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Abstract. Extreme hydrometeorological conditions typically
impact ecophysiological processes on land. Satellite based
observations of the terrestrial biosphere provide an important
reference for detecting and describing the spatiotemporal de-
velopment of such events. However, in-depth investigations5

of ecological processes during extreme events require addi-
tional in-situ observations. The question is whether the den-
sity of existing ecological in-situ networks is sufficient for
analyzing the impact of extreme events, or what are expected
event detection rates of ecological in-situ networks of a given10

size. To assess these issues, we build a baseline of extreme re-
ductions in the Fraction of Absorbed Photosynthetically Ac-
tive Radiation (FAPAR), identified by a new event detection
method tailored to identify extremes of regional relevance.
We then investigate the event detection success rates of hy-15

pothetical networks of varying sizes. Our results show that
large extremes can be reliably detected with relatively small
networks, but also reveal a linear decay of detection proba-
bilities towards smaller extreme events in log-log space. For
instance, networks with ≈100 randomly placed sites in Eu-20

rope yield a ≥ 90% chance of detecting the 8 largest (typi-
cally very large) extreme events; but only a≥ 50% chance of
capturing the 39 largest events. These findings are consistent

with probability-theoretic considerations, but the slopes of
the decay rates deviate due to temporal autocorrelation and 25

the exact implementation of the extreme event detection al-
gorithm. Using the examples of AmeriFlux and NEON, we
then investigate to what degree ecological in-situ networks
can capture extreme events of a given size. Consistent with
our theoretical considerations, we find that today’s system- 30

atically designed networks (i.e. NEON) reliably detect the
largest extremes, but that the extreme event detection rates
are not higher than would be achieved by randomly designed
networks. Spatio-temporal expansions of ecological in-situ
monitoring networks should carefully consider the size dis- 35

tribution characteristics of extreme events if the aim is also
to monitor the impacts of such events in the terrestrial bio-
sphere.

1 Introduction

Many lines of evidence point towards an intensification of 40

certain hydrometeorological extreme events, such as hot tem-
perature extremes or droughts in many regions of the world
over the next few decades (IPCC, 2012). Consequently, much
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research focuses on understanding how extreme hydrome-
teorological events affect ecosystems and their functioning
(overviews of the state of research and concepts are given
e.g. in Smith, 2011; Reyer et al., 2013; Niu et al., 2014;
Frank et al., 2015). For instance, ecosystem responses could5

be manifested in extreme anomalies of phenology (Ma et al.,
2015), biogeochemical fluxes (Frank et al., 2015), or even in
altered ecosystem structure due to induced mortality (Hart-
mann et al., 2015). Global analyses of the geographical ex-
tent and integrated anomalies of extremes in the terrestrial10

biosphere reveal that only a very few extremes affect large
areas, whereas most events are only of very local relevance
(Reichstein et al., 2013). Nevertheless, the integrated effects
of extreme events may have global relevance. For instance,
Zscheischler et al. (2014a) showed that extreme anomalies15

in gross primary production (GPP) to a large extent explain
global inter-annual variability in gross carbon uptake.

Earth observations (EOs), especially satellite remote sens-
ing data, encode relevant information on anomalous ecosys-
tem functioning (Pfeifer et al., 2012; McDowell et al., 2015).20

Examples include the exploration of soil moisture anoma-
lies in tandem with climate patterns to understand anoma-
lous vegetation responses (Nicolai-Shaw et al., 2017), snow
cover induced albedo anomalies with consequences for lo-
cal climate (Chen et al., 2017), and the impact of weather25

extremes on vegetation indices to track anomalies in produc-
tivity and explain vector-borne disease outbreaks (Anyamba
et al., 2014), among many others. The consistent and con-
tiguous spatiotemporal data coverage, and, more importantly,
the fact that observations of the land surface typically inte-30

grate a plethora of processes, make EO very attractive for
detecting extremes affecting the land surface.

Although EOs enable the detection of extremes in the
terrestrial biosphere, a deeper understanding of impacts on
ecosystem functioning can be gained from combining EOs35

with in-situ observations (Frank et al., 2015; Babst et al.,
2017). In fact, ecological in-situ networks play an increas-
ingly important role in analyzing ecological phenomena and
often provide a complementary perspective on natural phe-
nomena to EO (Nasahara and Nagai, 2015; Papale et al.,40

2015; Wingate et al., 2015) and complement model analyses
(Rammig et al., 2015; Sippel et al., 2017). One prominent ex-
ample is FLUXNET, with its proven record of advancing our
understanding of the functioning of terrestrial ecosystems
(Balddocchi, 2014). FLUXNET assembles data on the tur-45

bulent land-atmosphere exchanges of CO2, H2O, and energy
via the eddy-covariance (EC) technique (Aubinet et al., 2000,
2012) as they are collected in regional networks at the coun-
try or continent scale (e.g. the pan-European Network Inte-
grated Carbon Observation System ICOS, AmeriFlux, Asi-50

aFlux etc.). Today, many additional networks are operational
or are concatenating data from past campaigns. For instance,
the International Soil Moisture Network (ISMN) includes a
wide range of soil-moisture observations at different depths
(Dorigo et al., 2011, 2013); phenological observations are55

collected in EUROPhen (Wingate et al., 2015) or Phenocam
(Richardson et al., 2013), and one could easily extend this
list.

The site distribution in space of ecological in-situ monitor-
ing networks is typically sparse. One obvious and common 60

critique is that networks emerging either as voluntary asso-
ciations of sites or being constructed on the basis of exist-
ing sites (naturally) cannot provide an equitable representa-
tion of the world’s ecosystems (Schimel et al., 2015). And
in fact, geographic clustering of sites (Oliphant, 2012) as 65

well as incoherence in their temporal continuity is problem-
atic. However, it has also been shown that the problems of
network spatiotemporal representation and the limitations of
spatiotemporal extrapolations (“upscaling” sensu Jung et al.,
2009; Xiao et al., 2012; Tramontana et al., 2016) are rela- 70

tively minor compared to the advantages of the sheer size of
the network (Papale et al., 2015).

In this paper we aim to understand the potential of eco-
logical in-situ networks of varying size for monitoring the
impact of extreme events. This paper addresses this issue 75

in three steps: 1) We propose an approach for detecting ex-
tremes that are of regional relevance. This step is important to
avoid a bias toward considering extremes that take place only
in high-variance regions, and may be a relevant contribution
beyond our application. 2) We explore a series of random 80

networks of varying sizes to explore the expected detection
rates. We aim to understand the observed patterns using prob-
abilistic approaches and formulate a theoretical expectation
of detection probabilities of extremes. 3) We then analyze
the detection probabilities in two real networks (NEON and 85

Ameriflux) and compare these to random networks of iden-
tical size. The paper concludes with an outlook on how our
remarks could lead to improvements in network design that
could be implemented to improve the detection of extreme
events. 90

2 Data

2.1 Earth observations, EO

We required a catalogue of extreme events experienced by
terrestrial ecosystems in the past several years to analyze
the suitability of in-situ networks for detecting them. To cre- 95

ate such a catalogue of extreme impacts, we used extreme
negative anomalies of the Fraction of Absorbed Photosyn-
thetically Active Radiation, FAPAR. These values are a di-
mensionless spatiotemporal indicator of how much solar ra-
diation energy (in the PAR domain) is effectively absorbed 100

by vegetation i.e. converted by photosynthesis (Pinty et al.,
2009; McCallum et al., 2010).

