in-situ

:::::::
networks

:::
are

::
for

::::::::
detecting

:::::::
extreme

::::::
events

::
of

::
a

:::::
given

::::::::::
geographical

::::::
extent.

:::
Our

::::
aim

:::
here

::
is
::
to

:::::::
classify

:::::
events

::
as

:::::::::
“extreme”

::
if

:::
they

::::::
exceed

::
an

:::::::
anomaly

:::::
value

::::
that

::
is

:::::::
unusual

:::::
across

:::::::
regions

::::
that

:::::
follow 50

::
the

:::::
same

:::::
main

::::::::::
phenological

:::::::
pattern.

::::
This

::::::::::
contribution

:::::
could

::
be

:::::::
relevant

::
to

:::::
other

::::::
studies

:::::::
beyond

:::
the

::::::
present

::::::::::
application.

::::
This

::::::
method

::::
has

:::::::::
advantages

::::
over

:::::
using

::
a
::::::
global

::::::::
threshold,

:::::
which

::::::::::::
fundamentally

:::::::
changes

:::
the

:::::::
obtained

::::::
picture

::::
and

::::
leads

::
to

:
a
:::
few

::::::::
hotspots

::
of

:::::::
extremes

:::
in

::::::
regions

:::::
where

:::
the

::::
data

::::
have 55

::::
high

:::::::::
variability

:::::::::::::::::::::::
(for the case of GPP see ?).

::::
The

::::::
effect

::
of

:::::::
building

::
on

:::::::
regional

:::::::::
thresholds

::
to

:::::::
delineate

::::::
which

::::::::
anomalies

:::::
should

:::
be

::::::::::
considered

:::::::::
“extreme”

::::::
(recall

::::
Fig.

::
2)

::
is
::::

that
:::

we

:::
find

:::::
only

::::
very

::::::::
moderate

::::::::::::
geographical

:::::::::
clustering

::
of

:::::
event

::::::::::
occurrences

::::
(not

:::::::
shown).

:::::
From

:::
our

:::::::::
viewpoint,

::::
this

::
is

::::
very 60

::::::
logical,

::
as

:::::
there

::
is

:::
no

::::::
reason

::::
why

::::::
relative

::::::::
extremes

::::::
should

:::::::::::
preferentially

::::::
happen

::
in

::::::
certain

:::::::
regions.

:::::::
Methods

::
of

:::
this

::::
kind

::
are

::::::::::
particularly

::::::::
relevant

::
in

:::::
times

:::
of

:::::::::
increasing

:::::::::
availability

::
of

::::
EOs

::
to

:::::
detect

:::::::
impacts

:::::
rather

::::
than

::::::::
referring

::
to

:::::::::
anomalous

::::::::::
observations

::
in

:::
the

::::::::::::
meteorological

:::::::
records,

:::::
which

::::
may

::
or

:::
not 65

:::::
affect

::::::::
terrestrial

::::::::::
ecosystems.

::
In

::::
fact,

::
all

::
of

:::
the

::::::
largest

::::::
extreme

:::::
events

::::
that

:::::
have

::::
had

::::::
severe

:::::::
impacts

::::
on

:::::::::
agriculture

::::
and

:::::
human

::::::::::
well-being

:::
and

::::::::
attracted

:::
the

::::::::
attention

::
of
::::

the
:::::
media

::
are

:::::
well

::::::::
detectable

::::
with

::::
our

::::::::
approach.

:::::::::
Prominent

::::::::
examples

::
are

::::
e.g.

::::
the

:::::
2003

::::::::
European

:::::
heat

:::::
wave

:::::::
(e.g. ?),

:::
the

:::::
2010 70

::::::
Russian

::::
heat

:::::
wave

:::::::
(e.g. ?),

::
or

:::
the

:::::
2012

:::
US

:::::::
drought

::::::
(e.g. ?),

:::::
which

:::
are

::
all

:::::
easily

:::::::::
detectable

::::
both

::::
from

:::::::
climate

::::::
records

:::
and

::::::
remote

::::::
sensing

::::
data.

::::::::
However,

:::
the

:::::::
smaller

:::
the

:::::
spatial

::::::
extents

:::::::
become,

:::
the

:::::
more

:::::::
relevant

:
a
::::::
remote

:::::::
sensing

:::::
based

:::::::
regional

:::::::::
assessment

::::
will

:::
be.

::::
We

::::
also

::::::
expect

::::
that

::
a

::::::::::::
regionalization

::
of

::::
this

::::
kind

:::::
could

:::
be

::::::
useful

::::::
when

:::::
using

:::::
more

::::::::
advanced5

::::::::::
multivariate

:::::
event

::::::::
detection

:::::::::
algorithms

:::::::::::::
(see e.g. ?) that

:::
can

::
tap

::::
into

:::
the

:::
full

::::::::
potential

::
of

:::::
many

::::
EOs.

:

::::::::
Regarding

::::
the

:::::::
details

:::
of

::::
the

:::::::
chosen

:::::::::::::
methodological

::::::::
approach,

:::
one

::::
may

:::::::
question

::::
why

:::
we

:::::::
propose

::::::
simply

::::::
binning

::
the

:::::::
leading

::::
PCs

:::::::
derived

:::::
from

:::
the

::::::
MSC

::
of

::::
our

::::
EO.

::::
This10

:::::::
approach

::::
was

:::::::
mainly

:::::::::
developed

:::
to

:::::::::
effectively

:::::
deal

::::
with

::
the

:::::
very

::::
high

:::::::::
resolution

::
of

::::
the

:::::::::
underlying

:::::
data,

:::::::
seeking

:
a

::::
very

:::::::
efficient

::::::::::
subgridding

:::::::::
approach.

::::
One

:::::::::
alternative

:::::
would

::::
have

::::
been

::
to

::::
e.g.

::::::
cluster

:::
the

::::
PCs

:::::::
directly.

::::::::
However,

::::::
besides

::
the

:::::::::::::
computational

:::::
costs,

::::::::::::
conventional

:::::::::
clustering

:::::::
methods15

:::
lead

:::
to

::
a
:::::::::::
non-uniform

::::::::::
partitioning

:::
of

:::
the

::::::
space

:::::::
spanned

::
by

:::::
PCs.

::::
This

::::::::::::
non-uniform

::::::::::
partitioning

::::::
makes

::
it
:::::::

slightly

::::
more

:::::::::::
complicated

::
to

:::::::
identify

:::::::::::
neighbouring

::::::::
clusters,

:::::
which

:
is
:::::::::

necessary
:::

to
::::::::

stabilize
:::
the

:::::::::::::
quantile-based

:::::::::::
computation

::
of

::::::::
anomaly

::::::::::
thresholds.

:::::::
Having

:::
an

:::::
equal

:::::::::
meshgrid

::::
over20

::
the

:::::
PCs

:::
that

::::
we

:::
can

:::::
also

:::::::
compute

:::
on

::
a
::::::
subset

::
of

::::::
MSCs

::::::
renders

:::
the

::::::::
approach

::::
very

::::::::
efficient

:::
for

::::
very

:::::
large

::::
data

:::
sets

:::
and

::
is
::::::::::

completely
:::::

data
::::::::

adaptive.
:::

It
::::
was

::::
very

:::::::::
important

::
for

::::
this

::::::::
exercise

:::
to

:::::
have

:::::
many

::::::
small

:::::::
classes,

:::
in

:::::
order

::
to

::::::::
compute

::
a

::::
very

:::::
well

:::::::::::
regionalized

::::::::
anomaly

::::::::
threshold25

::::::
(shown

::
in

::::
Fig.

:::
2),

::::::
which

::::::
would

:::
not

:::::
have

::::
been

:::::::::
achievable

::::
using

::::::::
classical

::::::
climate

::::::::::::
classifications

::
of

::::::::::
ecoregions.

