

1 **Coupled eco-hydrology and biogeochemistry algorithms enable simulation of water table**
2 **depth effects on boreal peatland net CO₂ exchange**

3

4 Mohammad Mezbahuddin*^{1,2}, Robert F. Grant², and Lawrence B. Flanagan³

5

6 ¹*Environmental Stewardship Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada*

7 ²*Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada*

8 ³*Department of Biological Sciences, University of Lethbridge, AB, Canada*

9

10 *corresponding author. Email addresses: symon.mezbahuddin@gov.ab.ca,

11 mezbahud@ualberta.ca.

12 **Abstract**

13 Water table depth (WTD) effects on net ecosystem CO₂ exchange of boreal peatlands are
14 largely mediated by hydrological effects on peat biogeochemistry, and eco-physiology of
15 peatland vegetation. Lack of representation of these effects in carbon models currently limits our
16 predictive capacity for changes in boreal peatland carbon deposits under potential future drier
17 and warmer climates. We examined whether a process-level coupling of a prognostic WTD with
18 1) oxygen transport which controls energy yields from microbial and root oxidation-reduction
19 reactions, and 2) vascular and non-vascular plant water relations could explain mechanisms that
20 control variations in net CO₂ exchange of a boreal fen under contrasting WTD conditions i.e.
21 shallow vs. deep WTD. This coupling of eco-hydrology and biogeochemistry algorithms in a
22 process-based ecosystem model *ecosys* was tested against net ecosystem CO₂ exchange
23 measurements in a Western Canadian boreal fen peatland over a period of drier weather driven
24 gradual WTD drawdown. A May-October WTD drawdown of ~0.25 m from 2004 to 2009
25 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root
26 energy yields, and peat and litter decomposition, which raised modelled ecosystem respiration
27 (R_e) by 0.26 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ per 0.1 m of WTD drawdown. It also augmented nutrient
28 mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf
29 nutrient (nitrogen) status that facilitated carboxylation, and raised modelled vascular gross
30 primary productivity (GPP) and plant growth. The increase in modelled vascular GPP exceeded
31 declines in modelled non-vascular (moss) GPP due to greater shading from increased vascular
32 plant growth, and moss drying from near surface peat desiccation, thereby causing a net increase
33 in modelled growing season GPP by 0.39 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ per 0.1 m of WTD drawdown.
34 Similar increases in GPP and R_e left no significant WTD effects on modelled seasonal and

35 interannual variations in net ecosystem productivity (NEP). These modelled trends were
36 corroborated well by eddy covariance measured hourly net CO₂ fluxes (modelled vs. measured:
37 $R^2\sim0.8$, slopes $\sim1\pm0.1$, intercepts $\sim0.05\text{ }\mu\text{mol m}^{-2}\text{ s}^{-1}$), hourly measured automated chamber net
38 CO₂ fluxes (modelled vs. measured: $R^2\sim0.7$, slopes $\sim1\pm0.1$, intercepts $\sim0.4\text{ }\mu\text{mol m}^{-2}\text{ s}^{-1}$), and
39 other biometric and laboratory measurements. Modelled drainage as an analog for WTD
40 drawdown induced by climate change driven drying showed that this boreal peatland would
41 switch from a large carbon sink (NEP $\sim160\text{ g C m}^{-2}\text{ yr}^{-1}$) to carbon neutrality (NEP $\sim10\text{ g C m}^{-2}$
42 yr $^{-1}$) should water table deepen by a further ~0.5 m. This decline in projected NEP indicated that
43 a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water
44 limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry
45 and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global
46 carbon models would improve our predictive capacity for changes in boreal peatland carbon
47 sequestration under changing climates.

48 **1. Introduction**

49 Northern boreal peatlands have been accumulating carbon (C) at a rate of about 20-30 g
50 $\text{m}^{-2} \text{ yr}^{-1}$ over several thousand years (Gorham, 1991; Turunen et al., 2002). Drier and warmer
51 future climates can affect the resilience of long-term boreal peatland C stocks by lowering water
52 table (WT) that can halt or even reverse the C accumulation in boreal peatlands (Limpens et al.,
53 2008; Dise, 2009; Frolking et al., 2011). To maintain and protect the C sequestration potentials
54 of boreal peatlands we need an improved predictive capacity of how these C stocks would
55 behave under future drier and warmer climates. However, boreal peatland C processes are
56 currently under-represented in global C models largely due to inadequate simulation of
57 hydrologic feedbacks to C cycles (St-Hilaire et al., 2010; Sulman et al., 2012). This can be
58 overcome by integrating interactions between eco-hydrology of peatland vegetation, and peat
59 biogeochemistry into finer resolution process models that can eventually be scaled up into larger
60 spatial and temporal scale C models (Waddington et al., 2015).

61 The hydrologic feedbacks to boreal peatland C processes are largely mediated by water
62 table depth (WTD) variation and its effects on peat-microbe-plant-atmosphere exchanges of C,
63 energy, water and nutrients (Grant et al., 2012). WTD drawdown can affect net ecosystem
64 productivity (NEP) of boreal peatlands through its effects on ecosystem respiration (R_e) and
65 gross primary productivity (GPP). Receding WT can cause peat pore drainage that enhances
66 microbial O₂ availability, energy yields, growth and decomposition and hence increases R_e
67 (Sulman et al., 2009, 2010; Cai et al., 2010; Flanagan and Syed, 2011; Peichl et al., 2014). The
68 rate of increase in R_e due to the WTD drawdown may vary with peat moisture retention and
69 quality of peat forming substrates (Preston et al., 2012). For instance, peats with low moisture
70 retention exhibit more rapid pore drainage than those with high moisture retention thus causing

71 more increase in R_e for similar WTD drawdowns (Parmentier et al., 2009; Sulman et al., 2009,
72 2010; Cai et al., 2010). Peats formed from *Sphagnum* mosses degrade at rates slower than those
73 formed from remains of vascular plants (Moore and Basiliko, 2006). So for similar WTD
74 drawdowns, moss peats would generate less increase in microbial decomposition and hence R_e
75 than would sedge, reed or woody peats (Updegraff et al., 1995). Continued WTD drawdown can
76 also cause near surface peat desiccation from inadequate recharge through capillary rise from
77 deeper WT. Desiccation of near surface or shallow peat layers can cause a reduction in microbial
78 decomposition that can partially or fully offset the increased decomposition in the deeper peat
79 layers thereby yielding indistinct net effects of WTD drawdown on R_e (Dimitrov et al., 2010a).

80 The interactions between WTD and GPP vary across peatlands depending upon peat
81 forming vegetation. For instance, increased aeration due to WTD drawdown enhances root O₂
82 availability and growth in vascular plants (Lieffers and Rothwell, 1987; Murphy et al., 2009).
83 Enhanced root growth is also associated with greater root nutrient availability and uptake from
84 more rapid mineralization facilitated by greater microbial energy yields, growth and
85 decomposition under deeper WT (Choi et al., 2007). Greater root nutrient uptake in turns
86 increases the rate of vascular CO₂ fixation and hence GPP (Sulman et al., 2009, 2010; Cai et al.,
87 2010; Flanagan and Syed, 2011; Peichl et al., 2014). WTD drawdown, however, does not affect
88 the non-vascular (e.g., moss) GPP in the same way it does the vascular GPP (Lafleur et al.,
89 2005). Non-vascular plants mostly depend upon the water available for uptake in the near surface
90 or shallow peat layers (Dimitrov et al., 2011). These layers can drain quickly with receding WT
91 and thus have to depend on moisture supply through capillary rise from deeper WT (Dimitrov et
92 al., 2011; Peichl et al., 2014). If recharge through the capillary rise is not adequate, near surface
93 peat desiccation occurs which slows moss water uptake, causes eventual drying of mosses and

94 reduces moss GPP (Lafleur et al., 2005; Riutta 2008; Sonnentag et al., 2010; Sulman et al., 2010;
95 Dimitrov et al., 2011; Kuiper et al., 2014; Peichl et al., 2014). Near surface peat desiccation also
96 suppresses vascular root water uptake from the desiccated layers (Lafleur et al., 2005; Dimitrov
97 et al., 2011). But enhanced root growth and elongation facilitated by improved O₂ status in the
98 newly aerated deeper peat layers under deeper WT enables vascular roots to take up water from
99 wetter deeper layers (Dimitrov et al., 2011). If deeper root water uptake offsets the reduction in
100 water uptake from desiccated near surface layers, vascular transpiration (T), canopy stomatal
101 conductance (g_c) and hence GPP are sustained under deeper WT (Dimitrov et al., 2011). But if
102 the WT falls below certain threshold level under which deeper root water uptake can no longer
103 sustain vascular T , g_c and hence vascular GPP declines (Lafleur et al., 2005; Wu et al., 2010).

104 WTD variation can thus affect boreal peatland NEP through its effects on peat moisture
105 and aeration and consequent root and microbial oxidation-reduction reactions and energy yields.
106 To predict how boreal peatlands would behave under future drier and warmer climates, a
107 peatland C model thus needs to simulate WTD dynamics that determine the boundary between
108 aerobic and anaerobic zones and controls peat biogeochemistry. However, most of the current
109 process-based peatland C models either do not simulate a continuous anaerobic zone below a
110 prognostic WT (e.g., Baker et al., 2008; Schaefer et al., 2008; Tian et al., 2010), or do not
111 simulate peat saturation since any water in excess of field capacity is drained in those models
112 (e.g., Gerten et al., 2004; Krinner et al., 2005; Weng and Luo, 2008). Moreover, instead of
113 explicitly simulating the above-described hydrological and biological interactions between peat
114 aeration and biogeochemistry, most of those models use scalar functions of soil moisture
115 contents to inhibit R_e and GPP under low or high moisture conditions (e.g., Frolking et al., 2002;
116 Zhang et al., 2002; Bond-Lamberty et al., 2007; St-Hilaire et al., 2010; Sulman et al., 2012).

117 Consequently, those peatland C models could not simulate declines in GPP and R_e due to
118 shallow WT while simulating WTD effects on CO₂ exchange of peatlands across northern US
119 and Canada (Sulman et al., 2012). Furthermore, the approach of using scalar functions to
120 simulate moisture limitations to GPP and R_e requires site-specific parameterization of model
121 algorithms which reduces scalability of those peatland C models.

122 **1.1. Objective and rationale**

123 In this study, we tested a process-based ecosystem model *ecosys* against eddy covariance
124 (EC) net CO₂ fluxes measured over a drying period from 2004 to 2009 in a western Canadian
125 boreal fen peatland in Alberta, Canada (will be termed as WPL hereafter) (Syed et al., 2006;
126 Flanagan and Syed, 2011). The objective was to test whether the coupling of a dynamic WTD
127 that arises from vertical and lateral water fluxes as a function of a soil moisture retention scheme
128 with 1) oxygen transport, 2) microbial and root oxidation-reduction reactions and energy yields,
129 and 3) root, microbial and plant growth and uptake within a soil-plant-microbe-atmosphere
130 water, C and nutrient (nitrogen, phosphorus) scheme in an ecosystem process model could
131 explain underlying processes that govern hydrological effects on net CO₂ exchange of a northern
132 boreal fen under contrasting WTD conditions (e.g., shallower vs. deeper WTD). This study
133 would reconcile our knowledge on the feedback mechanisms among hydrology, eco-physiology,
134 and biogeochemistry of peatlands which are predominantly based upon inferences drawn from
135 EC-gap filled values that include empirically modelled estimates. It would also provide us with a
136 better insight into- and an improved predictive capacity of- how carbon deposits in northern
137 boreal peatlands would behave under changing climates. Rigorous site-scale testing of coupled
138 eco-hydrology and biogeochemistry algorithms in ecosystem process models such as *ecosys*

139 would also provide us with important insights on how to improve large-scale representation of
140 these processes into next generation land surface models.

141 **1.2. Hypotheses**

142 In an eddy covariance (EC) study, Flanagan and Syed (2011) found no net effect of a
143 weather driven WTD drawdown on NEP of WPL over 2004-2009. From the regressions of EC-
144 derived GPP and R_e on site measured WTD, they inferred that the absence of a net WTD effect
145 on NEP was caused by similar increases in GPP and R_e with WTD drawdown. We hypothesized
146 that coupled eco-hydrology and biogeochemistry algorithms in *ecosys* would be able to simulate
147 and explain underlying mechanisms of these effects of WTD drawdown on GPP and R_e and
148 hence NEP at the WPL. We tested the following four central hypotheses:

149 (1) WTD drawdown would increase R_e of the northern fen at the WPL. This effect of WTD
150 drawdown on R_e would be modelled by simulation of peat pore drainage and improved peat
151 aeration that would increase the energy yields from aerobic microbial decomposition and hence
152 would increase R_e .

153 (2) WTD drawdown would increase GPP of the northern fen at the WPL. This effect of WTD
154 drawdown on GPP would be modelled by simulating enhanced microbial activity due to WTD
155 drawdown that would cause more rapid nutrient mineralization and greater root nutrient
156 availability and uptake, greater leaf nutrient concentrations and hence increased GPP.

157 (3) Increase in R_e with WTD drawdown (hypothesis 1) would cease should WTD fall below a
158 threshold depth. This threshold WTD effect on R_e would be modelled by simulating inadequate
159 recharge of the near surface peat layers through capillary rise from the deeper WTD below the
160 threshold level that would cause desiccation of those layers. Drying of near surface peat layers

161 and the surface residue would reduce near surface and surface peat respiration that would
162 partially offset the increase in deeper peat respiration due to aeration.

163 (4) Net effect of threshold WTD on GPP would be driven by the balance between how WTD
164 would affect vascular vs. non-vascular GPP. This threshold WTD effect on GPP would be
165 modelled by simulating vascular vs. non-vascular water relations under deeper WTD below the
166 threshold level. Near surface peat desiccation in hypothesis 3 would reduce peat water potential
167 and hydraulic conductivity and hence vascular and non-vascular water uptake from desiccated
168 near surface layers. Since non-vascular mosses depend mainly on near surface peat layers for
169 moisture supply, reduction in moss water uptake would cause a reduction in moss water potential
170 and hence moss GPP. On the contrary, suppression of vascular root water uptake from desiccated
171 near surface layers under deeper WT would be offset by increased deeper root water uptake from
172 newly aerated deeper peat layers with higher water potentials that would sustain vascular canopy
173 water potential (ψ_c), canopy stomatal conductance (g_c) and GPP.

174 **2. Methods**

175 **2.1. Model development**

176 *Ecosys* is a process-based ecosystem model which simulated 3D water, energy, carbon
177 and nutrient (nitrogen, phosphorus) cycles in different peatlands (Dimitrov et al., 2011; Grant et
178 al., 2012; Sulman et al., 2012; Mezbahuddin et al., 2014, 2015, 2016). *Ecosys* algorithms that
179 govern the modelled effects of WTD variations on peatland net CO₂ exchange are described
180 below. These algorithms in *ecosys* are derived from published independent basic research which
181 describe eco-hydrological and biogeochemical mechanisms that govern carbon, nutrient (N, P),
182 water, and energy balance of a typical boreal peatland ecosystem (Fig. 1). *Ecosys* algorithms
183 which are related to our hypotheses are depicted as a flowchart (Fig. 1) and cited as equations

184 within the text. These equations are also listed in sections S1-S4 of the supplementary material
185 with references to their sources for further clarification. These site-independent basic ecosystem
186 process algorithms in *ecosys* are thus not parameterized for each peatland site. Instead the
187 coupled algorithms are fed with peatland-specific measurable soil, weather, vegetation and
188 management inputs to simulate C, nutrient (N, P), water and energy balance of a particular
189 peatland ecosystem.

190 **2.1.1. Water table depth (WTD)**

191 The WTD in *ecosys* is calculated at the end of each time step as the depth to the top of the
192 saturated zone below which air-filled porosity is zero (Eq. D32). It is the depth at which lateral
193 water flux is in equilibrium with the difference between vertical influxes (precipitation) and
194 effluxes (evapotranspiration). Lateral water transfer between modelled grid cells in *ecosys* and
195 the adjacent ecosystem occurs to and from a set external WTD (WTD_x) over a set distance (L_t)
196 (Fig. 2). The WTD_x represents average watershed WTD with reference to average hummock
197 surface. The WTD in *ecosys* is thus not prescribed, but rather controls, and is controlled by
198 lateral and vertical surface and subsurface water fluxes (Eqs. D1-D31). More detail about how
199 peatland WTD, vertical and lateral soil water flow, and soil moisture retention are modelled in
200 *ecosys* can be found in Dimitrov et al. (2010b) and Mezbahuddin et al. (2015, 2016).

201 **2.1.2. Heterotrophic respiration and WTD**

202 WTD fluctuation in *ecosys* determines the boundary between and the extent of aerobic vs.
203 anaerobic soil zones. So WTD fluctuation affects *ecosys*'s algorithms of organic oxidation-
204 reduction transformations and microbial energy yields, which drive microbial growth, substrate
205 decomposition and uptake (Fig. 1) (Eqs. A1-A30). Organic transformations in *ecosys* occur in a
206 residue layer and in each of the user defined soil layers within five organic matter-microbe

207 complexes i.e., coarse woody litter, fine non-woody litter, animal manure, particulate organic C
208 and humus (Fig. 1). Each of the complexes has three decomposition substrates i.e., solid organic
209 C, sorbed organic C and microbial residue C; the decomposition agent i.e., microbial biomass;
210 and the decomposition product i.e., dissolved organic C (DOC) (Fig. 1). Rates of the
211 decomposition and resulting DOC production in each of the complexes is a first-order function
212 of the fraction of substrate colonized by active biomasses (M) of diverse microbial functional
213 types (MFTs). The MFTs in *ecosys* are obligate aerobes (bacteria and fungi), facultative
214 anaerobes (denitrifiers), obligate anaerobes (fermenters), heterotrophic (acetotrophic) and
215 autotrophic (hydrogenotrophic) methanogens, and aerobic and anaerobic heterotrophic
216 diazotrophs (non-symbiotic N₂ fixers) (Fig. 1) (Eqs. A1-A2, A4). Biomass (M) growth of each of
217 the MFTs (Eq. A25a) is calculated from its DOC uptake (Fig. 1) (Eq. A21). The rate of M
218 growth is driven by energy yield from growth respiration (R_g) (Eq. A20) that is calculated by
219 subtracting maintenance respiration (R_m) (Eq. A18) from heterotrophic respiration (R_h) (Eq.
220 A11). The values of R_h are driven by oxidation of DOC (Eq. A13). DOC oxidation may be
221 limited by microbial O₂ reduction (Eq. A14) driven by microbial O₂ demand (Eq. A16) and
222 constrained by O₂ diffusion calculated from aqueous O₂ concentrations in soil ([O_{2s}]) (Eq. A17).
223 Values of [O_{2s}] are maintained by convective-dispersive transport of O₂ from the atmosphere to
224 gaseous and aqueous phases of the soil surface layer (Eq. D41), by convective-dispersive
225 transport of O₂ through gaseous and aqueous phases in adjacent soil layers (Eqs. D42, D44), and
226 by dissolution of O₂ from gaseous to aqueous phases within each soil layer (Eq. D39).