FAPAR is considered an “Essential Climate Variable
(ECV)” (Global Terrestrial Observing System, 2008) be-
cause it supports a large variety of studies on the states and 105

variability of the biosphere (e.g. Knorr et al., 2007; Verstraete
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et al., 2008) and plays an increasingly important role in the
investigation of global biogeochemical cycles (in particu-
lar carbon and water fluxes). For instance, FAPAR can be
conceptually related to GPP (typically estimated from eddy
covariance (EC) tower measurements). This relationship is5

of the general form GPP= ε×FAPAR×PAR, where ε
is some “light use efficiency”, and PAR is the “photosyn-
thetically active radiation” (e.g. Monteith, 1977); one may
also include other limiting factors. Consequently, FAPAR
is an important basis for empirical estimates of GPP (Jung10

et al., 2008; Beer et al., 2010; Tramontana et al., 2016) and
other relevant ecosystem-atmosphere fluxes e.g. evapotran-
spiration (ET; Jung et al., 2010) or is directly used as input to
diagnostic biosphere models (Seixas et al., 2009; Carvalhais
et al., 2010). Given the tight link between FAPAR and land-15

surface fluxes, this variable has been used in various stud-
ies as a reference for monitoring extremes affecting terres-
trial ecosystems (Zscheischler et al., 2013; Reichstein et al.,
2013).

The temporal variability of FAPAR is influenced by veg-20

etation development, but likewise encodes e.g. fire events
and other extreme reductions of FAPAR that are assumed
to have a pronounced effect on GPP. Here we use FAPAR
data derived by the JRC-TIP approach (TIP-FAPAR, Pinty
et al., 2011). These estimates are based on the MODIS25

broadband visible and near-infrared surface albedo prod-
ucts from NASA Collection 5 at 1 km spatial resolution
(MCD43B.005, Schaaf et al., 2002, available on demand
from co-author T. Kaminski). These satellite data cover the
entire surface every 16 days and the data range from 200030

to 2014; in this study we use data covering Europe and
the continental US (excluding Alaska). In the following we
denote this data set as a 3D data cube X= {xuvt : ∀ u ∈
1, . . . ,U ; v ∈ 1, . . . ,V ; t ∈ 1, . . . ,T} where u is the index
across the U grid longitudes, v the corresponding index on V35

latitudes, and t is the index on the T time steps. Each element
xuvt is called a voxel and is characterized by a well-defined
space-time volume.

2.2 In-situ networks

First, we create artificial random in-situ networks in order to40

systematically study the effects of varying network sizes and
as a reference for the analysis of existing networks. Then we
analyze existing or recently established in-situ networks for
their capability to detect the impacts of extreme events.

We use the geographical locations of eddy-covariance flux45

tower networks but to the actual measurements. Our main
target is FLUXNET, a global collection of eddy covari-
ance data collected (www.fluxdata.org; for in-depth descrip-
tions see Baldocchi, 2008; Balddocchi, 2014). FLUXNET is
a bottom-up initiative of regional networks which decided50

to bring their data to a central repository. Hence, there is
no systematic sampling design, resulting in unbalanced spa-
tial coverage biased towards central Europe and the con-

tiguous US (Papale et al., 2015). In the US, FLUXNET is
mainly composed of the regional network Ameriflux https: 55

//ameriflux.lbl.gov/ and we use the geographical coordinates
of their towers. In Europe, an overview of the most widely
used EC can be found in the European Fluxes database
http://www.europe-fluxdata.eu, which will be partly main-
tained in the future by ICOS https://www.icos-cp.eu. Here, 60

we rely on the site distribution described in the LaThuile data
set (Balddocchi, 2014).

The National Ecological Observatory Network, NEON
(http://www.neoninc.org/; Keller et al., 2008b) is an initia-
tive to monitor ecosystems of the United States and was con- 65

structed using a systematic sampling design chosen to equi-
tably represent the dominant ecoregions across the US. Com-
parable to Ameriflux, NEON sites are equipped with eddy
covariance towers, but also a large suite of additional in-
strumentation (SanClements et al., 2015), and human-based 70

observations are recorded frequently (Kao et al., 2012). We
also use the site coordinates of NEON to compare these with
Ameriflux in the US.

Figure 1. The top three principal components of the mean seasonal
cycles of FAPAR over Europe visualized as red (R), green (G), blue
(B) channels. The first component accounts for 84% of the variance.
The cumulative explained variances in the first two component ex-
plain 95% of the variance, and the first three components sum up to
97%. Similar RGB colour combinations indicate comparable mean
phenological patterns. These similarities are used to define overlap-
ping regions of comparable phenology. Within each phenological
region we estimate suitable and spatially varying thresholds as ref-
erences for flagging potential extreme reductions in FAPAR.

3 Methods

3.1 Regional extreme event flagging 75

The question of how to define extreme events in spatiotem-
poral data cubes (see eq. 2.1) is key to the evaluation of
the suitability of ecological in-situ networks. One approach
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would be to define some global threshold and identify values
exceeding this threshold as potential extremes (“peak over
threshold”). Choosing a global threshold setting is suitable
when the question is about how extremes add up to global
anomalies (Zscheischler et al., 2014a), i.e. when one is work-5

ing with extensive data properties where the target is the in-
tegral over space and time. However, the consequence of set-
ting a global threshold is that values that are flagged as po-
tential extremes will occur exclusively in high variance re-
gions, whereas low variance regions will apparently never10

experience extreme events. An alternative would be using
only highly local thresholds (defined over time at each spa-
tial point xuv). However, the latter approach would neces-
sarily lead to an equal spatial distribution of extreme event
occurrences, which is also not desirable. We want to define15

extremes relative to regions that are characterized by a simi-
lar ecophysiology i.e. we want to compare each grid cell with
other grid cells that have a comparable phenology and search
for extremes across these geographical locations. However,
as our approach should be entirely data driven, we refrain20

from using precomputed definitions of ecoregions.
In the following we develop a strategy to define thresholds

of regional relevance. This is an attempt to find a compromise
between fully local and global thresholding. Our idea builds
on the concept of optical types (Ustin and Gamon, 2010),25

as they have been concretely elaborated for EOs by Huesca
et al. (2015). The key idea offered by them is that similar
autocorrelation functions allows to classify ecosystems ac-
cording to their temporal dynamics (see also Houborg et al.,
2015). Huesca et al. (2015) use the leading principal com-30

ponents of the autocorrelation estimated at each pixel across
time-lags. We have developed a similar scheme to identify
regions in the EOs that are of similar dynamics, but we use
mean seasonal cycles instead of the autocorrelation patterns.
The rationale of our choice is that want to also maintain dif-35

ferences in amplitude and phasing. The main steps applied
for obtaining a regional threshold are the following (for a
full description of the regional event detection method see
Appendix A):

1. Estimate mean seasonal cycles of the datasets under40

scrutiny at each grid cell u,v. The mean seasonal cy-
cles are centered around a mean of zero.

