

1 Parallel functional and stoichiometric trait shifts in South-American and African forest
2 communities with elevation
3 Marijn BAUTERS^{1, 2,†}, Hans VERBEECK², Miro DEMOL², Stijn BRUNEEEL², Cys
4 TAVEIRNE¹, Dries VAN DER HEYDEN¹, Landry CIZUNGU³ and Pascal BOECKX¹
5
6 ¹ Isotope Bioscience Laboratory – ISOFYS, Ghent University, Coupure Links 653, 9000 Gent,
7 Belgium
8 ² CAVElab, Computational and Applied Vegetation Ecology, Department of Applied Ecology
9 and Environmental Biology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
10 ³ Faculty of Agronomy, Université Catholique de Bukavu, Avenue de la mission, BP 285,
11 Bukavu, DR Congo
12 [†] Corresponding author, e-mail: Marijn.Bauters@UGent.be
13 Co-authors : Hans.Verbeeck@UGent.be, mirodemol@hotmail.com, Stijn.Bruneeel@UGent.be,
14 cysenco@hotmail.com, driesvdheyden@gmail.com, landrycizunngu@yahoo.fr,
15 Pascal.Boeckx@UGent.be
16 Keywords : tropical forests, leaf traits, elevational transects, canopy chemistry, elevational
17 gradient, cross-continental comparison, leaf economics spectrum
18 Short Title: Parallel trait shifts in South-American and African elevational forest transects
19 Word count Abstract: 177
20 Word count Body: 3164
21 Numbers of references: 47

22 Abstract

23 The Amazon and Congo basin are the two largest continuous blocks of tropical forest with a central
24 role for global biogeochemical cycles and ecology. However, both biomes differ in structure and
25 species richness and composition. Understanding future directions of the response of both biomes
26 to environmental change is paramount. We used elevational gradients on both continents to
27 investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa.
28 We measured community-weighted functional canopy traits and canopy and topsoil $\delta^{15}\text{N}$
29 signatures. We found that the functional forest composition response along both transects was
30 parallel, with a shift towards more nitrogen conservative species at higher elevations. Moreover,
31 canopy and topsoil $\delta^{15}\text{N}$ signals decreased with increasing altitude, suggesting a more conservative
32 N cycle at higher elevations. This cross-continental study provides empirical indications that both
33 South-American and African tropical forest show a parallel response with altitude, driven by
34 nitrogen availability along the elevational gradients, which in turn induces a shift in the functional
35 forest composition. More standardized research, and more research on other elevational gradients
36 is needed to confirm our observations.

37

38

39

40 Introduction

41 A good understanding of the future response of tropical forest ecosystems to global change is
42 required because of their vital role in global biogeochemical cycles and ecology. However, due to
43 the long turnover times in forest ecosystems, it is hard to acquire insight in these future responses.
44 As a result, empirical research has since long turned to studying ecosystems along natural
45 gradients, which can greatly advance our understanding of ecosystem ecology and function in
46 response to environmental shifts. Elevational gradients in particular offer open-air space-for-time
47 experiments. Contrary to latitudinal gradients or elevational gradients in the higher latitude zones,
48 they are not complicated by changes in seasonality or growing season length, and with careful
49 interpretation can offer great insights in tropical forest functioning (Körner, 2007; Malhi et al.,
50 2010; Sundqvist et al., 2013). Hence, elevational transects have been postulated as a viable and
51 useful setup to assess long-term ecosystem responses to environmental changes, and serve as an
52 empirical tool to assess future trajectories of forest ecosystems under global change (Malhi et al.,
53 2010; Sundqvist et al., 2013). This has invoked research efforts on transects in South America, but
54 no such studies have been carried out in central African forests, leaving the second-largest
55 continuous block of tropical forest understudied. Nevertheless, recent work has shown that African
56 and South-American tropical forest currently show important differences in structure (Banin et al.,
57 2012) and species richness and composition (Slik et al., 2015). These differences call for cross-
58 continental empirical research in both the Amazon and the Congo basin (Corlett and Primack,
59 2006), and in this context we can raise questions about the universality of tropical forest
60 biogeochemistry and functioning across both continents, and subsequently their response to future
61 global change scenarios. Additionally, due to the central role of nutrient availability that drives
62 both net ecosystem productivity (NEP) and ecosystem carbon use efficiency (CUEe) (Fernandez-

63 Martinez et al., 2014), the effect of climatic gradients on nutrient availability should be better
64 understood.

65

66 Indeed, recent efforts have shown that biosphere-atmosphere carbon exchange in forests is
67 regulated by nutrient availability (Fernandez-Martinez et al., 2014) and therefor, changes in
68 nutrient bio-availability induced by global change need to be accounted for. Canopy chemical traits
69 are proxies that are relatively easy to assess, and from which ecosystem functioning and
70 biogeochemistry can be inferred (Asner et al., 2015a; Wright et al., 2004). Nutrient ratios and
71 concentrations in leafs, along with specific leaf area (SLA), are traits that are known to cluster
72 around the leaf economic spectrum, which expresses a trade-off in photosynthetic efficiency and
73 leaf turnover. Indeed, canopy nitrogen (N) and phosphorus (P) play key roles in photosynthesis,
74 and are hence vital for carbon exchange processes at the leaf level. Consequently, species with
75 high SLA, N and P are associated with high photosynthesis rates (Poorter et al., 2009; Reich et al.,
76 1997; Wright et al., 2004), but have an ‘expensive’ nutrient economy (fast leaf turnover). Previous
77 work has shown that these traits vary systematically with landscape biogeochemistry (Asner et al.,
78 2014, 2015b) and hence the functional canopy signature of forests across gradients express the
79 ecological response to changes in nutrient availability. Canopy chemistry has received increasingly
80 more attention because of its inherent link to the plant strategy. Nevertheless, and as rightfully
81 noted by Asner and Martin (2016), there are only limited surveys on canopy functional signatures
82 in the tropics, while this information is vital for a landscape-scale understanding of tropical forest
83 assembly. In addition to leaf traits, both leaf and soil $\delta^{15}\text{N}$ are known integrators of the local N-
84 cycle and analysis of natural abundance of stable N isotope ratios is a powerful and extensively
85 studied proxy for N cycling in ecosystems (Högberg, 1997). Previous efforts have shown that shifts

86 towards lower $\delta^{15}\text{N}$ values indicate a more closed N-cycle with lower N availability, and *vice versa*
87 (Brookshire et al., 2012; Craine et al., 2015; Houlton et al., 2006). This shift in isotopic ratios is
88 caused by increased rates in fractioning processes such as denitrification, where ^{14}N is
89 preferentially consumed, leaving the source pool enriched with ^{15}N (Hobbie and O'Uimette, 2009).
90 Hence $\delta^{15}\text{N}$ values have been used to infer shifts in N openness across natural gradients (Martinelli
91 et al., 1999; Menge et al., 2011; Vitousek et al., 1989). Hence combining both leaf traits and $\delta^{15}\text{N}$
92 values is an interesting approach to assess ecosystem responses to environmental gradients.

