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Abstract 22 

The Amazon and Congo basin are the two largest continuous blocks of tropical forest with a central 23 

role for global biogeochemical cycles and ecology. However, both biomes differ in structure and 24 

species richness and composition. Understanding future directions of the response of both biomes 25 

to environmental change is paramount. We used elevational gradients on both continents to 26 

investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. 27 

We measured community-weighted functional canopy traits and canopy and topsoil δ15N 28 

signatures. We found that the functional forest composition response along both transects was 29 

parallel, with a shift towards more nitrogen conservative species at higher elevations. Moreover, 30 

canopy and topsoil δ15N signals decreased with increasing altitude, suggesting a more conservative 31 

N cycle at higher elevations. This cross-continental study provides empirical indications that both 32 

South-American and African tropical forest show a parallel response with altitude, driven by 33 

nitrogen availability along the elevational gradients, which in turn induces a shift in the functional 34 

forest composition. More standardized research, and more research on other elevational gradients 35 

is needed to confirm our observations. 36 

 37 

 38 

 39 
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Introduction 40 

A good understanding of the future response of tropical forest ecosystems to global change is 41 

required because of their vital role in global biogeochemical cycles and ecology. However, due to 42 

the long turnover times in forest ecosystems, it is hard to acquire insight in these future responses. 43 

As a result, empirical research has since long turned to studying ecosystems along natural 44 

gradients, which can greatly advance our understanding of ecosystem ecology and function in 45 

response to environmental shifts. Elevational gradients in particular offer open-air space-for-time 46 

experiments. Contrary to latitudinal gradients or elevational gradients in the higher latitude zones, 47 

they are not complicated by changes in seasonality or growing season length, and with careful 48 

interpretation can offer great insights in tropical forest functioning (Körner, 2007; Malhi et al., 49 

2010; Sundqvist et al., 2013). Hence, elevational transects have been postulated as a viable and 50 

useful setup to assess long-term ecosystem responses to environmental changes, and serve as an 51 

empirical tool to assess future trajectories of forest ecosystems under global change (Malhi et al., 52 

2010; Sundqvist et al., 2013). This has invoked research efforts on transects in South America, but 53 

no such studies have been carried out in central African forests, leaving the second-largest 54 

continuous block of tropical forest understudied. Nevertheless, recent work has shown that African 55 

and South-American tropical forest currently show important differences in structure (Banin et al., 56 

2012) and species richness and composition (Slik et al., 2015). These differences call for cross-57 

continental empirical research in both the Amazon and the Congo basin (Corlett and Primack, 58 

2006), and in this context we can raise questions about the universality of tropical forest 59 

biogeochemistry and functioning across both continents, and subsequently their response to future 60 

global change scenarios. Additionally, due to the central role of nutrient availability that drives 61 

both net ecosystem productivity (NEP) and ecosystem carbon use efficiency (CUEe ) (Fernandez-62 
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Martinez et al., 2014), the effect of climatic gradients on nutrient availability should be better 63 

understood.  64 

 65 

Indeed, recent efforts have shown that biosphere-atmosphere carbon exchange in forests is 66 

regulated by nutrient availability (Fernandez-Martinez et al., 2014) and therefor, changes in 67 

nutrient bio-availability induced by global change need to be accounted for. Canopy chemical traits 68 

are  proxies that are relatively easy to assess, and from which ecosystem functioning and 69 

biogeochemistry can be inferred (Asner et al., 2015a; Wright et al., 2004). Nutrient ratios and 70 

concentrations in leafs, along with specific leaf area (SLA), are traits that are known to cluster 71 

around the leaf economic spectrum, which expresses a trade-off in photosynthetic efficiency and 72 

leaf turnover. Indeed, canopy nitrogen (N) and phosphorus (P) play key roles in photosynthesis, 73 

and are hence vital for carbon exchange processes at the leaf level. Consequently, species with 74 

high SLA, N and P are associated with high photosynthesis rates (Poorter et al., 2009; Reich et al., 75 

1997; Wright et al., 2004), but have an ‘expensive’ nutrient economy (fast leaf turnover). Previous 76 

work has shown that these traits vary systematically with landscape biogeochemistry (Asner et al., 77 