227 Shallow WTD in *ecosys* can cause lower air-filled porosity (θ_g) in the wetter peat layers
228 above the WT. Lower θ_g reduces O₂ diffusivity in the gaseous phase (D_g) (Eq. D44) and gaseous
229 O₂ transport (Eqs. D41-D42) in these layers. Peat layers below the WT have zero θ_g that prevents

230 gaseous O₂ transport in these layers. So, under shallow WT, [O_{2s}] relies more on O₂ transport
231 through the slower aqueous phase (Eq. D42) which causes a decline in [O_{2s}]. Decline in [O_{2s}]
232 slows O₂ uptake (Eq. A17) and hence R_h (Eq. A14), R_g (Eq. A20) and growth of M (Eq. A25).
233 Lower M slows decomposition of organic C (Eqs. A1-A2) and production of DOC which further
234 slows R_h (Eq. A13), R_g and growth of M (Fig. 1). Although some MFTs can sustain DOC
235 oxidation by reducing alternative electron acceptors (e.g., methanogens reducing acetate or CO₂
236 to CH₄, and denitrifiers reducing NO_x to N₂O or N₂), lower energy yields from these reactions
237 reduce R_g (Eq. A21), and hence M growth, organic C decomposition and subsequent DOC
238 production (Fig. 1). Slower decomposition of organic C under low [O_{2s}] also causes slower
239 decomposition of organic nitrogen (N) and phosphorus (P) (Eq. A7) and production of dissolved
240 organic nitrogen (DON) and phosphorus (DOP), which causes slower uptake of microbial N and
241 P (Eq. A22) and growth of M (Eq. A29) (Fig. 1). Slower M growth causes slower mineralization
242 (Eq. A26), and hence lowers aqueous concentrations of NH₄⁺, NO₃⁻ and H₂PO₄⁻ (Fig. 1).

243 WTD drawdown can increase θ_g that results in greater D_g (Eq. D44) and more rapid
244 gaseous O₂ transport. A consequent rise in [O_{2s}] increases O₂ uptake (Eq. A17) and R_h (Eq. A14),
245 R_g (Eq. A20) and growth of M (Eq. A25). Larger M hastens decomposition of organic C (Eqs.
246 A1-A2) and production of DOC which further hastens R_h (Eq. A13), R_g and growth of M . More
247 rapid decomposition of organic C under adequate [O_{2s}] in this period also causes more rapid
248 decomposition of organic N and P (Eq. A7) and production of DON and DOP, which increases
249 uptake of microbial N and P (Eq. A22) and growth of M (Eq. A29) (Fig. 1). Rapid M growth
250 causes rapid mineralization (Eq. A26), and hence greater aqueous concentrations of NH₄⁺, NO₃⁻
251 and H₂PO₄⁻ (Fig. 1).

252 When WTD recedes below a certain threshold level, capillary rise from the WT can no
253 longer support adequate recharge of the near surface peat layers and the surface litter (Eqs. D9,
254 D12). It causes desiccation of the residue and the near surface peat layers thereby causing a
255 reduction in water potential (ψ_s) and an increase in aqueous microbial concentrations ($[M]$) in
256 each of these layers (Eq. A15). Increased $[M]$ caused by the peat desiccation reduces microbial
257 access to the substrate for decomposition in each of the desiccated layers and reduces R_h (Eq.
258 A13). Reduction in R_h is calculated in *ecosys* from competitive inhibition of microbial exo-
259 enzymes with increasing concentrations (Eq. A4) (Lizama and Suzuki, 1991).

260 **2.1.3. WTD effects on vascular gross primary productivity**

261 *Ecosys* simulates effects of WTD variation on vascular GPP from WTD variation effects
262 on root O₂ and nutrient availability and root growth and uptake. Root O₂ and nutrient uptake in
263 *ecosys* are coupled with a hydraulically driven soil-plant-atmosphere water scheme. Root growth
264 in each vascular plant population in *ecosys* is calculated from its assimilation of the non-
265 structural C product of CO₂ fixation (σ_C) (Eq. C20). Assimilation is driven by R_g (Eq. C17)
266 remaining after subtracting R_m (Eq. C16) from autotrophic respiration (R_a) (Eq. C13) driven by
267 oxidation of σ_C (Eq. C14). Oxidation in roots may be limited by root O₂ reduction (Eq. C14b)
268 which is driven by root O₂ demand to sustain C oxidation and nutrient uptake (Eq. C14e), and
269 constrained by O₂ uptake controlled by concentrations of aqueous O₂ in the soil ($[O_{2s}]$) and roots
270 ($[O_{2r}]$) (Eq. C14d). Values of $[O_{2s}]$ and $[O_{2r}]$ are maintained by convective-dispersive transport
271 of O₂ through soil gaseous and aqueous phases and root gaseous phase (aerenchyma)
272 respectively and by dissolution of O₂ from soil and root gaseous to aqueous phases (Eqs. D39-
273 D45). O₂ transport through root aerenchyma depends on species-specific values used for root air-
274 filled porosity (θ_{pr}) (Eq. D45). Shallow WTD and resultant high peat moisture content in *ecosys*

275 can cause low θ_g that reduces soil O₂ transport, forcing root O₂ uptake to rely more on [O_{2r}] and
276 hence on root O₂ transport determined by θ_{pr} . If this transport is inadequate, decline in [O_{2r}]
277 slows root O₂ uptake (Eqs. C14c-d) and hence R_a (Eq. C14b), R_g (Eq. C17) and root growth (Eq.
278 C20b) and root N and P uptake (Eqs. C23b, d, f) (Fig. 1). Root N and P uptake under shallow
279 WT is further slowed by reductions in aqueous concentrations of NH₄⁺, NO₃⁻ and H₂PO₄⁻ (Eqs.
280 C23a, c, e) from slower mineralization of organic N and P (Fig. 1). Slower root N and P uptake
281 reduces concentrations of non-structural N and P products of root uptake (σ_N and σ_P) with
282 respect to that of σ_C in leaves (Eq. C11), thereby slowing CO₂ fixation (Eq. C6) and GPP.

283 WTD drawdown facilitates rapid D_g which allows root O₂ demand to be almost entirely
284 met from [O_{2s}] (Eqs. C14c-d) and so enables more rapid root growth and N and P uptake (Eqs.
285 C23b, d, f). Increased root growth and nutrient uptake is further stimulated by increased aqueous
286 concentrations of NH₄⁺, NO₃⁻ and H₂PO₄⁻ (Eqs. C23a, c, e) from more rapid mineralization of
287 organic N and P during deeper WT (Fig. 1). Greater root N and P uptake increases
288 concentrations of σ_N and σ_P with respect to σ_C in leaves (Eq. C11), thereby facilitating rapid CO₂
289 fixation (Eq. C6) and GPP. When WT falls below a certain threshold, inadequate capillary rise
290 (Eqs. A9, A12) from deeper WT causes near-surface peat desiccation that reduces soil water
291 potential (ψ_s) and raises soil hydraulic resistance (Ω_s) (Eq. B9), thereby forcing lower root water
292 uptake (U_w) from desiccated layers (Fig. 1) (Eq. B6). However, deeper rooting facilitated by
293 increased [O_{2s}] under deeper WT can sustain U_w (Eq. B6) from wetter deeper peat layers with
294 higher ψ_s and lower Ω_s (Eq. B9). If U_w from the deeper wetter layers cannot offset the
295 suppression in U_w from desiccated near surface layers, the resultant net decrease in U_w causes a
296 reduction in root, canopy and turgor potentials (ψ_r , ψ_c and ψ_t) (Eq. B4) and hence g_c (Eq. B2b) in

297 *ecosys* when equilibrating U_w with transpiration (T) (Eq. B14). Lower g_c reduces CO₂ diffusion
298 into the leaves thereby reducing CO₂ fixation (Eq. C6) and GPP (Eq. C1) (Fig. 1).

299 **2.1.4. WTD effects on non-vascular gross primary productivity**

300 *Ecosys* simulates non-vascular plants (e.g., mosses) as tiny plants with no stomatal
301 regulations that grow on modelled hummock and hollow grid cells (Dimitrov et al., 2011).
302 Model input for moss population is usually larger and hence intra-specific competition for lights
303 and nutrients is greater so that individual moss plant and moss belowground growth (i.e. root like
304 structures for water and nutrient uptake) are smaller (Eq. C21b). Shallower belowground growth
305 of simulated mosses in *ecosys* means the water uptake of mosses are mostly confined to the near
306 surface peat layers. When WT deepens past a threshold level, inadequate capillary rise (Eqs. D9,
307 D12) causes near-surface peat desiccation, thereby reducing ψ_s and increasing Ω_s (Eq. B9) of
308 those layers (Fig. 1). It causes a reduction in moss canopy water potential (ψ_c) while
309 equilibrating moss evaporation with moss U_w (Eq. B6). Reduced moss ψ_c causes a reduction in
310 moss carboxylation rate (Eqs. C3, C6a) and moss GPP (Fig. 1) (Eq. C1).

311 **2.2. Modelling experiment**

312 **2.2.1. Study site**

313 The peatland eco-hydrology and biogeochemistry algorithms in *ecosys* were tested in this
314 study against measurements of WTD and ecosystem net CO₂ fluxes at a flux station of the
315 Fluxnet-Canada Research Network established at the WPL (latitude: 54.95°N, longitude:
316 112.47°W). The study site is a moderately nutrient-rich treed fen peatland within the Central
317 Mixed-wood Sub-region of Boreal Alberta, Canada. Peat depth around the flux station was about
318 2 m. This peatland is dominated by stunted trees of black spruce (*Picea mariana*) and tamarack
319 (*Larix laricina*) with an average canopy height of 3 m. High abundance of a shrub species *Betula*

320 *pumila* (dwarf birch), and the presence of a wide range of mosses e.g., *Sphagnum* spp., feather
321 moss, and brown moss characterize the under-storey vegetation of WPL. The topographic,
322 climatic, edaphic and vegetative characteristics of this site were described in more details by
323 Syed et al. (2006).

324 **2.2.2. Field data sets**

325 *Ecosys* model inputs of half hourly weather variables i.e. incoming shortwave and
326 longwave radiation, air temperature (T_a), wind speed, precipitation and relative humidity during
327 2003-2009 were measured by Syed et al. (2006) and Flanagan and Syed (2011) at the
328 micrometeorological station installed at the WPL. To test the adequacy of WTD simulation in
329 *ecosys*, modelled outputs of hourly WTD were tested against WTD measured at the WPL with
330 respect to average hummock surface by Flanagan and Syed (2011). To examine how well *ecosys*
331 simulated net ecosystem CO₂ exchange at the WPL, we tested hourly modelled net ecosystem
332 CO₂ fluxes against hourly averaged measurements (average of two half-hourly) collected by
333 Syed et al. (2006) and Flanagan and Syed (2011) by using eddy covariance (EC) micro-
334 meteorological approach. Each of these EC-measured net CO₂ fluxes consisted of an eddy flux
335 and a storage flux (Syed et al. 2006). Erroneous flux measurements due to stable air conditions
336 were screened out with the use of a minimum friction velocity (u^*) threshold of 0.15 m s⁻¹ (Syed
337 et al. 2006). The net CO₂ fluxes that survived the quality control were used to derive half hourly
338 R_e (=nighttime net CO₂ fluxes) and GPP (=daytime net CO₂ fluxes – R_e) (Barr et al., 2004; Syed
339 et al., 2006). To derive daily, seasonal and annual estimates of GPP, and R_e , the data gaps
340 resulting from the quality control were filled based on empirical relationships between soil
341 temperature at a shallow depth (0.05 m) and measured half hourly R_e , and between incoming
342 shortwave radiation and measured half hourly GPP using 15-days moving windows. The gap-

343 filled R_e and GPP were then summed up for each half hour to fill NEP data gaps to derive daily,
344 seasonal and annual estimates of EC-gap filled NEP (Barr et al., 2004; Syed et al., 2006).

345 Soil CO₂ fluxes measured by automated chambers can provide a valuable supplement to
346 EC CO₂ fluxes in testing modelled respiration by providing more continuous measurements than
347 EC. So, we tested our modelled outputs against half-hourly automated chamber measurements by
348 Cai et al. (2010) at the WPL. These CO₂ flux measurements were carried out during ice-free
349 periods (May-October) of 2005 and 2006 over both hummocks and hollows by using a total of 9
350 non-steady state automatic transparent chambers (Cai et al., 2010). Along with soil respiration
351 these chamber CO₂ fluxes included fixation and autotrophic respiration from dwarf shrubs, herbs
352 and mosses (Cai et al., 2010).

353 Modelled WTD effects on peatland biogeochemistry and hence on peatland nutrient and
354 carbon cycling were also corroborated against leaf nitrogen concentrations, foliar N to P ratios, N
355 mineralization, and rooting depths biometrically measured at either our site or at sites that had
356 similar peat substrates, hydrology and/or plant functional types. Needles of black spruce and
357 tamarack, and leaves of dwarf birch were sampled over our study site during mid-summer of
358 2004 for foliar nutrient content analyses (Syed et al., 2006). Leaf nitrogen contents were
359 analyzed on N₂ gas that were generated from reduction of dried leaf tissues in an elemental
360 analyzer and quantified using a gas isotope ratio mass spectrometer (Syed et al., 2006). Leaf
361 phosphorus contents were analyzed on black spruce and tamrack needle leaf tissues that were
362 dry-ashed and then digested using a dilute HNO₃ and HCl mixture and then quantified using an
363 Inductively Coupled Plasma (ICP) spectroscopic analysis technique (Syed et al., 2006).

364 **2.2.3. Model run**

365 *Ecosys* model run to simulate WTD effects on net CO₂ exchange of WPL had a
366 hummock and a hollow grid cell that exchanged water, heat, carbon and nutrients (N, P) between
367 them and with surrounding vertical and lateral boundaries (Fig. 2). The hollow grid cell had near
368 surface peat layer that was 0.3 m thinner than the hummock cell representing a hummock-hollow
369 surface difference of 0.3 m observed in the field (Long, 2008) (Fig. 2). Any depth with respect to
370 the modelled hollow surface would thus be 0.3 m shallower than the depth with respect to the
371 modelled hummock surface.

372 Peat organic and chemical properties at different depths of the WPL were represented in
373 *ecosys* by inputs from measurements either at the site (e.g., Syed et al., 2006; Flanagan and Syed,
374 2011) or at similar nearby sites (e.g., Rippy and Nelson, 2007) (Fig. 2). *Ecosys* was run for a spin
375 up period of 1961-2002 under repeating 7-year sequences of hourly weather data (shortwave and
376 longwave radiation, air temperature, wind speed, humidity and precipitation) recorded at the site
377 from 2003 to 2009. There was a drying trend observed from 2003 to 2009 due to diminishing
378 precipitation that caused WTD drawdown in the watershed in which WPL is located, which
379 lowered the WT of this fen peatland (Flanagan and Syed, 2011). To accommodate the gradual
380 drying effects of catchment hydrology on modelled fen peatland WTD, we set the WTD_x at
381 different levels based on the annual wetness of weather, e.g., shallow, intermediate, and deep
382 (WTD_x=0.19, 0.35 and 0.72 m below the hummock surface, or 0.11 m above and 0.05 and 0.42
383 m below the hollow surface) (Fig. 2). There was no exchange of water through lower model
384 boundary to represent the presence of nearly impermeable clay sediment underlying the peat
385 (Syed et al., 2006) (Fig. 2). Variations in peat surface with WTD variations, which is an

386 important hydrologic self-regulation of boreal peatlands (Dise, 2009), was not represented in this
387 version of *ecosys*.

388 At the start of the spin up run, the hummock grid cell was seeded with an evergreen
389 needle leaf and a deciduous needle leaf over-storey plant functional types (PFT) to represent the
390 black spruce and tamarack trees at the WPL. The hollow grid cell was seeded with only the
391 deciduous needle leaf over-storey PFTs since the black spruce trees at the WPL only grew on the
392 raised areas. Each of the modelled hummock and the hollow was also seeded with a deciduous
393 broadleaved vascular (to represent dwarf birch) and a non-vascular (to represent mosses) under-
394 storey PFTs. The planting densities were such that the population densities of the black spruce,
395 tamarack, dwarf birch and moss PFTs were 0.16, 0.14, 0.3, and 500 m⁻² respectively at the end of
396 the spin up run so as to best represent field vegetation (Syed et al., 2006; Mezbahuddin et al.,
397 2016). To include wetland adaptation, we used a root porosity (θ_{pr}) value of 0.1 for the two over-
398 storey PFTs and a higher θ_{pr} value of 0.3 for the under-storey vascular PFT to represent better
399 wetland adaptation in the under-storey than the over-storey PFTs. These θ_{pr} values were used in
400 calculating root O₂ transport through aerenchyma (Eq. D45) and did not change with
401 waterlogging throughout the model run. These θ_{pr} values were representatives of root porosities
402 measured for various northern boreal peatland plant species (Cronk and Fennessy, 2001). Non-
403 symbiotic N₂ fixation through association of cyanobacteria and mosses are also reported for
404 Canadian boreal forests (Markham, 2009). This was represented in *ecosys* as N₂ fixation by non-
405 symbiotic heterotrophic diazotrophs (Eq. A27) in the moss canopy. Further details about *ecosys*
406 model set up to represent the hydrological, physical and ecological characteristics of WPL can be
407 found in Mezbahuddin et al. (2016).

408 When the modelled ecosystem attained stable values of net ecosystem CO₂ exchange at
409 the end of the spin-up run, we continued the spin up run into a simulation run from 2003 to 2009
410 by using a real-time weather sequence. We tested our outputs from 2004-2009 of the simulation
411 run against the available site measurements of WTD, net EC CO₂ fluxes and net chamber CO₂
412 fluxes over those years.

413 **2.2.4. Model validation**

414 To examine the adequacy of modelling WTD effects on canopy, root and soil CO₂ fluxes
415 which were summed for net ecosystem CO₂ exchange at the WPL, we spatially averaged hourly
416 net CO₂ fluxes modelled over the hummock and the hollow to represent a 50:50 hummock-
417 hollow ratio and then regressed against hourly EC measured net ecosystem CO₂ fluxes for each
418 year from 2004-2009 with varying WTD. Each of these hourly EC measured net ecosystem CO₂
419 fluxes used in these regressions is an average of two half-hourly net CO₂ fluxes measured at a
420 friction velocity (u^*) greater than 0.15 m s⁻¹ that survived quality control procedure (Sec. 2.2.2).
421 Model performance was evaluated from regression intercepts ($a \rightarrow 0$), slopes ($b \rightarrow 1$), coefficients
422 of determination ($R^2 \rightarrow 1$), and root means squares for errors (RMSE $\rightarrow 0$) for each study year to
423 test whether there was any systematic divergence between the modelled and EC measured CO₂
424 fluxes.

425 Similar regressions were performed between modelled and automated chamber measured
426 net CO₂ fluxes for ice free periods (May-October) of 2005 and 2006 to further test the robustness
427 of modelled soil respiration under contrasting WTD conditions. Each of the half-hourly
428 measured chamber net CO₂ fluxes included soil respiration, and fixation and autotrophic
429 respiration from understorey vegetation (e.g., shrubs, herbs and mosses). So, we combined
430 modelled soil respiration with modelled fixation and autotrophic respiration from understorey

431 PFTs for comparison against these chamber measured net CO₂ fluxes. We also averaged net CO₂
432 flux measurements from all of the 9 chambers for each half hour to accommodate the variations
433 in those fluxes due to microtopography (e.g., hummock vs. hollow). Two half hourly averaged
434 values of net CO₂ fluxes were then averaged again to get hourly mean net chamber CO₂ fluxes
435 for comparison against modelled hourly sums of soil and understorey fluxes averaged over
436 modelled hummock and hollow. Model performance was evaluated from regression intercepts
437 ($a \rightarrow 0$), slopes ($b \rightarrow 1$), coefficients of determination ($R^2 \rightarrow 1$), and root means squares for errors
438 (RMSE $\rightarrow 0$) for each of 2005 and 2006.

