

1 **Historic carbon burial spike in an Amazon floodplain lake linked to riparian**
2 **deforestation near Santarem, Brazil**

3

4 Luciana M. Sanders¹, Kathryn Taffs¹, Debra Stokes², Christian J. Sanders³, Alex Enrich-
5 Prast^{4,5}, Leonardo Nogueira Amora^{6,7}, Humberto Marotta^{6,7}

6

7

8

9 ¹*Southern Cross Geoscience, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia.*

10 ²*Marine Ecology Research Centre, Southern Cross University, P.O. Box 157, Lismore, NSW 2480,
11 Australia University, P.O. Box 157, Lismore, NSW 2480, Australia.*

12 ³*National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross
13 University, Coffs Harbour, New South Wales, Australia.*

14 ⁴*Laboratório de Biogeocíquímica, Universidade Federal do Rio de Janeiro (UFRJ), Rio d Janeiro (RJ),
15 21941 971, Brazil.*

16 ⁵*Department of Environmental Change, Linköping University, 581 83, Linköping, Sweden.*

17 ⁶*Ecosystems and Global Change Laboratory (LEMG-UFF) / International Laboratory of Global Change
18 (LINCGlobal). Biomass and Water Management Research Center (NAB-UFF). Graduated
19 Program in Geosciences (Environmental Geochemistry). Universidade Federal Fluminense
20 (UFF), Av. Edmundo March, s/nº – Zip Code: 24210-310, Niteroi/RJ- Brazil.*

21 ⁷*Sedimentary and Environmental Processes Laboratory (LAPSA-UFF). Department of Geography.
22 Graduated Program in Geography. Universidade Federal Fluminense (UFF), Av. Gal. Milton
23 Tavares de Souza, s/nº - Zip Code: 24210-346, Niteroi/RJ- Brazil.*

24

25

26

27

28 *Corresponding author. E-mail address; l.sanders.13@student.scu.edu.au

29

30

31

32 **Abstract**

33 The forests along the Amazon Basin produce significant quantities of organic
34 material, a portion of which is deposited in floodplain lakes. However, potentially
35 important effects of ongoing deforestation in the watershed on these carbon fluxes is still
36 poorly understood. Here, a sediment core was extracted from an Amazon floodplain lake
37 to examine the relationship between carbon burial and land cover/use. Historical records
38 from 1934 and satellite data from 1975 were used to calculate deforestation rates between
39 1934 and 1975, and 1975 to 2008 in four zones with different distances from the margins
40 of the lake and its tributaries (100, 500, 1000 and 6000-m buffers). Sediment
41 accumulation rates were determined from the $^{240+239}\text{Pu}$ signatures and the excess ^{210}Pb
42 method, reaching near 3.8 and 4.2 mm year $^{-1}$ in the last 60 and 120 years respectively.
43 The carbon burial rates ranged between 81 and 284 g C m $^{-2}$ year $^{-1}$, with pulses of high
44 carbon burial derived from the forest vegetation, as indicated by $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ signatures
45 in the 1940s and 50s. Finally, our results revealed a potentially important spatial
46 dependence of the OC burial in Amazon lacustrine sediments in relation to deforestation
47 rates in the catchment. These deforestation rates were more intense in the riparian
48 vegetation (100-m buffer) during the period 1934-1975 and the larger open water areas
49 (500, 1000 and 6000-m buffer) during 1975-2008. The continued removal of vegetation
50 from the interior of the forest was not related to the peak of OC burial in the lake, but
51 only the riparian deforestation which peaked during the 1950s. Our novel findings
52 suggest the importance of abrupt and temporary events in which some of the biomass
53 released by the deforestation, especially restricted to areas along open water edges, might
54 reach the depositional environments in the floodplain of the Amazon Basin.

55

56 **1. Introduction**

57 Rivers act as vectors, transporting sediment from land to ocean (Abril et al. 2014).
58 Along this trajectory a significant proportion of the sediment load, including organic
59 material, may be deposited in floodplains, creating zones of carbon accumulation (Smith
60 et al. 2002, Dong et al. 2012, Hoffmann et al. 2013). This process is accelerated during
61 flood events, when rivers and tributaries deposit organic material along the inundated
62 floodplains (Smith et al. 2002). In some climate zones, floodplains are seasonally
63 inundated, with riparian zone vegetation dependent upon this seasonal influx of organic
64 material. The riparian vegetation slows water velocity and traps fine-grained, carbon rich
65 sediments within this low-energy environment (Aalto et al. 2003). Therefore, the riparian
66 vegetation along the floodplains may be important for the organic matter deposition and
67 the Amazon carbon cycle.

68 The importance of tropical wetland ecosystems in the carbon cycle is well
69 documented (Downing et al. 1993, Melack et al. 2004, Zocatelli et al. 2013, Abril et al.
70 2014, Marotta et al. 2014). It has been shown that wetlands in the warm tropics are some
71 of the most productive biological communities in the world (Neue et al. 1997),
72 representing an important sink for nutrients (Marotta et al. 2009) and carbon (Peixoto et
73 al. 2016), as well as sources of organic substrates to carbon gas production in inland
74 waters (Marotta et al. 2010). However, these wetland ecosystems are also highly
75 threatened by land use activities, especially from deforestation, development of
76 agricultural land and soil degradation (Junk 2013, Lucas et al. 2014). For example, the
77 Amazon Basin wetlands are being degraded by farming activities such as commercial
78 ranching, and an increase in road density (Goulding 1993).