93

94 In this study we address the existing lack of standardized cross-continental research and assessed
95 shifts in nutrient availability and forest functional composition along two similar transects in
96 Ecuador and Rwanda. We assessed these shifts through indicative (I) community-level functional
97 traits and (II) nitrogen isotope ratios in topsoil and canopy. We hypothesized that (I) both these
98 community-level traits and stable isotope signals would indicate a shift in nitrogen availability
99 with altitude, and that (II) these shifts would be similar on both continents in terms of direction
100 and magnitude, given a standardized research protocol and a similar adiabatic lapse rate.

101 **Materials and Methods**

102 **Field inventories, sampling and trait analyses**

103 We selected plots at different altitudes on the West flank of the Andes in Ecuador (ranging
104 from 400-3200 masl) and in the Nyungwe national Park Rwanda (1600-3000 masl), in the
105 Southern Great Rift Valley (figure S1 and Table S1 for location and overview maps). Due to
106 reduced accessibility, the gradient in Rwanda was shorter than the South-American transect. We
107 delineated and inventoried plots following an international standardized protocol for tropical forest
108 inventories (RAINFOR, Malhi et al. 2002), with an adapted plot size of 40 by 40 m. In each plot,

109 the diameter of all live stems with a diameter larger than 10 cm was measured at 1.3 m height and
110 the trees were identified to species or genus level. Besides diameters also tree heights were
111 measured, in order to estimate the aboveground carbon storage (AGC) using pan-tropical
112 allometric relationships (Chave et al., 2014). The canopy of every plot was characterized by
113 selecting the most abundant tree species, aiming at a sampling percentage of 80% of the basal area
114 of the plots. For the selected species of all plots, we sampled mature leaves of a minimum of three
115 individuals per species per plot using tree climbers. For most of the individuals we sampled fully
116 sunlit leaves, but this was not always possible for the safety of the climbers, in which case we
117 sampled partly shaded leaves under the top canopy. Previous work on elevational transects has
118 shown that the vertical profile of leaves within a canopy has little effect on the trait values (Fisher
119 et al., 2013). Additionally, composite samples of the topsoil (0-5 cm) were collected at five
120 different places within each plot, and mixed per plot prior to drying. Soil and leaf samples were
121 dried for 48 hours at 60°C. Roots were picked out of the soil samples before grinding and
122 subsequently carbon (C), nitrogen (N) content and $\delta^{15}\text{N}$ of plant and soil samples were analyzed
123 using an elemental analyzer (Automated Nitrogen Carbon Analyser; ANCA-SL, SerCon, UK),
124 interfaced with an Isotope Ratios Mass Spectrometer (IRMS; 20-20, SerCon, UK). Leaf samples
125 were dry-ashed at 550°C for 5.5 hours; the ash was dissolved in 2M HCl solution and subsequently
126 filtered through a P-free filter. The aliquots were then analyzed for total P by AAS method No.G-
127 103-93 Rev.2 (Multitest MT7/MT8; Ryan and others 2001). SLAs were calculated by dividing the
128 leaf areas of all the sampled leaves per individual by their summed dry mass. Leaf areas were
129 determined by either photographing leaves with on white paper with a reference scale or by drawing
130 leaf contours and scanning the drawings. Both the scans and the pictures were processed using the
131 ImageJ software (Schneider et al., 2012). For one abundant species of the higher altitudes on the

132 Rwandan transect (*Podocarpus latifolius* (Thunb.) R.Br. ex Mirb.) we could not obtain good area
133 estimates, so we adopted SLA figures from literature (Midgley et al., 1995).

134

135 **Statistical analysis**

136 Average leaf trait values as specific leaf area (SLA), leaf nitrogen content on mass basis
137 (LNC), leaf phosphorus content on mass basis (LPC), $\delta^{15}\text{N}$, C:N and N:P ratio were calculated for
138 every selected species, based on the sample values for the different individuals of the species.
139 Subsequently, to calculate community-level traits and leaf $\delta^{15}\text{N}$ per plot, we calculated a basal area
140 weighted-average canopy value and standard deviation using the species composition and the
141 species averages, following Asner et al. (2016b). Hence:

142

$$\bar{x}_w = \frac{\sum_{i=1}^N w_i \cdot x_i}{\sum_{i=1}^N x_i}$$

143 with x_w the weighted value for trait x , x_i the mean trait value for species i and w_i the basal-area
144 based weight of that species in the specific plot. Subsequently for the weighted standard deviations
145 (σ_w):

146

147

148

$$\sigma_w = \sqrt{\frac{\sum_{i=1}^N w_i \cdot (x_i - \bar{x}_w)^2}{(N - 1) \sum_{i=1}^N w_i}}$$

149 with N the number of nonzero weights.

150 The structure of the trait datasets was assessed qualitatively using Pearson correlation statistics
151 after log-transforming the trait data for normality. Finally, we studied the relations between the
152 different leaf traits and elevation using mixed effects models for the different traits, with a random

153 error structure. The plots were spatially clustered around four altitudes on both transects, hence we
154 introduced these elevational clusters as a random effect, and treated altitude and transect as fixed
155 effects. Models were then fitted using maximum likelihood methods in the ‘lme4’ package in R
156 (Bates et al., 2007). P-values of the fixed effects –elevation, transect and their interaction - were
157 determined based on the denominator degrees of freedom calculated with the Satterhwaite
158 approximation, in the lmerTest package (Kuznetsova et al., 2014). The P-values for the interaction
159 term, along with the Akaike Information Criterion (AIC) for models with and without this
160 interaction term were used to decide whether or not to exclude the interaction term. For reasons of
161 linearity we used the inverse C:N (hence rather N:C) in these analyses. Models for $\delta^{15}\text{N}$ were
162 assessed for each transect, using mixed effects models, with elevational cluster as a random effect.
163 To explicitly determine divergence and convergence of plant and soil $\delta^{15}\text{N}$ with altitude,
164 compartment (i.e. canopy leaves or topsoil) was introduced as a fixed effect and the interaction
165 term was left in the model. For the statistical analysis, the R-software was used (R Core Team,
166 2014).

167

168 Results

169 The pooled trait datasets from both transects showed a consistent and similar correlation structure
170 (Fig. S2), with both the separate and the pooled data showing significant correlations between all
171 traits, except SLA and N:P. The structural vegetation parameters on both transects showed
172 important differences: for the same altitude range, we found a higher stem density, but less species
173 on the Rwandan transect (Table 1). Tree height and basal area were comparable, and the carbon
174 stocks showed high variability along both transects. Climatic conditions were similar, with a highly
175 consistent temperature gradient (Fig. S3, Table 1), and similar mean annual precipitation in the

176 concurring elevational ranges. The linear mixed models with altitude as fixed effect, were able to
177 explain a significant proportion of variation in all traits. This is reflected by both the marginal (m)
178 and conditional (c) R^2_{adj} , respectively proxies for the variation explained by the fixed effects, and
179 the random and fixed effects together (Schielzeth and Nakagawa, 2013) (Table 2). The interaction
180 term was not significant in any case, hence the trait responses to altitude were parallel on both
181 continents. LNC, N:C, LPC and N:P significantly decreased with altitude ($R^2_{adj,m}$ of respectively
182 0.83, 0.87, 0.68 and 0.60), with the Rwanda transect showing higher overall values. SLA also
183 decreased significantly, but with a slightly higher intercept for the Ecuadorian transect ($R^2_{adj,m} =$
184 0.83). $\delta^{15}N$ decreased on both continents with altitude, with a similar effect on both continents
185 (Table 3). There was a significant divergence between slope and soil $\delta^{15}N$ along the Ecuadorian
186 transect, while Rwanda showed a significant convergence ($R^2_{adj,m} = 0.93$ and 0.55 for respectively
187 Ecuador and Rwanda).