2014, 2015b) and hence the functional canopy signature of forests across gradients express the 78 

ecological response to changes in nutrient availability. Canopy chemistry has received increasingly 79 

more attention because of its inherent link to the plant strategy. Nevertheless, and as rightfully 80 

noted by Asner and Martin (2016), there are only limited surveys on canopy functional signatures 81 

in the tropics, while this information is vital for a landscape-scale understanding of tropical forest 82 

assembly. In addition to leaf traits, both leaf and soil δ15N are known integrators of the local N-83 

cycle and analysis of natural abundance of stable N isotope ratios is a powerful and extensively 84 

studied proxy for N cycling in ecosystems (Högberg, 1997). Previous efforts have shown that shifts 85 
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towards lower δ15N values indicate a more closed N-cycle with lower N availability, and vice versa 86 

(Brookshire et al., 2012; Craine et al., 2015; Houlton et al., 2006). This shift in isotopic ratios is 87 

caused by increased rates in fractioning processes such as denitrification, where 14N is 88 

preferentially consumed, leaving the source pool enriched with 15N (Hobbie and Ouimette, 2009). 89 

Hence δ15N values have been used to infer shifts in N openness across natural gradients (Martinelli 90 

et al., 1999; Menge et al., 2011; Vitousek et al., 1989). Hence combining both leaf traits and δ15N 91 

values is an interesting approach to assess ecosystem responses to environmental gradients. 92 

 93 

In this study we address the existing lack of standardized cross-continental research and assessed 94 

shifts in nutrient availability and forest functional composition along two similar transects in 95 

Ecuador and Rwanda. We assessed these shifts through indicative (I) community-level functional 96 

traits and (II) nitrogen isotope ratios in topsoil and canopy. We hypothesized that (I) both these 97 

community-level traits and stable isotope signals would indicate a shift in nitrogen availability 98 

with altitude, and that (II) these shifts would be similar on both continents in terms of direction 99 

and magnitude, given a standardized research protocol and a similar adiabatic lapse rate. 100 

Materials and Methods 101 

Field inventories, sampling and trait analyses 102 

We selected plots at different altitudes on the West flank of the Andes in Ecuador (ranging 103 

from 400-3200 masl) and in the Nyungwe national Park Rwanda (1600-3000 masl), in the 104 

Southern Great Rift Valley (figure S1 and Table S1 for location and overview maps). Due to 105 

reduced accessibility, the gradient in Rwanda was shorter than the South-American transect. We 106 

delineated and inventoried plots following an international standardized protocol for tropical forest 107 

inventories (RAINFOR, Malhi et al. 2002), with an adapted plot size of 40 by 40 m. In each plot, 108 
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the diameter of all live stems with a diameter larger than 10 cm was measured at 1.3 m height and 109 

the trees were identified to species or genus level. Besides diameters also tree heights were 110 

measured, in order to estimate the aboveground carbon storage (AGC) using pan-tropical 111 

allometric relationships (Chave et al., 2014). The canopy of every plot was characterized by 112 

selecting the most abundant tree species, aiming at a sampling percentage of 80% of the basal area 113 

of the plots. For the selected species of all plots, we sampled mature leaves of a minimum of three 114 

individuals per species per plot using tree climbers. For most of the individuals we sampled fully 115 

sunlit leaves, but this was not always possible for the safety of the climbers, in which case we 116 

sampled partly shaded leaves under the top canopy. Previous work on elevational transects has 117 

shown that the vertical profile of leaves within a canopy has little effect on the trait values (Fisher 118 

et al., 2013). Additionally, composite samples of the topsoil (0-5 cm) were collected at five 119 

different places within each plot, and mixed per plot prior to drying. Soil and leaf samples were 120 

dried for 48 hours at 60°C. Roots were picked out of the soil samples before grinding and 121 

subsequently carbon (C), nitrogen (N) content and δ15N of plant and soil samples were analyzed 122 

using an elemental analyzer (Automated Nitrogen Carbon Analyser; ANCA-SL, SerCon, UK), 123 

interfaced with an Isotope Ratios Mass Spectrometer (IRMS; 20-20, SerCon, UK). Leaf samples 124 

were dry-ashed at 550°C for 5.5 hours; the ash was dissolved in 2M HCl solution and subsequently 125 

filtered through a P-free filter. The aliquots where then analyzed for total P by AAS method No.G-126 