79 Deforestation of the Amazon Basin accelerated toward the end of the 1970's
80 (Skole and Tucker 1993), when an estimated 15% of the pristine rainforest area was lost
81 by the year 2003, increasing to approximately 18% by 2015 (INPE 2016). The ongoing
82 loss of vegetation is responsible for a substantial increase in erosion rates and subsequent
83 sediment inputs into Amazon rivers and lakes (Neill et al. 2013b). Yet these
84 anthropogenic activities are potential sources of allochthonous organic matter that may
85 increase carbon stores in the associated floodplain areas (Diaz and Rosenberg 2008,
86 Stanley et al. 2012).

87 The city of Santarém, in central Amazon, was established in the mid-eighteenth
88 century, approximately 650 km upstream from the Amazon River mouth and at its
89 confluence with the River Tapajós (02°25'0.28"S and 54°42'41.57"W, Figure 1). In 1940,
90 Santarém was only a small village with less than 0.5 km², surrounded by dense pristine
91 rainforest (estimation from the historical mapping of the Santarém City Hall). This city
92 quickly expanded, occupying 5.2 km² by the end of the 1970s and 49.3 km² currently
93 (estimation from satellite images LANDSAT/SRTM). Jupindá Lake is 70 km East of
94 from Santarém City, and receives surface water inflow from small streams draining from
95 the forest and the main tributary Curuá-Una River, a large affluent of the Amazon River
96 (Figure 1). The Lake has been affected by the deforestation associated with the expansion
97 of Santarém City. Between the 1940's and 1950's, there was intense deforestation on the
98 margins of rivers and streams in this area, used to supply the markets with wood and
99 forestry products (Amorim 2000, Cruz et al. 2011). In the 1970s, the Curuá-Una River
100 was dammed (Curuá-Una Dam) 45 km upstream of Jupindá Lake to build the first
101 hydroelectric plant of the Amazon Forest (LigockI 2003).

102 Jupindá Lake provides an ideal opportunity to investigate historical changes in
103 organic carbon burial in a floodplain lake as a result of the well documented
104 anthropogenic activities. This will aid in identifying the still-little known impacts of land
105 cover changes on recent carbon burial rates in depositional environments of the Amazon
106 floodplain. The objectives of this research are to investigate the affects of deforestation
107 and urban development on carbon burial rates in a tropical floodplain lake.

108

109 **2. Methods**

110 A 60 cm depth sediment core (diameter 7.5 cm) was collected in 2010 using a
111 gravity corer in the center of the Jupindá Lake (02°27'43.60" S, 54° 5'1.30" W. The
112 sediment core was sub sampled at 2 cm intervals. Dry bulk density (DBD, g cm⁻³) was
113 determined as the dry sediment weight (g) divided by the initial volume (cm³). A
114 homogenized portion was acidified to remove carbonate material, then dried and ground
115 to powder for organic carbon (OC), nitrogen (N), δ¹³C, and δ¹⁵N analyses using a Flash
116 Elemental Analyzer coupled to a Thermo Fisher Delta V IRMS (isotope ratio mass
117 spectrometer). Analytical precision: C = 0.1 %, N = 0.1%, δ¹³C = 0.1‰ and δ¹⁵N = 0.15
118 ‰.

119 Samples were prepared for Pu dating following the method of Ketterer et al.
120 (2004) with modifications to enable larger sample mass to be processed as a result of the
121 likely lower Pu concentrations in the Southern Hemisphere (Sanders et al. 2016). To
122 obtain a larger mass, sediment intervals were joined and homogenized so the sediment
123 intervals for the ²⁴⁰⁺²³⁹Pu dating was 4 cm intervals. Sample aliquots ranging from 14 to
124 29 grams were dry-ashed at 600 °C for 16 hours, and leached with 50 mL of 16 M HNO₃.

125 The leaching was conducted overnight at 80°C with added ^{242}Pu yield tracer (NIST
126 4334g, 19 picograms). Acid leaching (as opposed to complete dissolution with HF) is
127 known to solubilize stratospheric fallout Pu, and there is little possibility that “refractory”
128 HNO_3 -insoluble Pu exists in the South America (Sanders et al. 2014). The leachates
129 were diluted to 100 mL, filtered to remove solids, and the aqueous solutions were
130 processed with TEVA resin (EIChrom, Lisle, IL, USA) in order to chemically isolate 3.0
131 mL Pu fractions in aqueous ammonium oxalate solution suitable for measurements by
132 sector ICPMS. Pu determinations were performed using a VG Axiom MC operating in
133 the single collector (electron multiplier) mode. The system was used with an APEX HF
134 desolvating micronebulizer system (ESI Scientific, Omaha, NE, USA) with an uptake
135 rate of 0.4 mL/minute. Qualitative mass spectral scans (averages of 50 sweeps over the
136 mass range 237.4 – 242.6) were collected for selected samples prior to the electrostatic
137 sector quantitative scanning of $^{238}\text{U}^+$, $^{239}\text{Pu}^+$, $^{240}\text{Pu}^+$, and $^{242}\text{Pu}^+$. Detection limits were
138 evaluated based upon the analysis of two blanks and considerations regarding the
139 obtained mass spectra. A detection limit of 0.01 Bq/kg of $^{239+240}\text{Pu}$ is applicable for
140 samples of nominal 25 g mass.