188

189 Discussion

190 The vegetation structure was varying differently along both transects. The high variability in the
191 stem number, basal area and carbon stocks is potentially caused by the relatively small plot size.
192 Other research efforts, targeting these variables in specific, use plot sizes of 1 hectare, as set
193 forward by the RAINFOR protocol, in tropical forests worldwide (Phillips et al., 2009). As such,
194 the differing carbon stocks probably do not integrate important stochastic events (e.g. tree fall)
195 from the forest along both slopes. However, interestingly enough we found a lower average carbon
196 stocks and higher number of trees in the upper two Rwandan clusters in comparison to the
197 Ecuadorian forests. This contrasts to what has been reported from large scale forest monitoring
198 networks across the lowland forests of Amazon and the Congo basin (Lewis et al., 2013). More

199 research in larger plots, including dynamics and productivity should validate if this is a consistent
200 observation in highland forest on both continents. On the other hand, the lower species number on
201 the African transect fits well within the recent findings of a pantropical study, reporting a lower
202 tree species diversity in the African tropical forest (Slik et al., 2015).

203

204 Different environmental variables are influenced by altitudinal changes, i.e. atmospheric pressure,
205 temperature, cloudiness, moisture, etc. (Körner, 2007). Using all these variables in a meta-analysis
206 would be highly interesting, but nonsensical for this study's new data alone, hence we chose to
207 indirectly use elevation as a proxy for the related changes. In this view, the air temperature decrease
208 with elevation was highly similar on both transects, which means that we can validly assess similar
209 temperature-driven responses of both forest functional composition and the underlying nutrient
210 dynamics. The high collinearity in the trait datasets corresponds well to known trade-offs described
211 as the “leaf economics spectrum” (LES); basically a leaf-level trade-off between leaf construction
212 cost, i.e. low specific leaf area (SLA), leaf nitrogen content (LNC) and leaf phosphorus content
213 (LPC); and photosynthetic efficiency, i.e. high SLA, LNC and LPC (Wright et al., 2004). LNC,
214 LPC and SLA showed a highly significant decrease with altitude (Fig. 1 and Table 2), indicating
215 a functional shift towards more nutrient conservative species communities at higher altitudes on
216 both transects. Indeed, leaves at lower altitudes with high LNC, LPC and SLA and hence a more
217 efficient photosynthetic apparatus and rapid turnover, are replaced by leaves with low LNC, LPC
218 and SLA values at higher altitudes. We've added previous published work of South America and
219 South-East Asia, with similar temperature gradients by Asner et al, Kitayama and Aiba and Van
220 de Weg et al. to our transects (Asner et al., 2016b; Kitayama and Aiba, 2002; Van de Weg et al.,
221 2009; Fig. S3) to assess the consistency of our observed trends. We deliberately only added the

222 limited amount of studies where community-weighted means were reported along one ‘single
223 mountain range system’, hence neglecting a recent and relevant contribution from Asner et al.
224 (Asner and Martin, 2016). As argued by Tanner et al. (Tanner et al., 1998), forests with low,
225 intermediate and high nutrient concentrations can be found globally at any altitude, hence
226 neglecting the effect of local environmental characteristics (atmospheric deposition, seasonality
227 etc.) might lead to wrong conclusions. This is also shown by the different intercepts, or the vertical
228 *shift* in trends in Fig. S3. Our comparison showed that the decreasing trend in LNC was consistent
229 with the other studies from South-America (Asner et al., 2016b; Van de Weg et al., 2009), but not
230 with South-East Asia where no significant trend was found (Kitayama and Aiba, 2002). However,
231 leaf mass area (LMA; the inverse of SLA) of all studies showed a similar, increasing trend with
232 elevation. LPC shows a strong and significant trend along both transects in this study, while the
233 other studies report no significant trend. This is consistent with the meta-analysis presented by
234 Tanner et al., which shows consistent negative LNC trends on ‘same mountain’ studies and
235 inconsistent LPC trends (Tanner et al., 1998). A recent effort on a larger scale in Peru has shown
236 that LES trade-off between LNC-LPC or SLA-LPC is indeed decoupled by climatic and
237 geophysical filters, while the leaf SLA-LNC trade-off is more robust (Asner et al., 2016a).
238 Regarding the studies we included for comparison (Fig. S3), only Van de Weg et al. assessed N:P
239 ratio, and although no significant trend was found, they reported that N:P ratio was lowest in the
240 highest sites (Van de Weg et al., 2009). Additionally, decreasing N:P ratios have also been reported
241 on other transects on the Andes (Fisher et al., 2013; Soethe et al., 2008), and recently in Peru using
242 airborne imaging spectroscopy (Asner et al., 2016a).

243

244 In addition to the above community-level functional traits, the decreasing $\delta^{15}\text{N}$ values on both
245 continents (Fig. 1) are another strong indication of the decreasing N availability in the upper
246 forests. Along the transects, both topsoil and canopy leaves showed decreasing $\delta^{15}\text{N}$ values with
247 increasing altitude (Fig. 1), indicating a more closed N-cycle with lower N availability at the higher
248 altitudes of both transects. It has been shown that lowland tropical rainforests exhibit high values
249 of $\delta^{15}\text{N}$ mainly caused by the high gaseous nitrogen losses via denitrification, a strongly
250 fractionating process (Houlton et al., 2006). The decreasing trends with altitude are interesting and
251 seem to support the existing paradigm that tropical forests shift from P to N limitation in transition
252 from lowland to montane tropical forest (Townsend et al., 2008). This is also reflected in the
253 stoichiometric shifts, as canopy N:P is decreasing with increasing elevation (Fig. 1). Hence plants
254 incorporate relatively less N compared to P in canopies at higher altitudes. The higher soil $\delta^{15}\text{N}$
255 values along the lower part of the Rwanda transect suggests a more open N-cycle compared to the
256 lower part of the Ecuadorian transect. This corroborates with a recent finding of very high N losses
257 at 1900 masl at the Rwanda site (Rütting et al., 2014), and the observation of high retention
258 potential of bio-available N in Chilean Andisols (Huygens et al., 2008). Further research is needed
259 to explain the notable divergence in soil and foliage $\delta^{15}\text{N}$ along the Ecuadorian transect, mainly
260 driven by the highest elevational cluster. As previously reported this can be due to different degrees
261 of dependence upon ectomycorrhizal fungi (EcM) (Hobbie et al., 2005), different mycorrhizal
262 association types (Craine et al., 2009) or shifts in the uptake of different forms of nitrogen (Averill
263 and Finzi, 2011; Kahmen et al., 2008). EcM-associated plant species are expected to show more
264 depleted isotopic ratios, due to isotope fractionation during N transfer to the host plant. This effect
265 is obscured in lowland N-rich tropical forests and might just not be detectable at lower altitudes,
266 but might become apparent in N-poorer environments such as the higher altitude forests (Mayor