439 **2.2.5. Sensitivity of modelled peatland CO₂ exchange to artificial drainage**

440 Large areas of northern boreal peatlands in Canada have been drained primarily for
441 increased forest and agricultural production since plant productivity in pristine peatlands are
442 known to be constrained by shallow WTD (Choi et al., 2007). Drainage and resultant WTD
443 drawdown can affect both GPP and R_e on a short-term basis and the vegetation composition on a
444 longer time scale thereby changing overall net CO₂ exchange trajectories of a peatland. To
445 predict short-term effects of drainage on WTD and hence ecosystem net CO₂ exchange of WPL,
446 we extended our simulation run into a projection run consisting two 7-yr cycles by using
447 repeated weather sequences of 2003-2009. While doing so, we forced a stepwise drawdown in
448 WTD_x by 1.0 and 2.0 m from that used in spin-up and simulation runs (Fig. 2) in the first
449 (drainage cycle 1) and the second cycle (drainage cycle 2) respectively. This projection run
450 would give us a further insight about how the northern boreal peatland of Western Canada would
451 be affected by further WTD drawdown as a result of drier and warmer weather as well as a
452 disturbance such as drainage. It would also provide us with a test of how sensitive the modelled

453 C processes were to the changes in model lateral boundary condition as defined by WTD_x in
454 *ecosys*.

455 **3. Results**

456 **3.1. Model performance in simulating diurnal variations in ecosystem net CO₂ fluxes**

457 Variations in precipitation can cause change in WTD and consequent variation in diurnal
458 net CO₂ exchange across years. *Ecosys* simulated hourly EC-measured net CO₂ fluxes well over
459 2004-2008 with varying precipitation (Table 1a). On a year-to-year basis, regressions of hourly
460 modelled vs. EC-measured net ecosystem CO₂ fluxes gave intercepts within 0.1 $\mu\text{mol m}^{-2} \text{s}^{-1}$ of
461 zero, and slopes within 0.1 of one, indicating minimal bias in modelled outputs during each year
462 from 2004-2008 (Table 1a). On a growing season (May-August) basis, regressions of modelled
463 on measured hourly net CO₂ fluxes yielded larger positive intercepts from 2004-2009 (Table 1b).

464 The larger intercepts were predominantly caused by modelled overestimation of growing season
465 day-time CO₂ fluxes. This overestimation was offset by modelled overestimation of night-time
466 CO₂ fluxes during the winter thus yielding smaller intercepts from throughout-the-year
467 regressions of modelled vs. EC measured fluxes (Tables 1a vs. b). Values for coefficients of
468 determination (R^2) were ~ 0.8 ($P < 0.001$) for all years from both throughout-the-year and
469 growing season regressions (Tables 1a, b). RMSEs were < 2.0 and $\sim 2.5 \mu\text{mol m}^{-2} \text{s}^{-1}$ for whole
470 year regressions from 2004-2008 (Table 1a) and for growing season regressions from 2004-2009
471 (Table 1b) respectively. Much of the variations in EC measured CO₂ fluxes that was not
472 explained by the modelled fluxes could be attributed to a random error of $\sim 20\%$ in EC
473 methodology (Wesely and Hart, 1985). This attribution was further corroborated by root mean
474 squares for random errors (RMSRE) in EC measurements, calculated for forests with similar
475 CO₂ fluxes from Richardson et al. (2006) that were similar to RMSE (Tables 1a, b). The similar

476 values of RMSE and RMSRE also indicated that further constraint in model testing could not be
477 achieved without further precision in EC measurements.

478 Regressions of modelled vs. chamber measured net CO₂ fluxes gave R^2 of ~0.7 for ice-
479 free periods (May-October) of 2005 and 2006 indicated that the variations in soil respiration, and
480 the fixation and aboveground autotrophic respiration due to WTD drawdown were modelled well
481 (Table 1c). Smaller intercepts from those regressions meant lower model biases in simulating
482 soil and understorey CO₂ fluxes under deepening WT (Table 1c). Although the slope was within
483 0.1 of one in 2005, it was a bit smaller in 2006 indicating lower modelled vs. chamber measured
484 soil and understorey net CO₂ fluxes in 2006 (Table 1c). It was because some of the nighttime
485 chamber fluxes in warmer nights of summer 2006 were as large as the EC measured ecosystem
486 net CO₂ fluxes corresponding to those same hours which could not be modelled to their full
487 extent. RMSE lower than RMSRE meant the errors in modelling soil and understorey CO₂ fluxes
488 were within the limit of random errors due to chamber measurements (Table 1c). It further
489 indicated the robustness of modelled outputs for soil and understorey CO₂ fluxes under different
490 WTD conditions (e.g., shallower in 2005 vs. deeper in 2006) (Table 1c).

491 **3.2. Seasonality in WTD and net ecosystem CO₂ exchange**

492 *Ecosys* simulated the seasonal and interannual variations in WTD from 2004 to 2009 well
493 at the WPL (Figs. 3b, d, f, h, j, l) (Mezbahuddin et al., 2016). Seasonality in net CO₂ exchange at
494 the WPL was predominantly governed by that in temperature which controlled the seasonality in
495 phenology and GPP as well as that in R_e . *Ecosys* simulated the seasonality in phenology and
496 hence GPP, and R_e well during a gradual growing season WTD drawdown from 2004 to 2009
497 which was apparent by good agreements between modelled vs. EC-gap filled daily NEP (Fig. 3)
498 and modelled vs. EC-measured hourly net CO₂ fluxes (Table 1). Modelled NEP throughout the

499 winters of most of the years were more negative than the EC-gap filled NEP indicating larger
500 modelled CO₂ effluxes than EC-gap filled fluxes during the winter (Fig. 3). The onset of
501 photosynthesis at the WPL varied interannually depending upon spring temperature which was
502 also modelled well by *ecosys*. For instance, *ecosys* modelled a smaller early growing season
503 (May) GPP and hence NEP in 2004 with a cooler spring than 2005 which was also apparent in
504 daily EC-gap filled NEP (Figs. 3a vs. c).

505 **3.3. WTD effects on diurnal net ecosystem CO₂ exchange**

506 WTD variation can affect diurnal net CO₂ exchange by affecting peat O₂ status and
507 consequently root and microbial O₂ and nutrient availability, growth and uptake thereby
508 influencing CO₂ fixation and respiration. *Ecosys* simulated WTD effects on diurnal net CO₂
509 exchange at the WPL well over three 10-day periods with comparable weather conditions
510 (radiation and air temperature) during late growing seasons (August) of 2005, 2006 and 2008
511 (Fig. 4). A WTD drawdown from August 2005 to August 2006 in *ecosys* caused a reduction in
512 peat water contents and a consequent increase in O₂ influxes from atmosphere into the peat that
513 eventually caused an increase in modelled soil CO₂ effluxes (Fig. 5c). This stimulation of soil
514 respiration was corroborated by modelled vs. chamber measured (Cai et al., 2010) night-time soil
515 CO₂ fluxes and understorey autotrophic respiration (R_a) in August 2006 with deeper WTD which
516 were larger than those in 2005 with shallower WTD (Fig. 5b). Larger modelled soil CO₂ effluxes
517 in 2006 contributed to the larger modelled ecosystem CO₂ effluxes (R_e) that was also apparent in
518 night-time EC CO₂ fluxes in 2006 which were larger than those in 2005 (Fig. 5a).

519 Continued WTD drawdown into the late growing season of 2008 (Fig. 4c) sustained
520 improved peat oxygenation and hence larger modelled soil CO₂ effluxes (Fig. 5c). Consequently,
521 modelled night-time net ecosystem CO₂ fluxes, and soil and understorey CO₂ fluxes in 2006 and

522 in 2008 were similarly larger than those in 2005 which was corroborated well by EC measured
523 night-time fluxes during 2006 and 2008 vs. 2005 (Figs. 5a-b). Although night-time modelled and
524 EC measured net ecosystem CO₂ fluxes in 2008 were larger than those in 2005, the day-time
525 modelled and EC measured CO₂ fluxes in 2008 did not decline with respect to those in 2005
526 (Fig. 5a). Similar day-time fluxes in 2005 and 2008 despite larger night-time fluxes in 2008 than
527 in 2005 indicated a greater late growing season CO₂ fixation in 2008 with deeper WTD than in
528 2005 with shallower WTD.

529 Beside WTD, temperature variation also profoundly affected ecosystem net CO₂
530 exchange at the WPL. For a given WTD condition warmer weather caused increases in R_e at the
531 WPL (Figs. 4b-c and 5a-b). Night-time modelled, and EC and chamber measured ecosystem,
532 soil, and understorey CO₂ fluxes, in warmer nights of day 214, 220 and 222 were larger than
533 those in cooler nights of day 221, 224 and 218 in 2005, 2006 and 2008 respectively (Figs. 4b and
534 5a-b). However, for a given temperature modelled and EC-gap filled night-time ecosystem CO₂
535 fluxes, and modelled and chamber measured night-time soil and understorey CO₂ fluxes were
536 larger under deeper WT conditions in 2006 and 2008 than under shallower WT condition in 2005
537 (denoted by the grey arrows in Figs. 4b and 5a-b). It showed net WTD drawdown effect on R_e
538 (separated from temperature effect) and hence on NEP.

539 The degree of R_e stimulation due to warming was also influenced by WTD at the WPL.
540 The warming events in early to mid-August of 2006 and 2008, when WT was deeper than in late
541 July of 2005, caused gradual increases in modelled, and EC and chamber measured night-time
542 ecosystem, soil and understorey CO₂ effluxes (= R_e) (Figs. 6h, i, k, l). This R_e stimulation due to
543 warming under deeper WT contributed to declines in modelled and EC-gap filled July-August
544 NEP in 2006 and 2008 (Figs. 3e, i). Lack of similar stimulation in R_e with warming under

545 shallower WT in 2005 did not yield a similarly evident stimulation of either modelled or EC or
546 chamber measured ecosystem, soil and understorey night-time CO₂ effluxes (Figs. 6g, j vs. h, i,
547 k, l) which resulted in the absence of decline in July-August NEP as occurred in 2006 and 2008
548 (Figs. 3c vs. e, i). Greater warming driven R_e stimulation under deeper WT further indicated the
549 importance of WTD in mediating potential effects of future warmer climates on boreal peatland
550 NEP.

551 **3.4. Interannual variations in WTD and net ecosystem productivity**

552 The effects of WTD drawdown on modelled and EC-gap filled diurnal net ecosystem
553 CO₂ exchange also contributed to the effects of interannual variation in WTD on that of NEP.
554 *Ecosys* simulated a site measured gradual drawdown of average growing season (May-August)
555 WTD well from 2004 to 2009 (Fig. 7d) (Mezbahuddin et al., 2016). A small WTD drawdown
556 simulated a large increase in growing season GPP from 2004 to 2005 as corroborated by similar
557 increase in EC-derived GPP (Fig. 7b). This increase in GPP was also contributed by a larger GPP
558 in May 2005 which was warmer than May 2004. This small WTD drawdown, however, did not
559 raise either modelled or EC-derived growing season R_e from 2004 to 2005 (Fig. 7c). June and
560 July of 2005 was cooler than 2004 by over 2°C which caused cooler soil that reduced R_e in 2005.
561 Reduction in R_e in June-July 2005 due to cooler soil more than fully offset the increase in R_e due
562 to the small WTD drawdown and resulted in modelled and EC-derived R_e that were smaller in
563 the growing season of 2005 than in 2004 (Fig. 7c). Larger GPP and smaller R_e gave rise to
564 modelled and EC-gap filled growing season NEP estimates that were larger in 2005 than those in
565 2004 (Fig. 7a).

566 WTD drawdown from 2005 to 2006 raised both modelled and EC-derived growing
567 season GPP and R_e (Figs. 7b-c). Warmer growing season in 2006 caused warmer soil that further

568 contributed to the increase in modelled and EC-derived growing season R_e from 2005 with
569 shallower WT to 2006 with deeper WT (Figs. 5, 6 and 7c-d). An increase in growing season R_e
570 that was greater than the increase in growing season GPP caused a decline in modelled and EC-
571 derived growing season NEP from 2005 to 2006 (Fig. 7a). Continued growing season WTD
572 drawdown from 2006 to 2008 caused similar increases in modelled growing season GPP and R_e
573 and hence no significant change in modelled growing season NEP (Figs. 7a-d). With this
574 continued WTD drawdown from 2006 to 2008, however, EC-derived growing season GPP
575 increased more than EC-derived growing season R_e that resulted a larger EC-derived NEP in the
576 growing season of 2008 than in 2006 (Figs. 7a-d). A further drawdown in WTD from the
577 growing season of 2008 to that of 2009 caused reductions in both modelled and EC-derived
578 growing season GPP and R_e (Figs. 7a-d). Reductions in GPP and R_e from 2008 to 2009 was also
579 contributed by lower T_a in 2009 than in 2008 that caused cooler canopies and soil (Figs. 7b-d).
580 The reduction in EC-derived growing season GPP was larger than that in EC-derived growing
581 season R_e thereby causing a decrease in growing season EC-gap filled NEP from 2008 to 2009
582 (Figs. 7a- c). On the contrary, the reduction in modelled growing season GPP was smaller than
583 the reduction in modelled R_e that yielded an increase in modelled growing season NEP from
584 2008 to 2009 (Figs. 7a-c).

585 Modelled and EC-derived estimates of growing season GPP and R_e in 2009 were larger
586 than those in 2004 despite similar mean T_a in those years (Figs. 7a-d). It suggested that increases
587 in growing season GPP and R_e from 2004 to 2009 was a net effect of the deepening of average
588 growing season WT (Figs. 7a-d). It was further corroborated by polynomial regressions of
589 modelled growing season estimates of GPP and R_e against modelled average growing season
590 WTD, and similar regressions of EC-derived growing season GPP and R_e against site measured

591 average growing season WTD (Figs. 8a-c). These relationships showed that there were increases
592 in modelled and EC-derived growing season GPP and R_e with deepening of the growing season
593 WT from 2004 to 2008 after which further WTD drawdown in 2009 started to cause slight
594 declines in both GPP and R_e (Figs. 8b-c). Neither modelled nor EC-gap filled estimates of
595 growing season NEP yielded significant regressions when regressed against modelled and
596 measured growing season WTD respectively (Fig. 8a). It indicated that similar increases in
597 modelled and EC-derived growing season estimates of GPP and R_e with deepening of WT left no
598 net effects of WTD drawdown on either modelled or EC-derived growing season NEP (Figs. 7a-
599 d and 8a).

600 Similar to the growing season trend, drawdown of both measured and modelled WTD
601 averaged over the ice free periods (May-October) from 2004 to 2008 generally stimulated annual
602 modelled and EC-derived GPP and R_e (Figs. 7f, g, h and 8e, f). Similar increases in both
603 modelled and EC-derived annual GPP and R_e with WTD drawdown left no net WTD effects on
604 modelled and EC-gap filled annual NEP (Figs. 7e, 8d). Although modelled WTD effects on GPP,
605 R_e and hence NEP corroborated well by EC-derived GPP, R_e and EC-gap filled NEP, the
606 modelled values for growing season and annual GPP and R_e were consistently higher than the
607 EC-derived estimates of those throughout the study period (Figs. 7b, c, f, g and 8b, c, e, f).

608 Increased GPP with WTD drawdown (Figs. 7b, f and 8b, e) was modelled predominantly
609 through increased root growth and uptake of nutrients and consequently improved leaf nutrient
610 status and hence more rapid CO₂ fixation in vascular PFTs. Under shallow WT during the
611 growing season of 2004, roots in modelled black spruce and tamarack PFTs hardly grew below
612 0.35 m from the hummock surface. Modelled root densities of both black spruce and tamarack
613 were higher by 2-3 orders of magnitude in the top 0.19 m of the hummock (data not shown). A

614 WTD drawdown by 0.35 m from the growing season of 2004 to that of 2009 caused increase in
615 maximum modelled rooting depth in both PFTs (Table 2). Increased root growth in modelled
616 vascular PFTs augmented root surface area for nutrient uptake under deeper WT in the growing
617 season of 2009 than in 2004. Increased root surface area along with increased nutrient
618 availability due to more rapid mineralization with improved aeration as a result of WTD
619 drawdown from 2004 to 2009 caused improved root nutrient uptake in modelled vascular PFTs.
620 Increased root growth, nutrient availability and hence uptake due to WTD drawdown from the
621 growing season of 2004 to that of 2009 caused an increase in modelled foliar N concentrations in
622 black spruce, tamarack and dwarf birch PFTs driving the increases in GPP modelled over this
623 period (Figs. 7b, f and 8b, e) (Table 2).

624 **3.5. Simulated drainage effects on WTD and NEP**

625 Artificial drainage can drastically alter WTD in a peatland that can cause dramatic
626 changes in peatland NEP by shifting the balance between GPP and R_e . Projected growing season
627 WT was deeper by ~0.5 m and ~0.55 m respectively from those in the real-time simulation in
628 drainage cycles 1 and 2 in all the years from 2004 to 2009 (Fig. 9a). Modelled growing season
629 GPP increased with drainage-induced WTD drawdown up to ~0.5 m below the hollow surface
630 (~0.8 m below the hummock surface) below which GPP decreased (Figs. 9c, f). The WTD
631 drawdown affected modelled vascular and non-vascular growing season GPP quite differently.
632 Modelled growing season vascular GPP increased with WTD drawdown before it plateaued and
633 eventually decreased when WTD fell below ~0.6 m from the hollow surface (~0.9 m below the
634 hummock surface) (Figs. 10a, c, e). On the contrary, modelled non-vascular growing season GPP
635 continued to decrease with WTD drawdown below ~0.1 m from the hollow surface (~0.4 m
636 below the hummock surface) (Figs. 10a-b, d).

637 WTD drawdown due to simulated drainage not only affected modelled growing season
638 GPP but also affected, and was affected by, the associated change in transpiration from vascular
639 canopies. Deeper WTD_x in drainage cycle 1 caused larger hydraulic gradients and greater lateral
640 discharge thereby deepening the WT with respect to that in the real-time simulation (Figs. 9a).
641 Larger GPP throughout the growing seasons of 2004-2007 in the drainage cycle 1 than in the
642 real-time simulation caused a greater vertical water loss through rapid transpiration from
643 vascular canopies that further contributed to this deepening of WT (Fig. 9c). However, greater
644 lateral water discharge in drainage cycle 2 caused by deeper WTD_x did not deepen the modelled
645 growing season WT much below that in cycle 1 (Fig. 9a). The larger lateral water loss through
646 discharge in drainage cycle 2 than in cycle 1 was mostly offset by slower vertical water losses
647 due to vascular plant water stress as indicated by smaller GPP in the drainage cycle 2 (Fig. 9c).
648 The changing feedbacks between WTD, and GPP and plant water relations in *ecosys* also
649 indicated the ability of the model to simulate hydrological self-regulation which is an important
650 characteristic of peatland eco-hydrology (Dise, 2009).

651 Modelled growing season R_e continued to increase with projected drainage driven WTD
652 drawdown (Figs. 9d, g). Reductions in modelled growing season R_e from drainage cycle 1 to 2
653 during 2006-2009 indicated R_e inhibition due to desiccation of near surface peat layers and
654 surface residues (Fig. 9d). Overall GPP increased more than R_e with drainage driven initial WTD
655 drawdown that caused a small increase in modelled growing season NEP (Figs. 9 b, e).
656 Continued drainage driven WTD drawdown, however, caused declines in GPP particularly in
657 model years of 2008 and 2009 (Figs. 9c). This decrease in GPP was also accompanied by
658 increased R_e thereby causing a decrease in NEP when WT fell below a threshold of about ~0.45
659 m from the hollow surface, particularly during the drier years (Figs. 9b-g). This projected

660 drainage effect on WTD and NEP may be transient. Long-term manipulation of WTD may
661 produce different trajectories of WTD effects on C processes and plant water relations in
662 northern boreal peatlands via vegetation adaptation and succession (Strack et al., 2006; Munir et
663 al., 2014).

664 **4. Discussion**

665 **4.1. Modelling WTD effects on northern boreal peatland NEP**

666 Hourly modelled, EC measured, and chamber measured net ecosystem, and soil and
667 understorey CO₂ fluxes, and modelled and EC-derived seasonal and annual NEP, GPP and R_e
668 estimates showed that WTD drawdown raised both GPP and R_e at the WPL (Figs. 3-8). Similar
669 increases in GPP and R_e with WTD drawdown yielded no net effect of WTD drawdown on NEP
670 at the WPL during 2004-2009 (Figs. 7-8). Four central hypotheses which outlined how coupled
671 eco-hydrology and biogeochemistry algorithms in *ecosys* would simulate and explain the
672 mechanisms of these WTD effects on R_e , GPP and NEP at the boreal fen peatland under study
673 are examined in details in the following sections of 4.1.1 to 4.1.4.