141 For ^{210}Pb dating, an intrinsic germanium detector coupled to a multi-channel
142 analyzer was used. Freeze dried and ground sediments were packed and sealed in gamma
143 tubes. Lead-210 and ^{226}Ra activities were calculated by multiplying the counts per minute
144 by a factor that includes the gamma-ray intensity and detector efficiency determined from
145 standard calibrations. Identical geometry was used for all samples. Lead-210 activities
146 were determined by the direct measurement of the 46.5 KeV gamma peak. Radium-226
147 activity was determined via the ^{214}Pb daughter at 351.9 KeV. For ^{226}Ra measurements,

148 the packed samples were set aside for at least 21 days to allow for ^{222}Rn to ingrow and
149 establish secular equilibrium between ^{226}Ra and its granddaughter ^{214}Pb . Excess ^{210}Pb
150 activity was calculated by subtracting the supported ^{210}Pb (i.e., ^{226}Ra activity) from the
151 total ^{210}Pb activity. The sediment accretion rate for the previous 120 years was estimated
152 by two methods derived from ^{210}Pb dating, the Constant Initial Concentration (CIC)
153 model assuming that this rate has not varied during the encompassed time span (Appleby
154 and Oldfield 1992), and the Constant Rate of Supply (CRS) model based on a constant
155 influx of unsupported, atmospheric ^{210}Pb that allows a variable sediment rate (Ivanovich
156 and Harmon 1992). Organic carbon accumulation rates were estimated from an average
157 between these the two dating methods, $^{239+240}\text{Pu}$ and $^{210}\text{Pb}_{\text{ex}}$ the dry bulk density (g cm^{-3})
158 and carbon content for each interval of the entire sediment core.

159 The land/use cover analysis was based on documented historical information
160 before 1975 and satellite images (Landsat/SRTM, Table 1) from 1975, 1985, 1995 and
161 2008 available from the United States Geological Survey (USGS). No significant
162 deforestation occurred in the catchment area of the Jupindá Lake until early 1940's
163 (Amorim 2000, Cruz et al. 2011). Subsequent land/use changes were determined using
164 satellite images (Gordon 1980, Munyati 2000). All satellite images were from low-water
165 seasons to remove the influence of the flood pulse on the exposed area over years. The
166 resolution of the images was 30 m, except that from the 1970's which was resampled
167 from 90 to 30 m (Table 1). This approach allowed an assessment of changes in land cover
168 which could then be compared to results from carbon accumulation. Results of the
169 spatial assessment were separated into two time periods; 1934-1975, or the timeframe
170 between the onset of land clearing and the first satellite image, and 1975-2008 which

171 provides a more detailed assessment of temporal changes to the study area. The time
172 period 1934-1975 was characterized by a rapid removal (peak until the 1960's) of
173 vegetation established at the margins of inland waters; especially *Aniba rosaeodora* (Pau-
174 rosa) for extraction of oils, and *Mezilaurus itauba* and *Cedrela fissilis* (Louro-itaúba and
175 Cedro, respectively) as hardwoods, and the opening of clearings for crops of textile fibers
176 and subsistence products. Further, intensification of deforestation towards the interior of
177 the forest and following the urban growth of Santarém is reported from the 1970's, along
178 with depleting vegetal resources near to the margins of lakes and running waters in this
179 region was noted (Amorim 2000, Cruz et al. 2011).

180 In order to address the spatial dependence of recent OC burial in Jupindá Lake for
181 deforestation, we analyzed the land/cover use in four buffer areas around this lake and
182 contributing rivers or streams. The first buffer of 100 m represented the riparian forest
183 protected area by the Brazilian laws for fluvial channels with a width of 50 to 200 m.
184 Other buffers were progressively higher, with a width of 500, 1000 and 6000 m from the
185 riverbank and lake margins (Figure 2). In addition, we considered only stretches of rivers
186 and streams 65-km long from Jupindá Lake to analyze its catchment area of more direct
187 influence. This criteria also allowed to avoid the interference of the artificial flooding on
188 the margins of the Curuá-Una hydroelectric dam, which was built in 1977 (Fearnside
189 2005). All the statistical tests used in this work were performed using GraphPad Prism
190 5.0 software.

191

192 **3. Results**

193 Analyses of $^{239+240}\text{Pu}$ were not detectable from the bottom of the sediment core until
194 the 22-26 cm interval (Figure 3). This radioisotope was detected in the 18-22 cm interval
195 ($0.029 \pm 0.002 \text{ Bq/kg } ^{239+240}\text{Pu}$) with the highest concentrations ($0.047 \pm 0.004 \text{ Bq/kg}$
196 $^{239+240}\text{Pu}$) at the 16 cm depth. The $^{239+240}\text{Pu}$ activities appears to spike at the 14 to 18 cm
197 interval, which indicates the 1963 stratospheric fallout peak. It may be said with certainty
198 that the material below 22 cm was deposited pre-bomb (that is, prior to the early 1950's).
199 This affixes an upper limit on the average sedimentation rate of near to 3.8 mm year^{-1} .
200 The Pu atom ratio data indicate that the Pu is originating from stratospheric fallout
201 (plutonium isotopic ratios ($^{240/239}\text{Pu}$) of ~ 0.18). These results are consistent with the
202 $^{240}\text{Pu} / ^{239}\text{Pu}$ of 0.180 ± 0.014 discussed by Kelley et al. (1999).