267 et al., 2014). Secondly, a study from a temperate elevational transect has shown that plants
268 increasingly switch to organic N sources with decreasing temperature, without fractionation upon
269 N transfer from EcM to plants (Averill and Finzi, 2011). Resulting from that, they found a
270 convergence rather than divergence of $\delta^{15}\text{N}$ soil – canopy along altitude, because plants draw N
271 increasingly from a source pool close to the bulk isotopic signature. We have no data on EcM
272 colonization or $\delta^{15}\text{N}$ of sporocarps in the study plots, so we are not able to disentangle both
273 mechanisms. However, by characterizing both community functional traits and canopy and soil
274 $\delta^{15}\text{N}$, the data of these transects is consistent with a decreasing availability of soil N as elevation
275 increases. We suggest the reduced N availability to be caused by an indirect temperature effect on
276 the N-cycle, consistent with observations from a direct fertilization experiment (Fisher et al.,
277 2013). Lower temperatures slow down depolymerization and N mineralization processes, hence
278 also N bio-availability, thereby invoking changes in the functional plant communities along the
279 transects (Coûteaux et al., 2002; Marrs et al., 1988). Future global change will most likely distort
280 N availability both directly via increased reactive N deposition (Galloway et al., 2008; Hietz et al.,
281 2011) and indirectly via a temperature effect on N mineralization in forest soils. This raises
282 questions on the future of plant species within the already threatened montane tropical forest
283 biome, where higher N availability and temperature increase might distort the existing ecological
284 niches and in turn also increase N-losses. Further research should therefore focus on process-based
285 knowledge of N and P cycle dynamics along such transects to further assess if the availability is
286 actually limiting the ecosystems. These observations also have repercussions for carbon fluxes:
287 since nutrient availability exerts a stronger control on NEP than on gross primary production (GPP)
288 (Fernández-Martínez et al., 2014), it is likely that the CUE_e will be lower at higher altitudes. It has
289 been hypothesized that this decrease in CUE_e is due to an increased investment of photosynthates

290 to non-biomass components, such as root symbionts for nutrient mining and root exudates, in
291 expense of net primary production (NPP) (Vicca et al., 2012). However, recent empirical evidence
292 has shown for one transect in the Andes, that a decrease in GPP with increasing altitude is not
293 accompanied by a trend in CUE (Malhi et al., 2016). More work on carbon budgets along
294 elevational transects is needed to fully understand the role of N and P availability and its interaction
295 with climate gradients for the tropical forest carbon cycle.

296

297 **Conclusions**

298 Altogether, this study evidences parallel functional shifts with a similar direction and magnitude
299 along two comparable elevation gradients, in tropical forests on two different continents. The data
300 suggests, in two different ways, that this shift is caused by temperature-driven response of nutrient
301 availability. With the first data on an elevational transect in Central Africa, this work adds to the
302 existing set of elevational transects in the tropics. However, more transects are needed, especially
303 in Africa, to validate a universal response of tropical forests to environmental change.
304 Furthermore, work on process-based nutrient dynamics is important to unravel the importance of
305 different global change factors for both forest basins.

306

307 **Supplementary information**

308 **Fig. S1** Overview map

309 **Fig. S2** Structure and correlations of the trait data

310 **Fig. S3** Trends in community-level functional traits of previously reported studies

311 **Table S1** Coordinates, elevation and cluster membership of the different plots on both transects

312 **Table S2** Summary of the plot-level characteristics

313

314 **Author contributions**

315 *M.B., H.V. and P.B. developed the project; M.B, M.D., S.B., C.T. and D.V. carried out the field*
316 *work and analyzed the data. All authors contributed to the ideas presented and edited the*
317 *manuscript.*

318

319 **Competing interests**

320 The authors declare that they have no conflict of interest.

321

322 **Acknowledgments**

323 *This research has been supported by the Belgian Development Cooperation through VLIR-UOS.*
324 *VLIR-UOS supports partnerships between universities and university colleges in Flanders*
325 *(Belgium) and the South looking for innovative responses to global and local challenges.*
326 *Visit www.vliruos.be for more information. We also thank BOS+ Tropen, Mindo Cloud Forest*
327 *Foundation and the Rwanda Development Board for the logistical support; Fidel Nyirimanzi and*
328 *Nicanor Mejía for their botanical expertise. We also thank Jordan Mayor and an anonymous*
329 *reviewer for their suggestions and constructive comments on an earlier version of this manuscript.*

330 **References:**

331 Asner, G. P. and Martin, R. E.: Convergent elevation trends in canopy chemical traits of tropical
332 forests, *Glob. Chang. Biol.*, 22(6), 2216–2227, doi:10.1111/gcb.13164, 2016.

333 Asner, G. P., Martin, R. E., Tupayachi, R., Anderson, C. B., Sinca, F., Carranza-Jimenez, L. and
334 Martinez, P.: Amazonian functional diversity from forest canopy chemical assembly, *Proc. Natl.
335 Acad. Sci.*, 111(15), 5604–5609, doi:10.1073/pnas.1401181111, 2014.

336 Asner, G. P., Anderson, C. B., Martin, R. E., Tupayachi, R., Knapp, D. E. and Sinca, F.:
337 Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon
338 forest canopy, *Nat. Geosci.*, 8(May), 567–573, doi:10.1038/ngeo2443, 2015a.

339 Asner, G. P., Anderson, C. B., Martin, R. E., Tupayachi, R., Knapp, D. E. and Sinca, F.:
340 Landscape biogeochemistry reflected in shifting forest canopy, , 8(May),
341 doi:10.1038/NGEO2443, 2015b.

342 Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. and Vaughn, N.: Large-scale climatic
343 and geophysical controls on the leaf economics spectrum, *PNAS*, 4043–4051,
344 doi:10.1073/pnas.1604863113, 2016a.

345 Asner, G. P., Martin, R. E., Anderson, C. B., Kryston, K., Vaughn, N., Knapp, D. E., Bentley, L.
346 P., Shenkin, A., Salinas, N., Sinca, F., Tupayachi, R., Sandra, D., Huaypar, K. Q., Pillco, M. M.,
347 Delis, F., Alvarez, C., Malhi, Y., Quispe Huaypar, K., Montoya Pillco, M., Ccori Alvarez, F. D.,
348 Diaz, S., Enquist, B., Malhi, Y., Sandra, D., Huaypar, K. Q., Pillco, M. M., Delis, F., Alvarez, C.
349 and Malhi, Y.: Scale dependence of canopy trait distributions along a tropical forest elevation
350 gradient, *New Phytol.*, 2016b.