::
A

::::
more

::::::
detailed

:::::::::
follow-up

::::::
study

::::::
should

:::::::
explore

::::
the

::::::::
question

::
of

:::
how

::::
the

::::::
choice

::
of

:::
the

:::::::
various

:::::::::
parameters

::::::
affects

:::
the

:::::
event

:::::::
detection

::::::::::
accuracies.

::
A

::::::
crucial

:::::::
question

:::
in

:::
this

:::::::
context

:::
will30
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::
be

:::::::
whether

:::
one

:::
can

::::
tune

:::::
these

:::::::::
parameters

::::
such

:::
that

:
a
:::::::
baseline

::
of

:::::
events

::
is

::::
well

::::::::
detected.

:
A
:::::::

further
::::::::
argument

:::
in

:::::
favor

::
of
::::

our
::::::::

approach
::::

was
::::

that

::
we

:::::
rely

:::
on

::
a
:::::::

limited
:::::::

number
:::

of
:::::::

events
:::::::
detected

:::
in

::
a

::::
finite

:::::
time

:::::::
horizon

::
of

::::::::
available

::::::::
satellite

::::
data.

::::::::::
Monitoring35

::
15

:::::
years

::
of
::::::::

extreme
::::::
events

:::::::
probably

:::::
does

:::
not

:::::
allow

:::
us

::
to

:::::::
conclude

::::::::
anything

:::::
about

:::
the

::::::
future

::::::::::
occurrences

::
of

:::::::
extreme

::::::
events.

::
In

::::
this

::::::
sense,

::::
this

::::::
study

:::
can

:::::
only

:::
be

:::::
read

::
as

::
a

:::
call

:::
for

:::::::::::::
(re)considering

:::
the

:::::::
density

::
of

:::::::::
ecological

::::::::
networks

::
in

:::::::
network

:::::::
design

:::::::
studies.

::::
An

:::::::::
alternative

::::::
would

::::
be

::
to40

:::
also

::::::::
consider

:::::::
climate

::::::::::
projections

:::
and

::::
put

:::::
more

::::::::
emphasis

::
on

:::::
more

:::::::::::
“vulnerable”

::::::::::
ecoregions.

:::::::::::::
Non-stationary

:::::::
climate

:::
and

::::::::::::
environmental

:::::::::
conditions

::::::::::::::
notwithstanding,

::::
we

::::
have

::
to

:::::::::::
acknowledge

:::
that

::::::::
extremes

:::
are

::::
too

::::
rare

::
to

::::::
derive

:
a
::::::

spatial

:::::::::
occurrence

:::::::::
probability

:::::
using

::::
data

::::
from

:::
the

:::::::
satellite

:::
era

::::
only. 45

5.2
::::::::
Relevance

:::
for

::::::::
network

::::::
design

::
To

:::
the

::::
best

::
of

::::
our

:::::::::
knowledge,

:::::
there

:::
are

::::
only

::
a
:::
few

:::::::
realized

::::::::
examples

:::
of

:::::::::::::
systematically

::::::::
designed

:::::::
in-situ

:::::::::
ecological

::::::::
networks.

::::
One

:::
of

:::
the

::::
best

:::::::::
examples

::
is
:::::::

NEON,
::::::

which
::

is

:::::::
therefore

::::::::::
particularly

:::::::::
interesting

::
in

:::
the

::::::
context

:::
of

:::
this

:::::
study. 50

:::
The

:::::::::
underlying

::::::
design

::::::::
principle

::
is

::
to

::::::
cluster

::::::::::::
environmental

::::::::
conditions

::::
and

:::::
states,

::::::::
including

::::
e.g.

:::::::::::
precipitation,

::::::::
radiation,

:::::::::
topography,

::::
and

:::::
water

::::
table

::::::
depth,

::::::
among

::::::
others

:::
(?).

:::::
These

::::::::
delineated

::::::::::
ecoregions

::::
are

:::::
taken

:::
to

:::
be

::::::::::::
representative

:::
of

::::::::::::
approximately

:::::::::::
homogeneous

:::::
areas

::
in

:::
the

:::::
mean

::::::::::
land-climate 55

::::::
system

::::::
state,

::::
and

::::::
yield

::::
an

:::::::::
equitable

:::::::::::::
representation

::
of

:::::
land

::::::::
surface

::::::::::
processes

::::
in

::::::::::
upscaling

:::::::::
activities

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. the spatiotemporal inter- and extrapolation of land-atmosphere fluxes of CO2, H2O, and others ???) or

:::::::::
model-data

:::::::::
integration

::::::
studies

::::::::
(sensu ?).

:

:::
Our

:::::::
finding

::::
that

::::::::::::
concatenating

:::::::
NEON

::::
and

:::::::::
AmeriFlux 60

:::::
would

:::::
have

::::::
yielded

:::::
only

::
a

:::::::
minimal

::::::::
increase

::
in

::::::::
detection

::::::::
capacities

:::
for

:::::::
extreme

::::::
events

::::
can

:::
be

:::::::::
understood

:::
as

::
a

:::
call

::
to

:::::
avoid

::::::::::
co-locating

::::::
towers

::
in

:::::::::
relatively

:::::
close

::::::::
vicinities

:
-

:
at
:::::

least
:::::
when

:::
the

::::::::
objective

:::
of

::::::::
detecting

:::::::
extreme

::::::
events

::
is

:::::
highly

:::::::
relevant.

:::
In

::::
fact,

::::
when

:::
the

::::::::
objective

::
is

::
to

:::::::
monitor

:::
and

:::::::::
understand

:::
the

:::::::
impacts

::
of

:::::::
climate

:::::::
extremes

:::
on

::::::::::
ecosystems,

::
we

::::::
show

:::::
here

::::
that

::::::::::
probability

::::::::::
theoretical

:::::::::::
expectations

:::::
should

:::
be

:::
be

::::::
taken

::::
into

:::::::
account

::::
but

::::::
would

:::::
need

::
to
:::

be

:::::::
extended

:::
to

:::::::
consider

:::::::::
temporal

:::::::::::::
autocorrelation

::
as

:::::
well

::
as5

::
the

::::::
event

::::::::
detection

::::::::::
approaches

:::::::
chosen.

:::
In

::::
our

:::::
case,

:::
the

::::
latter

::::
had

::
a
::::::::
relatively

:::::
large

::::::::
footprint

:::::::
(z = 5)

:::
in

:::::
order

::
to

:::
not

::::
miss

::::::
events

::::
that

:::::
may

::::::
appear

::::::::::
fragmented

::::
due

::
to
::::

e.g.

::::::::::::
heterogeneous

::::::::
landscape

:::::::::::::
characteristics.

::::::
Clearly,

::::
one

:::::
would

::::
need

::
to

::::::::
determine

:::::
such

:::::::::
parametric

::::::
choices

:::::::::
depending

::
on

:::
the10

:::
type

:::
of

:::::::
extreme

:::::
events

:::
and

::::::::::
underlying

:::::::
question.

:

:::::::::::
Nevertheless,

:::
we

:::::
think

::::
that

:::
the

:::::::
remarks

:::::::::
presented

::::
here

::::
could

::::::::
become

::::::
useful

::::::::
elements

::::
for

:::::::::::
quantitative

:::::::
network

:::::
design

::::::::
studies.

:::
In

::::
our

::::::
area,

::::::
earlier

:::::::::::::
considerations

:::
in

:::
this

::::::::
direction

:::::
have

::::
put

:::::
their

::::::::
emphasis

::::
on

::::::::
reducing

:::
the15

::::::::::
uncertainties

::::
for

:::::::::
upscaling

::::::
fluxes

::::::
from

::::
the

::::
site

:::::
level

::
to

::::::::::
continental

:::
or

::::::
global

:::::
flux

:::::
fields

:::::
(?).