103-93 Rev.2 (Multitest MT7/MT8; Ryan and others 2001). SLAs were calculated by dividing the 127 

leaf areas of all the sampled leafs per individual by their summed dry mass. Leaf areas were 128 

determined by either photographing leafs with on white paper with a reference scale or by drawing 129 

leaf contours and scanning the drawings. Both the scans and the pictures were processed using the 130 

ImageJ software (Schneider et al., 2012). For one abundant species of the higher altitudes on the 131 
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Rwandan transect (Podocarpus latifolius (Thunb.) R.Br. ex Mirb.) we could not obtain good area 132 

estimates, so we adopted SLA figures from literature (Midgley et al., 1995). 133 

 134 

Statistical analysis 135 

Average leaf trait values as specific leaf area (SLA), leaf nitrogen content on mass basis 136 

(LNC), leaf phosphorus content on mass basis (LPC), δ15N, C:N and N:P ratio were calculated for 137 

every selected species, based on the sample values for the different individuals of the species. 138 

Subsequently, to calculate community-level traits and leaf δ15N per plot, we calculated a basal area 139 

weighted-average canopy value and standard deviation using the species composition and the 140 

species averages, following Asner et al. (2016b). Hence: 141 

𝑥̅𝑤 =
∑ 𝑤𝑖. 𝑥𝑖
𝑁
𝑖=1

∑ 𝑥𝑖
𝑁
𝑖=1

 142 

with xw the weighted value for trait x, xi the mean trait value for species i and wi the basal-area 143 

based weight of that species in the specific plot. Subsequently for the weighted standard deviations 144 

(𝜎𝑤): 145 

 146 

 147 

𝜎𝑤 =
√
∑ 𝑤𝑖. (𝑥𝑖 − 𝑥̅𝑤)²
𝑁
𝑖=1

(𝑁 − 1)∑ 𝑤𝑖
𝑁
𝑖=1

𝑁
 148 

with N the number of nonzero weights. 149 

The structure of the trait datasets was assessed qualitatively using Pearson correlation statistics 150 

after log-transforming the trait data for normality. Finally, we studied the relations between the 151 

different leaf traits and elevation using mixed effects models for the different traits, with a random 152 
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error structure. The plots were spatially clustered around four altitudes on both transects, hence we 153 

introduced these elevational clusters as a random effect, and treated altitude and transect as fixed 154 

effects. Models were then fitted using maximum likelihood methods in the ‘lme4’ package in R 155 

(Bates et al., 2007).  P-values of the fixed effects –elevation, transect and their interaction - were 156 

determined based on the denominator degrees of freedom calculated with the Satterhwaite 157 

approximation, in the lmerTest package (Kuznetsova et al., 2014). The P-values for the interaction 158 

term, along with the Akaike Information Criterion (AIC) for models with and without this 159 

interaction term were used to decide whether or not to exclude the interaction term. For reasons of 160 

linearity we used the inverse C:N (hence rather N:C) in these analyses. Models for δ15N were 161 

assessed for each transect, using mixed effects models, with elevational cluster as a random effect. 162 

To explicitly determine divergence and convergence of plant and soil δ15N with altitude, 163 

compartment (i.e. canopy leaves or topsoil) was introduced as a fixed effect and the interaction 164 

term was left in the model. For the statistical analysis, the R-software was used (R Core Team, 165 

2014). 166 

 167 

Results 168 

The pooled trait datasets from both transects showed a consistent and similar correlation structure 169 