203 The ^{210}Pb and ^{226}Ra profiles as well as the $^{210}\text{Pb}_{(\text{ex})}$ profile vs cumulative dry mass
204 accumulation reveals a complex depositional environment with sedimentation variations
205 in the upper intervals with disturbances, such as bio-turbation and resuspension in the
206 upper ~ 20 cm of the sediment column (Figure 4). A decrease in $^{210}\text{Pb}_{\text{ex}}$ activity was
207 found below the 20 cm depth interval. The $^{210}\text{Pb}_{\text{ex}}$ data distribution are as follows: $y = -$
208 $0.0749x + 7.5$; $R^2 = 0.73$; $n=19$; $p < 0.01$ from the 20 to the 60 cm interval, below the
209 apparent mixed zone. Both estimates of sediment accretion rate during the 120 years from
210 CIC and CRS models were similar, reaching 4.1 and 4.3 mm yr^{-1} respectively, which
211 were slightly higher than the ~ 60 year $^{239+240}\text{Pu}$ dates (3.8 mm yr^{-1}). To present the
212 historical profiles of the carbon burial rates, an average is taken between these the two
213 dating methods, $^{239+240}\text{Pu}$ and $^{210}\text{Pb}_{\text{ex}}$ (4 mm year^{-1}), multiplied by the DBD and carbon
214 content for each interval of the entire sediment core.

215 The dry bulk density (DBD), total organic carbon (OC%), total nitrogen (TN%)

216 content as well as the carbon and nitrogen (C/N) molar ratios along with the $\delta^{13}\text{C}$ and
217 $\delta^{15}\text{N}$ values showed an increases towards the center of the sediment core Table 2. The
218 relationship between $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ indicated different origins of OC in the sediment core
219 (Figure 5) contributing to the significant relationship between recent OC burial and the
220 $\delta^{13}\text{C}$ (Figure 6). The peak of greater $\delta^{13}\text{C}$ and lower $\delta^{15}\text{N}$ values coupled to higher OC
221 burial rates were observed in the phase between 1934-1975 in Jupindá Lake (one-way
222 ANOVA followed by Tukey's post test, $p<0,05$; Fig. 7). The $\delta^{13}\text{C}$ values were around 3
223 and 5% greater in the phase 1934-1975 in relation to those previous and after respectively
224 (one-way ANOVA followed by Tukey's post test, $p<0,05$). This peak between 1934-1975
225 also showed delta $\delta^{15}\text{N}$ values around 30% lower and OC burial rates around 40 % higher
226 than other phases (one-way ANOVA followed by Tukey's post test, $p<0,05$).

227 The OC burial rates show an increasing trend from ~ 1930 to 1960 with a peak during
228 the 1940's and 50's (grey area in Figure 7). The carbon burial rates increased, from ~150
229 $\text{g m}^{-2} \text{ year}^{-1}$ in the time period 1890 – 1940, and up to $298 \text{ g m}^{-2} \text{ year}^{-1}$ between 1940 and
230 1950. Carbon accumulation then decreased to approximately $200 \text{ g m}^{-2} \text{ year}^{-1}$ from 1960
231 to 1980, after which a gradual decline in carbon burial was still measured. In relation to
232 land use/cover in the surroundings of fluvial channels and the Jupindá lake over time,
233 only the smallest buffer (100 m) showed more intense relative changes during the
234 previous period 1934-1975, when the increase in deforested area was around 75 % higher
235 than in the subsequent time period 1975-2008 (Figure 8).

236

237 **4. Discussion**

238 Overall, similar estimates of sediment accretion using different methodologies
239 (i.e. 60 and 120 year trends from the $^{239+240}\text{Pu}$ and $^{210}\text{Pb}_{(\text{ex})}$ models, respectively), along
240 with the dry bulk revealed an insight into changes in the sediment sources. This indicates
241 that even though the origin of the sediment may have been modified, the sediment
242 accumulation has varied little as indicated by the 60- or 120-year sediment accumulation
243 rates.

244 The high peak in carbon accumulation observed around 1950 appears to be
245 associated with a shift in the source of organic material, inferred by changes in carbon
246 and nitrogen contents and the isotopic fractioning toward the middle (from 40 to 20 cm
247 depth interval) of the sediment column. This peak for different organic and inorganic
248 variables in intermediate depths revealed changes not only in the amount but also in the
249 type of material being deposited over time. Previous studies have reported two common
250 origins for OC in the Amazon forest. Higher $\delta^{15}\text{N}$ and more negative $\delta^{13}\text{C}$ values could
251 indicate the presence of Santarém soil organic matter (such as that adjacent to the Jupindá
252 Lake), while lower $\delta^{15}\text{N}$ and more variable $\delta^{13}\text{C}$ values indicate particulate organic
253 carbon (POC) from the terrestrial vegetation in the catchment (Ometto et al. 2006,
254 Zocatelli et al. 2013). Here, a corresponding increase in OC%, TN% and OC burial rates
255 measured, with a peak near ~1950, suggesting higher inputs of organic matter into lake.
256 The higher $\delta^{13}\text{C}$ signature, coupled with a lower $\delta^{15}\text{N}$ indicates a greater influence from
257 the terrestrial Amazonian POC during the same period around 1950 (Ometto et al., 2006).

258 The stable isotope results and OC burial rates, when grouped into different
259 phases, showed assumptions required for parametric analyses, including normal
260 distribution (Kolmogorov-Smirnov, $p > 0.05$) and homogeneity of variance (Bartlett, $p >$

261 0.05) (Figure 7). Thus, when examining the means and standard errors to represent the
262 distribution of values, and parametric tests, different sedimentary phases are noted. These
263 different sedimentary phases are confirmed by statistical differences as tested using a
264 one-way ANOVA test followed by Tukey's post test (significance was defined as $p <$
265 0.05).