:::::::::
Focussing

:::
on

:::
this

:::::::::
first-order

:::::::::
question

::
is
:::

of
:::::::

course
:::::::::

essential,
::::::

before

::::::::
focussing

:::
on

:::::::::
detecting

:::::
rare

::::::::::
anomalies.

::::::
This

::
is
:::::

also

:::::::
reflected

::::
in

::::
the

::::::::::
alternative

:::::::::::::::
methodological

::::::::
avenues20

:::
that

::::::
were

:::::
used

::::
for

:::::::::::
addressing

::::
the

::::::::
network

:::::::
design

:::::::
problem.

::::
For

:::::::::
instance,

:::::::
carbon

:::::
cycle

:::::
data

:::::::::::
assimilation

::::::
systems

:::::::::::::::::
(CCDAS; ?) were

:::::
very

::::::
useful

::::
for

::::::::::
quantitative

:::::::
network

::::::
design

:::::::::::::::::::
(QND; see, e.g. ??) i.e.

:::
to

:::::::
evaluate

::::
real

::
or

::::::::::
hypothetical

::::::::
candidate

::::::::
networks

::
in
::::::

terms
::
of

::::
their

::::::
ability

::
to25

:::::::
constrain

::::::
target

::::::::
quantities

:::
of

:::::::
interest.

::::
The

:::::
QND

::::::::
approach

:::::
within

::
a
::::::::

CCDAS
::::::

allows
::::

the
:::::::::::

combination
:::

of
:::::::::

terrestrial,

::::::::::
atmospheric

::::
and

:::::::::
ultimately

::::
also

:::::::
oceanic

::::
data

::::::::
streams.

::
A

:::
key

::::::
finding

:::
so

:::
far

:::
was

::::
that

:::::
eddy

:::::::::
covariance

::::::::
networks

::::
with

:::
one

:::
site

::::
per

:::::::::
ecosystem

::::
type

::::::
achieve

::::::::
excellent

:::::::::::
performance.30

::::
QND

::::::
studies

:::::
have

:::
also

:::::
been

:::::::::
performed

:::
for

:::
EO

::::
data

::::::
streams

::::
such

::
as

::::::
column

:::::::::
integrated

::::::::::
atmospheric

::::
CO2:::::

(??).
:::
But

:::::
again,

::::
none

::
of

:::::
these

:::::::
studies

::
so

:::
far

::::
have

:::::::::
attempted

::
to
:::::::

unravel
:::
the

::::::
impacts

::
of

:::::::
extreme

::::::
events

::
on

:::
the

::::::::
terrestrial

:::::::::
biosphere,

:::::
which

:::::
might

::
be

:
a
:::::::
relevant

::::::
pursuit

:::
for

::::::::::
subsequent

::::::
studies.

:
35

::::::
Overall,

::::
this

:::::
study

::::
can

:::
be

::::
also

::::
seen

:::
as

::
a
:::::::::
prototype.

::
In

:::::::
appendix

::
B

:::
we

::::
show

::::
that

::::::::
analogous

::::::
studies

:::
can

:::
be

::::::::
effectively

:::::::::::
implemented.

:::::
There

:::
we

::::
use

:::
the

:::::::::::
International

:::
Soil

::::::::
Moisture

:::::::
Network

::::::
ISMN

:::
and

::::::
detect

::::
EO

::::::::
anomalies

::::::
using

:
a
:::::::

drought

:::::::
indicator.

:::::
This

::::
very

:::::
brief

::::::::
analysis

:::::::
stresses

:::
one

:::::::::
additional40

:::::
aspect

::::
that

:::
we

:::::
have

:::::::::
effectively

:::::::
ignored

:::::::
through

:::
the

:::::
main

:::::
paper:

:::
the

::::::::::
importance

:::
of

:::::::
keeping

::::::::
network

::::::::::::
measurements

::::
alive

::::
over

:::::
time.

::::::
Many

::
of

::::
the

::::
sites

:::::
have

::::
only

:::::
been

:::::
active

::
for

:::::
short

::::::::::
monitoring

:::::::
periods,

:::::::
leading

::
to

::::::::::
substantial

:::::
losses

::
in

:::::
event

::::::::
detection

:::::
rates.

:::
It

::
is

::::
the

:::::::::::
continuously

::::::::
sustained45

:::::::::::
measurement

::::::::
networks

:::
that

::::
will

::::::::::
substantially

::::::::
improve

::::
event

:::::::
detection

:::::
rates

::
in

:::
the

::::::::
long-term.

:

6 Conclusions

This study tries to understand to what degree ecological in-
situ networks such as AmeriFlux or NEON can capture ex-50

treme events of a given size that hit
::::
affect

:
land ecosystems.

We find, for instance, that the largest 10 extremes having

:::::
largest

::::
that

::::
have

:
occurred in the US between 2000 and 2014

would have all
::
all

:::::
have been identified with the current net-

works, offering a good perspective for in-depth site level 55

analyses of these phenomena. Concretely, this finding means
that there is a high chance of capturing the major extreme
events – beyond the very few prominent

:
(2-3)

:::::::::
prominent

events that may receive major media coverage such as the
2003 heatwave in Europe or the 2012 US drought. In gen- 60

eral, we find that “large” extreme events could have been
detected in a very reliable way, while

::::::
whereas

:
there was a

linear decay of detection probabilities for smaller extreme
events in log-log space. We can explain this general behavior
with straighforward

:::::::::::::
straightforward considerations in proba- 65

bility theory, but the slopes of the decay rates deviate: While
we find lower detection rates for the very large extremes, the
opposite is the case for very small extremes. Experiments
with artificial networks reveal that these deviations stem both
from the temporal autocorrelation

::::::::::::
autocorrelation

:::::
issues and 70

the exact implementation of the detection algorithm.
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Our original motivation for pursuing this study is the
question if

:::
was

:::
the

::::::::
question

::
of

:::::::
whether

:
one could optimize

the design of ecological in-situ networks for maximizing the
detection rates of extreme events. And indeed, we find some 75

general rules, i.e. when the goal is detecting very large events
(i.e. low rank events), network sizes can differ by up to two
orders of magnitude but still yield nearly comparable detec-
tion rates. Only if the goal was to reliably enhance the de-
tection probabilities of small-scale events ,

:::::
would a dispro- 80

portionate “investment” in large networks would be required,
but

:::::
which

:::::
would

:
then also become orders of magnitude more

efficient compared to the small networks.
However, any inference on the future spatial occurrence

probability of extremes is not tenable based on data from a 85

decade of observation. But it
:
It
:
is not only data paucity that

limits our insights here: quantitative network design is per
se non-trivial in a changing world. We find, however, that
certain general patterns could be taken into consideration,
for instance the fact that event occurrence probabilities are 90

clearly inversely related to detection probabilities on a very
well defined and a robust scale. Also

:::::
robust

:::::
scale,

:::
and

::::
that the

power-law distribution of extreme event size seems to have
practical relevance for network design purposes.
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Appendix A: Regional event detection

::
In

:::
the

::::::::
following

::
we

:::::::
develop

:
a
:::::::
strategy

:::
for

:::::::
defining

::::::::
thresholds25

::
of

:::::::
regional

::::::::
relevance

::::
that

:::
are

::::::::::::::
computationally

:::::::
suitable

:::
for

::::::
dealing

::::
with

:::::::::::::
high-resolution

:::::::
remote

:::::::
sensing

::::
data

::::
like

:::
the

:
1
::::

km
:::::::
FAPAR

::::
data

::::::::::
considered

:::::
here.

::::
Our

::::
aim

:::
is

::
to

::::
find

::::::
regions

::
of

::::::::::
comparable

:::::::::
phenology.