2. Reduce the temporal dimensionality of the mean sea-
sonal cycles (MSCs) by a principal component analy-
sis such that each principal component (PC) represents45

a main feature underlying the seasonal cycles. The or-
thogonal basis for the PCs can be approximated using
a random subset of MSCs, rendering the approach very
efficient in dealing with this very large data set. Figure 1
shows the first three PCs as an RGB image map for Eu-50

rope. Although the nonlinearity of color perception by
the human eye limits the quantitative informative value
of the map, similar colors still represent regions of sim-
ilar phenological dynamics in FAPAR, so one can gain

an impression of environmental heterogeneity in the in- 55

vestigated area.

3. Identify pixels of comparable phenology by binning the
scores of the MSCs on the three leading PCs as illus-
trated in Fig. A1 into bins of equal size. Note that the
bins are very small compared to the length of the PC, 60

guaranteeing a very fine binning.

4. Estimate a characteristic FAPAR anomaly threshold in
each bin, considering all grid cell u,v belonging to this
bin and grid cell u,v in the adjacent bins. Note that
in the case of binning the leading 3 PCs, we have all 65

grid cell u,v in 27 bins to estimate an FAPAR anomaly
threshold as a quantile of the anomalies. Figure 2 illus-
trates the resulting regional threshold of FAPAR anoma-
lies. In southern European ecosystems, smaller negative
anomalies of FAPAR (i.e. higher values in Fig. 2) would 70

be used to flag values as potential extremes. The over-
all geographical pattern suggests that low-variance re-
gions (i.e. arid ecosystems) typically require smaller de-
viations from the expected variability to be considered
abnormal situations. 75

Figure 2. Map of the regionally varying FAPAR threshold used for
detecting extreme events. These thresholds are derived within each
subregion as defined by the leading PCs of the mean seasonal cy-
cles. The gradient between central and southern Europe indicates
that we may classify an event as extreme in one ecosystem that
would be considered part of the normal variability elsewhere, i.e.
arid ecosystems have lower thresholds of extremeness in FAPAR
compared to humid areas.

The rationale behind this approach is primarily that simi-
lar mean seasonal cycles indicate which pixels form a “phe-
nological cluster”, requiring the application of similar quan-
tiles. Additionally, the identification of these clusters based
on the leading PCs avoids complications of an analogous 80
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analysis in geographical space where regions of similar phe-
nology might be spatially separated by some barrier like a
different land cover type, orography, or a body of water.

3.1.1 Contiguous spatiotemporal extremes

Based on the regional extreme threshold (Fig. 2) one may flag5

individual events as potential (“candidate”) extremes. How-
ever, these initially flagged values may likewise reflect obser-
vational noise. Zscheischler et al. (2013) therefore proposed
only considering events as extremes if larger geographical ar-
eas are synchronously affected or if the extreme persists over10

some temporal threshold (a very similar idea was proposed in
the context of monitoring droughts by Lloyd-Hughes, 2012).
This idea is realized by identifying clusters in the data cube
where the spatial or temporal voxel neighbors are likewise
flagged as potential (“candidate”) extremes. Each of these15

clusters is subsequently considered a singular event; for a
conceptual illustration see Fig. 3.

Figure 3. Conceptual visualization of the presented approach. An
extreme occurs over a well-defined spatiotemporal domain (which
could be asymmetric as shown here e.g. on the latitude/longitude
projection). The rank of an extreme can be determined e.g. by the
anomaly integrated by the red voxels, or the maximum spatial ex-
tent (gray area), or the duration along the time axis, amongst other
properties. Black lines indicate the spatial position and active time
of three in-situ measurement stations. In this example, only one site
would have coincided with the extreme and would be considered as
a potential basis for exploring the in-situ effects of the event.

A critical step of this process is defining the search space
around each voxel for detecting potential neighbor extremes
that should be concatenated. Throughout this paper we con-20

sider the direct neighborhood around a central voxel as fol-
lows:

– We define a spatial search space z. Two voxels xuvt and
xu′v′t (u 6= u′; v 6= v′) are connected if |u−u′| ≤ z and
|v−v′| ≤ z to obtain a spatial connectivity structure for25

a given t.

– We also define a temporal search horizon τ from the
central voxel to compare xuvt and xuvt′ (t 6= t′) con-
necting them if |t− t′| ≤ τ .

Visually speaking, we search a square in space and a short 30

line structure in time centered on a locally detected extreme
event. Note that a wide range of alternative spatiotempo-
ral connectivity structures could be used, for instance em-
phasizing the temporal dimension by extending the search
space along the t-axis. Our choices of z = 5 (correspond- 35

ing to 25km) and τ = 1 (16days) are adjusted ad-hoc to the
specific properties of the TIP-FAPAR data with its relatively
high spatial resolution. By setting z = 5 we guarantee that
e.g. similar vegetation types (from which we would assume a
similar responsiveness to some extreme event) could be con- 40

catenated to one extreme, even if these vegetation types are
spatially fragmented due to a mosaic of land cover types. In
time we search only starting from the central voxel, but given
that we do this at each v,u combination, relatively complex
spatiotemporal structures are allowed. Each event may con- 45

sist of a set of voxels with characteristic geometric proper-
ties such as the event average or maximum duration across
all affected grid cells, or the maximum areal extent. Another
interesting property is the average duration of an extreme per
affected grid cell. Another way of looking at these events is 50

to integrate the variable anomaly over the voxels affected by
an event, and one could also define additional metrics.

3.1.2 Specific setting for this study

In summary, in this study we used the following settings:

– Mean seasonal cycles computed over a time-span from 55

2001 to 2014.

– The first three PCs binned using a grain size of 4% of
the range of the first PC.

– For each bin in the PC space and its surrounding 26 cells
we estimate the quantile = 0.025. The FAPAR-anomaly 60

values corresponding to this quantile are assigned as the
threshold for the grid cells corresponding to this central
bin.

– The search space for detecting extreme events is param-
eterized with z = 5 and τ = 1 corresponding here to a 65

search space of ±5 km and ±16 days.

3.2 Coinciding in-situ observations and 3D extremes

In-situ observations typically capture subgrid-level processes
or footprints. For the sake of simplicity, here we assume that
each point measurement is representative of one pixel xuv 70

[1 km2] and we intersect geographical positions u and v of
the in-situ data with the occurrences of 3D extremes. This
approach allows us to answer the hypothetical question of
whether a certain observation site would have detected an
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extreme in the past. An intersection considering the time do-
main as well would allow us to understand if an extreme had
a chance of being effectively observed. Along these lines,
we can also investigate whether random placement of towers
would have improved or deteriorated the capability to detect5

extreme events.