(Fig. S2), with both the separate and the pooled data showing significant correlations between all 170 

traits, except SLA and N:P. The structural vegetation parameters on both transects showed 171 

important differences: for the same altitude range, we found a higher stem density, but less species 172 

on the Rwandan transect (Table 1). Tree height and basal area were comparable, and the carbon 173 

stocks showed high variability along both transects. Climatic conditions were similar, with a highly 174 

consistent temperature gradient (Fig. S3, Table 1), and similar mean annual precipitation in the 175 
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concurring elevational ranges. The linear mixed models with altitude as fixed effect, were able to 176 

explain a significant proportion of variation in all traits. This is reflected by both the marginal (m) 177 

and conditional (c) R2
adj, respectively proxies for the variation explained by the fixed effects, and 178 

the random and fixed effects together (Schielzeth and Nakagawa, 2013) (Table 2). The interaction 179 

term was not significant in any case, hence the trait responses to altitude were parallel on both 180 

continents. LNC, N:C, LPC and N:P significantly decreased with altitude (R2
adj,m of respectively 181 

0.83, 0.87, 0.68 and 0.60), with the Rwanda transect showing higher overall values. SLA also 182 

decreased significantly, but with a slightly higher intercept for the Ecuadorian transect (R2
adj,m = 183 

0.83). δ15N decreased on both continents with altitude, with a similar effect on both continents 184 

(Table 3). There was a significant divergence between slope and soil δ15N along the Ecuadorian 185 

transect, while Rwanda showed a significant convergence (R2
adj,m = 0.93 and 0.55 for respectively 186 

Ecuador and Rwanda).   187 

 188 

Discussion 189 

The vegetation structure was varying differently along both transects. The high variability in the 190 

stem number, basal area and carbon stocks is potentially caused by the relatively small plot size. 191 

Other research efforts, targeting these variables in specific, use plot sizes of 1 hectare, as set 192 

forward by the RAINFOR protocol, in tropical forests worldwide (Phillips et al., 2009). As such, 193 

the differing carbon stocks probably do not integrate important stochastic events (e.g. tree fall) 194 

from the forest along both slopes. However, interestingly enough we found a lower average carbon 195 

stocks and higher number of trees in the upper two Rwandan clusters in comparison to the 196 

Ecuadorian forests. This contrasts to what has been reported from large scale forest monitoring 197 

networks across the lowland forests of Amazon and the Congo basin (Lewis et al., 2013).  More 198 
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research in larger plots, including dynamics and productivity should validate if this is a consistent 199 

observation in highland forest on both continents. On the other hand, the lower species number on 200 

the African transect fits well within the recent findings of a pantropical study, reporting a lower 201 

tree species diversity in the African tropical forest (Slik et al., 2015).  202 

 203 

Different environmental variables are influenced by altitudinal changes, i.e. atmospheric pressure, 204 

temperature, cloudiness, moisture, etc. (Körner, 2007). Using all these variables in a meta-analysis 205 

would be highly interesting, but nonsensical for this study’s new data alone, hence we chose to 206 

indirectly use elevation as a proxy for the related changes. In this view, the air temperature decrease 207 

with elevation was highly similar on both transects, which means that we can validly assess similar 208 

temperature-driven responses of both forest functional composition and the underlying nutrient 209 

dynamics. The high collinearity in the trait datasets corresponds well to known trade-offs described 210 

as the “leaf economics spectrum” (LES); basically a leaf-level trade-off between leaf construction 211 

cost, i.e. low specific leaf area (SLA), leaf nitrogen content (LNC) and leaf phosphorus content 212 

(LPC); and photosynthetic efficiency, i.e. high SLA, LNC and LPC (Wright et al., 2004). LNC, 213 

LPC and SLA showed a highly significant decrease with altitude (Fig. 1 and Table 2), indicating 214 

a functional shift towards more nutrient conservative species communities at higher altitudes on 215 

both transects. Indeed, leaves at lower altitudes with high LNC, LPC and SLA and hence a more 216 

efficient photosynthetic apparatus and rapid turnover, are replaced by leaves with low LNC, LPC 217 

and SLA values at higher altitudes. We’ve added previous published work of South America and 218 

South-East Asia, with similar temperature gradients by Asner et al, Kitayama and Aiba and Van 219 

de Weg et al. to our transects (Asner et al., 2016b; Kitayama and Aiba, 2002; Van de Weg et al., 220 

2009; Fig. S3) to assess the consistency of our observed trends. We deliberately only added the 221 
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limited amount of studies where community-weighted means were reported along one ‘single 222 

mountain range system’, hence neglecting a recent and relevant contribution from Asner et al. 223 