266 When looking for a cause for this change in the source of organic material, we
267 look to the analysis of land use change. Land clearing associated with early occupation
268 from the 1940s in the catchment area of the Jupindá Lake reveals a potential cause of the
269 increased carbon burial observed in this lake. Changes in land use and cover may
270 significantly affect recent OC burial in mid-high-latitude lakes (Anderson et al. 2013,
271 Dietz et al. 2015). Our results suggest that land clearing during the 1940's and 50's might
272 be related to increased organic matter deposition in the region's floodplain lakes. During
273 this period, intense wood extraction and expansion of agricultural settlements occurred
274 (Amorim 2000, Cruz et al. 2011). One important consequence of deforestation in the
275 watershed is the silting up of lakes (Enea et al. 2012), including those at humid low-
276 latitude areas (Cohen et al. 2005, Bakoarinaiaina et al. 2006). The riparian forest systems
277 are generally effective in reducing the sediment transport by surface runoff, with the
278 removal of this vegetation increasing the erosion processes especially in the Amazon
279 basin due to intense rainfall (Neill et al. 2013a). The lake is in a
280 region relatively preserved, and therefore there is no other explanation other than
281 deforestation in the margins which may have caused the peak in OC burial found between
282 1934 and 1975.

283 We also found a spatial dependence of the carbon accumulation in the Lake
284 Jupindá, as the much lower OC burial was coupled to higher deforestation rates in those
285 larger buffers around its margins and main fluvial channels (500, 1000 and 6000 m) in
286 the period after 1975 (1975-2008) than that before (1934-1975). This confirms previous
287 evidences that the recent deforestation process in the region was started in areas around
288 running and lake waters (Amorim 2000, Cruz et al. 2011), and not in the interior of the
289 forest. The enhanced OC burial in lacustrine sediments before 1975 was related to higher
290 deforestation rates only in the riparian vegetation zone (100-m buffers), suggesting a
291 higher influence of deforestation with decreasing distance to water courses. Therefore,
292 the soil carbon enrichment to the aquatic sediments during the peaks of riparian
293 deforestation may cause intense but temporary carbon burial events in the Amazon
294 floodplain, representing a significant part of the total loss of terrestrial organic matter. In
295 contrast, the continued removal of vegetation from the interior of the forest might be not
296 directly related to increases of OC burial, even temporarily, in depositional aquatic
297 ecosystems.

298

299 **5. Conclusion**

300 The $^{239+240}\text{Pu}$ and ^{210}Pb dating methods were combined with a spatial analysis of
301 vegetation clearing to firstly calculate carbon accumulation rates, and then to interpret
302 changes in sediment characteristics during the previous century. The Pu dating method
303 closely approximates measurements from the ^{210}Pb chronologies and hence offers
304 mechanism to determine sedimentation rates and carbon accumulation in Amazon
305 sediments. An increase in OC burial, 150 to $\sim 300 \text{ OC g m}^{-2} \text{ year}^{-1}$, coincides with

306 changes in the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ signatures, likely influenced by the heavy deforestation in
307 riparian systems of this region during the 1940s and 50's. It is therefore suggested that
308 the net increase in carbon burial towards the center of the sediment core, which
309 represents the highest carbon burial rates during the 1950s, is a result of a change in
310 source of organic matter deposition. The differing carbon burial rates along the sediment
311 core reveals the potential complexity of carbon burial rates in the Amazon floodplain
312 lakes, directly related to the development within the Basin. This work demonstrates a
313 new understanding on spatial dependence of carbon burial capacity of the Amazon
314 floodplain lakes with respect to advances in deforestation in the basin.

315

316

317 **Acknowledgements**

318 LMS is supported by an APA and IPRS scholarships. HM received a research grant from
319 the Brazilian Research Council (CNPq – “Programa Universal”) and the Research
320 Support Foundation of the State of Rio de Janeiro (FAPERJ – “Programa Jovem Cientista
321 do Nosso Estado”). CJS is supported by the Australian Research Council
322 (DE150100581).

323

324

325

326

327

328

329

330

331

332

333 **CAPTIONS TO FIGURES**

334 **Figure 1.** Floodplain Lake where the sediment core was collect, near the Amazon River
335 and the city of Santarém, Brazil. This floodplain lake has a diameter of approximately 3
336 km.

337 **Figure 2.** Different buffer sizes (100m, 500m, 1km and 6km) along the stretch of the
338 Curuá-Una river from Jupindá Lake (red) to the hydroelectric dam upstream (yellow).

339 **Figure 3.** $^{239+240}\text{Pu}$ profile, indicating ~ 1950 when these radionuclides were first
340 introduced into the atmosphere.

341 **Figure 4.** Lead-210 (black circles) and ^{226}Ra (white circles) profiles against depth. Grey
342 squares represent the $^{210}\text{Pb}(\text{ex})$ profile vs cumulative dry mass.

343 **Figure 5.** $\delta^{13}\text{C}$ vs $\delta^{15}\text{N}$. The Amazon River POM and Santarem soil organic matter
344 values, adjacent to the study area, are taken from Zocatelli et al (2013).

345 **Figure 6.** Carbon burial as a function of $\delta^{13}\text{C}$.