4 Results

4.1 Random networks

To better understand expected extreme event detection rates,
we initially explore random networks and their hypotheti-10

cal capability to detect extreme FAPAR reductions. We focus
on Europe and vary the network sizes from n= 5, . . . ,10000
sites on a logarithmic scale, asking how many of the detected
extremes can be identified for each size class. More precisely,
we investigate the probability that an extreme event of a given15

size m (measured in terms of affected area) will be detected
by n hypothetical towers P (m,n). All following analyses
are based on repeating the tower placement 100 times per
size class. We mimic real site placement by assuming that a
tower is not mobile, i.e. it remains active at a given location20

over the entire period covered by the FAPAR observations.
Figure 4 shows the average detection success rates for the

random networks. The ranks r shown in Fig. 4a are derived
here from the integrated spatiotemporal FAPAR anomalies
(i.e. the total impact); the latter are displayed in Fig. 4b.25

Across network sizes we find that empirical event detection
probabilities increase with event impact. These increases typ-
ically follow a straight line in the log-log plot (power-law-
like behavior) for small extremes and then level off for very
large event sizes. To better illustrate this pattern, we selected30

the network of size n= 103 and display it as black lines in
Fig. 4. This specific network size has a P ≥ 90% chance
of detecting the 8 largest extreme events (according to the
ranks of integrated FAPAR anomaly, see Fig. 4a). This suc-
cess rate declines rapidly for smaller events, e.g. we have35

only a≥ 50% chance of capturing the r = 39th largest event.
An analogous pattern is found for the detection probabilities
assessed in terms of spatial extents (Fig. 4c). In contrast, in-
vestigating the event durations (Fig. 4d) did not reveal such
a clear pattern, which could be explained by the fact that we40

are dealing with a relatively short time series, in which only
a few discrete duration classes can be recognized. The fact
that global impacts of extreme events in the terrestrial bio-
sphere behave similarly to those at smaller spatial extents is
expected because these properties are known to be strongly45

correlated as shown e.g. in Reichstein et al. (2013). This
study also reported that the duration of extreme events is less
strongly correlated with their impact, as we would also sus-
pect from Fig. 4.

A different view on this phenomenon is offered by Fig. C150

showing the detection likelihood for extremes of a given rank

r across varying network sizes. Extremes of low rank (i.e.
large in impact) need very small networks to be detected
with rates near to 100%, whereas high rank events (of small
impact) need much larger networks to reach similar detec- 55

tion rates. The detection probability scales linearly in log-log
space with network size, indicating that one would need to
inflate in-situ networks by orders of magnitude in order to
detect small scale events at comparable rates to large-scale
extremes. 60

4.1.1 Statistical considerations

The results shown in Fig. 4c are an empirical approach to de-
scribe the detection probability of extremes characterized by
a given spatial extent m (measured e.g. in terms of the num-
ber of pixels or area affected during an event) using a network 65

constructed with n randomly placed towers. In other terms,
this figure reports the probability P (m,n) that at least one
tower detects the extreme and a single extreme event of spa-
tial extent m is detected by a single randomly placed tower
with probability 70

p=
m

mmax
, (1)

where mmax is the maximum possible extent m (in our case
the maximally affected area across all time steps). However,
an equivalent question is the probability that one extreme is
not detected by any of the n towers. According to the bino- 75

mial distribution, the latter probability is (1− p)n, and our
estimated probabilities should be described by

P (m,n) = 1− (1− p)n

= 1−
(
1− m

mmax

)n
. (2)

This formulation helps explain the parallel decline (linear 80

in log-log) in the detection probabilities for small extremes:
We can rewrite Eq. 2 as

P (m,n) = 1− exp

(
n ln

(
1− m

mmax

))
(3)

A Taylor expansion of Eq. 3 for a small number of towers n
and small event sizes m/mmax (here realized by assuming 85

that |n ln(1− m
mmax

)| � 1) yields

P (m,n)≈− ln

(
1− m

mmax

)
n. (4)

Further adjusting this formula for small extremes with
| m
mmax

| � 1 gives

P (m,n)≈ m

mmax
n, (5) 90

which, in a logarithmic form reads

lnP (m,n)≈ lnm+ lnn− lnmmax. (6)
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Figure 4. Comparison of average detection rates for randomly placed networks of different sizes in Europe for the period from 2000 to 2014.
The color code shows the moderately exponentially increasing size of networks under consideration. Lines show the average percentage of
detected events by (a) rank, (b) integrated FAPAR anomaly, (c) affected spatial area, and (d) event duration. The black line shows the case of
a hypothetical network of 103 towers.

We expect that this equation explains the empirically identi-
fied parallel lines of positive slope in Fig. 4 and compare our
empirical findings to this theoretical expectation. Fig. 5 com-
pares the expected and observed detection probabilities. The
leveling off of event detection probabilities for large events5

is indeed theoretically expected, but the log-linear scaling for
small events is expected to be steeper sensu Eq. 2.

In other words: the observed detection probabilities for
small extremes are higher than expected, whereas detection
probabilities of large extremes are lower in random networks10

compared to theoretical expectations. Our hypothesis is that
these discrepancies are related to the spatiotemporal correla-
tion structure of the extreme events, which is not taken into
account in the above theoretical analysis.

In order to investigate the discrepancy revealed in Fig. 5,15

we performed a series of simulations using artificial data
that are characterized by varying spatiotemporal correlation
structures, and compared these to the expected detection
rates. The results of these experiments are reported in Ap-
pendix B and let us conclude that there are very few ef-20

fectively independent observations because the extremes are
highly autocorrelated in time. Hence, these strong correla-
tions lead to the fact that the largest spatio-temporal extremes
tend to occur at some distance from the boundary of the do-
main (i.e. from the coasts). Because the networks are ran-25

domly placed, i.e. without regard to the differentiated oc-
currence probabilities of large vs. small extremes, this leads
to the observed underestimation of detection probabilities
for large extremes. A simple thought experiment can intu-
itively explain this effect: Imagine a landscape that consists30

of a contiguous, relatively large mainland (e.g. Europe) and
a number of islands or otherwise disconnected regions (e.g.
Great Britain, Ireland, Sicily) that are all far enough from the
mainland that spatio-temporal extremes can by definition not
be connected, i.e. exceeding the search space z. In addition,35

imagine that the few largest extremes that affect the mainland
exceed the size of any of the islands. In this case, any tower
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Figure 5. Comparison of the affected area of extremes (continu-
ous lines are a subset from Fig 4c) and the theoretical expectation
according to a binomial distribution and uncorrelated data (dashed
lines) for varying network sizes (shown as different colours). Our
empirical detection probability is lower than the the theoretical ex-
pected ones for large extremes and higher for small extremes. How-
ever, the overall pattern of the expected detection probabilities is
well captured by the theoretical expectation.