351 Averill, C. and Finzi, A.: Increasing plant use of organic nitrogen with elevation is reflected in

352 nitrogen uptake rates and ecosystem delta15N., *Ecology*, 92(4), 883–91 [online] Available from:
353 <http://www.ncbi.nlm.nih.gov/pubmed/21661551>, 2011.

354 Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., Arets, E.
355 J. M. M., Berry, N. J., Bradford, M., Brienen, R. J. W., Davies, S., Drescher, M., Higuchi, N.,
356 Hilbert, D. W., Hladik, A., Iida, Y., Salim, K. A., Kassim, a. R., King, D. a., Lopez-Gonzalez,
357 G., Metcalfe, D., Nilus, R., Peh, K. S.-H., Reitsma, J. M., Sonké, B., Taedoumg, H., Tan, S.,
358 White, L., Wöll, H. and Lewis, S. L.: What controls tropical forest architecture? Testing
359 environmental, structural and floristic drivers, *Glob. Ecol. Biogeogr.*, 21(12), 1179–1190,
360 doi:10.1111/j.1466-8238.2012.00778.x, 2012.

361 Bates, D., Sarkar, D., Bates, M. D. and Matrix, L.: The lme4 Package, October, 2(1), 1–6,
362 doi:10.18637/jss.v067.i01, 2007.

363 Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. and Jackson, J. K.: Sustained
364 losses of bioavailable nitrogen from montane tropical forests, *Nat. Geosci.*, 5(2), 123–126,
365 doi:10.1038/ngeo1372, 2012.

366 Chave, J., Réjou-Méchain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C.,
367 Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martinez-Yrizar, A.,
368 Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A.,
369 Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G.
370 and Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical
371 trees, *Glob. Chang. Biol.*, 20(10), 3177–3190, doi:10.1111/gcb.12629, 2014.

372 Corlett, R. T. and Primack, R. B.: Tropical rainforests and the need for cross-continental
373 comparisons, *Trends Ecol. Evol.*, 21(2), 104–110, doi:10.1016/j.tree.2005.12.002, 2006.

374 Coûteaux, M. M., Sarmiento, L., Bottner, P., Acevedo, D. and Thiéry, J. M.: Decomposition of
375 standard plant material along an altitudinal transect (65 - 3968 m) in the tropical Andes, *Soil*
376 *Biol. Biochem.*, 34, 69–78, 2002.

377 Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A.,
378 Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B. and Pardo, L. H.:
379 Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal
380 fungi, foliar nutrient concentrations, and nitrogen availability, *New Phytol.*, 183, 980–992, 2009.

381 Craine, J. M., Brookshire, E. N. J., Cramer, M. D., Hasselquist, N. J., Koba, K., Marin-spiotta, E.
382 and Wang, L.: Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils,
383 *Plant Soil*, 396, 1–26, doi:10.1007/s11104-015-2542-1, 2015.

384 Fernandez-Martinez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., Iii,
385 F. S. C., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L. and Reichstein, M.:
386 Nutrient availability as the key regulator of global forest carbon balance, *Nat. Clim. Chang.*,
387 4(June), 471–476, doi:10.1038/NCLIMATE2177, 2014.

388 Fernández-Martínez, M., Vicca, S., Janssens, I. a., Sardans, J., Luyssaert, S., Campioli, M.,
389 Chapin III, F. S., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M.,
390 Rodà, F., Peñuelas, J., Fernandez-Martinez, M., Vicca, S., Janssens, I. a., Sardans, J., Luyssaert,
391 S., Campioli, M., Iii, F. S. C., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L. and
392 Reichstein, M.: Nutrient availability as the key regulator of global forest carbon balance, *Nat.*
393 *Clim. Chang.*, 4(June), 471–476, doi:10.1038/NCLIMATE2177, 2014.

394 Fick, S. E. and Hijmans, R. J.: WorldClim 2 : new 1-km spatial resolution climate surfaces for
395 global land areas, *Int. J. Climatol.*, doi:10.1002/joc.5086, 2017.

396 Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo,
397 J. E., Huasco, W. H. and Daniel, T.: Nutrient limitation in rainforests and cloud forests along a
398 3,000-m elevation gradient in the Peruvian Andes, *Oecologia*, 172(3), 889–902,
399 doi:10.1007/s00442-012-2522-6, 2013.

400 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
401 Martinelli, L. A., Seitzinger, S. P. and Sutton, M. A.: Transformation of the Nitrogen Cycle :
402 Recent Trends, Questions, and Potential Solutions, *Science* (80-..), 320(May), 889–893, 2008.

403 Hietz, P., Turner, B. L., Wanek, W., Richter, a., Nock, C. a. and Wright, S. J.: Long-Term
404 Change in the Nitrogen Cycle of Tropical Forests, *Science* (80-..), 334(2011), 664–666,
405 doi:10.1126/science.1211979, 2011.

406 Hobbie, E. a. and Ouimette, A. P.: Controls of nitrogen isotope patterns in soil profiles,
407 *Biogeochemistry*, 95(2), 355–371, doi:10.1007/s10533-009-9328-6, 2009.

408 Hobbie, E. a., Jumpponen, A., Trappe, J., Jumpponen, ÅE. A. and Trappe, ÅE. J.: Foliar and fungal
409 15 N:14 N ratios reflect development of mycorrhizae and nitrogen supply during primary
410 succession: Testing analytical models, *Oecologia*, 146(2), 258–268, 2005.

411 Högberg, P.: Tansley Review No . 95 15 N natural abundance in soil – plant systems, *New*
412 *Phytol. Phytol.*, 137(95), 179–203, doi:10.1046/j.1469-8137.1997.00808.x, 1997.

413 Houlton, B. Z., Sigman, D. M. and Hedin, L. O.: Isotopic evidence for large gaseous nitrogen
414 losses from tropical rainforests., *Proc. Natl. Acad. Sci. U. S. A.*, 103(23), 8745–50,
415 doi:10.1073/pnas.0510185103, 2006.

416 Huygens, D., Boeckx, P., Templer, P., Paulino, L., Van Cleemput, O., Oyarzún, C., Müller, C.
417 and Godoy, R.: Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils,

418 Nat. Geosci., 1(8), 543–548, doi:10.1038/ngeo252, 2008.

419 Kahmen, A., Wanek, W. and Buchmann, N.: Foliar d15N values characterize soil N cycling and
420 reflect nitrate or ammonium preference of plants along a temperate grassland gradient,
421 Oecologia, 156(4), 861–870, doi:10.1007/s00442-008-1028-8, 2008.

422 Kitayama, K. and Aiba, S.: Ecosystem structure and productivity of tropical rain forests along
423 altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu , Borneo, J.
424 Ecol., 90, 37–51, 2002.