::::
Our

:::::::::
assumption

::
is

:::
that

:::
the

:::::::
expected

:::::::
seasonal

:::::
cycle

:::
in

::::::
FAPAR

::
is
::
a
::::
good

::::::::::::
representation30

::
of

::::::
overall

:::::::::
phenology,

:::
and

::::::
hence

::::::::
ecosystem

:::::
type.

:::
The

::::
first

::::
step

:::::::::
considers

:::
the

:::::
data

:::
set

::
of

::::::
mean

:::::::
seasonal

::::::
FAPAR

::::::::
patterns

::::::::::::::::::::::::::::::::::
F= {fn,s) : ∀n ∈ 1, . . . ,N ;s ∈ 1, . . .S},

:::::
where

::::
each

:::::
point

:
n
::
is

:::::::
pointing

::
to

:
a
:::::::::::
geographical

:::::::
location

:::
u,v

:::
and

:::::::
contains

:::
the

::::
local

:::::
mean

::
of

::::::::
seasonal

::::::::::
observations

::
s.

:
35

::
In

:::
the

::::::
second

::::
step,

:::
we

::::
use

::::::::
principal

:::::::::
component

:::::::
analysis

:::::
(PCA)

::
to

::::::
reduce

:::
this

:::::::::::::
S-dimensional

::::
data

:::
set.

::
In

:::::
other

:::::
words,

::
we

:::::
seek

::::::::::
orthogonal

::::::::::
components

::::
that

:::::::::
represent

:::
the

:::::
main

:::::::
gradient

:::::
along

:::
the

::::::::::
covariances

::
of

:::
the

:::::::
seasonal

::::::
cycles.

:::::
More

:::::::
formally,

::::
the

::::::::::
covariances

::
of

:::::
these

::::::::
centered

:::::
mean

:::::::
seasonal40

:::::
cycles

:::
are

:::::
given

::
as

C= FtF .
::::::::

(A1)

:::::::
Common

::::::::
patterns

::
of

::::::::::
seasonality

::::
are

::::::::
identified

:::
by

::::
first

::::::::
estimating

:::
the

::
k

::::::
leading

:::::::::::
eigenvectors,

:

CEk = λkEk
:::::::::::

(A2)45

:::::
where

:::
Ek::::

the
:::
kth

::::::::::
eigenvector

:::
of

::::::
length

::
S,

::::
and

:::
λk:::

the

:::::::::::
corresponding

::::::::::
eigenvalue.

::::
The

::::::
scores

:::
of

:::
the

:::
kth

::::::::
principal

:::::::::
component

:::
are

:::::
given

::
by

:

Ak = FEk .
:::::::::

(A3)

:::
and

::
k

::::::
leading

::::
Ak :::

can
:::

be
:::::::::
interpreted

:::
as

::
a

:::::
proxy

:::
for

:::
the50

:::::::::::
characteristic

:::::::
patterns

:::::::::
underlying

:::
the

:::::
mean

::::::::
seasonal

:::::
cycles

:::::
across

::::::
space.

:::::
Figure

::
1
::::::::
visualizes

::::
the

::::
three

:::::::
leading

:::::::
principal

::::::::::
components

::
as

::
an

::::::::::
RGB-color

:::::::::
composite,

::::::::
revealing

:
a
::::::
distinct

:::
map

:::
of

::::::::
European

:::::::::::
phenological

::::::
regions.

:

:::::
Third,

:::
the

::::::::
question

::
is

::::
how

::
to

:::::::
identify

:::::::
regions

::
of

::::::
similar 55

::::::::
phenology

:::
in

:::
this

:::::::::
continuous

:::::
space

:::::::
spanned

:::
by

:::
the

:::::::
principal

::::::::::
components.

::::
One

::::::
could

::::
use,

:::
for

::::::::
instance,

:::::
some

::::::::
clustering

::::::::
algorithm.

::::::::
However,

:::::
given

:::
the

:::::
high

::::::
density

::
of

::::::
spatial

:::::
points

:::
and

:::
the

::::::::::
continuous

::::::::
sampling,

:::
an

:::::::::
equivalent

::::::::
approach

::
is

::
to

::::::
choose

::
an

::::::::::
equidistant

:::::
grid

::
in

::::
the

:::::
space

:::
of

:::
the

::::::::
principal 60

::::::::::
components.

:::
We

::::::
choose

:
a
::::
very

:::::
dense

:::::
grid,

::::
such

:::
that

::::
each

:::
cell

:
is
:::
as

::::
wide

::
as

:::
4%

:::
of

:::
the

:::::
range

::
of

:::
the

:::
first

::::
PC.

:::
We

::::
then

:::::
define

::
an

:::::::
FAPAR

:::::::
anomaly

::::::::
threshold

::
as

:
a
:::::::::
predefined

:::::::
quantile

:::::
based

::
on

:::
the

::::::::::
distribution

::
of

::::::
FAPAR

::::::
values

:::::::::
separately

::
for

:::::
each

:::
grid

:::
cell

::::
and

:::
its

::
26

::::::::::
neighbours

:::
in

:::
the

::::::
space

::
of

::::
the

::::::
leading

::
3 65

::::
PCs.

::::
This

::::::::
threshold

::
is

:::::::
assigned

::
to

::
all

::::::
points

::
in

:::
the

::::::::
respective

:::
grid

:::::::::::::
cellrepresented

:::::::
herein.

::::
This

:::::::::
threshold

::
is

::::::::
assigned

::
to

::
the

:::
all

::::::
points

::::::::::
represented

::::::
therein.

::::::
Figure

:::
A1

:::::::::
illustrates

:::
this

:::::::
approach

::
in
::::::
detail.
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Figure A1.
::::::::
Illustration

:::
of

::::::::::
identification

::
of
::::::

regions
:::::

with
:::::
similar

:::::::
threshold:

::::
We

:::::
define

::
a
::::
grid

::
in

:::
the

:::::
space

:::
of

:::
the

::::::
leading

::::
PCs

:::::::::::
(geographically

::::::
shown

:::
in

::::
Fig.

:::
1),

::::::
where

:::::
each

:::::
mesh

:::::
width

:::::::::
corresponds

::
to

:::
4%

::
of

:::
the

:::
total

:::::::
min-max

:::::
range

::
of

:::
the

:::
first

:::
PC.

:::
We

::::
assign

::::::::
percentile

::::::::
thresholds

:::
as

::::::::
calculated

:::
over

::
a
:::::::
3× 3× 3

:::
set

::
of

::::
mesh

:::::::
elements

::::::
(shown

::
in

::::::
orange)

:::
and

:::::
assign

:::::
these

::::::::
percentiles

::
to

::
the

::::::
central

:::
dots

::::::
(shown

::
in

:::
red).

:::
For

:::
the

::::
sake

::
of

:::::
clarity,

:::
we

::::::
illustrate

::
the

:::::::
approach

::::
only

::
in

::
the

:::::
space

::
of

::
the

::::::
leading

:::
two

::::
PCs.

:::
We

::::
have

::::
now

::::::::
proposed

:
a
:::::::
FAPAR

::::::::
threshold

:::
for

::::
each

::::
point 70

:::
and

:::
can

::::
map

:::
this

::::::::
threshold

::::
back

::
to
:::
the

:::::::::::
geographical

:::::
space

::
by

:::::::::
remapping

::::
each

::::
point

::
to

:::
the

::::::
known

:::::::::::
geographical

:::::::::
coordinates

:::
u,v.

:::::
This

:
is
::::::
shown

::
in

::::
Fig.

::
2.

Appendix B:
:::::::::::::
Spatiotemporal

:::::::::::
correlations

:::
Fig.

::
5
:::::::

reveals
::

a
::::::

strong
:::::::::::

discrepancy
::::::::

between
:::::::::
theoretical 75

:::
and

::::::::
observed

:::::::::
detection

::::::::::
probability.

:::::
Here

::::
we

:::::::::
investigate

:::
this

::::::::::
discrepancy

:::::::
further.