(Asner and Martin, 2016). As argued by Tanner et al. (Tanner et al., 1998), forests with low, 224 

intermediate and high nutrient concentrations can be found globally at any altitude, hence 225 

neglecting the effect of local environmental characteristics (atmospheric deposition, seasonality 226 

etc.) might lead to wrong conclusions. This is also shown by the different intercepts, or the vertical 227 

shift in trends in Fig. S3. Our comparison showed that the decreasing trend in LNC was consistent 228 

with the other studies from South-America (Asner et al., 2016b; Van de Weg et al., 2009), but not 229 

with South-East Asia where no significant trend was found (Kitayama and Aiba, 2002). However, 230 

leaf mass area (LMA; the inverse of SLA) of all studies showed a similar, increasing trend with 231 

elevation. LPC shows a strong and significant trend along both transects in this study, while the 232 

other studies report no significant trend. This is consistent with the meta-analysis presented by 233 

Tanner et al., which shows consistent negative LNC trends on ‘same mountain’ studies and 234 

inconsistent LPC trends (Tanner et al., 1998). A recent effort on a larger scale in Peru has shown 235 

that LES trade-off between LNC-LPC or SLA-LPC is indeed decoupled by climatic and 236 

geophysical filters, while the leaf SLA-LNC trade-off is more robust (Asner et al., 2016a). 237 

Regarding the studies we included for comparison (Fig. S3), only Van de Weg et al. assessed N:P 238 

ratio, and although no significant trend was found, they reported that N:P ratio was lowest in the 239 

highest sites (Van de Weg et al., 2009). Additionally, decreasing N:P ratios have also been reported 240 

on other transects on the Andes (Fisher et al., 2013; Soethe et al., 2008), and recently in Peru using 241 

airborne imaging spectroscopy (Asner et al., 2016a). 242 

 243 
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In addition to the above community-level functional traits, the decreasing δ15N values on both 244 

continents (Fig. 1) are another strong indication of the decreasing N availability in the upper 245 

forests. Along the transects, both topsoil and canopy leaves showed decreasing δ15N values with 246 

increasing altitude (Fig. 1), indicating a more closed N-cycle with lower N availability at the higher 247 

altitudes of both transects. It has been shown that lowland tropical rainforests exhibit high values 248 

of δ15N mainly caused by the high gaseous nitrogen losses via denitrification, a strongly 249 

fractionating process (Houlton et al., 2006). The decreasing trends with altitude are interesting and 250 

seem to support the existing paradigm that tropical forests shift from P to N limitation in transition 251 

from lowland to montane tropical forest (Townsend et al., 2008). This is also reflected in the 252 

stoichiometric shifts, as canopy N:P is decreasing with increasing elevation (Fig. 1). Hence plants 253 

incorporate relatively less N compared to P in canopies at higher altitudes. The higher soil δ15N 254 

values along the lower part of the Rwanda transect suggests a more open N-cycle compared to the 255 

lower part of the Ecuadorian transect. This corroborates with a recent finding of very high N losses 256 

at 1900 masl at the Rwanda site (Rütting et al., 2014), and the observation of high retention 257 

potential of bio-available N in Chilean Andisols (Huygens et al., 2008). Further research is needed 258 

to explain the notable divergence in soil and foliage δ15N along the Ecuadorian transect, mainly 259 

driven by the highest elevational cluster. As previously reported this can be due to different degrees 260 

of dependence upon ectomycorrhizal fungi (EcM) (Hobbie et al., 2005), different mycorrhizal 261 

association types (Craine et al., 2009) or shifts in the uptake of different forms of nitrogen (Averill 262 

and Finzi, 2011; Kahmen et al., 2008). EcM-associated plant species are expected to show more 263 

depleted isotopic ratios, due to isotope fractionation during N transfer to the host plant. This effect 264 

is obscured in lowland N-rich tropical forests and might just not be detectable at lower altitudes, 265 

but might become apparent in N-poorer environments such as the higher altitude forests (Mayor 266 
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et al., 2014). Secondly, a study from a temperate elevational transect has shown that plants 267 

increasingly switch to organic N sources with decreasing temperature, without fractionation upon 268 