425 Körner, C.: The use of “altitude” in ecological research., Trends Ecol. Evol., 22(11), 569–74,
426 doi:10.1016/j.tree.2007.09.006, 2007.

427 Kuznetsova, A., Brockhoff, P. B. and Christensen, R. H. B.: lmerTest: Tests for random and
428 fixed effects for linear mixed effect models (lmer objects of lme4 package), R Packag. version, R
429 package version 2.0-6, doi:<http://CRAN.R-project.org/package=lmerTest>, 2014.

430 Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-gonzalez, G., Heijden, G. Van Der,
431 Phillips, O. L., Affum-baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx,
432 P., Bogaert, J., Cannière, C. De, Clark, C. J., Collins, M., Djagbletey, G., Djuikouo, M. N.,
433 Doucet, J.-L., Ewango, C., Fauset, S., Feldpausch, T. R., Ernest, G., Gillet, J.-F., Hamilton, A.
434 C., Harris, D. J., Hart, T. B., Haulleville, T. De, Hladik, A., Hufkens, K., Huygens, D., Jeanmart,
435 P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y.,
436 Andrew, R., Ojo, L., Peh, K. S., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo,
437 M., Steppe, K., Taedoumg, H. E., Talbot, J., James, R. D., Taylor, D., Thomas, S. C., Toirambe,
438 B., Verbeeck, H., Vleminckx, J., Lee, J., White, L. J. T., Willcock, S., Woell, H. and Zemagho,
439 L.: Above-ground biomass and structure of 260 African tropical forests, Philos. Trans. R. Soc. B
440 Biol. Sci., 2013.

441 Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen,
442 T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, P.,
443 Monteagudo, a., Neill, D., Núñez Vargas, P., Panfil, S. N., Patiño, S., Pitman, N., Quesada, C.
444 a., Rudas-Ll., a., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W. G., Valencia,
445 R., Vásquez Martínez, R., Vieira, I. C. G. and Vinceti, B.: An international network to monitor
446 the structure, composition and dynamics of Amazonian forests (RAINFOR), *J. Veg. Sci.*, 13(3),
447 439, doi:10.1658/1100-9233(2002)013[0439:AINMT]2.0.CO;2, 2002.

448 Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P. and Saatchi, S.: Introduction: Elevation
449 gradients in the tropics: Laboratories for ecosystem ecology and global change research, *Glob.*
450 *Chang. Biol.*, 16(12), 3171–3175, doi:10.1111/j.1365-2486.2010.02323.x, 2010.

451 Malhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B.,
452 Huaraca Huasco, W., Silva-Espejo, J. E., del Aguilla-Pasquell, J., Farf??n Am??zquita, F.,
453 Arag??o, L. E. O. C., Guerrieri, R., Ishida, F. Y., Bahar, N. H. A., Farfan-Rios, W., Phillips, O.
454 L., Meir, P. and Silman, M.: The variation of productivity and its allocation along a tropical
455 elevation gradient: A whole carbon budget perspective, *New Phytol.*, doi:10.1111/nph.14189,
456 2016.

457 Marrs, R. H., Proctor, J., Heaney, A., Mountford, M. D., Marrs, R. H. and Experimental, M. W.:
458 Changes in Soil Nitrogen-Mineralization and Nitrification Along an Altitudinal Transect in
459 Tropical Rain Forest in Costa Rica, *J. Ecol.*, 76(2), 466–482, 1988.

460 Martinelli, L. a., Piccolo, M. C., Townsend, a. R., Vitousek, P. M., Cuevas, E., McDowell, W.,
461 Robertson, G. P., Santos, O. C. and Treseder, K.: Nitrogen stable isotopic composition of leaves
462 and soil: Tropical versus temperate forests, *Biogeochemistry*, 46(1–3), 45–65,
463 doi:10.1007/BF01007573, 1999.

464 Mayor, J. R., Wright, S. J., Schuur, E. A. G., Brooks, M. E. and Turner, B. L.: Stable nitrogen
465 isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a
466 lowland tropical rainforest, *Biogeochemistry*, 119(1–3), 293–306, doi:10.1007/s10533-014-
467 9966-1, 2014.

468 Menge, D. N. L., Troy Baisden, W., Richardson, S. J., Peltzer, D. a, Barbour, M. M., Baisden,
469 W. T., Richardson, S. J., Peltzer, D. a, Barbour, M. M., Troy Baisden, W., Richardson, S. J.,
470 Peltzer, D. a and Barbour, M. M.: Declining foliar and litter $\delta(15)$ N diverge from soil, epiphyte
471 and input $\delta(15)$ N along a 120 000 yr temperate rainforest chronosequence., *New Phytol.*, 190(4),
472 941–52, doi:10.1111/j.1469-8137.2010.03640.x, 2011.

473 Midgley, J. J., Van Wyk, G. R. and Everard, D. A.: Leaf attributes of South African forest
474 species, *Afr. J. Ecol.*, 33(2), 160–168 [online] Available from: <http://dx.doi.org/10.1111/j.1365-2028.1995.tb00791.x>, 1995.

476 Phillips, O., Baker, T., Feldpausch, T. and Brien, R.: RAINFOR field manual for plot
477 establishment and remeasurement., 2009.

478 Poorter, H., Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. and Villar, R.: Causes and
479 consequences of variation in leaf mass per area (LMA): a meta-analysis, , 565–588, 2009.

480 R Core Team: R: A Language and Environment for Statistical Computing, R Found. Stat.
481 Comput. Vienna Austria, 0, {ISBN} 3-900051-07-0, 2014.

482 Reich, P. B., Walters, M. B., Ellsworth, D. S., Columbia, N. B., George, P. and Columbia, B.:
483 From tropics to tundra: global convergence in plant functioning., *Proc. Natl. Acad. Sci. U. S. A.*,
484 94(25), 13730–13734, doi:10.1073/pnas.94.25.13730, 1997.

485 Rütting, T., Cizungu, L. N., Roobroeck, D., Bauters, M., Huygens, D. and Boeckx, P.: Leaky

486 nitrogen cycle in pristine African montane Rainforest soil, Global Biogeochem. Cycles, 29(3),
487 962–973, doi:10.1002/2013GB004593.Received, 2014.

488 Ryan, J., Estefan, G. and Rashid, A.: Soil and Plant Analysis Laboratory Manual. Second
489 Edition, ICARDA, Aleppo, Syria, Syria., 2001.

490 Schielzeth, H. and Nakagawa, S.: Nested by design: Model fitting and interpretation in a mixed
491 model era, Methods Ecol. Evol., 4(1), 14–24, doi:10.1111/j.2041-210x.2012.00251.x, 2013.

492 Schneider, C. a, Rasband, W. S. and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image
493 analysis, Nat. Methods, 9(7), 671–675, doi:10.1038/nmeth.2089, 2012.