::::
We

::::::::
generated

:::::::::
Gaussian

::::
data

:::
but

:::::::::
introduced

::::::
varying

:::::::::::::
spatiotemporal

:::::::::
correlation

:::::::::
structures

::
of

:::::::
different

:::::::
degrees.

::::
We

:::::::
followed

::::
the

::::::::
approach

:::::::::
suggested

::
by

::::
?? to

::::::::
simulate

::::
data

::::
with

::
a
::::::

power
::::
law

::::::
power

::::::::
spectrum

::
of 80

::::
some

::::::::::
prescribed

::::::::::
exponential

:::::::
spectral

::::::
decay.

::::
The

:::::::
method

::::::::
combines

:::
an

::::::::
approach

:::
for

::::::::::
generating

::::::
spatial

::::::
fields

::
of

::
a

::::::
desired

:::::::::
correlation

::::::::
structure

:::::
that

:::::::
likewise

:::::
have

::
a
::::::
similar

:::::::
temporal

::::::::::
correlation.

:::
The

::::
idea

::
is

:::
that

:::
the

:::::::
Fourier

:::::::::
coefficients

::
of

::::
some

::::::::
artificial

::::
data

:::::
(white

::::::
noise)

:::
are

:::::
forced

::
to
::::::

decay
::
as

:
a 85

:::::
power

:::
law

::::::::
function

:::::
across

::::::::::
frequencies

:::
i.e.

::::::::::::
proportionally

::
to

::::
f−β .

:::
An

::::::
inverse

:::::::::::::
transformation

::
to

:::::
space

:::::
yields

::
a
::::::::
correlated

:::
data

:::::
field.

::
If

::
we

::::::
choose

::::::
β = 0,

:
it
::::::::::
corresponds

::
to
:::::::::::
uncorrelated,

:::::::
β =− 3

5 ::
to

::::::::::
moderately

:::::::::
correlated,

::::
and

::::::::
β =− 8

5 ::
to

::::::
highly

::::::::
correlated

:::::
data.

::::::
These

:::::::
artificial

:::::::
datasets

::::
are

:::::::::
visualized

::
in 90

:::
Fig.

::::::
B1g-i.

:::
We

::::
used

::
a

::::::::
simplified

:::::
event

::::::
search

:::::
radius

::::::
(z = 1,

:::::
τ = 1)

::::
and

:::::::::
investigate

:::
two

:::::
cases:

:

1.
:::::::
Ignoring

:::
the

::::
time

:::::::
domain:

:::
In

:::
this

:::::
case,

:::
the

:::::::::
empirically

::::::::
identified

::::::::
detection

:::::
rates

::::::::::
correspond

:::::::
exactly

:::
to

:::
the

::::::::
theoretical

::::::::
detection

::::::::::::
probabilities.

::::
This

::::::
finding

::::::
reveals 95

:::
that

:::
the

::::::
spatial

::::::::::
correlation

::::::::
structure

::::
does

::::
not

::::::
explain

:
a
::::::::

deviation
::::::

from
:::
the

:::::::::::
theoretically

:::::::::
expected

::::::
pattern

::::::::
(compare

:::::::
appendix

:::::
Figs.

::::::::
B1a—c).

::::
This

::
is

::::::::
explained

::
by

::
the

::::
fact

:::::
that,

:::::::
although

::::::::
patterns

::
of

:::::::
extreme

:::::::::
anomalies

:::::
might

::
be

:::::::::
correlated

:::
in

:::::
space,

::::
the

:::::
tower

:::::::::
placement

::
is 100

:::
still

:::::::
random

::::
and

:::
for

::::::::::
sufficiently

:::::
sparse

:::::::::
networks

:::
and

:::::::
relatively

::::::::::
contiguous

:::::::::
landscapes

::::
(i.e.

::::
only

:::::
small

:::::
edges,

::
no

:::::::
islands,

::::
etc.)

:
it
:::
has

:::
no

:::::
effect.

:

2.
::::::::::
Considering

::::::
spatial

:::
and

::::::::
temporal

:::::::::::
correlations:

:::
In

:::
this

:::
case

::::
we

:::::
find

::
a
::::::::

tendency
::::::::

towards
::::::

lower
::::::::

detection

::::::::::
probabilities.

:::::
This

::::::
effect

::::::::
becomes

:::::
more

::::::::::
pronounced

::::
with

:::::
larger

:::::::
extremes

::::
and

::::::::::::
spatiotempoal

::::::::::::
autocorrelation

:::
(see

::::::::
appendix

::::
Fig.

::::::
B1d-f)

::::
due

::
to
::

a
:::::::
stronger

::::::::
tendency5

::
for

::::::
large

::::::::::::::
spatio-temporal

::::::::
extremes

:::
to

::::::
occur

:::::
away

::::
from

:::
the

:::::::::
domain’s

::::::::::
boundaries,

:::::
thus

::::
any

:::::
tower

::::
that

:
is
:::::::::

randomly
::::::
placed

:::::
close

:::
to

:
a
:::::::::

boundary
::::::
would

::::
have

:
a
::::::::::::::::

disproportionately
::::

low
:::::::

chance
:::
of

::::::::
detecting

:::::
large

::::::::
extremes.10

::::::::
However,

:::
the

::::::::::::
approximation

::
of

:::
the

::::::::
expected

::::::::::
probabilities

::
for

::::
the

:::::
small

:::::
events

::
is
::::

still
::::::::::
inconsistent

:::::
with

:::
our

::::::::
empirical

::::::
finding

::::::
(recall

:::::
Fig.

:::
5).

:::::::
Hence,

::::
we

::::::
repeat

:::
the

::::::::
artificial

:::::::::
experiment

:::::
using

:::
the

:::::
exact

::::::::::
algorithmic

:::::::
settings

:::::::
applied

::
to

::
the

:::::::
FAPAR

:::::
data:

:::
we

::::::
allow

:::
for

::
a

::::::::
tolerance

:::::
radius

:::::::
(z� 1,15

:::::
τ = 1)

::
to
:::::::
identify

::::
each

:::::::
extreme

:::
by

::
a

::::
given

::::::
tower.

:::::
Again

:::
we

:::::::::
distinguish

:::
the

:::
two

:::::
cases:

:

1.
:::::::
Ignoring

:::
the

::::
time

:::::::
domain:

::::::
Using

:
a
:::::

large
::::::
search

:::::
radius

::
for

:::::::::
detecting

::::::::
extremes

:::::::
(which

:::
is

::::::
clearly

:::::::::
necessary

::
in

::::
real

::::
and

::::
e.g

:::::::::::
fragmented

:::::::::::
landscapes)

:::::
leads

:::
to20

::::::::
increased

::::
event

::::::::
detection

:::::
rates.

:::::
This

:::::
effect

:::
can

::::
lead

::
to

:::::
higher

::::::::
detection

::::
rates

::::
that

::::::
exceed

:::
the

::::::
simple

::::::::
statistical

::::::::::
expectations

::
as

:::::::
derived

:::::
from

:::
the

:::::::
binomial

::::::::::
distribution

::
by

::::::
several

::::::
orders

:::
of

:::::::::
magnitude

:::
in

:::
the

:::::
case

::
of

:::::
small

:::::::
extremes

::::
(see

::::::::
appendix

::::
Figs.

::::::::
B2a—c). 25

2.
::::::::::
Considering

:::
the

::::
full

:::::::::::::
spatiotemporal

::::
case

:::::::
reduces

:::
the

::::::::::
discrepancy

::::::
slightly

::::
(i.e.

:::
for

::::
large

::::::
events

:::
that

::::::
would

::
be

:::::::
detected

::::::::
anyway),

:::
but

:::
still

::::::
results

::
in
:::

an
::::::::::::
overestimation

:::
(see

:::::::::
appendix

::::
Fig.

:::::::
B2d-f).