randomly placed on an island cannot contribute to detecting
large extremes, which intuitively illustrates why not taking
into account the effects of autocorrelation and edge effects 40

in our analysis results in overly optimistic theoretical pre-
dictions of detection rates based on the binomial distribution
for real world landscapes. Contrarily, for medium-sized and
small events, the chosen spatial search space of z = 5 leads to
an overestimation of detection probabilities in the real data as 45

compared to the theoretical predictions. Nonetheless, the the-
oretical predictions provide an exact expectation under sim-
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plified settings (i.e. no boundary effects, and an event search
only in directly adjacent grid cells (z = 1), see Appendix B);
and are thus useful for illustrating and understanding the al-
most linear scaling of detection rates and the size of extremes
in log-log space.5

4.2 Scaling issues

One doubt in applying a regional event detection approach
was whether key aspects of extreme event distributions
would be affected. Occurrence probabilities of extreme
events in the terrestrial biosphere have often been reported10

to follow a power-law of the form p(m)∝m−α in the tails,
i.e. for some values ≥ mmin (see Reichstein et al., 2013;
Zscheischler et al., 2014a, for scaling examples in FAPAR
and gross primary production respectively). Using a max-
imum likelihood estimator as suggested by Clauset et al.15

(2009); Clauset and Woodbard (2013) we analyze the scal-
ing characteristics of contiguous areas affected by extreme
events. We find that the event properties follow a power law
(see Fig. C3). The probabilities of areas affected by extremes
in both areas decline with α= 1.85± 0.007 (uncertainties20

given as standard errors from 1000 bootstrap samples).
Without over-interpreting these patterns (i.e. many pro-

cesses could lead to the emergence of these power-laws,
some of which are discussed in Zscheischler et al., 2014b) we
consider that this property could be exploited to inform net-25

work design issues: According to Newman (2005, and oth-
ers) there are a few considerations pointing in this direction:
the expectation value E[m(r)] of an extreme event of rank r
(in this formulation, the largest event has rank 1 as in Fig. 4a)
has the form30

E[m(r)] = cr−
1

α−1 . (7)

where α is the scaling exponent, and c is some normalization
constant - both can be obtained from a fit to the empirically
obtained rank function m(r). Applying Eq. 7 would allow us
to study the network detection probability as a function of35

rank (see Figs. 4a and C1) and we can insert the expressions
into Eq. 3:

P (m,n) = 1−
(
1− m(r)

mmax

)n
(8)

= 1−

(
1− cr−

1
α−1

mmax

)n
(9)

Furthermore, using the approximated log-log form of the net-40

work detection probability (Eq. 7) yields

lnP (m,n)≈− 1

α− 1
lnr+1lnn+ lnc− lnmmax. (10)

This equation may explain the parallel lines for ranks r cor-
responding to small extreme event extents m(r) (see e.g.
Fig.C1). More importantly, it relates the scaling exponent to45

the expected detection probabilities. In other words: gaining
insights about the scaling behaviour of the extremes can be
used to formulate clear expectations about event detection
probabilities of a given rank and size.

4.3 Comparing AmeriFlux and NEON 50

Our results so far show that random networks may differ
somewhat from our expected detection rates for various rea-
sons. But the overarching hypothesis is that even relatively
small networks may have a good chance of detecting large
scale extreme events. We therefore consider the configura- 55

tion of real eddy covariance networks. We now focus on the
US (continental areas only) instead of Europe. We have two
networks with very different histories and therefore config-
uration: Ameriflux and NEON, and we consider them both
together. Again, we compare our results to random networks 60

of equal size.
The starting point for our considerations was whether eco-

logical in-situ networks have effectively been able to detect
the most relevant extreme events experienced by land ecosys-
tems due to their network construction, or if these were lucky 65

circumstances. We therefore ranked the 100 largest events
detectable in the continental US by their integrated FAPAR
anomalies. We then counted the number of events that could
have been detected by at least one of the Ameriflux or NEON
towers, or, by taking both together (if all towers would have 70

been active over the entire monitoring period). Fig. 6 shows
the number of detected events for these three network config-
urations of NEON, AmeriFlux, and both together, as a func-
tion of their rank.

Due to its large network size, AmeriFlux detects many 75

more extremes than NEON (128 vs. 39 sites in the contigu-
ous US, excluding Alaska and islands). Concatenating both
networks helps increase the detection rates for small events.
Our next question was whether these detection rates are com-
parable to random networks of the same size. For the case 80

of NEON we find that the median detection rate of randomly
designed networks is slightly higher compared to the real net-
work - which still remains above the 2.5%ile. At first glance
this is an unexpected finding: we would expect that undesired
vicinity may occur by chance in a random network, increas- 85

ing redundancy among towers in space compared to the very
systematic sampling design of NEON (Keller et al., 2008a).
We conclude here that while the design efforts used in estab-
lishing NEON may pay off for certain studies, they are not an
effective means to maximize the detection of extremes. This 90

observation again reflects the lack of spatial regularity in the
occurrence of extremes.

The equivalent experiment conducted on the AmeriFlux
network yields much higher detection rates for the random
networks compared to the established network (Fig. 6). We 95

attribute this difference to one particular characteristic of
AmeriFlux: many of the sites in this network are co-located
on purpose (e.g. to explore spatial heterogeneity or to mon-
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itor different disturbance regimes in adjacent and hence cli-
matologically similar ecosystems). Fig. 6 shows that Ameri-
Flux sites have a relatively high degree of spatial clustering.
If the target were to analyze continental extreme events and
guarantee monitoring the largest events, the AmeriFlux con-5

figuration would be suboptimal. In other words: the spatial
autocorrelation in an ecological in-situ network that was not
systematically designed can be outperformed by a random
(and hence spatially independent) network.

Another aspect to investigate in this context is concate-10

nating NEON and AmeriFlux (both data sets are intended
to be freely available to the research community, Fig. 6
dashed line). Our results show that this approach would
marginally increase the detection capacity. One reason for
this marginal improvement is again that AmeriFlux and15

NEON sites are partly geographically co-located and that
AmeriFlux—despite of being a bottom-up activity—already
has a significant spread across the country that is competitive
with a novel network designed for the purpose of capturing
large scale extremes.20
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Figure 6. Comparison of the potential of NEON (39 terrestrial sites)
and AmeriFlux (128 sites) for detecting extremes defined by vary-
ing thresholds in the contiguous continental US (excluding Alaska
and islands). The purple dashed line shows a merged AmeriFlux–
NEON network. Dashed lines enveloped by a 95 percentile range
are detection rates of random networks. The sizes of the random
networks correspond to NEON (blue) and AmeriFlux (brown) and
summarize 100 repetitions. We also show the 1:1 line, which would
correspond to perfect detection performance and is the theoretical
limit.