494 Slik, J. W. F., Arroyo-rodríguez, V., Aiba, S., Alvarez-loayza, P., Alves, L. F., Ashton, P.,
495 Balvanera, P., Bastian, M. L., Bellingham, P. J., Berg, E. Van Den, Bernacci, L., Bispo, C.,
496 Blanc, L., Böhning-gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F. Q.,
497 Hockemba, M. B., Bunyavejchewin, S., Calderado, D., Matos, L., Castillo-santiago, M.,
498 Catharino, E. L. M., Chai, S., Chen, Y., Colwell, R. K., Robin, C. L., Clark, C., Clark, D. B.,
499 Clark, D. a, Culmsee, H., Damas, K., Dattaraja, H. S., Dauby, G., Davidar, P., Dewalt, S. J.,
500 Doucet, J., Duque, A., Durigan, G., Eichhorn, K. a O., Eisenlohr, P. V, Eler, E., Ewango, C.,
501 Farwig, N., Feeley, K. J., Ferreira, L., Field, R., Oliveira, A. T. De, Fletcher, C., Forshed, O.,
502 Franco, G., Fredriksson, G., Gillespie, T., Gillet, J., Amarnath, G., Griffith, D. M., Grogan, J.,
503 Gunatilleke, N., Harris, D., Harrison, R., Hector, A., Homeier, J., Imai, N., Itoh, A., Jansen, P. a,
504 Joly, C. a, Jong, B. H. J. De, Kartawinata, K., Kearsley, E., Kelly, D. L., Kenfack, D., Kessler,
505 M., Kitayama, K., Kooyman, R., Larney, E., Laumonier, Y., Laurance, S., Laurance, W. F.,
506 Lawes, M. J., Leao, I., Letcher, S. G., Lindsell, J., Lu, X., Mansor, A., Marjokorpi, A., Martin, E.
507 H., Meilby, H., Melo, F. P. L., Metcalfe, D. J., Medjibe, V. P., Paul, J., Millet, J., Mohandass, D.,
508 Montero, J. C., Morisson, M. De, Mugerwa, B., Nagamasu, H., et al.: An estimate of the nmber

509 of tropical tree species, *Proc. Natl. Acad. Sci.*, 112(24), 7472–7477,
510 doi:10.1073/pnas.1512611112, 2015.

511 Soethe, N., Lehmann, J. and Engels, C.: Nutrient availability at different altitudes in a tropical
512 montane forest in Ecuador, *J. Trop. Ecol.*, 24(4), 397–406, doi:10.1017/S026646740800504X,
513 2008.

514 Sundqvist, M. K., Sanders, N. J. and Wardle, D. a.: Community and Ecosystem Responses to
515 Elevational Gradients: Processes, Mechanisms, and Insights for Global Change, *Annu. Rev.*
516 *Ecol. Evol. Syst.*, 44(1), 261–280, doi:10.1146/annurev-ecolsys-110512-135750, 2013.

517 Tanner, A. E. V. J., Vitousek, P. M. and Cuevas, E.: Experimental Investigation of Nutrient
518 Limitation of Forest Growth on Wet Tropical Mountains, *Ecology*, 79(1), 10–22, 1998.

519 Townsend, A. R., Asner, G. P. and Cleveland, C. C.: The biogeochemical heterogeneity of
520 tropical forests, *Trends Ecol. Evol.*, 23(8), 424–431, doi:10.1016/j.tree.2008.04.009, 2008.

521 Vicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., Heinemeyer, a.,
522 Högberg, P., Kutsch, W. L., Law, B. E., Malhi, Y., Papale, D., Piao, S. L., Reichstein, M.,
523 Schulze, E. D. and Janssens, I. A.: Fertile forests produce biomass more efficiently, *Ecol. Lett.*,
524 15(6), 520–526, doi:10.1111/j.1461-0248.2012.01775.x, 2012.

525 Vitousek, P. M., Shearer, G. and Kohl, D. H.: Foliar 15N natural abundance in Hawaiian
526 rainforest: patterns and possible mechanisms, *Oecologia*, 78(3), 383–388,
527 doi:10.1007/BF00379113, 1989.

528 Van de Weg, M. J., Meir, P., Grace, J., Atkin, O. K., van de Weg, M. J., Meir, P., Grace, J. and
529 Atkin, O. K.: Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar
530 nitrogen and phosphorus content along an Amazon-Andes gradient in Peru, *Plant Ecol. Divers.*,

531 2(3), 243–254, doi:10.1080/17550870903518045, 2009.

532 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-

533 bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K. and

534 Gulias, J.: The worldwide leaf economics spectrum, *Nature*, 12, 821–827, 2004.

535

536 **Table 1** General characteristics, vegetation structure, climate (mean annual temperature (MAT) and mean annual precipitation (MAP),
 537 WorldClim - Fick, 2017) and soil characteristics of the elevational clusters on both transects. Number of trees and species (in the 40
 538 by 40 m plots), basal area (BA), mean tree height (MTH) and above-ground carbon (AGC) are averages per plot \pm the standard
 539 deviation on the plot-level results, based on the inventories.

	Cluster	Altitude (masl)	Number of trees per plot	Number of species per plot	BA (m ² ha ⁻¹)	MTH (m)	AGC (Ton C ha ⁻¹)	MAT (°C)	MAP (mm)	Soil parent material	Soil classification
Ecuador	1	406 \pm 10	86 \pm 13	30 \pm 2	25 \pm 3	18.3 \pm 1.0	96 \pm 19	23.7	3720	Lahars	Andisol
	2	1068 \pm 25	84 \pm 38	39 \pm 15	33 \pm 9	16.9 \pm 0.7	140 \pm 25	20.0	3227	Lahars	Andisol
	3	1871 \pm 79	69 \pm 11	31 \pm 2	33 \pm 11	13.5 \pm 1.3	112 \pm 57	17.5	1619	Redbed volcaniclastics	Andisol
	4	3217 \pm 21	90 \pm 25	18 \pm 2	49 \pm 11	13.0 \pm 1.4	161 \pm 34	10.9	1241	Granitic/acid	Andisol
Rwanda	1	1760 \pm 66	70 \pm 18	21 \pm 4	34 \pm 4	13.9 \pm 0.7	121 \pm 11	17.6	1518	Shale and Quartzite	Inceptisol/Ultisol
	2	2200 \pm 64	71 \pm 18	18 \pm 3	45 \pm 9	14.3 \pm 0.3	179 \pm 27	15.9	1628	Shale and Quartzite	Inceptisol/Ultisol
	3	2512 \pm 37	122 \pm 60	11 \pm 1	31 \pm 9	12.0 \pm 1.0	99 \pm 36	14.7	1716	Shale and Quartzite	Inceptisol/Ultisol
	4	2844 \pm 77	109 \pm 56	8 \pm 2	34 \pm 4	11.5 \pm 0.5	89 \pm 10	12.9	1835	Shale and Quartzite	Inceptisol/Entisol