674 **4.1.1. Hypothesis 1: Increase in R_e with WTD drawdown**

675 Shallow WTD in *ecosys* caused shallow aerobic zone above WT and thicker anaerobic
676 zone below the WT. In the shallow aerobic zone, peat O₂ concentration [O_{2s}] was well above the
677 Michaelis-Menten constant for O₂ reduction ($K_m=0.064$ g m⁻³) and hence DOC oxidation and
678 consequent microbial uptake and growth in *ecosys* was not much limited by [O_{2s}] (Eqs. A17a,
679 C14c). On the contrary, [O_{2s}] in the thicker anaerobic zone below the WT was well below K_m so
680 that DOC oxidation was coupled with DOC reduction by anaerobic heterotrophic fermenters,
681 which yielded much less energy (4.4 kJ g⁻¹ C) than did DOC oxidation coupled with O₂
682 reduction (37.5 kJ g⁻¹ C) (Fig. 1) (Eq. A21). Lower energy yields in the thicker anaerobic zone

683 resulted in slower microbial growth (Eq. A25) and R_h (Eq. A13). Since the anaerobic zone in
684 *ecosys* was thicker than the aerobic zone under shallow WT, lower modelled R_h in the anaerobic
685 zone contributed to reduced modelled soil respiration and hence R_e that was corroborated by EC
686 and chamber measurements at the WPL (Figs. 5-8) (Tables 1 and 2).

687 WTD drawdown in *ecosys* caused peat pore drainage and increased θ_g thereby deepening
688 of the aerobic zone. It raised D_g (Eq. D44) and increased O_2 influxes into the peat (Fig. 5c) (Eqs.
689 D42-D43). Increased O_2 influxes enhanced $[O_{2s}]$ and stimulated R_h (Eqs. A13, A20), soil
690 respiration and hence R_e (Figs. 5-8). Rapid mineralization of DON and DOP due to improved
691 $[O_{2s}]$ under deeper WT also raised aqueous concentrations of NH_4^+ , NO_3^- and $H_2PO_4^-$ (Eqs.
692 C23a, c, e) that increased microbial nutrient availability, uptake (Eq. A22) and growth (Eq. A29)
693 and further enhanced R_e (Fig. 1) (Figs. 5-8). Modelled R_e stimulation by improved peat
694 oxygenation due to WTD drawdown was corroborated well by EC and chamber measurements at
695 the site (Figs. 5-8) (Tables 1 and 2). However, the chamber measured nighttime net CO_2 fluxes
696 during warmer nights of 2006 with deeper WT were sometimes as large as corresponding EC-
697 measured net ecosystem CO_2 fluxes (Figs. 5-6). Those very large chamber CO_2 effluxes could
698 not be modelled to their full extent and consequently modelled vs. chamber CO_2 flux regression
699 yielded a slope lower than 1 ± 0.1 in 2006 (Table 1c). Although modelled rate of increase in R_e
700 with each 0.1 m of WTD drawdown was larger than EC-derived rate, it is still comparable with
701 rates reported for other similar peatlands (Table 2). Kotowska (2013) carried out chamber based
702 field measurements and laboratory incubation experiments in a moderately rich fen very close to
703 our study site which reported that a WTD drawdown driven stimulation of aerobic microbial
704 decomposition contributed to increased R_e . Mäkiranta et al. (2009) also found rapid microbial

705 decomposition in a Finish peatland due to thicker aerobic zone and consequently larger amounts
706 of decomposable organic matter exposed to aerobic oxidation.

707 Apart from WTD, peat warming in *ecosys* also increased rates of decomposition (Eq. A1)
708 through an Arrhenius function (Eq. A6) and increased R_h and R_e (Figs. 4-7). Warming effect on
709 decomposition in *ecosys* was also modified by WTD. For a similar warming, greater thermal
710 diffusivity in peat with deeper WT and consequent smaller water contents caused greater peat
711 warming (Eqs. D34, D36). It enabled larger simulation of R_e during warming periods in 2006
712 and 2008 with deeper WT than in 2005 (Fig. 6). Increased stimulation of peat decomposition by
713 warming under deeper WT was also modelled by Grant et al. (2012) using the same model
714 *ecosys* over a northern fen peatland at Wisconsin, USA and by Ise et al. (2008) using a land
715 surface scheme named ED-RAMS (Ecosystem Demography Model version 2 integrated with the
716 Regional Atmospheric Modeling System) coupled with a soil biogeochemical model across
717 several shallow and deep peat deposits in Manitoba, Canada.

718 **4.1.2. Hypothesis 2: Increase in GPP with WTD drawdown**

719 Modelled WTD variations influenced GPP by controlling root and microbial O₂
720 availability, energy yields, root and microbial growth and decomposition, rates of mineralization
721 and hence root nutrient availability and uptake (Fig. 1). Wet soils under shallow WT caused low
722 O₂ diffusion (Fig. 5c) (Eqs. D42-D44) into the peat and consequent low [O_{2s}] meant that root O₂
723 demand had to be mostly met by [O_{2r}]. *Ecosys* inputs for root porosity ($\theta_{pr}=0.1$) that governed
724 O₂ transport through aerenchyma (Eq. D45) and hence maintained [O_{2r}] was not enough to meet
725 the root O₂ demand in saturated soil by the two over-storey tree PFTs i.e. black spruce and
726 tamarack, causing shallow root systems to be simulated in these two tree PFTs under shallow
727 WTD (Sec. 3.4). The under-storey shrub PFT (dwarf birch) had a higher root porosity ($\theta_{pr}=0.3$)

728 and hence had deeper rooting under shallow WT than the two tree PFTs (Sec. 3.4). Shallow
729 rooting in the tree PFTs reduced root surface area for nutrient uptake. Root nutrient uptake (Eqs.
730 C23b, d, f) in all the PFTs was also constrained by low nutrient availability due to smaller
731 aqueous concentrations of NH_4^+ , NO_3^- and/or H_2PO_4^- (Eqs. C23a, c, e) resulting from slower
732 mineralization (Eq. A26) of DON and DOP (Eq. A7) because of low $[\text{O}_{2s}]$ in the wet soils under
733 shallow WT (Fig. 1). Slower root growth and nutrient uptake caused lower foliar σ_N and/or σ_P
734 with respect to foliar σ_C (Eq. C11) that slowed the rates of carboxylation (Eq. C6) and hence
735 reduced vascular GPP (Eq. C1) under shallow WT.

736 WTD drawdown enhanced O_2 diffusion (Fig. 5c) (Eqs. D42-D44) and raised $[\text{O}_{2s}]$ so that
737 root O_2 demand in all the three vascular PFTs was almost entirely met by $[\text{O}_{2s}]$. Consequently
738 roots in all the PFTs could grow deeper which increased the root surface for nutrient uptake
739 (Table 2) (Sec. 3.4). Increase in modelled rooting depth due to WTD drawdown was
740 corroborated well by studies on same PFTs as in our study grown on similar peatlands very close
741 to the study site (Table 2). Murphy et al. (2009) found a significant increase in tree fine root
742 production with WTD drawdown by 0.15-0.2 m during a WTD manipulation study in a Finish
743 peatland. Beside improved root growth, greater $[\text{O}_{2s}]$ under deeper WT also enhanced rates of
744 mineralization (Eq. A26) of DON and DOP (Eq. A7) that raised aqueous concentrations of NH_4^+ ,
745 NO_3^- and/or H_2PO_4^- and hence facilitated root nutrient availability and uptake (Fig. 1). Enhanced
746 root nutrient uptake increased foliar σ_N and/or σ_P with respect to foliar σ_C (Eq. C11) that
747 hastened the rates of carboxylation (Eq. C6) and hence raised vascular GPP (Eq. C1) under
748 deeper WT.

749 The three modelled vascular PFT were predominantly N limited as indicated by mass-
750 based modelled foliar N to P ratios that matched well with site-measured mass-based foliar N to

751 P ratios (Table 2). Mass-based modelled and measured foliar N to P ratio in all the PFTs were
752 less than 16:1 indicating that the vegetation at the WPL was N limited (Aerts and Chapin III,
753 1999). Since the modelled PFTs were predominantly N limited, increases in foliar N
754 concentrations as a result of improved root nutrient availability, growth and nutrient uptake with
755 WTD drawdown enhanced modelled carboxylation rates and hence modelled GPP. In a similar
756 fen peatland close to our study site, Choi et al. (2007) found an increase in peat NO_3^- -N due to
757 enhanced mineralization and nitrification stimulated by a WTD drawdown which improved
758 foliar N status, and hence increased radial tree growth of black spruce and tamarack (Table 2).
759 Macdonald and Lieffers (1990) also found improved foliar N concentrations in black spruce and
760 tamarack trees that enhanced net photosynthetic C assimilation rates by those tree species in a
761 northern Alberta moderately rich fen (Table 2). The rates of increases in foliar N concentrations
762 in black spruce and tamarack trees due to WTD drawdown as reported in those studies are
763 comparable with those in our modelled outputs (Table 2). Although modelled rate of increase in
764 GPP with each 0.1 m of WTD drawdown was larger than EC-derived rate, it is still comparable
765 with rates reported for other similar peatlands (Table 2).

766 **4.1.3. Hypothesis 3: Microbial water stress on R_e due to WT deepening below a threshold**

767 **WTD**

768 When modelled WTD fell below a threshold of ~0.3 m from the hollow surface (~0.6 m
769 below the hummock surface), desiccation of the surface residue layer and near surface shallow
770 peat layers reduced microbial access to substrate for decomposition (Eq. A15) which enabled
771 simulation of reduced R_h in those layers. When reduction in surface residue and near-surface R_h
772 more than fully offset the increase in deeper R_h , net ecosystem R_h decreased. The offsetting
773 effect on R_h partly contributed to simulated decrease in growing season R_e ($=R_h+R_a$) from 2008

774 to 2009 with WTD drawdown that was corroborated by a similar decrease in EC-derived R_e (Fig.
775 7c). Greater reductions in R_h in desiccated surface residue and near surface peat layers also
776 caused the reductions in growing season R_e in drainage cycle 2 from those in cycle 1 during
777 2007-2009 in the simulated drainage study (Fig. 9d). Similar to our study, Peichl et al. (2014)
778 found reductions in R_e when WTD fell below a threshold of 0.25 m from the peat surface in a
779 Swedish fen which could be partially attributed to reduction in near surface R_h due to
780 desiccation. Mettrop et al. (2014) in a controlled incubation experiment found that the rates of
781 microbial respiration in a nutrient rich Dutch fen initially increased with peat drying and
782 consequent improved aeration. But excessive drying and consequent peat desiccation in their
783 study reduced microbial respiration efficiency, growth and biomass. Dimitrov et al. (2010a)
784 while modelling CO₂ exchange of a northern temperate bog using *ecosys* showed that a decrease
785 in desiccated near surface peat respiration partially offset increased deeper peat respiration when
786 WT deepened below a threshold of 0.6-0.7 m from the hummock surface.

787 **4.1.4. Hypothesis 4: Plant water stress on GPP due to WT deepening below a threshold**

788 **WTD**

789 Modelled WTD drawdown below a threshold level also caused rapid peat pore drainage
790 and low moisture contents in the near surface peat layers which were colonized by most of the
791 vascular root systems and all of the belowground biomasses of non-vascular mosses (Eqs. D9-
792 D29). When WTD fell below ~0.1 m from the hollow surface (~0.4 m below the hummock
793 surface), vertical recharge through capillary rise from the WT was not adequate to maintain near
794 surface peat moisture. It reduced peat water potential (ψ_s) and raised peat hydraulic resistance
795 (Ω_s) (Eq. B9) that suppressed root and moss water uptake (U_w) (Eq. B6) from desiccated near
796 surface peat layers (Fig. 1). Since moss U_w entirely depended upon moisture supply from the

797 near surface layers, reduction in U_w from desiccation of these layers caused reduction in moss
798 canopy water potential (ψ_c) and hence moss GPP (Fig. 1) (Eqs. C1, C4) (Mezbahuddin et al.,
799 2016). Reduction in root U_w from desiccated near surface layers, however, was offset by
800 increased root U_w (Eq. B6) from deeper wetter layers, which had higher ψ_s and lower Ω_s , due to
801 deeper root growth facilitated by enhanced aeration. It enabled the vascular PFTs in *ecosys* to
802 sustain ψ_c , canopy turgor potential (ψ_t) (Eq. B4), stomatal conductance (g_c) (Eqs. B2, C4) and
803 hence to sustain increased GPP (Eq. C1) due to higher root nutrient availability and uptake (Fig.
804 1) (Mezbahuddin et al., 2016). Increased vascular GPP and consequent greater vascular plant
805 growth further imposed limitations of water, nutrient and light to the modelled non-vascular
806 PFTs due to interspecific competition and greater shading from the overstorey vascular PFTs.
807 However, increases in vascular GPP due to enhanced plant nutrient status more than fully offset
808 the suppression in moss GPP due to moss drying, and greater shading and competition from the
809 overstorey, thereby causing a net increase in modelled GPP with WTD drawdown (Figs. 7b and
810 10b-c). This simulation of increased vascular dominance over moss with deepening of WT was
811 corroborated by several WTD manipulation studies (e.g., Moore et al., 2006, Munir et al., 2014)
812 in similar peatlands in Alberta that reported increased tree, shrub and herb growths over mosses
813 with WTD drawdown. However, increase in projected vascular GPP eventually plateaued and it
814 started to decline when WT fell below ~0.6 m from the hollow surface (~0.9 m below the
815 hummock surface) (Figs. 10c, e). It was because deeper root U_w (Eq. B6) could no longer offset
816 suppression of near-surface root U_w when WT fell below threshold WTD, thereby causing lower
817 ψ_c , ψ_t (Eq. B4), g_c (Eqs. B2, C4) and slower CO₂ fixation (Eq. C6) (Fig. 1).

818 These threshold WTD effects on modelled vascular and non-vascular plant water
819 relations were validated well by testing modelled vs. site measured hourly energy fluxes (latent

820 and sensible heat) and Bowen ratios, and modelled vs. site measured daily soil moisture at
821 different depths throughout 2004-2009 as described in Mezbahuddin et al. (2016). Riutta et al.
822 (2007) measured a reduction in moss productivity due to water limitation when WTD fell below
823 ~0.15 m from the surface in a Finish fen peatland. However, they reported a sustained vascular
824 GPP during that period indicating no vascular water stress (Riutta et al., 2007). Peichl et al.
825 (2014) measured a reduction in moss GPP due to moss drying caused by insufficient moisture
826 supply through capillary rise when WTD fell below 0.25 m from the surface in a Swedish fen.
827 Reductions in moss GPP due to decreased moss canopy water potentials were also modelled by
828 Dimitrov et al. (2011) using the same model *ecosys* when WTD fell below 0.3 m from the
829 hummock surface of a Canadian temperate bog. They, however, found no vascular plant water
830 stress and hence no reduction in vascular GPP during that period. Similarly, Kuiper et al. (2014)
831 found reductions in moss productivity with peat drying while vascular productivity sustained in a
832 simulated drought experiment on a Danish peat.

833 Continued deepening of WT can also cause vascular plant water stress and hence
834 reductions in vascular GPP as projected in our drainage simulation (Figs. 10c, e). It can also be
835 corroborated by field measurements across various northern boreal fen peatlands in Canada and
836 Sweden. Sonnentag et al. (2010) found a reduction in stomatal conductance (g_c) of a canopy that
837 included tamarack and dwarf birch and a consequent decline in GPP when WT fell below 0.3 m
838 from the ridge surface at a fen peatland in Saskatchewan. Peichl et al. (2014) also found a
839 reduction in vascular GPP due to plant water stress when WTD fell below 0.25 m from the
840 surface in a Swedish fen. The WTD threshold for reductions in vascular GPP in those two field
841 studies were shallower than that in our modelled projection i.e. ~0.6 m from the hollow surface
842 (~0.9 m below the hummock surface) (Figs. 10a, c, e) thereby indicating different vertical

843 rooting patterns determined by specific interactions between hydrologic properties and rooting.
844 Lafleur et al. (2005) and Schwärzel et al. (2006) found much deeper WTD thresholds for
845 reductions in vascular transpiration that could negatively affect vascular GPP over a Canadian
846 pristine bog and a German drained fen respectively. Those WTD thresholds were ~0.65 and ~0.9
847 m below the surface for the pristine and drained peatland respectively, further indicating the
848 importance of root-hydrology interactions and the resultant root adaptations, growth and uptake
849 in determining WTD effects on vascular GPP across peatlands.

850 **4.2. Divergences between modelled and EC-derived annual GPP, R_e and NEP**

851 Modelled seasonal and annual GPP and R_e were consistently larger than EC-derived
852 estimates of GPP and R_e during 2004-2009 (Figs. 7b, c, f, g). Although modelled annual GPP
853 and R_e were larger than the EC-derived estimates, modelled annual NEP were consistently lower
854 than the EC gap-filled annual NEP (Fig. 7e). Modelled annual NEP were smaller than EC-
855 derived estimates because modelled R_e were larger than EC-derived estimates by margins bigger
856 than by what modelled GPP were larger than EC-derived estimates (Figs. 7f-g). Modelled R_e
857 were larger than EC-derived R_e estimates mainly due to the presence of gap filled night-time CO₂
858 fluxes ($=R_e$) in EC-derived estimates which were smaller than corresponding modelled values. It
859 was apparent in negative intercepts that resulted from regressions of modelled vs. gap-filled net
860 CO₂ fluxes (Table S1 in supplementary material). Gap filled R_e fluxes were calculated from soil
861 temperature (T_s) at a shallow depth (0.05 m) (Sec. 2.2.2). During night-time and in the winter,
862 peat at this shallow depth rapidly cooled down and yielded smaller night-time gap-filled CO₂
863 fluxes (Figs. 3, 5 and 6). On the contrary, corresponding modelled CO₂ effluxes were affected by
864 not only the cooler shallow peat layers but also the warmer deeper peat layers and thus were
865 larger than the gap-filled fluxes (e.g., Figs. 5a, 6h-i). Like modelled CO₂ effluxes, chamber

866 measured CO₂ effluxes in cooler nights also did not decline as rapidly as did the corresponding
867 gap-filled CO₂ fluxes as night progressed which further indicated the likely contribution of gap-
868 filling artifact to CO₂ effluxes that were smaller than corresponding modelled fluxes (e.g., Figs.
869 5b vs. a, 6j-k vs. g-h).

870 Systematic uncertainties embedded in EC methodology could also have contributed to
871 EC-derived annual and growing season R_e estimates which were smaller than the modelled
872 values (Figs. 7c, g). The major uncertainty in the EC methodology is the possible
873 underestimation of nighttime EC CO₂ flux measurements due to poor turbulent mixing under
874 stable air conditions (Goulden et al., 1997; Miller et al., 2004). On the contrary, modelled
875 biological production of CO₂ by plant and microbial respiration was independent of turbulent
876 mixing which could thus contribute to modelled R_e that were larger than EC-derived estimates.

877 Complete energy balance closure in the model as opposed to incomplete (~75%) energy
878 balance closure in EC measurements would also give rise to modelled evapotranspiration and
879 GPP values that were larger than EC-derived estimates (Figs. 7b, f) (Mezbahuddin et al., 2016).
880 Modelled GPP influenced modelled R_e through root exudation and litter fall (Fig. 1). Therefore,
881 modelled GPP that were larger than EC-derived estimates would have further contributed to
882 modelled growing season and annual R_e estimates that were larger than EC-derived estimates
883 (Figs. 7c, g).