::::
For

:::::
very

::::::
large

::::::
events,

::
the

:::::
lines

:::::
may

:::::
even

:::::
cross

:::
in

::::
the

:::::
case

:::
of

:::::::
strongly 30

:::::::::::
autocorrelated

:::::
data.

:::::
These

::::::::
numerical

:::::::::::
experiments

:::::::
highlight

:::::
some

::
of

:::
the

:::::
issues

:::
that

:::::
need

:::
to

:::
be

::::::::::
considered

::
in

::::::::::
evaluating

::::
real

::::::::
networks

::
or

::::::::::
quantitative

::::::::::::::
network-design:

:::
the

::::::::::
phenomena

:::
we

::::
aim

::
to

::::::
monitor

::::
are

::::::
highly

:::::::::::::
autocorrelated

:::
in

:::::
time,

::::::
which

:::::
leads 35

::
to

:::::::::::
considerable

:::::
edge

::::::
effects

:::
for

:::::
large

:::::::
events.

:::::::::
Therefore,

::::::::::
theoretically

::::::::
expected

::::::::
detection

:::::
rates

:::::::::
estimated

:::::
from

:::
the

:::::::
binomial

::::::::::
distribution

:::
are

::::::
overly

:::::::::
optimistic

:::
for

:::::
large

:::::
events

:
-
::::::
unless

:::
the

::::::
effects

::
of

:::::::::::::
autocorrelation

::::
and

:::::
edge

::::::
effects

::
as

:
a
:::::::::::
consequence

:::
for

:::::
large

::::::
events

:::
are

::::::::::
analytically

:::::
taken

::::
into 40

:::::::
account.
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Figure B1.
::::::
Artificial

::::
data

:::::::
example.

::
a)

::::::::
Detection

:::::::::
probabilities

:::::
when

::::::
ignoring

:::
the

::::
time

::::::
domain

:::
for

::::::
varying

::::::
network

:::::
sizes.

::
In

:::
this

::::
case,

:::
the

::::::::
empirically

::::::::
identified

:::::::
detection

::::
rates

:::::::::
correspond

:::::
exactly

::
to
:::

the
:::::::::

theoretical
:::::::
detection

::::::::::
probabilities.

::
If

:::
we

:::::
induce

:::::::
moderate

::::::::::::
spatiotemporal

::::::::
correlations

::
in
:::

b),
:::
and

:::::::
stronger

:::
ones

::
in
::
c)
:::
we

:::
still

:::
find

:::
an

:::::::
excellent

::
fit

::
to

::
the

:::::::::
theoretical

::::::::
expectation

:::::::
because

::
we

::::
still

:::
have

::::::::
relatively

:::::
sparse

:::::::
networks

:::
and

::
the

::::::
towers

::
are

::::::::::
independent

::::::
samples

::
of

:::
the

::::::::
underlying

::::::::::
distribution.

:
If
:::
the

:::::::
detection

::::
rates

::::
over

::::
space

:::
and

::::
time

:::
are

:::::::::
considered,

::::::
however,

:::
the

:::::
events

:::
are

::
no

:::::
longer

:::::::::
independent

:::
due

::
to

::::
their

:::::::
temporal

:::::::::::
autocorrelation,

:::
and

::::
thus

::
the

::::::
largest

::::::
extremes

::::
tend

::
to

:::::
cluster

::::::
towards

:::
the

::::
center

::
of
:::
the

::::::
domain.

::::
Parts

::
e)

:::
and

::
f)

::::
show

::::
these

:::::
lower

:::::::
detection

::::
rates,

:::
and

:::
g),

::
f),

:
i)
:::
are

::
the

::::
data

:::::::::::
corresponding

::
to

:::::
results

::
in

::
the

:::::::
columns.
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Figure B2.
:::::::
Artificial

:::
data

:::::::
example

:::::::::
considering

:::
the

:::::
actual

:::::
event

:::::::
detection

::::::::
algorithm.

::
a)

::::::::
Detection

::::::::::
probabilities

::::
when

:::::::
ignoring

:::
the

::::
time

:::::
domain

:::
for

::::::
varying

::::::
network

:::::
sizes.

::
In

:::
this

::::
case,

:::
the

::::::::
empirically

::::::::
identified

:::::::
detection

::::
rates

:::::::::
dramatically

::::::::::
overestimate

:::
the

::::::::
theoretical

:::::::
detection

:::::::::
probabilities.

::
If

::
we

::::::
induce

:::::::
moderate

:::::::::::
spatiotemporal

:::::::::
correlations

:
in
:::
b),

:::
and

::::::
stronger

:::
ones

::
in

::
c)

::
we

:::
still

::::
find

:::
this

:::::
pattern,

:::
but

:
it
::
is

:::
less

:::::::::
pronounced

::
for

:::
the

:::
very

::::
large

::::::
events.

:::
This

:::::
shows

:::
that

:::::
having

::
a
::::
large

::::::
footprint

:::
for

::
the

:::::
event

:::::::
detection

:::::::
algorithm

::::
leads

::
to

::
an

:::::::::::
overestimation

::
of

:::
the

:::::::
detection

:::
rates

::
of
:::::
small

:::::::
extremes.

::
If

::
the

:::::::
detection

::::
rates

::::
over

::::
space

:::
and

::::
time

:::
are

::::::::
considered,

:::::::
however,

:::
the

:::::
events

:::
are

::
no

:::::
longer

:::::::::
independent

:::
due

::
to

::::
their

::::::
temporal

::::::::::::
autocorrelation.

:::::
Parts

::
e)
::::

and
:
f)
:::::

reveal
:::::

lower
::::::::
deviations

::::
from

:::
the

:::::::
expected

:::::::
detection

::::
rates,

:::::
which

::
is
::
a
::::::::::
compensating

:::::
effect

::
of

:::
the

:::::::::::
autocorrelation

:::
and

::::
event

:::::::
detection

::::::
method

::::::
setting.

:::
The

::::
data

::::::::::
corresponding

::
to

:::::
results

::
in

:::
the

::::::
columns

:::
are

:::::
shown

::
in

::
g),

::
f),

:::
and

::
i).
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Appendix C: Supplementary figures
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Figure C1.
::::::
Average

:::::::
detection

::::
rates

::
of

:::::::
extremes

::
of

::::
given

::::
ranks

::::
(each

:::
line

::::::::
represents

:::
the

:::
rank

::
of

::
an

::::::
extreme

:::::
event)

:::::
across

::::::
varying

::::::
network

::::
sizes

:
in
:::::::::

logarithmic
:::::::::::
representation

::::
(left

:::::
panel)

:::
and

:::::
linear

::::::::::
representation

:::::
(right

:::::
panel).

:::::
Small

:::::
ranks

::::::
indicate

::::
large

::::::
impact

:::::::
extremes

:::
that

:::::::
typically

:::
also

::::
affect

::::
large

::::
areas

::::
(see

:::
Fig.

::
4).

::::
The

::::
figure

:::::
shows

:::
that

:::::::
detection

::::
rates

::::
scale

::::
with

:::::
smaller

:::::::
network

::::
sizes

:::
and

:::
then

::::
tend

:
to
::::::
saturate

:::
i.e.

:::
we

:::
find

:
a
:::::::::
convergence

::::::
towards

:::
full

:::::::
detection

:::::
rates.

Figure C2.
:::::::::
Comparison

::
of

:::
the

::::::
affected

::::
area

::
of

:::::::
extremes

:::
(Fig

:::
4c)

:::
and

::
the

::::::::
theoretical

:::::::::
expectation

:::::::
according

::
to
:
a
:::::::
binomial

:::::::::
distribution.

:::
Our

:::::::
empirical

::::::::
detection

:::::::::
probability

::
is

:::::
lower

:::
for

:::
the

::::
very

::::
large

:::::::
extremes,

:::
and

:::::
higher

:::
for

:::
the

::::
small

:::::::
extremes.