346 **Figure 7.** $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and carbon burial rate values in relation to age (year). "Panels
347 below each vertical profile represent respective data grouped by the phases >1934, 1934-
348 1975 and 1975-2008. Filled square symbols represent means of a given variable in each
349 sediment layer, and the vertical bars show the mean with the standard deviation of the
350 respective phase. Equal letters in each panel represent non-significant differences ($p >$
351 0.05, one-way ANOVA followed by Tukey's post test)."

352 **Figure 8.** Percentage of modified areas in relation to the different buffers.

353

354

355

356

357 **CAPTION TO TABLES**

358 **Table 1.** Satellite acquisition data from United States Geological Survey (USGS) and the

359 Curuá-Una River quota from Brazilian Water Agency (ANA).

360 **Table 2.** Depth profiles of dry bulk density (DBD), total organic carbon (OC%), total

361 nitrogen (TN%) carbon and nitrogen (C/N) molar ratios, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$.

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391
392
393
394
395
396
397
398
399
400
401
402 **Table 1.**
403

<i>Month/Year</i>	<i>Landsat Data</i>	<i>Curuá-Una River</i>
		<i>Quote</i>
Aug/1975	2	5.3
Oct/1985	5	3.7
June/1995	5	6
June/2008	5	<i>No data</i>

404
405
406
407 **Table 2.**
408

Depth (cm)	DBD (g cm⁻³)	$\delta^{15}\text{N}$	$\delta^{13}\text{C}$	C (%)	N (%)	C/N
0-2	1.0	8.9	-29.2	3.8	0.3	17.2
2-4	0.9	11.7	-29.0	3.8	0.3	18.7
4-6	1.0	10.4	-28.8	4.0	0.3	19.2
6-8	1.1	9.3	-28.7	4.3	0.3	20.2
8-10	1.0	9.4	-28.7	4.1	0.3	19.8
10-12	1.1	7.9	-28.6	4.6	0.3	21.2
12-14	1.1	8.2	-28.7	4.3	0.3	19.9
14-16	1.1	7.8	-28.6	4.3	0.3	20.9
16-18	1.0	8.7	-28.5	4.4	0.3	21.2
18-20	1.1	7.5	-28.4	4.4	0.3	19.8
20-22	1.0	6.5	-28.2	5.4	0.3	21.2
22-24	1.0	6.0	-27.8	5.3	0.3	21.5
24-26	1.0	5.2	-27.4	7.3	0.4	25.4
26-28	1.1	6.1	-27.6	6.0	0.3	23.8
28-30	1.0	5.0	-27.3	6.0	0.4	22.7
30-32	1.0	5.4	-28.0	6.1	0.3	27.0
32-34	1.3	6.6	-28.5	4.4	0.2	27.5
34-36	1.6	8.9	-29.0	2.2	0.1	23.1
36-38	1.4	11.4	-29.4	2.9	0.1	30.4
38-40	1.4	10.4	-29.5	3.3	0.1	30.5
40-42	1.5	11.4	-29.3	2.4	0.1	23.8
42-44	1.6	12.2	-29.4	1.3	0.1	15.6
44-46	1.8	8.2	-29.6	1.2	0.1	14.3
46-48	1.5	8.8	-29.8	2.2	0.1	21.6

48-50	0.9	10.4	-29.7	2.9	0.2	25.6
50-52	0.9	10.2	-29.7	2.6	0.1	27.2
52-54	0.9	7.1	-29.7	3.9	0.2	28.6
54-56	0.9	9.2	-29.9	3.6	0.2	27.8
56-58	0.9	6.6	-30.1	4.3	0.2	30.1
58-60	0.9	5.0	-30.1	3.5	0.2	23.1
Average	1.11	8.34	-28.9	4.0	0.2	23.0
Stand Dev	0.24	2.1	0.8	1.9	0.1	4.2

409

410

411

412 **References**

413

414 Aalto, R., L. Maurice-Bourgois, T. Dunne, D. R. Montgomery, C. A. Nittrouer, and J. L.
 415 Guyot. 2003. Episodic sediment accumulation on Amazonian flood plains
 416 influenced by El Niño/Southern Oscillation. *Nature* **425**:493-497.

417 Abril, G., J. M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T.
 418 Meziane, J. H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P.
 419 Albéric, M. F. Landim De Souza, and F. Roland. 2014. Amazon River carbon
 420 dioxide outgassing fuelled by wetlands. *Nature* **505**:395-398.

421 Amorim, A. T. d. S. 2000. Santarém: uma síntese histórica, Canoas, Ulbra, Santarem,
 422 Brazil

423 Anderson, N. J., R. D. Dietz, and D. R. Engstrom. 2013. Land-use change, not climate,
 424 controls organic carbon burial in lakes. *Proceedings. Biological sciences / The
 425 Royal Society* **280**:20131278.

426 Appleby, P. G., and F. Oldfield. 1992. Application of lead-210 to sedimentation studies.
 427 Pages 731-783 *in* M. Ivanovich and S. Harmon, editors. *Uranium Series
 428 Disequilibrium: Application to Earth, Marine and Environmental Science*. Oxford
 429 Science Publications.

430 Bakoariniaina, L. N., T. Kusky, and T. Raharimahefa. 2006. Disappearing Lake Alaotra:
431 Monitoring catastrophic erosion, waterway silting, and land degradation hazards
432 in Madagascar using Landsat imagery. *Journal of African Earth Sciences* **44**:241-
433 252.

434 Cohen, A. S., M. R. Palacios-Fest, J. McGill, P. W. Swarzenski, D. Verschuren, R.
435 Sinyinza, T. Songori, B. Kakagozo, M. Syampila, C. M. O'Reilly, and S. R. Alin.
436 2005. Paleolimnological investigations of anthropogenic environmental change in
437 Lake Tanganyika: I. An introduction to the project. *Journal of Paleolimnology*
438 **34**:1-18.