5 Discussion

5.1 Regionalized event detection

Reliable event detection algorithms are a prerequisite to ad-
dressing the question of how effective in-situ networks are
for detecting extreme events of a given geographical extent. 25

Our aim here is to classify events as “extreme” if they exceed
an anomaly value that is unusual across regions that follow
the same main phenological pattern. This contribution could
be relevant to other studies beyond the present application.
This method has advantages over using a global threshold, 30

which fundamentally changes the obtained picture and leads
to a few hotspots of extremes in regions where the data have
high variability (for the case of GPP see Zscheischler et al.,
2014b). The effect of building on regional thresholds to de-
lineate which anomalies should be considered “extreme” (re- 35

call Fig. 2) is that we find only very moderate geographi-
cal clustering of event occurrences (not shown). From our
viewpoint, this is very logical, as there is no reason why rela-
tive extremes should preferentially happen in certain regions.
Methods of this kind are particularly relevant in times of 40

increasing availability of EOs to detect impacts rather than
referring to anomalous observations in the meteorological
records, which may or not affect terrestrial ecosystems. In
fact, all of the largest extreme events that have had severe im-
pacts on agriculture and human well-being and attracted the 45

attention of the media are well detectable with our approach.
Prominent examples are e.g. the 2003 European heat wave
(e.g. Ciais et al., 2005), the 2010 Russian heat wave (e.g.
Bastos et al., 2014), or the 2012 US drought (e.g. Schwalm
et al., 2012), which are all easily detectable both from cli- 50

mate records and remote sensing data. However, the smaller
the spatial extents become, the more relevant a remote sens-
ing based regional assessment will be. We also expect that
a regionalization of this kind could be useful when using
more advanced multivariate event detection algorithms (see 55

e.g. Flach et al., 2017) that can tap into the full potential of
many EOs.

Regarding the details of the chosen methodological ap-
proach, one may question why we propose simply binning
the leading PCs derived from the MSC of our EO. This ap- 60

proach was mainly developed to effectively deal with the
very high resolution of the underlying data, seeking a very
efficient subgridding approach. One alternative would have
been to e.g. cluster the PCs directly. However, besides the
computational costs, conventional clustering methods lead to 65

a non-uniform partitioning of the space spanned by PCs. This
non-uniform partitioning makes it slightly more complicated
to identify neighbouring clusters, which is necessary to sta-
bilize the quantile-based computation of anomaly thresholds.
Having an equal meshgrid over the PCs that we can also com- 70

pute on a subset of MSCs renders the approach very efficient
for very large data sets and is completely data adaptive. It was
very important for this exercise to have many small classes,
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in order to compute a very well regionalized anomaly thresh-
old (shown in Fig. 2), which would not have been achiev-
able using classical climate classifications of ecoregions. A
more detailed follow-up study should explore the question of
how the choice of the various parameters affects the event de-5

tection accuracies. A crucial question in this context will be
whether one can tune these parameters such that a baseline
of events is well detected.

A further argument in favor of our approach was that we
rely on a limited number of events detected in a finite time10

horizon of available satellite data. Monitoring 15 years of ex-
treme events probably does not allow us to conclude any-
thing about the future occurrences of extreme events. In this
sense, this study can only be read as a call for (re)considering
the density of ecological networks in network design stud-15

ies. An alternative would be to also consider climate projec-
tions and put more emphasis on more “vulnerable” ecore-
gions. Non-stationary climate and environmental conditions
notwithstanding, we have to acknowledge that extremes are
too rare to derive a spatial occurrence probability using data20

from the satellite era only.

5.2 Relevance for network design

To the best of our knowledge, there are only a few realized
examples of systematically designed in-situ ecological net-
works. One of the best examples is NEON, which is there-25

fore particularly interesting in the context of this study. The
underlying design principle is to cluster environmental con-
ditions and states, including e.g. precipitation, radiation, to-
pography, and water table depth, among others (Hargrove
and Hoffman, 2004). These delineated ecoregions are taken30

to be representative of approximately homogeneous areas in
the mean land-climate system state, and yield an equitable
representation of land surface processes in upscaling activi-
ties (e.g. the spatiotemporal inter- and extrapolation of land-
atmosphere fluxes of CO2, H2O, and others Jung et al., 2011;35

Xiao et al., 2012; Papale et al., 2015) or model-data integra-
tion studies (sensu Williams et al., 2009).

Our finding that concatenating NEON and AmeriFlux
would have yielded only a minimal increase in detection ca-
pacities for extreme events can be understood as a call to40

avoid co-locating towers in relatively close vicinities - at least
when the objective of detecting extreme events is highly rele-
vant. In fact, when the objective is to monitor and understand
the impacts of climate extremes on ecosystems, we show
here that probability theoretical expectations should be be45

taken into account but would need to be extended to consider
temporal autocorrelation as well as the event detection ap-
proaches chosen. In our case, the latter had a relatively large
footprint (z = 5) in order to not miss events that may appear
fragmented due to e.g. heterogeneous landscape characteris-50

tics. Clearly, one would need to determine such parametric
choices depending on the type of extreme events and under-
lying question.

Nevertheless, we think that the remarks presented here
could become useful elements for quantitative network de- 55

sign studies. In our area, earlier considerations in this di-
rection have put their emphasis on reducing the uncertain-
ties for upscaling fluxes from the site level to continental
or global flux fields (Papale et al., 2015). Focussing on this
first-order question is of course essential, before focussing 60

on detecting rare anomalies. This is also reflected in the al-
ternative methodological avenues that were used for address-
ing the network design problem. For instance, carbon cy-
cle data assimilation systems (CCDAS; Rayner et al., 2005)
were very useful for quantitative network design (QND; see, 65

e.g. Kaminski et al., 2010; Kaminski and Raynner, 2017)
i.e. to evaluate real or hypothetical candidate networks in
terms of their ability to constrain target quantities of inter-
est. The QND approach within a CCDAS allows the combi-
nation of terrestrial, atmospheric and ultimately also oceanic 70

data streams. A key finding so far was that eddy covariance
networks with one site per ecosystem type achieve excel-
lent performance. QND studies have also been performed for
EO data streams such as column integrated atmospheric CO2

(Kaminski et al., 2010; Kaminski and Raynner, 2017). But 75

again, none of these studies so far have attempted to unravel
the impacts of extreme events on the terrestrial biosphere,
which might be a relevant pursuit for subsequent studies.

Overall, this study can be also seen as a prototype. In ap-
pendix B we show that analogous studies can be effectively 80

implemented. There we use the International Soil Moisture
Network ISMN and detect EO anomalies using a drought in-
dicator. This very brief analysis stresses one additional as-
pect that we have effectively ignored through the main paper:
the importance of keeping network measurements alive over 85

time. Many of the sites have only been active for short moni-
toring periods, leading to substantial losses in event detection
rates. It is the continuously sustained measurement networks
that will substantially improve event detection rates in the
long-term. 90

6 Conclusions

This study tries to understand to what degree ecological in-
situ networks such as AmeriFlux or NEON can capture ex-
treme events of a given size that affect land ecosystems. We
find, for instance, that the 10 largest that have occurred in the 95

US between 2000 and 2014 would all have been identified
with the current networks, offering a good perspective for
in-depth site level analyses of these phenomena. Concretely,
this finding means that there is a high chance of capturing
major extreme events – beyond the very few (2-3) prominent 100

events that may receive major media coverage such as the
2003 heatwave in Europe or the 2012 US drought. In general,
we find that “large” extreme events could have been detected
in a very reliable way, whereas there was a linear decay of
detection probabilities for smaller extreme events in log-log 105
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space. We can explain this general behavior with straightfor-
ward considerations in probability theory, but the slopes of
the decay rates deviate: While we find lower detection rates
for the very large extremes, the opposite is the case for very
small extremes. Experiments with artificial networks reveal5

that these deviations stem both from autocorrelation issues
and the exact implementation of the detection algorithm.