::::
The

::::::
problem

::
is
::::
more

::::::::
pronounced

:::
for

::::
small

:::::::
network

::::
sizes.
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Figure C3.
:::
The

::::::::
probability

:::::::::
distribution

::
of

:::::
areas

::::::
affected

::
by

:::::::
extremes

::
in
:::

(a)
::::::
Europe

:::
and

:::
(b)

::
the

::::
US.

:::
The

::::
tails

::
of

:::
the

:::::::::
distributions

:::
can

:::
be

:::::::
described

::
by

:::::
power

::::
laws.

:::
The

::::::
average

::::::
scaling

:::::::
exponent

:::
for

::
the

::::
tails

:
is
::::
1.85

::
for

::::
both

:::::
cases.

.
:

Appendix D:
:::::::::
Analogous

::::::::
example

:::
for

:::
soil

::::::::
moisture

D1
:::
On

:::
the

::::::
ISMN

:::
The

::::::::
approach

:::
for

::::::
testing

::
a
:::::::
network

::::::
design

:::
for

:::
its

:::::::
capacity 45

::
to

::::::
detect

::::::::
extremes

:::
is

:::::::
generic

::::
by

:::::::::::
construction.

::::
As

:::
an

::::::::
additional

:::::::::::::
demonstration

::::
we

::::::::
explore

::::
the

::::::::
capacity

:::
of

::
the

::::::::::::::
International

:::::
Soil

::::::::::
Moisture

::::::::::
Network

:::::::
ISMN

::::::::::::::::::::::::::
(http://ismn.geo.tuwien.ac.at/ ?),

::::
a
:::::::::

steadily
:::::::::

growing

:::::::
initiative

:::::
that

:::::::::
comprises

:::::::::::
collections

:::
of

:::::
soil

::::::::
moisture 50

::::
only.

::::::::::
Comparable

::
to

::::::::::
FLUXNET

:::::
there

:
is
:::
no

:::::::
specific

::::::
funding

::
for

:::::::::::
measurement

::::::::::
campaigns,

:::
and

::::::
ISMN

:::::::
crucially

:::::::
depends

::
on

::
the

:::::::::::
contributions

:::
of

::::::::
historical

::::::::::
observations

:::
by

:::
the

::::::::
respective

:::::::::::
communities.

:::::::::::
Methodology 55

:::::
Direct

:::::::::::
observations

:::
of

:::
soil

::::::::
moisture

:::::
from

::::::::
satellites

:::
are

:::::::
available

::::
(?),

:::
but

:::::
these

::::
data

::::
still

:::::
suffer

:::::
from

:::::::::::
concatenating

:::::::
different

::::
data

:::::::
sources.

:::::
And

::
in

::::
fact

:::::
these

:::::::::
transitions

:::::
make

::
the

::::
data

:::
set

::::
very

:::::::::::
problematic

:::
for

:::::::
detecting

::::::::
extremes

::
–
::
or

::
in

::::
other

::::::
words,

:::::::
extreme

:::::
event

::::::::
detection

::::
may

:::::::
identify

:::
the

::::
data 60

:::::::
merging

:::::
edges.

:::::::::::
Alternatives

:::
are

:::::::
classical

:::::::
drought

::::::::
indicators

:::
that

::::
can

:::
be

:::::::
derived

::::
from

:::::::::::::
climatological

::::
data

:::::
only.

:::::
Here,

::
we

::::
rely

:::
on

:::
the

::::::::::::
Standardized

:::::::::::
Precipitation

:::::
Index

:::::
(SPI)

:::
for

:::::::
detecting

:::::::
extreme

::::::
events

::
as

::::::::
extracted

::::
from

::::
SPI

:::
and

:::::::
compare

:
it
:::

to
:
a
:::::::

random
::::::::

network
:::
of

:::
the

:::::
same

::::
size

:::::
(Fig.

::::
D1).

::::
The 65

:::
SPI

::
is

::::::::
extracted

:::::::::
following

:::::::
standard

::::::::::::
methodology

:::::::
(?) from

:::::::
monthly

:::::::::::
ERA-Interim

:::::::
rainfall

::::
data

:::
(?),

::::::
using

:
a
:::::::::

3-monthly

:::::::::
aggregation

::::::::
window

::::
over

::::
the

::::::::::
1979-2011.

:::
We

:::
us

::::
the

:::
SPI

::::
only

:::
for

:::::::::
illustration

::::::::
purposes

::::
until

:::::
more

:::::
robust

::::
EO

:::
for

:::
soil

:::::::
moisture

:::::::
become

:::::::::
available,

:::
i.e.

::::
we

:::::::
assume

::::
that

:::
low

::::
SPI 70

:::::
values

:::
are

::::::
proxies

:::
for

::::
low

:::
soil

::::::::
moisture

:::::::
contents.

:

::::::
Further,

::
a
:::::
local

::::
10th

:::::::::
percentile

::::::::
threshold

:::
is

::::::
applied

:::
on

::
the

::::
SPI

:::::
time

::::::
series

:::
to

::::
flag

:::
dry

:::::::
events

::::
with

::::::::::
subsequent

:::::::
detection

::::
of

::::
the

:::::
large

::::::::::
connected

:::::::
events.

:::::
The

::::::
choice

::
of

::::
the

:::::
local

:::::::::
threshold

:::
is

:::::::::
consistent

:::::
with

::::
the

:::::::
typical 75

::::::::::::::::::::::::
meteorological/climatological

:::
use

::
of

::::
SPI

::::
time

:::::
series.

::::::
Hence,

::
in

:::::::
contrast

:::
to

:::::::::::
biophysical

:::::::::::
applications

:::
as

:::::::::
presented

::
in

::
the

:::::
main

::::
part

:::
of

:::
the

::::::
paper,

::::::
global

:::
or

:::::::
regional

:::::::::
thresholds

:::::
might

:::
not

::::
be

:::::::::
physically

:::::::::::
meaningful

:::
for

::::::::::
evaluating

:::
the

::::
local

:::::::
impacts

:::
of

:::::::
climate

:::::::::
variables.

:::::
Since

:::::::::::::
meteorological

::::::::
reanalyses

::::::::
typically

::::::
operate

::
at
:::::
much

:::::::
coarser

::::::::
resolution

::::
than

:::
EO

::::
data

::::
sets,

::
for

:::
the

:::::::::
analogous

:::::::
analysis

::::::::
presented

::::
here

::::
both5

::
the

::::::
spatial

::::
and

:::::::
temporal

::::::
search

:::::
space

:::
are

::::::
chosen

::
to

:::::::
comprise

::::
only

::
the

::::::::
spatially

:::
and

:::::::::
temporally

:::::::
adjacent

:::::
voxel

::::
(i.e.

:
z
::
=

:::
0.5°

:::
and

::::
tau=

:
1
::::::
month

::
in

:::
the

:::
SPI

::::::::
dataset).

::
To

::::::::
evaluate

:::::
the

:::::::
ISMN,

::::
all

:::::::
station

:::::::::
locations

::::
and

::
the

::::::::
periods

:::
of

::::::
active

:::::
data

:::::::::
sampling

:::
of

:::::
each

:::::::
station10

::::
were

:::::
used

:::
for

::::::::::::::
spatio-temporal

::::::::::
intersection

:::::
with

:::
the

::::
SPI

:::::::
extremes

:::
in

::::
two

:::::::::
different

:::::::
setups:

:::::::
Firstly,

:::
we

::::::::
consider

::
all

:::::::
stations

::::::
active

:::::
only

:::
in

:::::::
periods

::::::
when

:::::
these

:::::::
stations

::::
were

:::::::::
collecting

::::
data

::::::::::
(‘dynamic’

:::::::::
network);

::::
and

::::::::
secondly,

:
a
::::::
‘static’

::::::::::::::
(counterfactual)

::::::::
situation

::
is
::::::

taken
::::
into

:::::::
account,15

:::::
where

:::
all

::::::
stations

::::
are

:::::
taken

::
as

:::::
active

::::::::::
throughout

:::
the

:::::
entire

:::::::::::
ERA-Interim

::::::
period.