439 Cruz, H., P. Sablayrolles, M. Kanashiro, and M. S. Amaral, P. 2011. Relação empresa/
440 comunidade no manejo florestal comunitário e familiar: Uma contribuição do
441 Projeto Floresta em pé.

442 Diaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine
443 ecosystems. *Science* **321**:926-929.

444 Dietz, R. D., D. R. Engstrom, and N. J. Anderson. 2015. Patterns and drivers of change in
445 organic carbon burial across a diverse landscape: Insights from 116 Minnesota
446 lakes. *Global Biogeochemical Cycles* **29**:708-727.

447 Dong, X., N. J. Anderson, X. Yang, X. chen, and J. Shen. 2012. Carbon burial by shallow
448 lakes on the Yangtze floodplain and its relevance to regional carbon sequestration.
449 *Global Change Biology* **18**:2205-2217.

450 Downing, J. P., M. Meybeck, J. C. Orr, R. R. Twilley, and H. W. Scharpenseel. 1993.
451 Land and water interface zones. *Water, Air, & Soil Pollution* **70**:123-137.

452 Enea, A., G. Romanescu, and C. Stoleriu. 2012 Quantitative considerations concerning
453 the source-areas for the silting of the red lake (Romania) lacustrine basin.
454 . Romania.

455 Fearnside, P. M. 2005. Do hydroelectric dams mitigate global warming? The case of
456 Brazil's Curuá-Una Dam. *Mitigation and Adaptation Strategies for Global Change*
457 **10**:675-691.

458 Gordon, S. I. 1980. Utilizing LANDSAT imagery to monitor land-use change: A case
459 study in ohio. *Remote Sensing of Environment* **9**:189-196.

460 Goulding, M. 1993. Flooded forests of the Amazon. *Scientific American* **268**:114-
461 120+115.

462 Hoffmann, T., M. Schlummer, B. Notebaert, G. Verstraeten, and O. Korup. 2013. Carbon
463 burial in soil sediments from Holocene agricultural erosion, Central Europe.
464 *Global Biogeochemical Cycles* **27**:828-835.

465 INPE. 2016. Program for the Estimation of Amazon Deforestation. Accessed 20
466 November 2016, http://www.obt.inpe.br/prodes/prodes_1988_2015n.htm.

467 Ivanovich, M., and S. Harmon. 1992. *Uranium Series Disequilibrium - Applications to*
468 *Earth, Marine and Environmental Sciences*. second edition edition. Oxford
469 *Science Publications*.

470 Junk, W. J. 2013. Current state of knowledge regarding South America wetlands and
471 their future under global climate change. *Aquatic Sciences* **75**:113-131.

472 Ketterer, M. E., K. M. Hafer, V. J. Jones, and P. G. Appleby. 2004. Rapid dating of
473 recent sediments in Loch Ness: Inductively coupled plasma mass spectrometric

474 measurements of global fallout plutonium. *Science of the Total Environment*
475 **322**:221-229.

476 LigockI, L. P. 2003. Comportamento geotécnico da barragem de Curuá-Una, Pará. Rio de
477 Janeiro.

478 Lucas, C. M., J. Schöngart, P. Sheikh, F. Wittmann, M. T. F. Piedade, and D. G.
479 McGrath. 2014. Effects of land-use and hydroperiod on aboveground biomass and
480 productivity of secondary Amazonian floodplain forests. *Forest Ecology and
481 Management* **319**:116-127.

482 Marotta, H., L. Bento, F. A. De Esteves, and A. Enrich-Prast. 2009. Whole ecosystem
483 evidence of eutrophication enhancement by wetland dredging in a shallow
484 Tropical Lake. *Estuaries and Coasts* **32**:654-660.

485 Marotta, H., C. M. Duarte, F. Meirelles-Pereira, L. Bento, F. A. Esteves, and A. Enrich-
486 Prast. 2010. Long-term CO₂ variability in two shallow tropical lakes experiencing
487 episodic eutrophication and acidification events. *Ecosystems* **13**:382-392.

488 Marotta, H., L. Pinho, C. Gudasz, D. Bastviken, L. J. Tranvik, and A. Enrich-Prast. 2014.
489 Greenhouse gas production in low-latitude lake sediments responds strongly to
490 warming. *Nature Climate Change* **4**:467-470.

491 Melack, J. M., L. L. Hess, M. Gastil, B. R. Forsberg, S. K. Hamilton, I. B. T. Lima, and
492 E. M. L. M. Novo. 2004. Regionalization of methane emissions in the Amazon
493 Basin with microwave remote sensing. *Global Change Biology* **10**:530-544.

494 Munyati, C. 2000. Wetland change detection on the Kafue Flats, Zambia, by
495 classification of a multitemporal remote sensing image dataset. *International
496 Journal of Remote Sensing* **21**:1787-1806.

497 Neill, C., M. T. Coe, S. H. Riskin, A. V. Krusche, H. Elsenbeer, M. N. Macedo, R.

498 McHorney, P. Lefebvre, E. A. Davidson, R. Scheffler, A. M. e Silva Figueira, S.

499 Porder, and L. A. Deegan. 2013a. Watershed responses to Amazon soya bean

500 cropland expansion and intensification. *Philosophical Transactions of the Royal*

501 *Society B: Biological Sciences* **368**.