Our original motivation for pursuing this study was the
question of whether one could optimize the design of eco-
logical in-situ networks for maximizing the detection rates10

of extreme events. And indeed, we find some general rules,
i.e. when the goal is detecting very large events (i.e. low rank
events), network sizes can differ by up to two orders of mag-
nitude but still yield nearly comparable detection rates. Only
if the goal was to reliably enhance the detection probabili-15

ties of small-scale events would a disproportionate “invest-
ment” in large networks be required, which would then also
become orders of magnitude more efficient compared to the
small networks.

However, any inference on the future spatial occurrence20

probability of extremes is not tenable based on data from a
decade of observation. It is not only data paucity that lim-
its our insights here: quantitative network design is per se
non-trivial in a changing world. We find, however, that cer-
tain general patterns could be taken into consideration, for in-25

stance the fact that event occurrence probabilities are clearly
inversely related to detection probabilities on a very well de-
fined and robust scale, and that the power-law distribution
of extreme event size seems to have practical relevance for
network design purposes.30
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Appendix A: Regional event detection

In the following we develop a strategy for defining thresh-
olds of regional relevance that are computationally suitable
for dealing with high-resolution remote sensing data like the
1 km FAPAR data considered here. Our aim is to find re-5

gions of comparable phenology. Our assumption is that the
expected seasonal cycle in FAPAR is a good representation
of overall phenology, and hence ecosystem type.

The first step considers the data set of mean seasonal
FAPAR patterns F= {fn,s) : ∀n ∈ 1, . . . ,N ;s ∈ 1, . . .S},10

where each point n is pointing to a geographical location u,v
and contains the local mean of seasonal observations s.

In the second step, we use principal component analysis
(PCA) to reduce this S-dimensional data set. In other words,
we seek orthogonal components that represent the main gra-15

dient along the covariances of the seasonal cycles. More for-
mally, the covariances of these centered mean seasonal cy-
cles are given as

C= FtF . (A1)

Common patterns of seasonality are identified by first es-20

timating the k leading eigenvectors,

CEk = λkEk (A2)

where Ek the kth eigenvector of length S, and λk the cor-
responding eigenvalue. The scores of the kth principal com-
ponent are given by25

Ak = FEk . (A3)

and k leading Ak can be interpreted as a proxy for the
characteristic patterns underlying the mean seasonal cycles
across space. Figure 1 visualizes the three leading principal
components as an RGB-color composite, revealing a distinct30

map of European phenological regions.
Third, the question is how to identify regions of similar

phenology in this continuous space spanned by the principal
components. One could use, for instance, some clustering al-
gorithm. However, given the high density of spatial points35

and the continuous sampling, an equivalent approach is to
choose an equidistant grid in the space of the principal com-
ponents. We choose a very dense grid, such that each cell is
as wide as 4% of the range of the first PC. We then define an
FAPAR anomaly threshold as a predefined quantile based on40

the distribution of FAPAR values separately for each grid cell
and its 26 neighbours in the space of the leading 3 PCs. This
threshold is assigned to all points in the respective grid cell-
represented herein. This threshold is assigned to the all points
represented therein. Figure A1 illustrates this approach in de-45

tail.

Figure A1. Illustration of identification of regions with similar
threshold: We define a grid in the space of the leading PCs (geo-
graphically shown in Fig. 1), where each mesh width corresponds to
4% of the total min-max range of the first PC. We assign percentile
thresholds as calculated over a 3×3×3 set of mesh elements (shown
in orange) and assign these percentiles to the central dots (shown in
red). For the sake of clarity, we illustrate the approach only in the
space of the leading two PCs.

We have now proposed a FAPAR threshold for each point
and can map this threshold back to the geographical space by
remapping each point to the known geographical coordinates
u,v. This is shown in Fig. 2. 50

Appendix B: Spatiotemporal correlations

Fig. 5 reveals a strong discrepancy between theoretical and
observed detection probability. Here we investigate this dis-
crepancy further. We generated Gaussian data but introduced
varying spatiotemporal correlation structures of different de- 55

grees. We followed the approach suggested by Venema et al.
(2006a, b) to simulate data with a power law power spectrum
of some prescribed exponential spectral decay. The method
combines an approach for generating spatial fields of a de-
sired correlation structure that likewise have a similar tem- 60

poral correlation. The idea is that the Fourier coefficients
of some artificial data (white noise) are forced to decay as
a power law function across frequencies i.e. proportionally
to f−β . An inverse transformation to space yields a corre-
lated data field. If we choose β = 0, it corresponds to un- 65

correlated, β =− 3
5 to moderately correlated, and β =− 8

5
to highly correlated data. These artificial datasets are visual-
ized in Fig. B1g-i. We used a simplified event search radius
(z = 1, τ = 1) and investigate two cases:



M. D. Mahecha: In-situ networks for detecting extreme events 13

Figure B1. Artificial data example. a) Detection probabilities when ignoring the time domain for varying network sizes. In this case, the
empirically identified detection rates correspond exactly to the theoretical detection probabilities. If we induce moderate spatiotemporal
correlations in b), and stronger ones in c) we still find an excellent fit to the theoretical expectation because we still have relatively sparse
networks and the towers are independent samples of the underlying distribution. If the detection rates over space and time are considered,
however, the events are no longer independent due to their temporal autocorrelation, and thus the largest extremes tend to cluster towards the
center of the domain. Parts e) and f) show these lower detection rates, and g), f), i) are the data corresponding to results in the columns.
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Figure B2. Artificial data example considering the actual event detection algorithm. a) Detection probabilities when ignoring the time
domain for varying network sizes. In this case, the empirically identified detection rates dramatically overestimate the theoretical detection
probabilities. If we induce moderate spatiotemporal correlations in b), and stronger ones in c) we still find this pattern, but it is less pronounced
for the very large events. This shows that having a large footprint for the event detection algorithm leads to an overestimation of the detection
rates of small extremes. If the detection rates over space and time are considered, however, the events are no longer independent due to their
temporal autocorrelation. Parts e) and f) reveal lower deviations from the expected detection rates, which is a compensating effect of the
autocorrelation and event detection method setting. The data corresponding to results in the columns are shown in g), f), and i).
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1. Ignoring the time domain: In this case, the empirically
identified detection rates correspond exactly to the the-
oretical detection probabilities. This finding reveals that
the spatial correlation structure does not explain a devi-
ation from the theoretically expected pattern (compare5

appendix Figs. B1a—c). This is explained by the fact
that, although patterns of extreme anomalies might be
correlated in space, the tower placement is still random
and for sufficiently sparse networks and relatively con-
tiguous landscapes (i.e. only small edges, no islands,10

etc.) it has no effect.