884 Modelled GPP and hence R_e can also be larger than EC-derived estimates due to
885 uncertainties in model inputs for soil organic N, N deposition, N₂ fixation and any other sources
886 of N inputs into the modelled ecosystem. In *ecosys*, plant productivity is governed by foliar N
887 status which is constrained by root N availability and uptake. Our input for organic N into each
888 modelled peat layer was measured for corresponding depth at the site (Fig. 2). To simulate N

889 deposition, background wet deposition rates of 0.5 mg ammonium-N, and 0.25 mg nitrate-N per
890 litre of precipitation which were reported for the study area were used as model inputs. However,
891 from visual field observations, it was evident that there was a significant amount of nutrient
892 inflow with the lateral water influxes into this fen peatland from the surrounding upland forests
893 which was not quantified. To mimic this lateral nutrient inflow, we doubled the background wet
894 deposition of NH_4^+ and NO_3^- as reported for the area and used these as surrogates of lateral
895 nutrient inflow into the modelled ecosystem. *Ecosys* also included a N_2 fixing algorithm which
896 simulated symbiotic N_2 fixation in moss canopies that was reported for the boreal forests (Sec.
897 2.2.3). We tested the adequacy of these N inputs into the model by comparing modelled leaf N
898 concentrations against those measured in the field. The modelled foliar N concentrations for the
899 vascular PFTs corroborated well against site measurements (Table 2). To further examine the
900 contribution of uncertainty due to model inputs towards the divergence between modelled and
901 EC-derived seasonal and annual GPP and R_e , we performed a sensitivity test where we had a
902 parallel run without doubling the background N wet deposition rates in the model, hence
903 simulating no lateral N influx into the modelled ecosystem. Unlike the run with lateral N inflow,
904 the parallel run without lateral N inflow simulated GPP and R_e which were very close to the EC-
905 derived estimates. However, the regressions between hourly modelled net CO_2 fluxes from the
906 parallel run and EC-measured hourly net CO_2 fluxes gave slopes of ~ 0.8 indicating under-
907 simulation of the EC-measured fluxes in the parallel run with no lateral N inflow.

908 **5. Conclusions**

909 Our modelling study showed that, when adequately coupled into algorithms of a process-
910 based ecosystem model, the existing knowledge of peatland eco-hydrological and peat
911 biogeochemical processes could explain underlying mechanisms that governed WTD effects on

912 net ecosystem CO₂ exchange of a boreal fen. Testing of our hypotheses against EC-measured net
913 CO₂ fluxes, automated chamber fluxes and other biometric measurements at the site revealed that
914 a drier weather driven WTD drawdown at this boreal fen raised both R_e and GPP due to
915 improved aeration that facilitated 1) microbial and root O₂ availability, energy yields, growth and
916 decomposition which raised microbial and root respiration; and 2) rapid nitrogen mineralization,
917 and consequently increased root nitrogen availability and uptake that improved leaf nitrogen
918 status and hence raised carboxylation (Figs. 1, 7-8) (Table 2). Similar increases in R_e and GPP
919 with WTD drawdown to a certain depth caused no net WTD drawdown effect on NEP (Fig. 8).
920 Modelled drainage projection, however, showed that further WTD drawdown caused by either
921 drainage or climate change induced drying would cause plant water stress and reduce GPP and
922 hence NEP of this boreal fen (Figs. 9-10). This study further reconciled and mechanistically
923 explained the WTD effects on seasonal and annual GPP, R_e and hence NEP of this boreal fen
924 which was previously speculated from EC-derived estimates. However, although modelled CO₂
925 fluxes were validated well by the EC and chamber measured net CO₂ fluxes, modelled values of
926 annual and seasonal GPP and R_e were consistently larger than the EC-derived estimates (Table 1)
927 (Figs. 7-8) (Sec. 4.2). These discrepancies between modelled and EC-derived GPP and R_e
928 estimates also raised a potential research question of whether or not to use more robust process-
929 based estimates of these peatland C balance components instead of empirically modelled EC-
930 derived estimates that might not include some of the above discussed offsetting feedbacks in
931 peatland eco-hydrology and biogeochemistry.

932 The model algorithms that were used in this study represented coupled feedbacks among
933 ecosystem processes that governed carbon, water, energy, and nutrient (N, P) cycling in a
934 peatland ecosystem. These feedbacks were thus not parameterized for this particular boreal fen

935 peatland site. Instead, the modelled boreal fen was simulated from peatland specific model inputs
936 for weather, soil, and vegetation properties that had physical meaning and were quantifiable at
937 the site (Fig. 2). These modelled process level interactions were also validated by corroborating
938 modelled outputs against site measurements. On the contrary, most of the current peatland C
939 models use scalar functions to represent these feedbacks and so those model algorithms have to
940 be parameterized for each peatland site. Therefore, the modelling approach as described in this
941 study should be more robust than the scalar feedback approach while assessing WTD effects on
942 peatland C balance under contrasting peat types, climates and hydrology, or under unknown
943 future climates. These process level feedbacks are also scalable once the peatlands of interest are
944 defined within the modelled landscapes by scalable model inputs for weather; peat hydrological,
945 physical, and biological properties; and plant functional types (Sec. 2.2.3). Current global land
946 surface models either lack or have very poor representation of these feedbacks which is thus far
947 limiting our large scale predictive capacity on WTD effects on boreal peatland C stocks. This
948 modelling exercise would thus provide valuable information to improve representation of these
949 feedbacks into next generation land surface models. Therefore, the insights gained from this
950 modelling study should be a significant contribution to our understanding and apprehension of
951 how peatlands would behave with changing hydrology under future drier and warmer climates.

952 **Code availability**

953 The *ecosys* model codes are listed in equation forms and sufficiently described in the
954 supplementary material. The model codes that were written in FORTRAN will also be available
955 on request from either symon.mezbahuddin@gov.ab.ca or rgrant@ualberta.ca.

956 **Data availability**

957 Field data that were used to validate model outputs are available at

958 <http://fluxnet.ornl.gov/site/292>.

959 **Author contribution**

960 M. Mezbahuddin contributed to the model code modification and development, designing
961 modelling experiment, simulation, validation, and analyses of modelled outputs. R. F. Grant is
962 the original developer of the model *ecosys* and also contributed into simulation design and model
963 runs. L. B. Flanagan was site principal investigator who led the collection, and quality control of
964 the field data that were used to validate model outputs. M. Mezbahuddin wrote the manuscript
965 with significant contributions from R. F. Grant and L. B. Flanagan.

966 **Acknowledgments**

967 Computing facilities for the modelling project was provided by Compute Canada,
968 Westgrid, and University of Alberta. Funding for the modelling project was provided by several
969 research awards from Faculty of Graduate Studies and Research and Department of Renewable
970 Resources of University of Alberta and a Natural Sciences and Engineering Research Council
971 (NSERC) of Canada discovery grant. The field research was carried out as part of the Fluxnet-
972 Canada Research Network and the Canadian Carbon Program and was funded by grants to
973 Lawrence B. Flanagan from NSERC, Canadian Foundation for Climate and Atmospheric
974 Sciences, and BIOCAP Canada.

975 **References**

976 Aerts, R. and Chapin III, F.: The mineral nutrition of wild plants revisited: a re-evaluation of
977 processes and patterns, *Adv. Ecol. Res.*, 30, 1-67, doi:10.1016/S0065-2504(08)60016-1,
978 1999.

979 Baker, I. T., Pihodko, L., Denning, A. S., Goulden, M., Miller, S., and Da Rocha, H. R.:
980 Seasonal drought stress in the Amazon: reconciling models and observations, *J. Geophys.
981 Res.-Biogeol.*, 113, G00B01, doi:10.1029/2007JG000644, 2008.

982 Ballantyne, D. M., Hribljan, J. A., Pypker, T. G., and Chimner, R. A.: Long-term water table
983 manipulations alter peatland gaseous carbon fluxes in Northern Michigan, *Wetl. Ecol.
984 Manag.*, 22, 35-47, doi:10.1007/s11273-013-9320-8, 2014.

985 Barr, A.G., Black, T.A., Hogg, E.H., Kljun, N., Morgenstern, K., and Nesic, Z.: Inter-annual
986 variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net
987 ecosystem production, *Agric. For. Meteorol.* 126, 237-255,
988 doi:10.1016/j.agrformet.2004.06.011, 2004.

989 Bond-Lamberty, B., Gower, S. T., and Ahl, D. E.: Improved simulation of poorly drained forests
990 using Biome-BGC, *Tree Physiol.*, 27, 703-715, doi:10.1093/treephys/27.5.703, 2007.

991 Cai, T., Flanagan, L. B., and Syed, K. H.: Warmer and drier conditions stimulate respiration
992 more than photosynthesis in a boreal peatland ecosystem: analysis of automatic chambers
993 and eddy covariance measurements, *Plant Cell Environ.*, 33, 394-407, doi:10.1111/j.1365-
994 3040.2009.02089.x, 2010.

995 Campbell, G. S.: A simple method for determining unsaturated conductivity from moisture
996 retention data, *Soil Sci.*, 117, 311-314, 1974.

997 Choi, W. J., Chang, S. X., and Bhatti, J. S.: Drainage affects tree growth and C and N dynamics
998 in a minerotrophic peatland, *Ecology*, 88, 443-453, doi:10.1890/0012-
999 9658(2007)88[443:DATGAC]2.0.CO;2, 2007.

1000 Cronk, J. K. and Fennessy, M. S.: *Wetland plants: biology and ecology*, CRC press, 2001.

1001 Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modeling the effects of
1002 hydrology on ecosystem respiration at Mer Bleue bog, *J. Geophys. Res.-Biogeo.*, 115,
1003 G04043, doi:10.1029/2010JG001312, 2010a.

1004 Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modelling subsurface
1005 hydrology of Mer Bleue bog, *Soil Sci. Soc. Am. J.*, 74, 680–694,
1006 doi:10.2136/sssaj2009.0148, 2010b.

1007 Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modeling the effects of
1008 hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog,
1009 *J. Geophys. Res.-Biogeo.*, 116, G04010, doi:10.1029/2010JG001586, 2011.

1010 Dise, N. B: Peatland response to global change, *Science*, 326, 810-811,
1011 doi:10.1126/science.1174268, 2009.

1012 Flanagan, L. B. and Syed, K. H.: Stimulation of both photosynthesis and respiration in response
1013 to warmer and drier conditions in a boreal peatland ecosystem, *Glob. Change Biol.*, 17,
1014 2271-2287, doi:10.1111/j.1365-2486.2010.02378.x, 2011.

1015 Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, P. M., Bubier, J. L., and Crill, P. M.:
1016 Modelling the seasonal to annual carbon balance of Mer Bleue bog, Ontario, Canada,
1017 Global Biogeochem. Cy., 16, 1-21, doi:10.1029/2001GB001457, 2002.

1018 Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and
1019 water balance-hydrological evaluation of a dynamic global vegetation model, J. Hydrol.,
1020 286, 249-270, doi:10.1016/j.jhydrol.2003.09.029, 2004.

1021 Gorham, E: Northern peatlands: role in the carbon cycle and probable responses to climatic
1022 warming, Ecol. Appl., 1, 182-195, doi: 10.2307/1941811, 1991.

1023 Goulden, M. L., Daube, B. C., Fan, S. M., Sutton, D. J., Bazzaz, A., Munger, J. W., and Wofsy,
1024 S. C.: Physiological responses of a black spruce forest to weather, J. Geophys. Res.-
1025 Atmos., 102, 28987-28996, doi:10.1029/97JD01111, 1997.

1026 Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting responses of wetland
1027 productivity to changes in water table depth, Biogeosciences, 9, 4215-4231,
1028 doi:10.5194/bg-9-4215-2012, 2012.

1029 Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of peat decomposition
1030 to climate change through water-table feedback, Nat. Geosci., 1, 763-766,
1031 doi:10.1038/ngeo331, 2008.

1032 Kotowska, A: The long-term effects of drainage on carbon cycling in a boreal fen, M.Sc. thesis,
1033 Department of Integrative Biology, University of Guelph, Ontario, Canada, 75 pp., 2013.

1034 Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais,
1035 P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the

1036 coupled atmosphere-biosphere system, *Global Biogeochem. Cy.*, 19, GB1015,
1037 doi:10.1029/2003GB002199, 2005.

1038 Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J.: Plant functional types define
1039 magnitude of drought response in peatland CO₂ exchange, *Ecology*, 95, 123-131,
1040 doi:10.1890/13-0270.1, 2014.

1041 Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and seasonal
1042 variability in evapotranspiration and water table at a shrub-covered bog in southern
1043 Ontario, *Canada, Hydrol. Process.*, 19, 3533-3550, 2005, doi: 10.1002/hyp.5842.

1044 Lieffers, V. J. and Rothwell, R. L.: Rooting of peatland black spruce and tamarack in relation to
1045 depth of water table, *Can. J. Botany*, 65, 817-821, doi: 10.1139/b87-111, 1987.

1046 Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N.,
1047 Rydin, H., and Schaeppman-Strub, G.: Peatlands and the carbon cycle: from local processes
1048 to global implications – a synthesis, *Biogeosciences*, 5, 1475–1491, doi:10.5194/bg-5-
1049 1475-2008, 2008.

1050 Lizama, H. M. and Suzuki, I.: Kinetics of sulfur and pyrite oxidation by *Thiobacillus*
1051 thiooxidans. Competitive inhibition by increasing concentrations of cells, *Can. J.*
1052 *Microbiol.*, 37, 182-187, doi:10.1139/m91-028, 1991.

1053 Long, K. D., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in methane emissions
1054 in a northern Canadian peatland measured by eddy covariance, *Glob. Change Biol.* 16,
1055 2420-2435, doi:10.1111/j.1365-2486.2009.02083.x, 2010.

1056 Long, K. D.: Methane fluxes from a northern peatland: mechanisms controlling diurnal and
1057 seasonal variation and the magnitude of aerobic methanogenesis, M.Sc. thesis, Department
1058 of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada, 100 pp., 2008.

1059 Macdonald, S. E. and Lieffers, V. J.: Photosynthesis, water relations, and foliar nitrogen of *Picea*
1060 *mariana* and *Larix laricina* from drained and undrained peatlands, *Can. J. Forest Res.*, 20,
1061 995-1000, doi:10.1139/x90-133, 1990.

1062 Mäkiranta, P., Laiho, R., Fritze, H., Hytönen, J., Laine, J., and Minkkinen, K.: Indirect regulation
1063 of heterotrophic peat soil respiration by water level via microbial community structure and
1064 temperature sensitivity, *Soil Biol. Biochem.*, 41, 695-703,
1065 doi:10.1016/j.soilbio.2009.01.004, 2009.

1066 Markham, J. H.: Variation in moss-associated nitrogen fixation in boreal forest stands, *Oecologia*
1067 161, 353-359, doi: 10.1007/s00442-009-1391-0, 2009.

1068 Mettrop, I. S., Cusell, C., Kooijman, A. M., and Lamers, L. P.: Nutrient and carbon dynamics in
1069 peat from rich fens and Sphagnum-fens during different gradations of drought, *Soil Biol.*
1070 *Biochem.*, 68, 317-328, doi:10.1016/j.soilbio.2013.10.023, 2014.

1071 Mezbahuddin, M., Grant, R. F., and Hirano, T.: How hydrology determines seasonal and
1072 interannual variations in water table depth, surface energy exchange, and water stress in a
1073 tropical peatland: modeling versus measurements, *J. Geophys. Res.-Biogeo.*, 120, 2132-
1074 2157, doi:10.1002/2015JG003005, 2015.

1075 Mezbahuddin, M., Grant, R. F., and Hirano, T.: Modelling effects of seasonal variation in water
1076 table depth on net ecosystem CO₂ exchange of a tropical peatland, *Biogeosciences*, 11,
1077 577-599, doi:10.5194/bg-11-577-2014, 2014.

1078 Mezbahuddin, M., Grant, R.F. and Flanagan, L.B.: Modeling hydrological controls on variations
1079 in peat water content, water table depth, and surface energy exchange of a boreal western
1080 Canadian fen peatland, *J. Geophys. Res.-Biogeo.*, 121, 2216-2242,
1081 doi:10.1002/2016JG003501, 2016.

1082 Miller, S. D., Goulden, M. L., Menton, M. C., da Rocha, H. R., de Freitas, H. C., Figueira, A. M.
1083 e. S., and de Sousa, C. A. D.: Biometric and micrometeorological measurements of tropical
1084 forest carbon balance, *Ecol. Appl.*, 14, 114–126, doi:10.1890/02-6005, 2004.

1085 Moore, T. and Basiliko, N.: Decomposition in boreal peatlands, in: *Boreal peatland ecosystems*,
1086 edited by: Wieder, R. K. and Vitt, D. H., Springer Science & Business Media, 125-143,
1087 2006.

1088 Munir, T. M., Xu, B., Perkins, M., and Strack, M.: Responses of carbon dioxide flux and plant
1089 biomass to water table drawdown in a treed peatland in northern Alberta: a climate change
1090 perspective, *Biogeosciences*, 11, 807-820, doi:10.5194/bg-11-807-2014, 2014.

1091 Murphy, M., Laiho, R., and Moore, T. R.: Effects of water table drawdown on root production
1092 and aboveground biomass in a boreal bog, *Ecosystems*, 12, 1268-1282,
1093 doi:10.1007/s10021-009-9283-z, 2009.

1094 Parmentier, F. J. W., Van der Molen, M. K., de Jeu, R. A. M., Hendriks, D. M. D., and Dolman,
1095 A. J.: CO₂ fluxes and evaporation on a peatland in the Netherlands appear not affected by

1096 water table fluctuations, *Agr. Forest Meteorol.*, 149, 1201-1208,
1097 doi:10.1016/j.agrformet.2008.11.007, 2009.

1098 Peichl, M., Öquist, M., Löfvenius, M. O., Ilstedt, U., Sagerfors, J., Grelle, A., Lindroth, A., and
1099 Nilsson, M. B.: A 12-year record reveals pre-growing season temperature and water table
1100 level threshold effects on the net carbon dioxide exchange in a boreal fen, *Environ. Res.*
1101 *Lett.*, 9, 055006, doi:10.1088/1748-9326/9/5/055006, 2014.

1102 Preston, M. D., Smemo, K. A., McLaughlin, J. W., and Basiliko, N.: Peatland microbial
1103 communities and decomposition processes in the James Bay Lowlands, Canada, *Front.*
1104 *Microbiol.*, 3, 70, doi:10.3389/fmicb.2012.00070, 2012.

1105 Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G.,
1106 Munger, J. W., Ricciuto, D. M., Stoy, P. C., Suyker, A. E., Verma, S. B., and Wofsy, S. C.:
1107 A multi-site analysis of random error in tower-based measurements of carbon and energy
1108 fluxes, *Agr. Forest Meteorol.*, 136, 1-18, doi:10.1016/j.agrformet.2006.01.007, 2006.

1109 Rippy, J. F. and Nelson, P. V.: Cation exchange capacity and base saturation variation among
1110 Alberta, Canada, moss peats, *HortScience*, 42, 349-352, 2007.

1111 Riutta, T., Laine, J., and Tuittila, E. S.: Sensitivity of CO₂ exchange of fen ecosystem
1112 components to water level variation, *Ecosystems*, 10, 718-733, doi:10.1007/s10021-007-
1113 9046-7, 2007.

1114 Riutta, T.: Fen ecosystem carbon gas dynamics in changing hydrological conditions, *Diss. For.*
1115 67, Department of Forest Ecology, Faculty of Agriculture and Forestry, University of
1116 Helsinki, 46pp., 2008.

1117 Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., Pihodko, L., Suits, N.,
1118 and Philpott, A.: Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial
1119 carbon cycle model, *J. Geophys. Res.-Biogeo.*, 113, G03034, doi:10.1029/2007JG000603,
1120 2008.

1121 Schwärzel, K., Šimunek, J., van Genuchten, M. T., and Wessolek, G.: Measurement and
1122 modeling of soil-water dynamics and evapotranspiration of drained peatland soils, *J. Plant
1123 Nutr. Soil Sci.*, 169, 762-774, doi:10.1002/jpln.200621992, 2006.