540

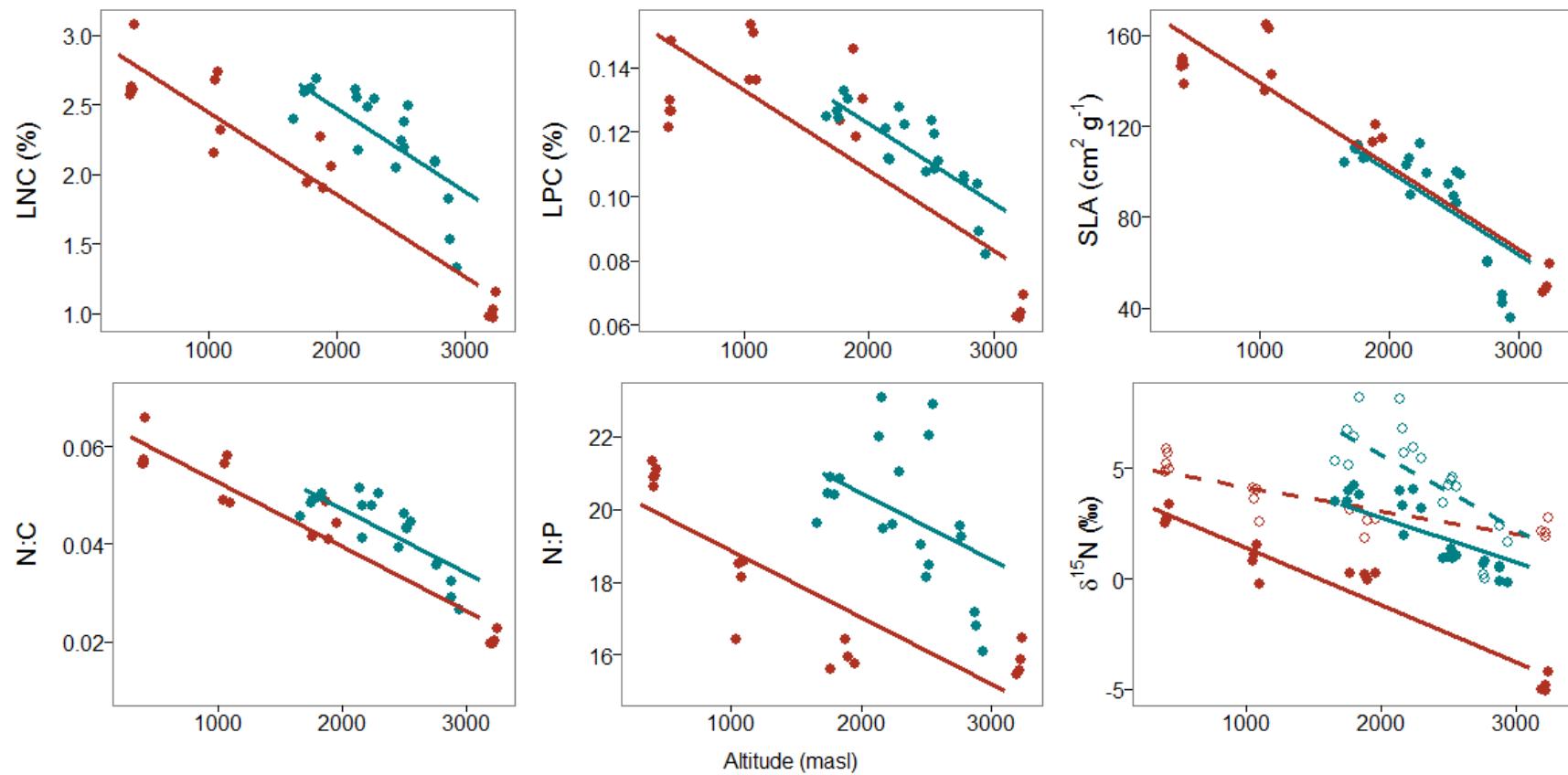
541

542 **Table 2** Fixed effects estimates (altitude in km asl) for the different canopy-level response
 543 variables; leaf nitrogen content (LNC), inverse C:N ratio, specific leaf area (SLA), leaf phosphorus
 544 content (LPC) and N:P ratio, along with the estimated marginal (m) and conditional (c) R^2_{adj} (sensu
 545 Nakagawa and Schielzeth (5)). The interaction term for altitude x transect was not significant in
 546 any case, and was hence not retained in any model.

547

Response	Effect	Estimate	SE	P-value	$R^2_{adj,m}$	$R^2_{adj,c}$
LNC (%)	Ecuador intercept	3.04	0.131	<0.001	0.80	0.85
	Rwanda intercept	3.65	0.115	0.003		
	Altitude	-0.59	0.000	<0.001		
SLA	Ecuador intercept	175.28	14.107	<0.001	0.77	0.95
	Rwanda intercept	172.55	12.504	0.835		
	Altitude	-36.24	0.007	0.002		
N:C	Ecuador intercept	0.07	0.003	<0.001	0.83	0.91
	Rwanda intercept	0.07	0.003	0.033		
	Altitude	-0.01	0.000	<0.001		
LPC (%)	Ecuador intercept	0.16	0.012	<0.001	0.60	0.88
	Rwanda intercept	0.17	0.011	0.247		
	Altitude	-0.02	0.000	0.009		
N:P	Ecuador intercept	20.66	1.055	<0.001	0.54	0.74
	Rwanda intercept	24.06	0.926	0.014		
	Altitude	-1.82	0.001	0.018		

548


549

550

551

552 **Table 3** Fixed effects estimates (altitude in km asl) for $\delta^{15}\text{N}$ in both canopy and topsoil
 553 (compartment) on both transects, along with the estimated marginal (m) and conditional (c) R^2_{adj}
 554 (sensu Nakagawa and Schielzeth (5)).

Response	Effect	Estimate	SE	P-value	$R^2_{\text{adj,m}}$	$R^2_{\text{adj,c}}$
$\delta^{15}\text{N}$ Ecuador(‰)	Canopy intercept	3.96	0.406	<0.001	0.93	0.94
	Soil intercept	5.19	0.440	0.009		
	Altitude	-2.59	0.000	<0.001		
	Altitude x compartment	1.53	0.000	<0.001		
$\delta^{15}\text{N}$ Rwanda (‰)	Canopy intercept	6.83	3.193	0.21103	0.55	0.82
	Soil intercept	12.37	1.749	0.004		
	Altitude	-2.02	0.001	0.310		
	Altitude x compartment	-1.37	0.001	0.074		

555

556 **Fig. 1.** Trends in community-level functional traits and leaf (full line, closed circles) and topsoil (dashed line, open circles) $\delta^{15}\text{N}$
 557 of the elevation transects in Ecuador (red) and Rwanda (blue). Leaf nitrogen content (LNC), leaf phosphorus content (LPC), specific
 558 leaf area (SLA), and leaf N:C, P:C and N:P ratio decrease with increasing altitude on both transects. Both transect showed decreasing
 559 values of $\delta^{15}\text{N}$, providing additional evidence for a more closed N-cycle with increasing altitude. Lines represent the fixed altitude
 560 effects in the respective statistical models for both Ecuador (red, 400-3200 masl) and Rwanda (blue, 1600-3000 masl).