2. Considering spatial and temporal correlations: In this
case we find a tendency towards lower detection prob-
abilities. This effect becomes more pronounced with
larger extremes and spatiotempoal autocorrelation (see15

appendix Fig. B1d-f) due to a stronger tendency for
large spatio-temporal extremes to occur away from the
domain’s boundaries, thus any tower that is randomly
placed close to a boundary would have a disproportion-
ately low chance of detecting large extremes.20

However, the approximation of the expected probabilities
for the small events is still inconsistent with our empirical
finding (recall Fig. 5). Hence, we repeat the artificial experi-
ment using the exact algorithmic settings applied to the FA-
PAR data: we allow for a tolerance radius (z� 1, τ = 1) to25

identify each extreme by a given tower. Again we distinguish
the two cases:

1. Ignoring the time domain: Using a large search radius
for detecting extremes (which is clearly necessary in
real and e.g fragmented landscapes) leads to increased30

event detection rates. This effect can lead to higher de-
tection rates that exceed the simple statistical expecta-
tions as derived from the binomial distribution by sev-
eral orders of magnitude in the case of small extremes
(see appendix Figs. B2a—c).35

2. Considering the full spatiotemporal case reduces the
discrepancy slightly (i.e. for large events that would be
detected anyway), but still results in an overestimation
(see appendix Fig. B2d-f). For very large events, the
lines may even cross in the case of strongly autocor-40

related data.

These numerical experiments highlight some of the issues
that need to be considered in evaluating real networks or
quantitative network-design: the phenomena we aim to mon-
itor are highly autocorrelated in time, which leads to consid-45

erable edge effects for large events. Therefore, theoretically
expected detection rates estimated from the binomial distri-
bution are overly optimistic for large events - unless the ef-
fects of autocorrelation and edge effects as a consequence for
large events are analytically taken into account.50

Appendix C: Supplementary figures
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Figure C1. Average detection rates of extremes of given ranks (each line represents the rank of an extreme event) across varying network sizes
in logarithmic representation (left panel) and linear representation (right panel). Small ranks indicate large impact extremes that typically
also affect large areas (see Fig. 4). The figure shows that detection rates scale with smaller network sizes and then tend to saturate i.e. we find
a convergence towards full detection rates.

Figure C2. Comparison of the affected area of extremes (Fig 4c)
and the theoretical expectation according to a binomial distribution.
Our empirical detection probability is lower for the very large ex-
tremes, and higher for the small extremes. The problem is more
pronounced for small network sizes.
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Figure C3. The probability distribution of areas affected by extremes in (a) Europe and (b) the US. The tails of the distributions can be
described by power laws. The average scaling exponent for the tails is 1.85 for both cases.
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Appendix D: Analogous example for soil moisture

D1 On the ISMN

The approach for testing a network design for its capacity
to detect extremes is generic by construction. As an addi-
tional demonstration we explore the capacity of the Inter-5

national Soil Moisture Network ISMN (http://ismn.geo.
tuwien.ac.at/ Dorigo et al., 2011), a steadily growing initia-
tive that comprises collections of soil moisture only. Compa-
rable to FLUXNET there is no specific funding for measure-
ment campaigns, and ISMN crucially depends on the contri-10

butions of historical observations by the respective commu-
nities.

Methodology
Direct observations of soil moisture from satellites are

available (Liu et al., 2011), but these data still suffer from15

concatenating different data sources. And in fact these tran-
sitions make the data set very problematic for detecting ex-
tremes – or in other words, extreme event detection may
identify the data merging edges. Alternatives are classical
drought indicators that can be derived from climatological20

data only. Here, we rely on the Standardized Precipitation
Index (SPI) for detecting extreme events as extracted from
SPI and compare it to a random network of the same size
(Fig. D1). The SPI is extracted following standard method-
ology (McKee et al., 1993) from monthly ERA-Interim rain-25

fall data (Dee et al., 2011), using a 3-monthly aggregation
window over the 1979-2011. We us the SPI only for illustra-
tion purposes until more robust EO for soil moisture become
available, i.e. we assume that low SPI values are proxies for
low soil moisture contents.30

Further, a local 10th percentile threshold is applied on
the SPI time series to flag dry events with subsequent de-
tection of the large connected events. The choice of the
local threshold is consistent with the typical meteorologi-
cal/climatological use of SPI time series. Hence, in contrast35

to biophysical applications as presented in the main part of
the paper, global or regional thresholds might not be physi-
cally meaningful for evaluating the local impacts of climate
variables. Since meteorological reanalyses typically operate
at much coarser resolution than EO data sets, for the anal-40

ogous analysis presented here both the spatial and temporal
search space are chosen to comprise only the spatially and
temporally adjacent voxel (i.e. z = 0.5° and tau= 1 month in
the SPI dataset).

To evaluate the ISMN, all station locations and the periods45

of active data sampling of each station were used for spatio-
temporal intersection with the SPI extremes in two different
setups: Firstly, we consider all stations active only in pe-
riods when these stations were collecting data (‘dynamic’
network); and secondly, a ‘static’ (counterfactual) situation50

is taken into account, where all stations are taken as active
throughout the entire ERA-Interim period. The comparison
was restricted to Europe due to data availability (i.e. most

regional networks that form ISMN are operated in Europe
(Dorigo et al., 2011)). 55

Results
If we consider the full spatiotemporal intersection we find

that only the first five SPI extremes would have affected ar-
eas where the ISMN has stations (Fig. D1, red line). Higher
ranked extremes are less likely of being detected. An an- 60

nual random site placement (gray lines) would have been
more efficient in identifying the extremes. In fact the cur-
rent geographical coordinates u,v would have only reached
the potential of a random network if they had been oper-
ated without ceasing over the entire monitoring period (blue 65

lines). But that would have implied much more measurement
years than the random site placement. For very high ranks
of extremes (the very small events) the continuously oper-
ated real-world network would have outperformed the ran-
dom network. These results are consistent with the results 70

shown in the main paper.
An interesting feature of ISMN is that the network has

changed its structure over the last decades to a very large
extent. In the eighties, all station locations are confined to
Eastern Europe (Fig. D2, upper panel). In the last decade, 75

Western European station networks became active, but both
the number and data availability from East European stations
was severely reduced (Fig. 11, lower panel). This change in
network design materializes strongly in the spatial locations
of the detected events: While in the eighties most extremes 80

in Eastern Europe where ‘seen’ by at least one tower and
the detection rates in West Europe were poor, this pattern is
reversed in the last decade (Fig. D2). Further, both decades
highlight that a static random tower placement is more ef-
ficient than the current network, which is explicable by the 85

high degree of site clustering. The importance of maintain-
ing continuous observation alive becomes even more evident
if one analyzes the network development over time in more
detail (Fig. D3). In conclusion, the complementary analysis
presented here substantiates the main paper in that the con- 90

sideration both the spatial location and the availability of his-
torical data is a crucial element to reconstruct the impacts of
extreme events in the recent past.
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