1124 Sonnentag, O., van der Kamp, G., Barr, A. G., and Chen, J. M.: On the relationship between
1125 water table depth and water vapour and carbon dioxide fluxes in a minerotrophic fen, *Glob.
1126 Change Biol.*, 16, 1762–1776, doi:10.1111/j.1365-2486.2009.02032.x, 2010.

1127 St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora,
1128 V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global
1129 assessments, *Biogeosciences*, 7, 3517–3530, doi:10.5194/bg-7-3517- 2010, 2010.

1130 Strack, M., Waddington, J. M., Rochefort, L., and Tuittila, E. S.: Response of vegetation and net
1131 ecosystem carbon dioxide exchange at different peatland microforms following water table
1132 drawdown, *J. Geophys. Res.-Biogeo.*, 111, G02006, doi:10.1029/2005JG000145, 2006.

1133 Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and Mackay, D. S.: Contrasting carbon
1134 dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby
1135 forests, *Biogeosciences*, 6, 1115-1126, doi:10.5194/bg-6-1115-2009, 2009.

1136 Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flanagan, L. B., Sonnentag, O.,
1137 Mackay, D. S., Barr, A. G., and van der Kamp, G.: CO₂ fluxes at northern fens and bogs

1138 have opposite responses to inter-annual fluctuations in water table, *Geophys. Res. Lett.*, 37,
1139 L19702, doi:10.1029/2010GL044018, 2010.

1140 Sulman, B. N., Desai, A. R., Schroeder, N. M., Ricciuto, D., Barr, A., Richardson, A. D.,
1141 Flanagan, L. B., Lafleur, P. M., Tian, H., Chen, G., Grant, R. F., Poulter, B., Verbeeck, H.,
1142 Ciais, P., Ringeval, B., Baker, I. T., Schaefer, K., Luo, Y., and Weng, E.: Impact of
1143 hydrological variations on modeling of peatland CO₂ fluxes: Results from the North
1144 American Carbon Program site synthesis, *J. Geophys. Res.-Biogeo.*, 117, G01031,
1145 doi:10.1029/2011JG001862, 2012.

1146 Syed, K. H., Flanagan, L. B., Carlson, P. J., Glenn, A. J., and Van Gaalen, K. E.: Environmental
1147 control of net ecosystem CO₂ exchange in a treed, moderately rich fen in northern Alberta,
1148 *Agr. Forest Meteorol.*, 140, 97-114, doi:10.1016/j.agrformet.2006.03.022, 2006.

1149 Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S., and Chappelka,
1150 A.: Model estimates of net primary productivity, evapotranspiration, and water use
1151 efficiency in the terrestrial ecosystems of the southern United States during 1895–2007,
1152 *Forest Ecol. Manag.*, 259, 1311-1327, doi:10.1016/j.foreco.2009.10.009, 2010.

1153 Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A.: Estimating carbon accumulation
1154 rates of undrained mires in Finland-application to boreal and subarctic regions, *The
1155 Holocene*, 12, 69-80, 2002.

1156 Updegraff, K., Pastor, J., Bridgman, S. D., and Johnston, C. A.: Environmental and substrate
1157 controls over carbon and nitrogen mineralization in northern wetlands, *Ecol. Appl.*, 5, 151-
1158 163, doi:10.2307/1942060, 1995.

1159 van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of
1160 unsaturated soils, *Soil Sci. Soc. Amer. J.*, 44, 892-898, doi:
1161 10.2136/sssaj1980.03615995004400050002x, 1980.

1162 Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., and Moore, P. A.:
1163 Hydrological feedbacks in northern peatlands, *Ecohydrology*, 8, 113-127,
1164 doi:10.1002/eco.1493, 2015.

1165 Weng, E. and Luo, Y.: Soil hydrological properties regulate grassland ecosystem responses to
1166 multifactor global change: A modeling analysis, *J. Geophys. Res.-Biogeo.*, 113, G03003,
1167 doi:10.1029/2007JG000539, 2008.

1168 Wesely, M. L. and Hart, R. L.: Variability of short term eddy-correlation estimates of mass
1169 exchange, in: *The ForestAtmosphere Interaction*, edited by: Hutchinson, B. A., Hicks, B.
1170 B., and Reidel, D., 591-612, Dordrecht, 1985.

1171 Wu, J., Kutzbach, L., Jager, D., Wille, C., and Wilmking, M.: Evapotranspiration dynamics in a
1172 boreal peatland and its impact on the water and energy balance, *J. Geophys. Res.-Biogeo.*,
1173 115, G04038, doi:10.1029/2009JG001075, 2010.

1174 Zhang, Y., Li, C., Trettin, C. C., Li, H., and Sun, G.: An integrated model of soil, hydrology, and
1175 vegetation for carbon dynamics in wetland ecosystems, *Global Biogeochem. Cy.*, 16, 9-1-
1176 9-17, doi:10.1029/2001GB001838, 2002.

1177 **Figure captions**

1178 **Fig. 1.** Schematic diagram of *ecosys* algorithms representing coupled key eco-physiological and
1179 biogeochemical (aerobic and anaerobic) processes, and plant water relations of a typical boreal
1180 fen peatland ecosystem that are affected by water table depth (WTD) fluctuation. Ψ_a , Ψ_c , and Ψ_s
1181 =atmospheric, canopy and soil water potentials; Ψ_r =vascular root or non-vascular belowground
1182 water potential; r_c =canopy stomatal resistance [=1/canopy stomatal conductance (g_c)]; Ω_s =soil
1183 hydraulic resistance; Ω_r =hydraulic resistance to water flow through plants; OM=organic matter;
1184 DOC, DON, DOP=dissolved organic carbon, nitrogen, and phosphorus; POC = particulate
1185 organic C; and POM = particulate organic matter

1186 **Fig. 2.** Layout for *ecosys* model run to represent biological, chemical and hydrological
1187 characteristics of a Western Canadian fen peatland. Figure is not drawn to scale. D_{humm} = depth
1188 to the bottom of a layer from the hummock surface; D_{holl} = depth to the bottom of a layer from
1189 the hollow surface; TOC = total organic C (Flanagan and Syed, 2011); TN = total nitrogen
1190 (Flanagan and Syed, 2011); TP = total phosphorus (Flanagan and Syed, 2011); CEC = Cation
1191 exchange capacity (Rippy and Nelson, 2007); the value for pH was obtained from Syed et al.
1192 (2006); WTD_x = external reference water table depth representing average water table depth of
1193 the adjacent ecosystem; L_t = distance from modelled grid cells to the adjacent watershed over
1194 which lateral discharge / recharge occurs

1195 **Fig. 3. (a, c, e, g, i, k)** 3-day moving averages of modelled and EC-gap filled net ecosystem
1196 productivity (NEP) (Flanagan and Syed, 2011), and **(b, d, f, h, j, l)** hourly modelled and half
1197 hourly measured water table depth (WTD) (Syed et al., 2006; Cai et al., 2010; Long et al., 2010;
1198 Flanagan and Syed, 2011) from 2004 to 2009 at a Western Canadian fen peatland. A positive

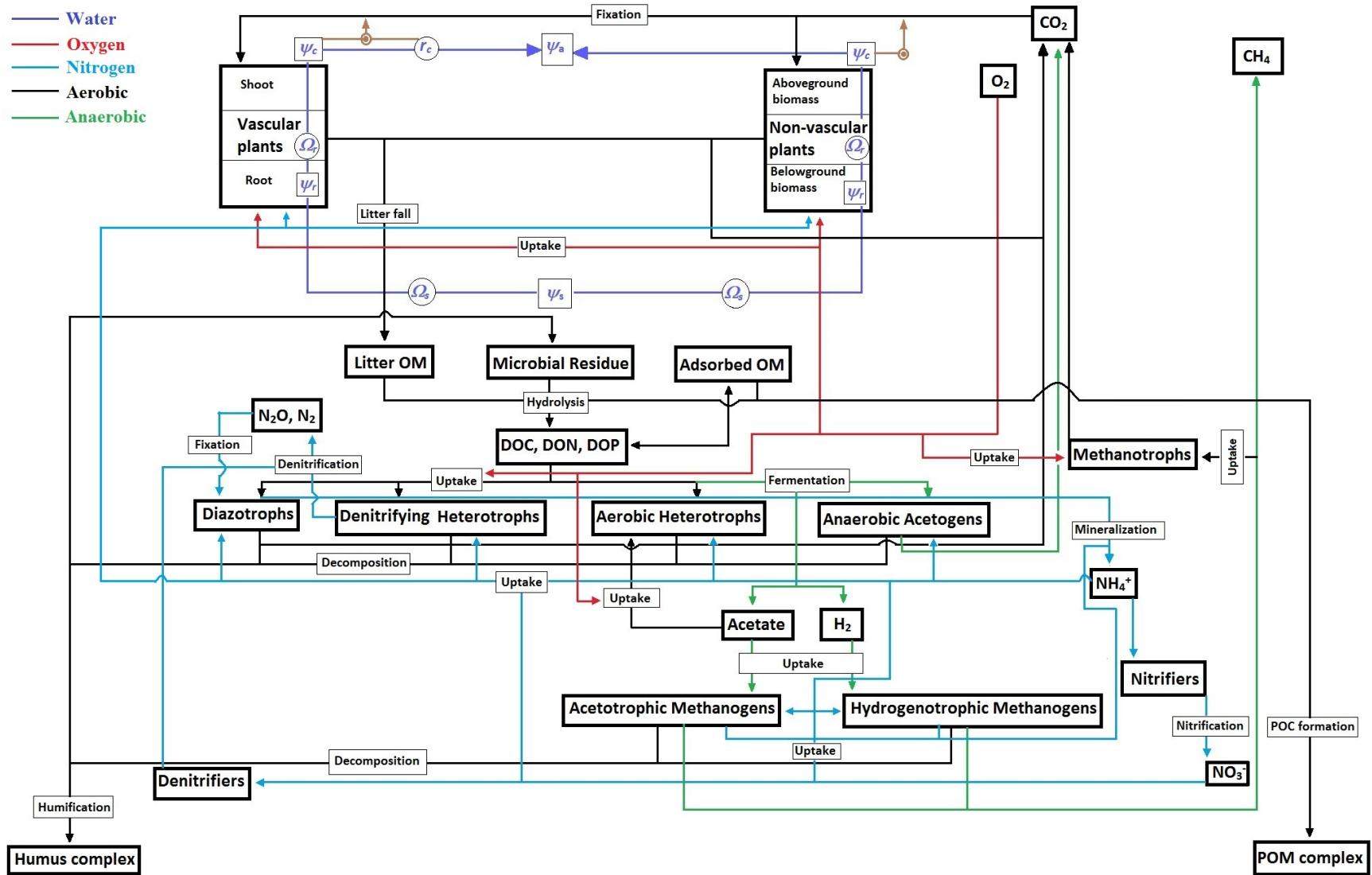
1199 NEP means the ecosystem is a carbon sink and a negative NEP means the ecosystem is a carbon
1200 source. A negative WTD represents a depth below hummock/hollow surface and a positive WTD
1201 represents a depth above hummock/hollow surface

1202 **Fig. 4.** Half hourly measured **(a)** incoming shortwave radiation, and **(b)** air temperature (T_a); and
1203 **(c)** hourly modelled and half hourly measured water table depth (WTD) (Syed et al., 2006; Cai et
1204 al.; 2010, Long et al.; 2010, Flanagan and Syed, 2011) during August of 2005, 2006 and 2008 at
1205 a Western Canadian fen peatland. A negative WTD represents a depth below hummock/hollow
1206 surface and a positive WTD represents a depth above hummock/hollow surface. Grey arrows
1207 indicate nights with similar temperatures

1208 **Fig. 5. (a)** Half hourly EC-gap filled (Flanagan and Syed, 2011) and hourly modelled ecosystem
1209 net CO_2 fluxes, **(b)** half hourly automated chamber measured (Cai et al., 2010) and hourly
1210 modelled understorey and soil CO_2 fluxes, and **(c)** hourly modelled soil CO_2 and O_2 fluxes
1211 during August of 2005, 2006 and 2008 at a Western Canadian fen peatland. No chamber CO_2
1212 flux measurement was available for 2008. Bars represent standard errors of means of chamber
1213 CO_2 fluxes ($n=9$). A negative flux represents an upward flux or a flux out of the ecosystem and a
1214 positive flux represents a downward flux or a flux into the ecosystem. Grey arrows indicate
1215 nights with similar temperatures (Fig. 4)

1216 **Fig. 6. (a-c)** Half hourly observed air temperature (T_a), **(d-f)** hourly modelled and half hourly
1217 observed water table depth (WTD) (Syed et al., 2006; Cai et al., 2010; Long et al., 2010;
1218 Flanagan and Syed, 2011), **(g-i)** half hourly EC-gap filled (Flanagan and Syed, 2011) and hourly
1219 modelled ecosystem net CO_2 fluxes, **(j-l)** half hourly automated chamber measured (Cai et al.,
1220 2010) and hourly modelled understorey and soil CO_2 fluxes during July-August of 2005, 2006

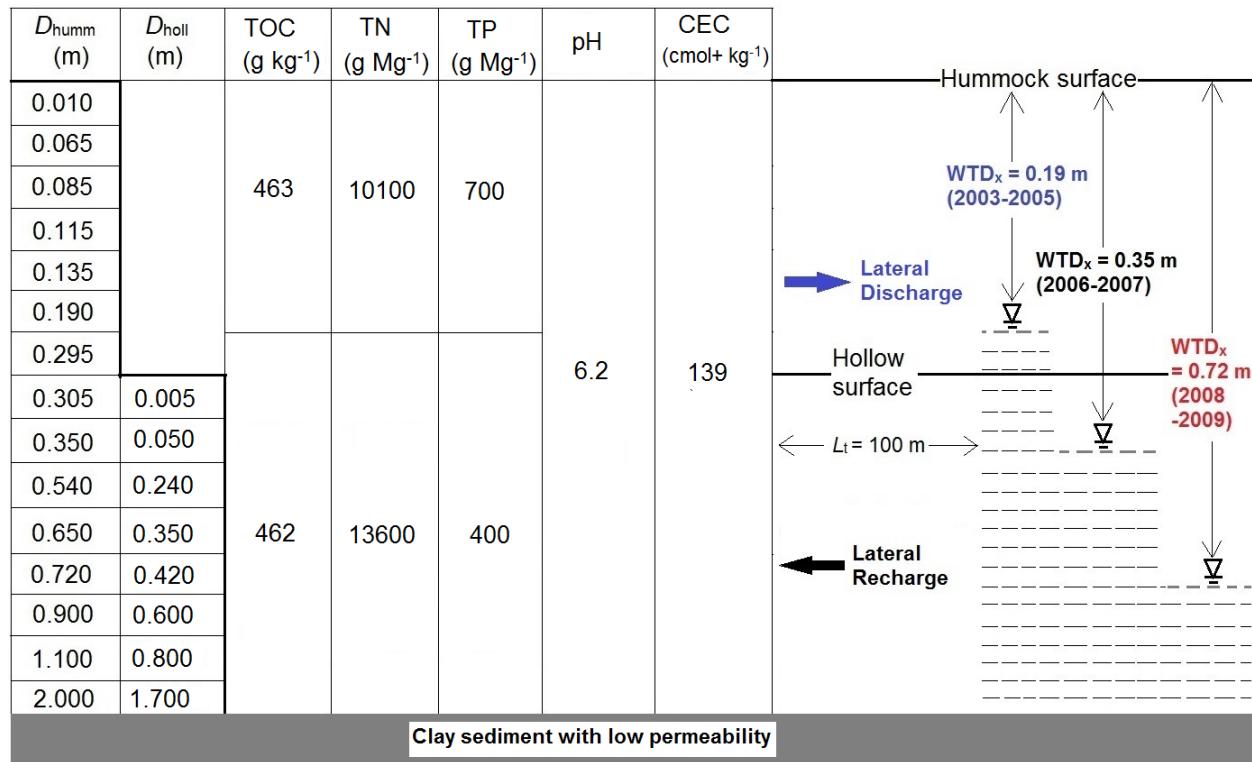
1221 and 2008 at a Western Canadian fen peatland. No chamber CO₂ flux measurement was available
1222 for 2008. Bars represent standard errors of means of chamber CO₂ fluxes ($n=9$). A negative flux
1223 represents an upward flux or a flux out of the ecosystem and a positive flux represents a
1224 downward flux or a flux into the ecosystem. A negative WTD represents a depth below
1225 hummock/hollow surface and a positive WTD represents a depth above hummock/hollow
1226 surface

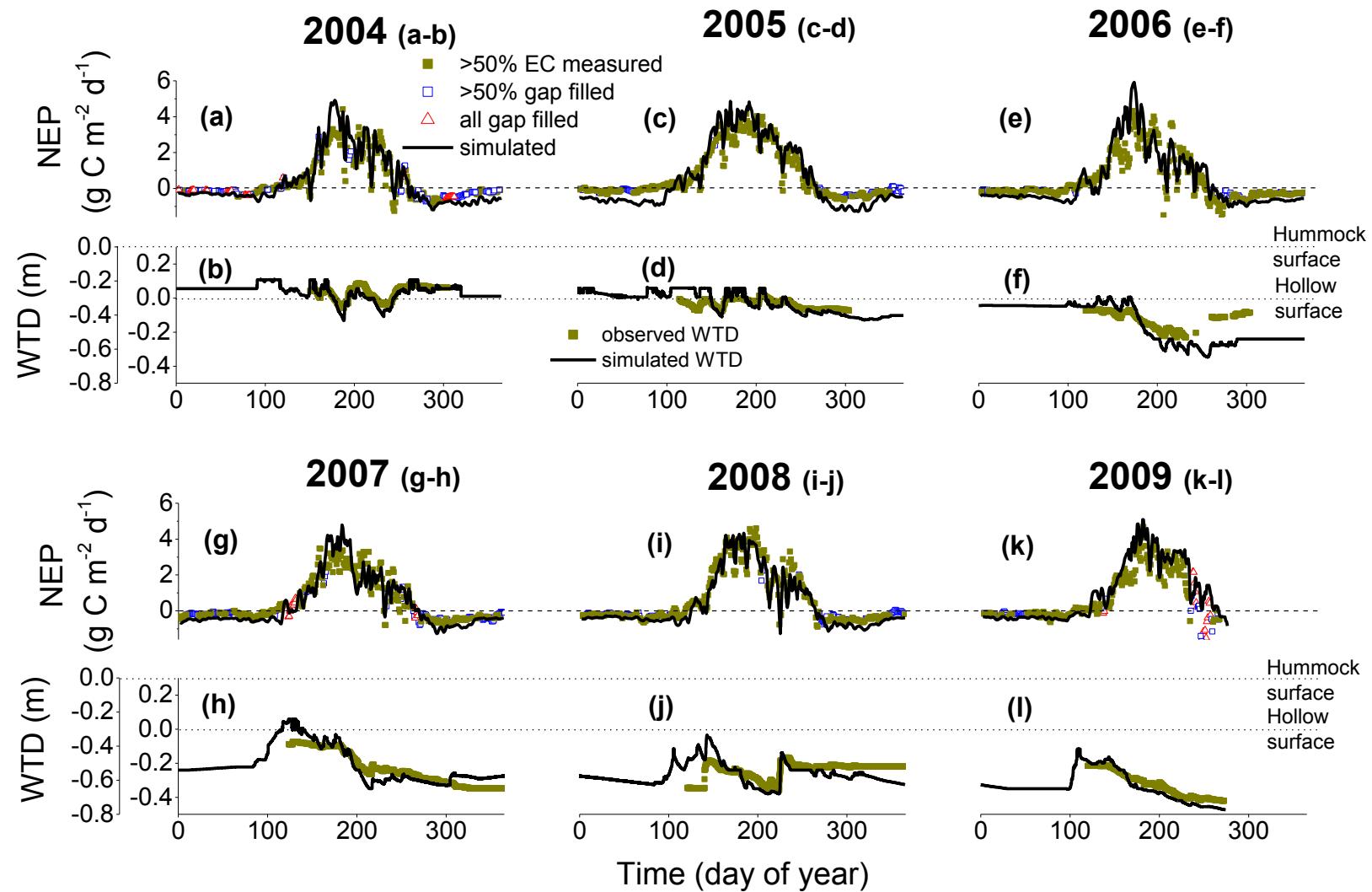

1227 **Fig. 7.** Modelled and EC-derived (Flanagan and Syed, 2011) growing season (May-August)
1228 sums of **(a)** net ecosystem productivity (NEP), **(b)** gross primary productivity (GPP), and **(c)**
1229 ecosystem respiration (R_e) during 2004-2009; **(d)** observed mean growing season air temperature
1230 (T_a) and measured and modelled average growing season water table depth (WTD) during 2004-
1231 2009; Modelled and EC-derived (Flanagan and Syed, 2011) annual sums of **(e)** NEP, **(f)** GPP,
1232 and **(g)** R_e during 2004-2008; and **(h)** observed mean annual T_a and measured and modelled
1233 average WTD during ice free periods (May-October) of 2004-2008 at a Western Canadian fen
1234 peatland. A negative WTD represents a depth below hollow surface and a positive WTD
1235 represents a depth above hollow surface. A positive NEP means the ecosystem is a carbon sink.
1236 Annual modelled vs. EC-gap filled NEP, GPP, R_e estimates for 2009 were not compared due to
1237 the lack of flux measurements from September to December in that year.