N transfer from EcM to plants (Averill and Finzi, 2011). Resulting from that, they found a 269 

convergence rather than divergence of δ15N soil – canopy along altitude, because plants draw N 270 

increasingly from a source pool close to the bulk isotopic signature. We have no data on EcM 271 

colonization or δ15N of sporocarps in the study plots, so we are not able to disentangle both 272 

mechanisms. However, by characterizing both community functional traits and canopy and soil 273 

δ15N, the data of these transects is consistent with a decreasing availability of soil N as elevation 274 

increases.  We suggest the reduced N availability to be caused by an indirect temperature effect on 275 

the N-cycle, consistent with observations from a direct fertilization experiment (Fisher et al., 276 

2013). Lower temperatures slow down depolymerization and N mineralization processes, hence 277 

also N bio-availability, thereby invoking changes in the functional plant communities along the 278 

transects (Coûteaux et al., 2002; Marrs et al., 1988). Future global change will most likely distort 279 

N availability both directly via increased reactive N deposition (Galloway et al., 2008; Hietz et al., 280 

2011) and indirectly via a temperature effect on N mineralization in forest soils. This raises 281 

questions on the future of plant species within the already threatened montane tropical forest 282 

biome, where higher N availability and temperature increase might distort the existing ecological 283 

niches and in turn also increase N-losses. Further research should therefore focus on process-based 284 

knowledge of N and P cycle dynamics along such transects to further assess if the availability is 285 

actually limiting the ecosystems. These observations also have repercussions for carbon fluxes: 286 

since nutrient availability exerts a stronger control on NEP than on gross primary production (GPP) 287 

(Fernández-Martínez et al., 2014), it is likely that the CUEe will be lower at higher altitudes. It has 288 

been hypothesized that this decrease in CUEe is due to an increased investment of photosynthates 289 
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to non-biomass components, such as root symbionts for nutrient mining and root exudates, in 290 

expense of net primary production (NPP) (Vicca et al., 2012). However, recent empirical evidence 291 

has shown for one transect in the Andes, that a decrease in GPP with increasing altitude is not 292 

accompanied by a trend in CUE (Malhi et al., 2016). More work on carbon budgets along 293 

elevational transects is needed to fully understand the role of N and P availability and its interaction 294 

with climate gradients for the tropical forest carbon cycle. 295 

  296 

Conclusions 297 

Altogether, this study evidences parallel functional shifts with a similar direction and magnitude 298 

along two comparable elevation gradients, in tropical forests on two different continents. The data 299 

suggests, in two different ways, that this shift is caused by temperature-driven response of nutrient 300 

availability. With the first data on an elevational transect in Central Africa, this work adds to the 301 

existing set of elevational transects in the tropics. However, more transects are needed, especially 302 

in Africa, to validate a universal response of tropical forests to environmental change. 303 

Furthermore, work on process-based nutrient dynamics is important to unravel the importance of 304 

different global change factors for both forest basins. 305 

 306 
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Table 1 General characteristics, vegetation structure, climate (mean annual temperature (MAT) and mean annual precipitation (MAT), 536 

WorldClim - Fick, 2017) and soil characteristics of the elevational clusters on both transects. Number of trees and species (in the 40 537 

by 40 m plots), basal area (BA), mean tree height (MTH) and above-ground carbon (AGC) are averages per plot ± the standard 538 

deviation on the plot-level results, based on the inventories.  539 

 540 

541 

 Cluster 

Altitude 
(masl) 

Number 
of trees 
per plot 

Number 
of species 
per plot 

BA 
 (m2 ha-1) 

MTH 
 (m)  

AGC  
(Ton C ha-1) 

MAT 
 (°C) 

MAP 
 (mm) 

Soil parent material Soil classification 

Ecuador 

1 406 ± 10 86 ± 13 30 ± 2 25 ± 3 18.3 ± 1.0 96 ± 19 23.7 3720 Lahars Andisol 

2 1068 ± 25 84 ± 38 39 ± 15 33 ± 9 16.9 ± 0.7 140 ± 25 20.0 3227 Lahars Andisol 

3 1871 ± 79 69 ± 11 31 ± 2 33 ± 11 13.5 ± 1.3 112 ± 57 17.5 1619 Redbed volcaniclastics  Andisol 