:::::
The

::::::::::
comparison

:::::
was

:::::::::
restricted

::
to

::::::
Europe

:::
due

::
to
::::

data
::::::::::

availability
::::
(i.e.

::::
most

:::::::
regional

::::::::
networks

:::
that

::::
form

::::::
ISMN

:::
are

:::::::
operated

::
in

:::::::
Europe

::::
(?)).

::::::
Results20
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:
If
:::
we

:::::::
consider

:::
the

::::
full

::::::::::::
spatiotemporal

::::::::::
intersection

:::
we

:::
find

:::
that

::::
only

::::
the

::::
first

::::
five

:::
SPI

:::::::::
extremes

:::::
would

:::::
have

:::::::
affected

::::
areas

::::::
where

::::
the

::::::
ISMN

:::
has

::::::::
stations

::::
(Fig.

:::::
D1,

:::
red

:::::
line).

::::::
Higher

:::::
ranked

::::::::
extremes

:::
are

::::
less

:::::
likely

::
of

:::::
being

:::::::
detected.

:::
An

:::::
annual

:::::::
random

:::
site

:::::::::
placement

:::::
(gray

:::::
lines)

::::::
would

::::
have

::::
been25

::::
more

:::::::
efficient

::
in

:::::::::
identifying

:::
the

:::::::::
extremes.

::
In

:::
fact

:::
the

::::::
current

::::::::::
geographical

::::::::::
coordinates

::::
u,v

::::::
would

::::
have

::::
only

:::::::
reached

:::
the

:::::::
potential

:::
of

:
a
:::::::

random
::::::::

network
::
if

::::
they

::::
had

:::::
been

:::::::
operated

::::::
without

:::::::
ceasing

:::::
over

:::
the

::::::
entire

::::::::::
monitoring

::::::
period

:::::
(blue

:::::
lines).

:::
But

::::
that

:::::
would

::::
have

:::::::
implied

:::::
much

::::
more

:::::::::::
measurement30

::::
years

::::
than

:::
the

:::::::
random

:::
site

:::::::::
placement.

:::
For

::::
very

::::
high

:::::
ranks

::
of

:::::::
extremes

::::
(the

::::
very

:::::
small

:::::::
events)

:::
the

:::::::::::
continuously

:::::::
operated

::::::::
real-world

::::::::
network

::::::
would

::::
have

::::::::::::
outperformed

:::
the

:::::::
random

:::::::
network.

:::::
These

::::::
results

:::
are

:::::::::
consistent

::::
with

:::
the

::::::
results

:::::
shown

::
in

:::
the

:::::
main

:::::
paper.

:
35

::
An

::::::::::
interesting

::::::
feature

:::
of

:::::
ISMN

::
is
::::

that
::::

the
:::::::
network

:::
has

:::::::
changed

::
its

::::::::
structure

::::
over

::::
the

:::
last

:::::::
decades

:::
to

:
a
:::::

very
::::
large

:::::
extent.

:::
In

:::
the

:::::::
eighties,

:::
all

::::::
station

::::::::
locations

:::
are

::::::::
confined

::
to

::::::
Eastern

:::::::
Europe

::::
(Fig.

::::
D2,

:::::
upper

::::::
panel).

:::
In

:::
the

::::
last

::::::
decade,

:::::::
Western

::::::::
European

::::::
station

::::::::
networks

::::::
became

::::::
active,

:::
but

::::
both40

::
the

:::::::
number

:::
and

::::
data

:::::::::
availability

:::::
from

::::
East

::::::::
European

::::::
stations

:::
was

:::::::
severely

:::::::
reduced

:::::
(Fig.

:::
11,

:::::
lower

::::::
panel).

::::
This

::::::
change

::
in

:::::::
network

:::::
design

:::::::::::
materializes

:::::::
strongly

::
in

:::
the

::::::
spatial

:::::::
locations

::
of

:::
the

:::::::
detected

::::::
events:

::::::
While

::
in

:::
the

:::::::
eighties

:::::
most

:::::::
extremes

::
in

::::::
Eastern

:::::::
Europe

::::::
where

:::::
‘seen’

:::
by

::
at
:::::

least
:::
one

::::::
tower

:::
and45

::
the

::::::::
detection

:::::
rates

::
in

::::
West

:::::::
Europe

::::
were

:::::
poor,

:::
this

::::::
pattern

::
is

:::::::
reversed

::
in

:::
the

:::
last

:::::::
decade

::::
(Fig.

::::
D2).

:::::::
Further,

::::
both

:::::::
decades

:::::::
highlight

::::
that

::
a
::::::

static
:::::::
random

:::::
tower

::::::::::
placement

::
is
:::::

more

:::::::
efficient

:::
than

:::
the

:::::::
current

:::::::
network,

:::::
which

::
is
:::::::::
explicable

::
by

:::
the

::::
high

:::::
degree

::
of

::::
site

::::::::
clustering.

::::
The

:::::::::
importance

::
of

::::::::::
maintaining50

:::::::::
continuous

::::::::::
observation

::::
alive

::::::::
becomes

::::
even

:::::
more

::::::
evident

::
if

:::
one

::::::::
analyzes

:::
the

:::::::
network

:::::::::::
development

:::::
over

::::
time

::
in
:::::

more

::::
detail

:::::
(Fig.

::::
D3).

::
In

::::::::::
conclusion,

:::
the

:::::::::::::
complementary

:::::::
analysis

::::::::
presented

::::
here

::::::::::::
substantiates

:::
the

:::::
main

::::::
paper

:::
in

::::
that

:::
the

:::::::::::
consideration

::::
both

:::
the

::::::
spatial

::::::
location

::::
and

:::
the

:::::::::
availability

::
of 55

:::::::
historical

::::
data

::
is

:
a
::::::
crucial

:::::::
element

::
to

::::::::::
reconstruct

:::
the

::::::
impacts

::
of

:::::::
extreme

:::::
events

::
in

:::
the

:::::
recent

:::::
past.
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Figure D1.
:::::::::
International

:::
Soil

:::::::
Moisture

:::::::
Network

:::
and

::
its

:::::::
capacity

:
to

::::
detect

:::
SPI

:::::::
extremes

::
in
::::::
Europe.

:::::
Again

:::
red

:::
line

:::::
shows

:::
the

:::::::
reduction

:
of
::::::::

detection
:::::::
capacity

:::
due

::
to
:::::::

inactive
::::::
towers.

::::::::
Randomly

::::::
placing

::::::::
observation

:::::
years

::
in

::::
space

:::
and

::::
time

::::
leads

::
to

:::::
higher

:::::::
detection

::::
rates

::
for

::::
large

:::::::
extremes,

::::
and

::::
lower

::::
rates

::
for

:::::
small

:::::::
extremes.
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Figure D2.
:::::::::
International

:::
Soil

:::::::
Moisture

:::::::
Network

:::
and

:::
its

:::::::
capacities

::
to
:::::
detect

:::
SPI

:::::::
extremes

::
in

::::::
Europe

::
vs.

::
a
::::::
random

::::::
network

:::
for

:::
the

::::::
1980ies

:::::
(upper

::::
row)

:::
and

::::
2000s

::::::
(bottom

:::::
row).
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Figure D3.
::::::
Number

:
of
::::::

stations
::
in
:::
the

::::::::::
International

:::
Soil

:::::::
Moisture

:::::::
Network

:::
over

::::
time

::::::::
confronted

::::
with

::::::
drought

::::::
affected

::::
area.
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