1238 **Fig. 8.** Regressions ($P<0.001$) of growing season (May-August) sums of modelled and EC-
1239 derived (Flanagan and Syed, 2011) **(a)** net ecosystem productivity (NEP), **(b)** gross primary
1240 productivity (GPP), and **(c)** ecosystem respiration (R_e) on growing season averages of modelled
1241 and observed water table depth (WTD) during 2004-2009; and regressions ($P<0.001$) of annual
1242 sums of modelled and EC-derived (Flanagan and Syed, 2011) **(d)** NEP, **(e)** GPP and **(f)** R_e on
1243 average modelled and measured WTD during ice free periods (May-October) of 2004-2008 at a

1244 Western Canadian fen peatland. A negative WTD represents a depth below hollow surface and a
1245 positive WTD represents a depth above hollow surface. A positive NEP means the ecosystem is
1246 a carbon sink

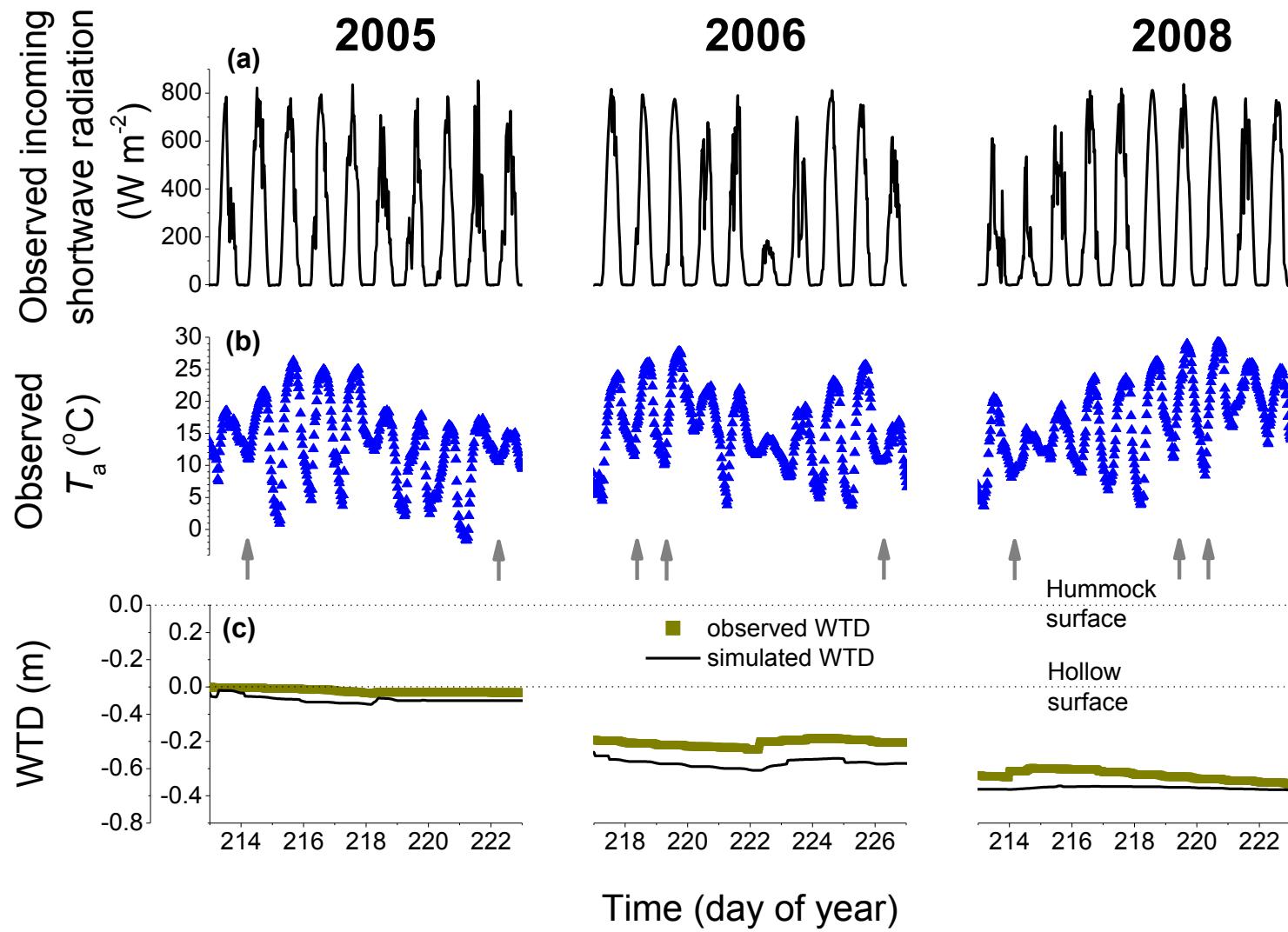
1247 **Fig. 9.** (a) Observed, simulated (real-time simulation) and projected (drainage simulation)
1248 average growing season (May-August) water table depth (WTD); EC-derived, simulated and
1249 projected growing season sums of (b) net ecosystem productivity (NEP), (c) gross primary
1250 productivity (GPP), and (d) ecosystem respiration (R_e); and regressions ($P<0.001$) of simulated
1251 and projected sums of (e) NEP, (f) GPP, and (g) R_e on simulated and projected average growing
1252 season WTD during 2004-2009 at a Western Canadian fen peatland. A negative WTD represents
1253 a depth below hollow surface and a positive WTD represents a depth above hollow surface. A
1254 positive NEP means the ecosystem is a C sink


1255 **Fig. 10.** Simulated (real-time simulation) and projected (drainage simulation) (a) average
1256 growing season (May-August) water table depth (WTD), (b) growing season sums of non-
1257 vascular (moss) gross primary productivity (GPP), and (c) growing season sums of vascular
1258 GPP; and regressions ($P<0.001$) of simulated and projected sums of (d) non-vascular GPP, and
1259 (e) vascular GPP on simulated and projected average growing season WTD during 2004-2009 at
1260 a Western Canadian fen peatland. A negative WTD represents a depth below hollow surface and
1261 a positive WTD represents a depth above hollow surface