4 3217 ± 21 90 ± 25 18 ± 2 49 ± 11 13.0 ± 1.4 161 ± 34 10.9 1241 Granitic/acid Andisol 

Rwanda 

1 1760 ± 66 70 ± 18 21 ± 4 34 ± 4 13.9 ± 0.7 121 ± 11 17.6 1518 Shale and Quartzite Inceptisol/Ultisol 

2 2200 ± 64 71 ± 18 18 :± 3 45 ± 9 14.3 ± 0.3 179 ± 27 15.9 1628 Shale and Quartzite Inceptisol/Ultisol 

3 2512 ± 37 122 ± 60 11 ± 1 31 ± 9 12.0 ± 1.0 99 ± 36 14.7 1716 Shale and Quartzite Inceptisol/Ultisol 

4 2844 ± 77 109 ± 56 8 ± 2 34 ± 4 11.5 ± 0.5 89 ± 10 12.9 1835 Shale and Quartzite Inceptisol/Entisol 
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Table 2 Fixed effects estimates (altitude in km asl) for the different canopy-level response 542 

variables; leaf nitrogen content (LNC), inverse C:N ratio, specific leaf area (SLA), leaf phosphorus 543 

content (LPC) and N:P ratio, along with the estimated marginal (m) and conditional (c) R2
adj (sensu 544 

Nakagawa and Schielzeth (5)). The interaction term for altitude x transect was not significant in 545 

any case, and was hence not retained in any model. 546 

 547 

Response Effect Estimate SE P-value R2
adj,m R2

adj,c 

LNC (%) Ecuador intercept              3.04          0.131  <0.001           0.80            0.85  

 Rwanda intercept              3.65          0.115          0.003    
 Altitude            -0.59         0.000  <0.001   
SLA Ecuador intercept         175.28       14.107  <0.001           0.77            0.95  

 Rwanda intercept         172.55       12.504          0.835    
 Altitude            -36.24          0.007          0.002    
N:C Ecuador intercept              0.07          0.003  <0.001           0.83            0.91  

 Rwanda intercept              0.07          0.003          0.033    
 Altitude             -0.01          0.000  <0.001   
LPC (%) Ecuador intercept              0.16          0.012  <0.001           0.60            0.88  

 Rwanda intercept              0.17          0.011          0.247    
 Altitude            -0.02          0.000          0.009    
N:P Ecuador intercept           20.66          1.055  <0.001           0.54            0.74  

 Rwanda intercept           24.06          0.926          0.014    
 Altitude            -1.82          0.001          0.018    

 548 

 549 

 550 

 551 
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Table 3 Fixed effects estimates (altitude in km asl) for δ15N in both canopy and topsoil 552 

(compartment) on both transects, along with the estimated marginal (m) and conditional (c) R2
adj 553 

(sensu Nakagawa and Schielzeth (5)).  554 

Response Effect Estimate SE P-value R2
adj,m R2

adj,c 

δ15N Ecuador(‰) Canopy intercept 3.96 0.406 <0.001           0.93            0.94  

 Soil intercept 5.19 0.440 0.009   
 Altitude -2.59 0.000 <0.001   

 Altitude x compartment 1.53 0.000 <0.001   
δ15N Rwanda (‰) Canopy intercept 6.83 3.193 0.21103           0.55            0.82  
 Soil intercept 12.37 1.749 0.004   

 Altitude -2.02 0.001 0.310   
 Altitude x compartment -1.37 0.001 0.074   
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 555 

Fig. 1. Trends in community-level functional traits and leaf (full line, closed circles) and topsoil (dashed line, open circles) δ15N 556 

of the elevation transects in Ecuador (red) and Rwanda (blue). Leaf nitrogen content (LNC), leaf phosphorus content (LPC), specific 557 

leaf area (SLA), and leaf N:C, P:C and N:P ratio decrease with increasing altitude on both transects. Both transect showed decreasing 558 

values of δ15N, providing additional evidence for a more closed N-cycle with increasing altitude. Lines represent the fixed altitude 559 

effects in the respective statistical models for both Ecuador (red, 400-3200 masl) and Rwanda (blue, 1600-3000 masl). 560 