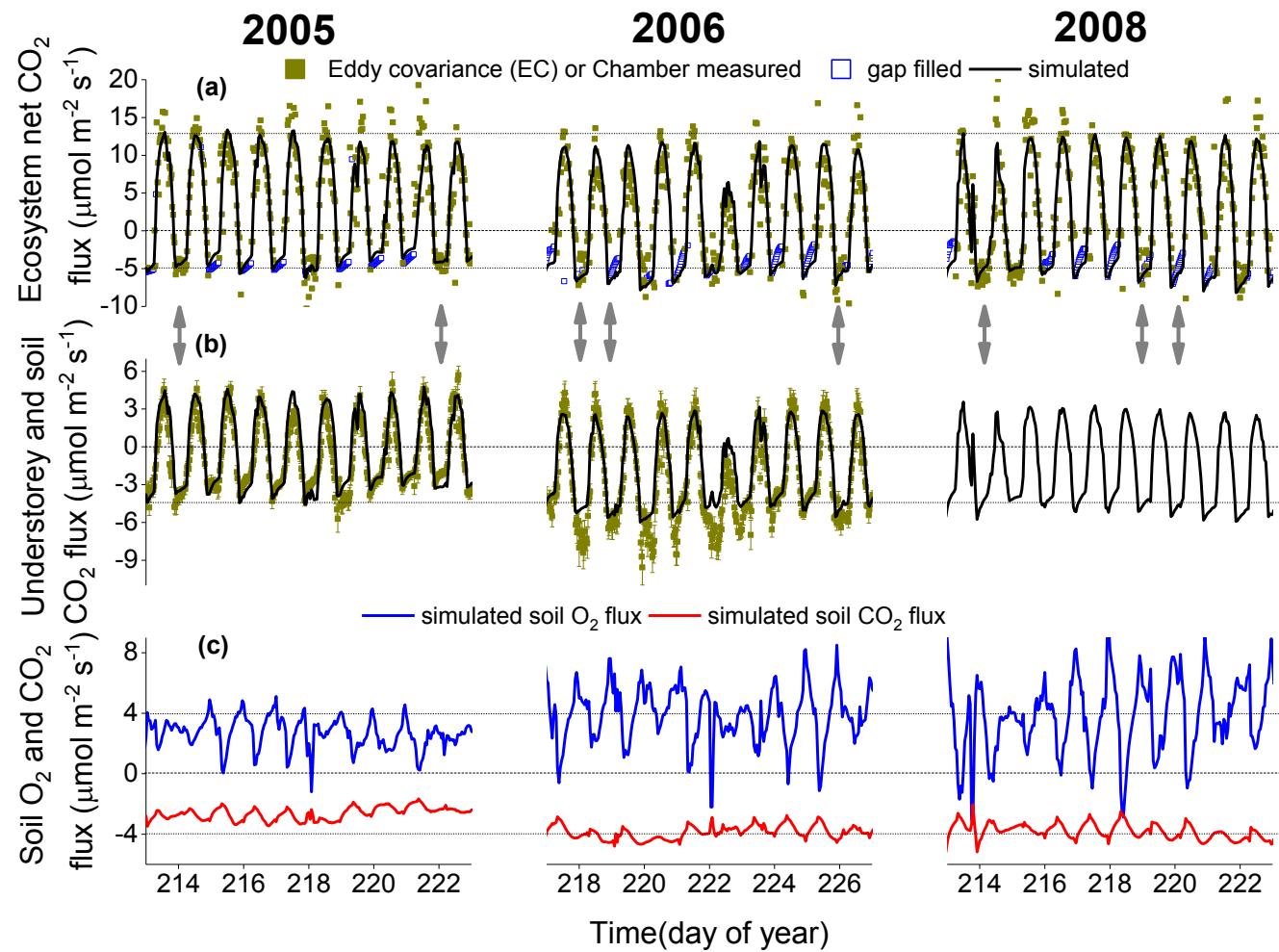
1262

1263 **Fig. 1.**

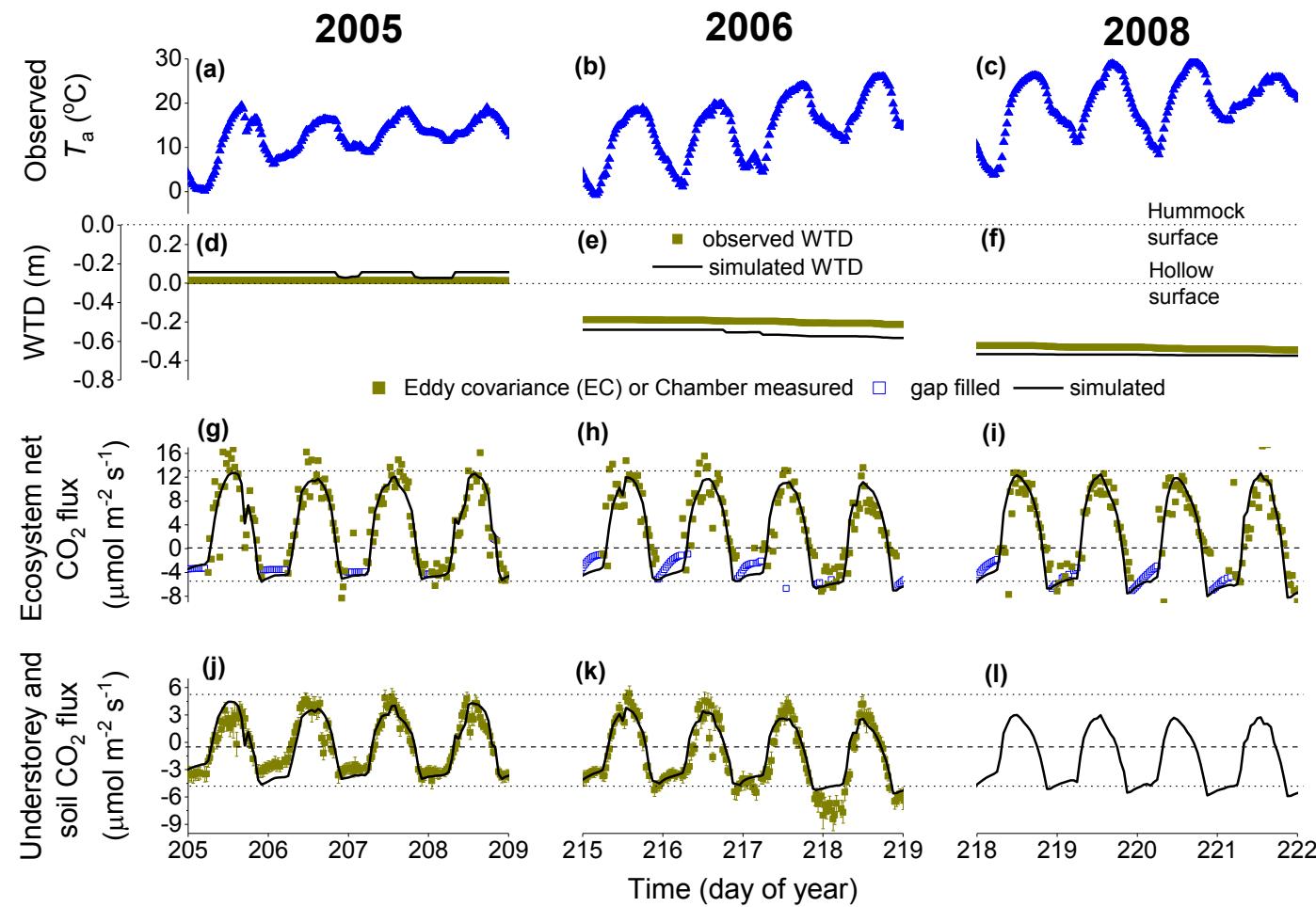

62

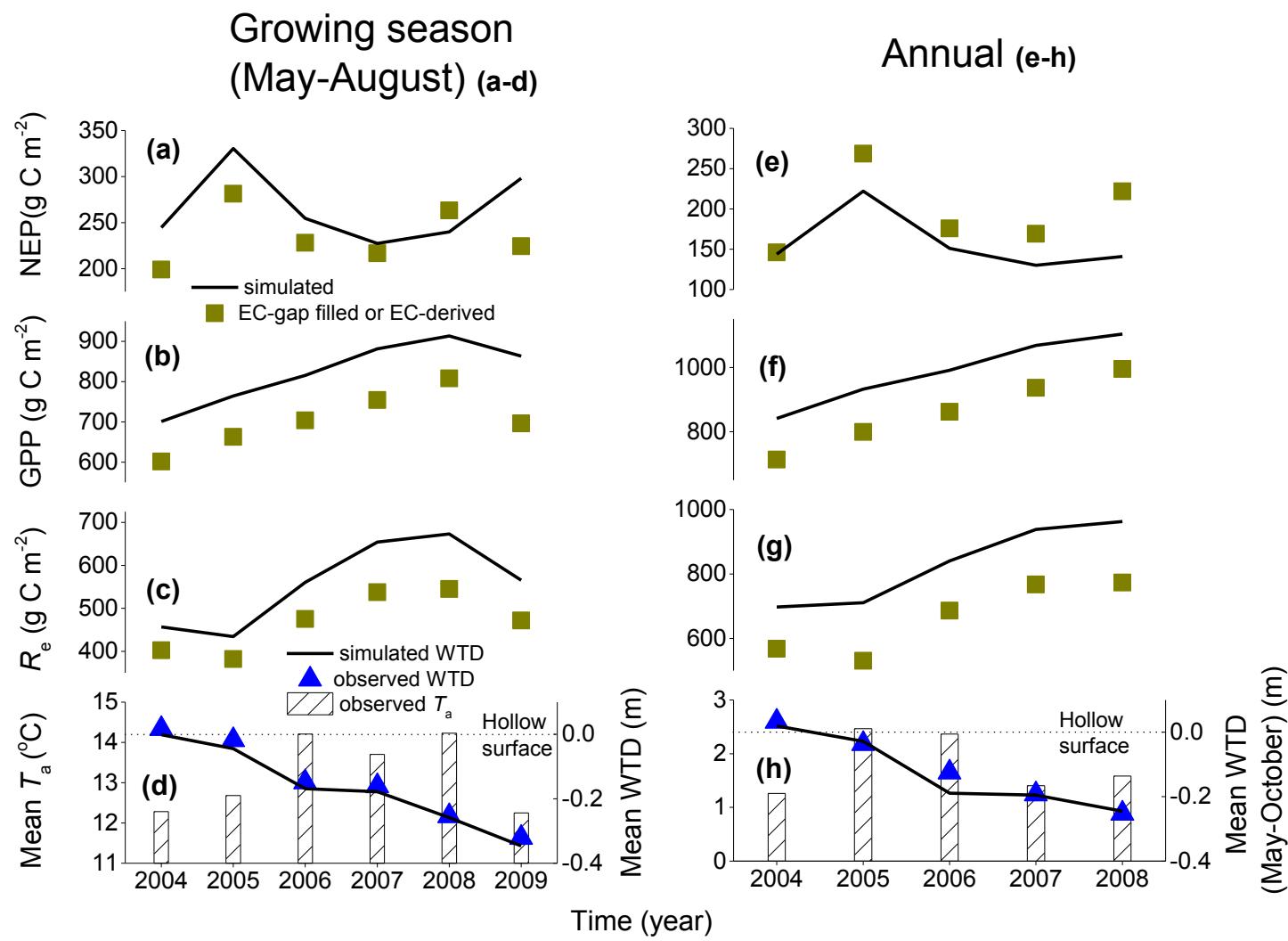
1266 **Fig. 2.**

1267

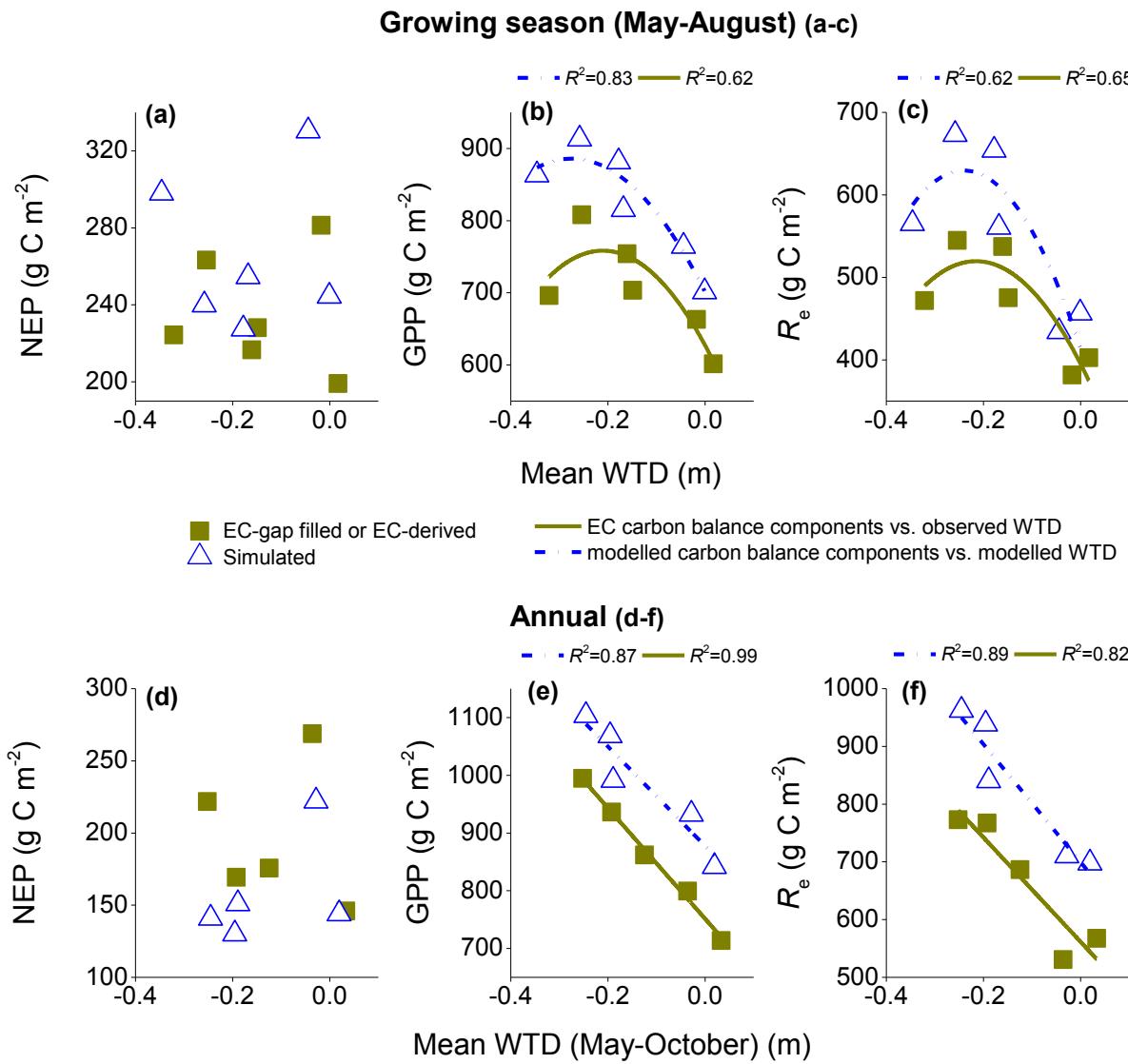

1268 Fig. 3.

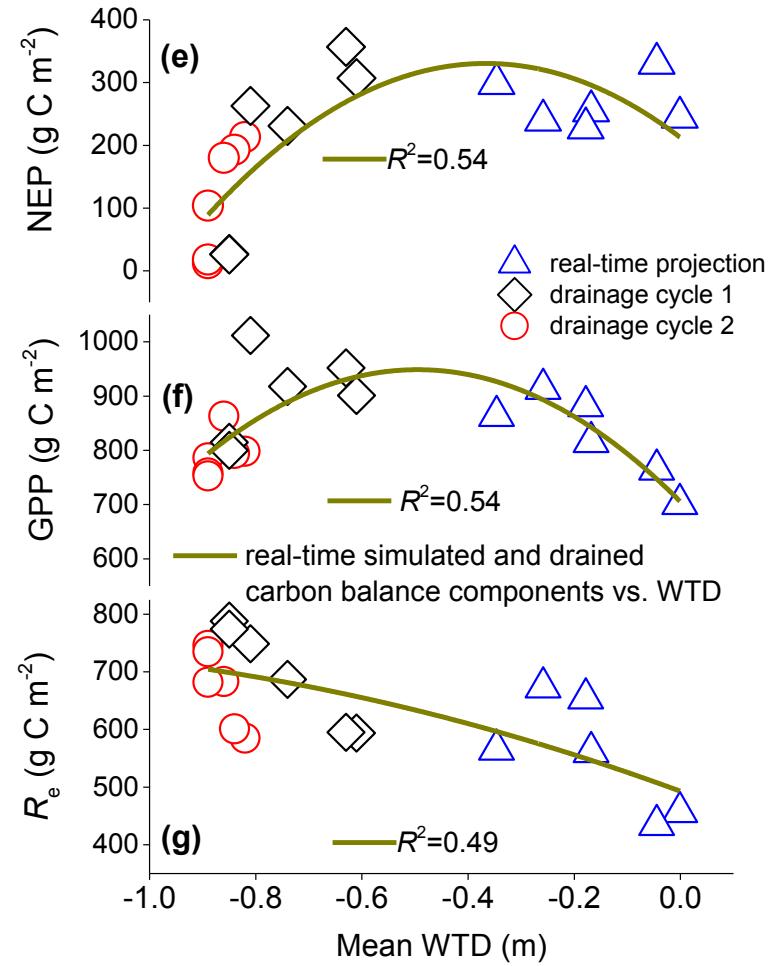
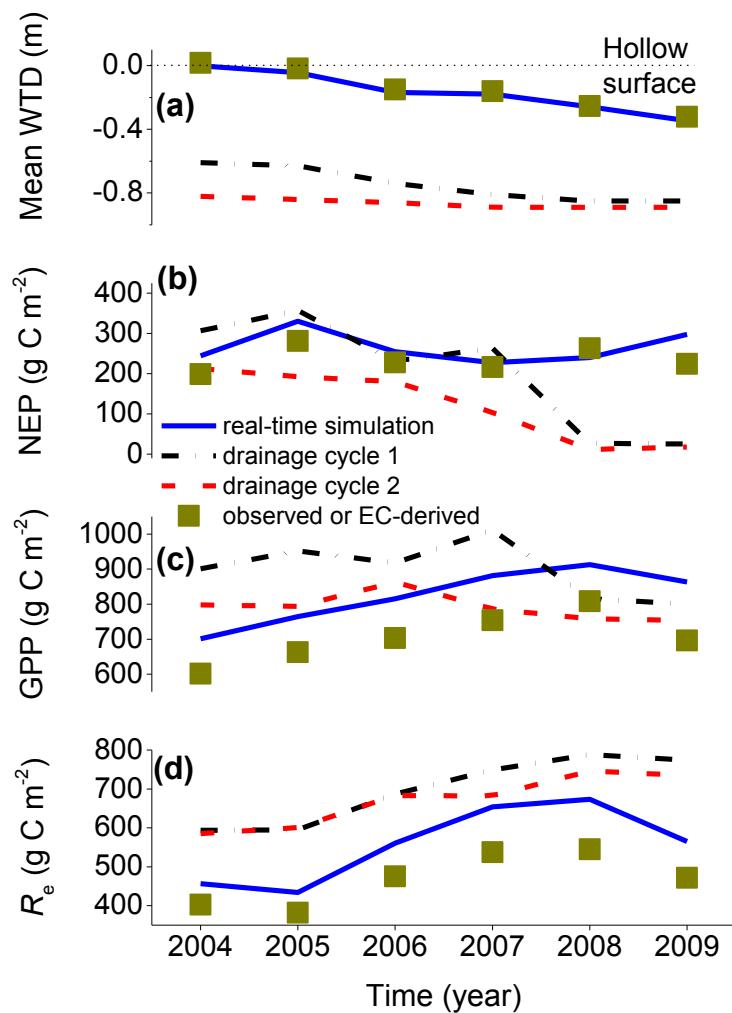
1269

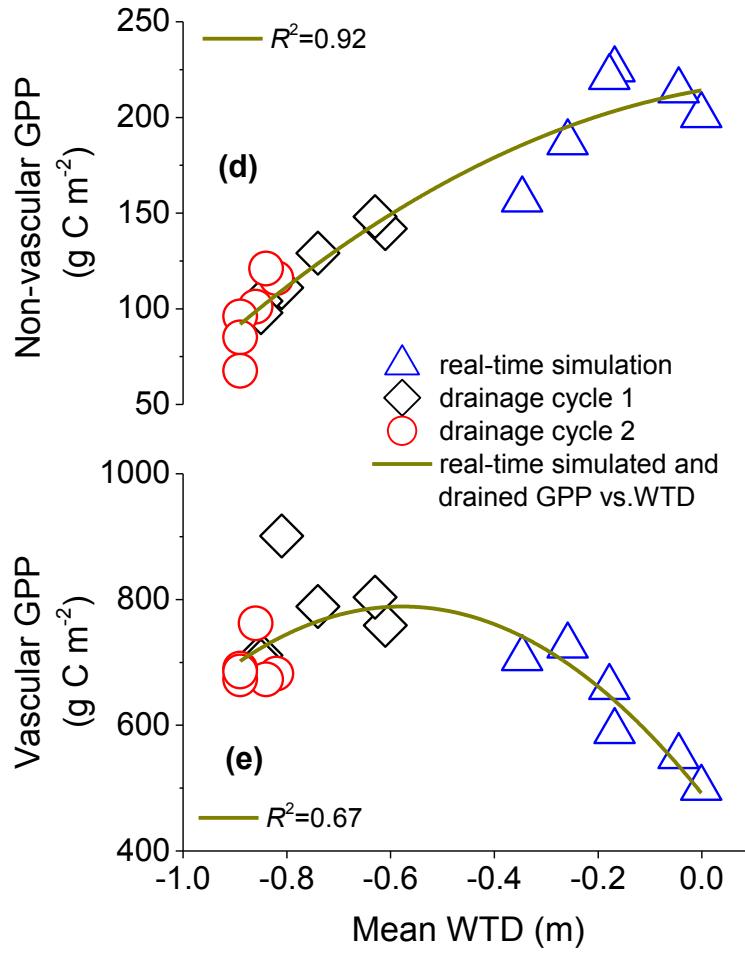
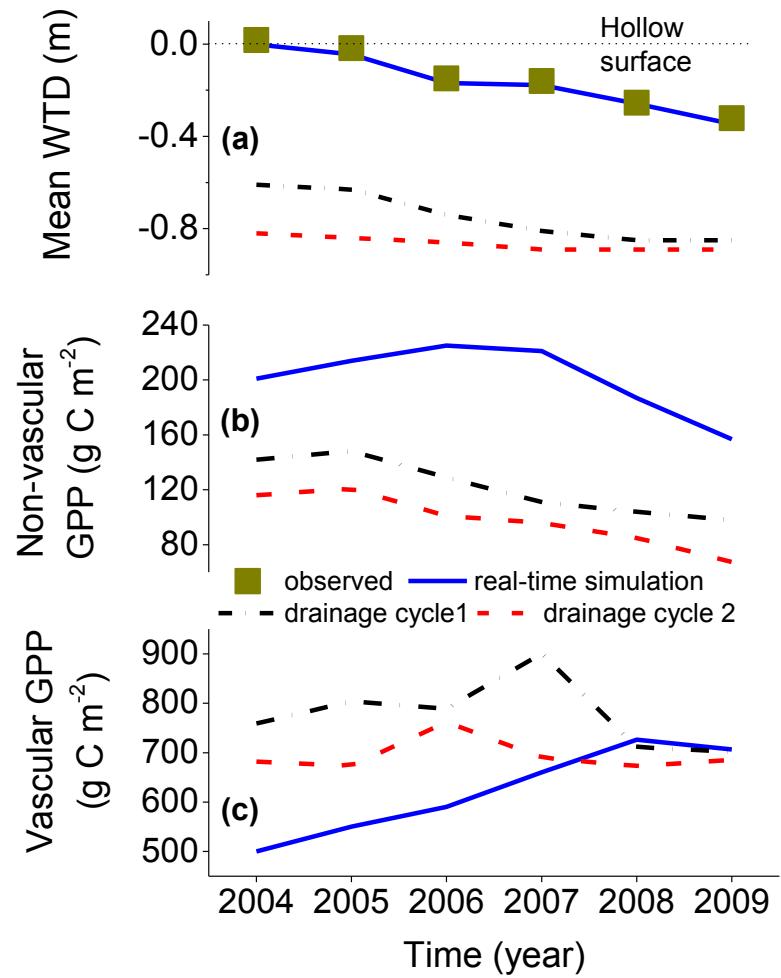

1270 **Fig. 4.**


1271

1272


1273 **Fig. 5.**

1277

1278 **Fig. 7.**

Table 1. Statistics from regressions between hourly modelled and measured net CO₂ fluxes from 2004-2009 at a Western Canadian fen peatland

(a) Regressions of modelled vs. EC measured (recorded at $u^* > 0.15 \text{ m s}^{-1}$) net ecosystem CO ₂ fluxes over whole years of 2004-2008 ^a							
Year	Total annual precipitation (mm)	n	a	b	R ²	RMSE ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	RMSRE ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
2004	553	5034	0.08±0.03	1.10±0.01	0.81	1.58	1.92
2005	387	5953	0.07±0.03	1.03±0.01	0.82	1.68	1.99
2006	465	6012	0.07±0.03	1.08±0.01	0.79	1.68	1.98
2007	431	5385	0.06±0.03	0.99±0.01	0.79	1.83	2.09
2008	494	5843	-0.01±0.02	0.98±0.01	0.84	1.63	2.02
(b) Regressions of modelled vs. EC measured (recorded at $u^* > 0.15 \text{ m s}^{-1}$) net ecosystem CO ₂ fluxes over growing seasons (May-August) of 2004-2009							
Year	Total growing season precipitation (mm)	n	a	b	R ²	RMSE ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	RMSRE ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
2004	287	2043	0.55±0.07	1.05±0.01	0.78	2.27	2.55
2005	276	2200	0.82±0.07	0.98±0.01	0.79	2.50	2.74
2006	253	2107	0.48±0.07	1.06±0.01	0.78	2.36	2.76
2007	237	1822	0.65±0.07	0.93±0.01	0.75	2.91	3.06
2008	276	2070	0.32±0.07	0.96±0.01	0.82	2.45	2.85
2009	138	1870	0.76±0.08	1.01±0.01	0.81	2.27	2.83
(c) Regressions of modelled vs. measured chamber net CO ₂ fluxes (understorey vegetation and soil CO ₂ fluxes) over ice free periods (May-October) of 2005-2006							

Year	Mean May-October WTD (m)		<i>n</i>	<i>a</i>	<i>b</i>	<i>R</i> ²	RMSE (μmol m ⁻² s ⁻¹)	RMSRE (μmol m ⁻² s ⁻¹)
	Mod-elled	Meas-ured						
2005	0.33	0.34	3285	0.43±0.02	1.05±0.01	0.68	1.19	2.38
2006	0.48	0.42	3855	0.31±0.03	0.85±0.01	0.71	1.44	3.25

WTD = water table depth below the hummock surface; (*a*, *b*) from simple linear regressions of modelled on measured (± standard errors), and *R*² = coefficient of determination; RMSE = root mean square for errors from simple linear regressions of measured on simulated; RMSRE = root mean square for random errors in measurements; RMSRE for eddy covariance (EC) measurements were estimated by inputting EC CO₂ fluxes recorded at *u** (friction velocity) > 0.15 m s⁻¹ into algorithms for estimation of random errors due to EC CO₂ measurements developed for forests by Richardson et al. (2006); ^a whole year modelled vs. EC net CO₂ flux regression for 2009 could not be done due to the lack of flux measurements from September to December in that year.

Table 2. Effects of water table depth (WTD) drawdown on components of ecosystem carbon and nutrient cycles of a Western Canadian fen peatland

	Modelled	Eddy covariance-derived/biometrically measured at the site ^a	Values from other studies in similar peatlands
Growing season (May to August) mean WTD drawdown from 2004 to 2009	from 0.3 m below the hummock surface (at the hollow surface) in 2004 to 0.65 m below the hummock surface (0.35 below the hollow surface) in 2009	from 0.32 m below the hummock surface (0.02 m below the hollow surface) in 2004 to 0.62 m below the hummock surface (0.32 m below the hollow surface) in 2009	
Rate of increase in annual R_e with each 0.1 m of WTD drawdown	0.26 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$	0.16 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$	0.32±0.27 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ ^b
Rate of increase in growing season GPP with each 0.1 m of WTD drawdown	0.39 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$	0.22 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$	(1) 0.32±0.15 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ ^b (2) 0.47±0.06 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ ^c
Black Spruce	14.3 $\text{g N kg}^{-1} \text{ C}$	12.4±0.6 $\text{g N kg}^{-1} \text{ C}$	

Leaf nitrogen concentration (mid-July 2004)	Tamarack	32.1 g N kg ⁻¹ C	32.6±1.4 g N kg ⁻¹ C
	Dwarf Birch	37.4 g N kg ⁻¹ C	41.4±1.8 g N kg ⁻¹ C
Leaf nitrogen (N) to phosphorus (P) ratio (mid-July 2004)	Black Spruce	6.6:1	7.1:1
	Tamarack	5.2:1	6.3:1
	Dwarf Birch	4.8:1	
Increase in foliar nitrogen concentrations with WTD drawdown	Black Spruce	from 14.3 to 17.2 g N kg ⁻¹ C with the growing season WTD drawdown from 0.3 m below the hummock surface in 2004 to 0.65 m below the hummock surface in 2009	(1) from 20.8±0.6 to 27±0.4 g N kg ⁻¹ C with a WTD drawdown from 0.24 to 0.7 m below peat surface ^d (2) from 18.7±0.05 to 21.3±0.06 g N kg ⁻¹ C for a WTD drawdown by 0.4-0.5 m ^e
	Tamarack	from 32.1 to 36.7 g N kg ⁻¹ C with the growing season WTD drawdown from 0.3 m below the hummock surface in 2004 to 0.65 m below the hummock surface in 2009	(1) from 41.4±0.4 to 66.2±1.2 g N kg ⁻¹ C for a WTD drawdown from 0.24 to 0.7 m below peat surface ^d (2) from 35.9±0.1 to 41.7±0.18 g N kg ⁻¹ C for a WTD drawdown by 0.4-0.5 m ^e
	Dwarf Birch	from 37.4 to 45.1 g N kg ⁻¹ C with the growing season WTD drawdown from 0.3 m below the hummock surface in 2004 to 0.65	

m below the hummock surface in 2009			
Increase in maximum rooting depth with WTD drawdown	Black spruce	from 0.35 to 0.65 m below the hummock surface with the growing season WTD drawdown from 0.3 m below the hummock surface in 2004 to 0.65 m below the hummock surface in 2009	from 0.1 to 0.6 m below hummock surface with a WTD drawdown from 0.1 to 0.7 m below hummock surface ^f
	Tamarack	from 0.35 to 0.65 m below the hummock surface with the growing season WTD drawdown from 0.3 m below the hummock surface in 2004 to 0.65 m below the hummock surface in 2009	from 0.2 to 0.6 m below hummock surface with a WTD drawdown from 0.1 to 0.6 m below hummock surface ^f

GPP=gross primary productivity; R_e = ecosystem respiration; ^a Syed et al. (2006), Flanagan and Syed (2011); ^b Peichl et al. (2012) for a Swedish fen; ^c Ballantyne et al. (2014) for a Michigan fen peatland complex that has similar peat and plant functional types as our study site; ^d Choi et al. (2007) for a central Alberta fen peatland located ~350 km to the southwest of the study site; ^e Macdonald and Lieffers (1990) for a northern Alberta fen peatland located ~250 km to the northwest of the study site; ^f Lieffers and Rothwell (1987) for a northern Alberta fen peatland located ~250 km to the northwest of the study site