502 Neill, C., M. T. Coe, S. H. Riskin, A. V. Krusche, H. Elsenbeer, M. N. Macedo, R.

503 McHorney, P. Lefebvre, E. A. Davidson, R. Scheffler, A. M. Figueira, S. Porder,

504 and L. A. Deegan. 2013b. Watershed responses to Amazon soya bean cropland

505 expansion and intensification. *Philosophical transactions of the Royal Society of*

506 *London. Series B, Biological sciences* **368**:20120425.

507 Neue, H. U., J. L. Gaunt, Z. P. Wang, P. Becker-Heidmann, and C. Quijano. 1997.

508 Carbon in tropical wetlands. *Geoderma* **79**:163-185.

509 Ometto, J. P. H. B., J. R. Ehleringer, T. F. Domingues, J. A. Berry, F. Y. Ishida, E.

510 Mazzi, N. Higuchi, L. B. Flanagan, G. B. Nardoto, and L. A. Martinelli. 2006.

511 The stable carbon and nitrogen isotopic composition of vegetation in tropical

512 forests of the Amazon Basin, Brazil. *Biogeochemistry* **79**:251-274.

513 Peixoto, R. B., H. Marotta, D. Bastviken, and A. Enrich-Prast. 2016. Floating Aquatic

514 Macrophytes Can Substantially Offset Open Water CO₂ Emissions

515 from Tropical Floodplain Lake Ecosystems. *Ecosystems* **19**:724-736.

516 Sanders, C. J., B. D. Eyre, I. R. Santos, W. MacHado, W. Luiz-Silva, J. M. Smoak, J. L.

517 Breithaupt, M. E. Ketterer, L. Sanders, H. Marotta, and E. Silva-Filho. 2014.

518 Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a

519 highly impacted mangrove wetland. *Geophysical Research Letters* **41**:2475-2480.

520 Sanders, C. J., I. R. Santos, D. T. Maher, J. L. Breithaupt, J. M. Smoak, M. Ketterer, M.
521 Call, L. Sanders, and B. D. Eyre. 2016. Examining 239+240Pu, 210Pb and
522 historical events to determine carbon, nitrogen and phosphorus burial in
523 mangrove sediments of Moreton Bay, Australia. *Journal of Environmental
524 Radioactivity* **151**:623-629.

525 Skole, D., and C. Tucker. 1993. Tropical deforestation and habitat fragmentation in the
526 amazon: Satellite data from 1978 to 1988. *Science* **260**:1905-1910.

527 Smith, L. K., J. M. Melack, and D. E. Hammond. 2002. Carbon, nitrogen, and
528 phosphorus content and 210Pb-derived burial rates in sediments of an Amazon
529 floodplain lake. *Amazoniana* **17**:413-436.

530 Stanley, E. H., S. M. Powers, N. R. Lottig, I. Buffam, and J. T. Crawford. 2012.
531 Contemporary changes in dissolved organic carbon (DOC) in human-dominated
532 rivers: Is there a role for DOC management? *Freshwater Biology* **57**:26-42.

533 Zocatelli, R., P. Moreira-Turcq, M. Bernardes, B. Turcq, R. C. Cordeiro, S. Gogo, J. R.
534 Disnar, and M. Boussafir. 2013. Sedimentary evidence of soil organic matter
535 input to the curuai amazonian floodplain. *Organic Geochemistry* **63**:40-47.

536

537

538

539

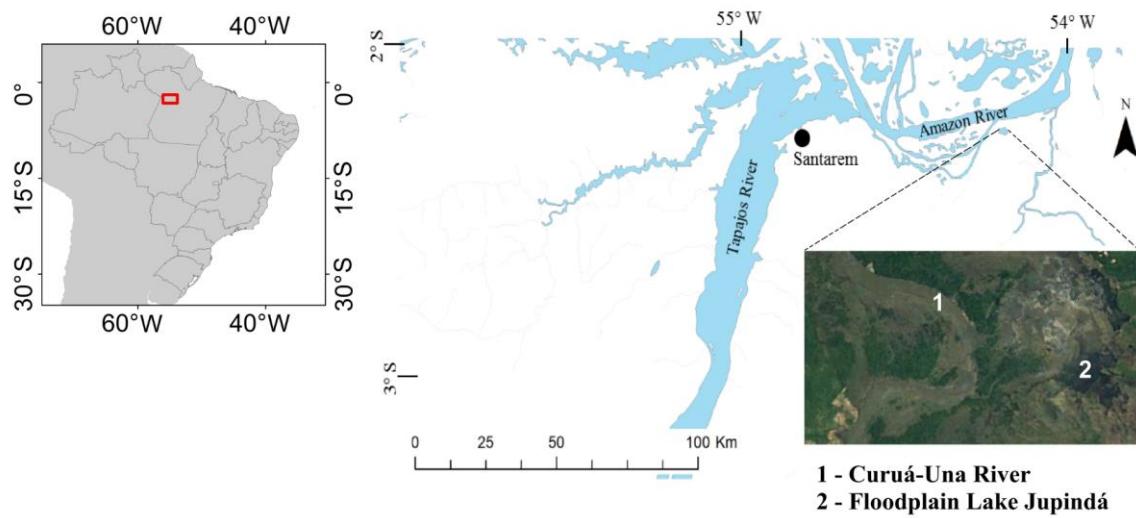
540

541

542

543

544


545

546

547

548

549 **Figure 1.**

550

551

552

553

554

555

556

557

558

559

560

561

562

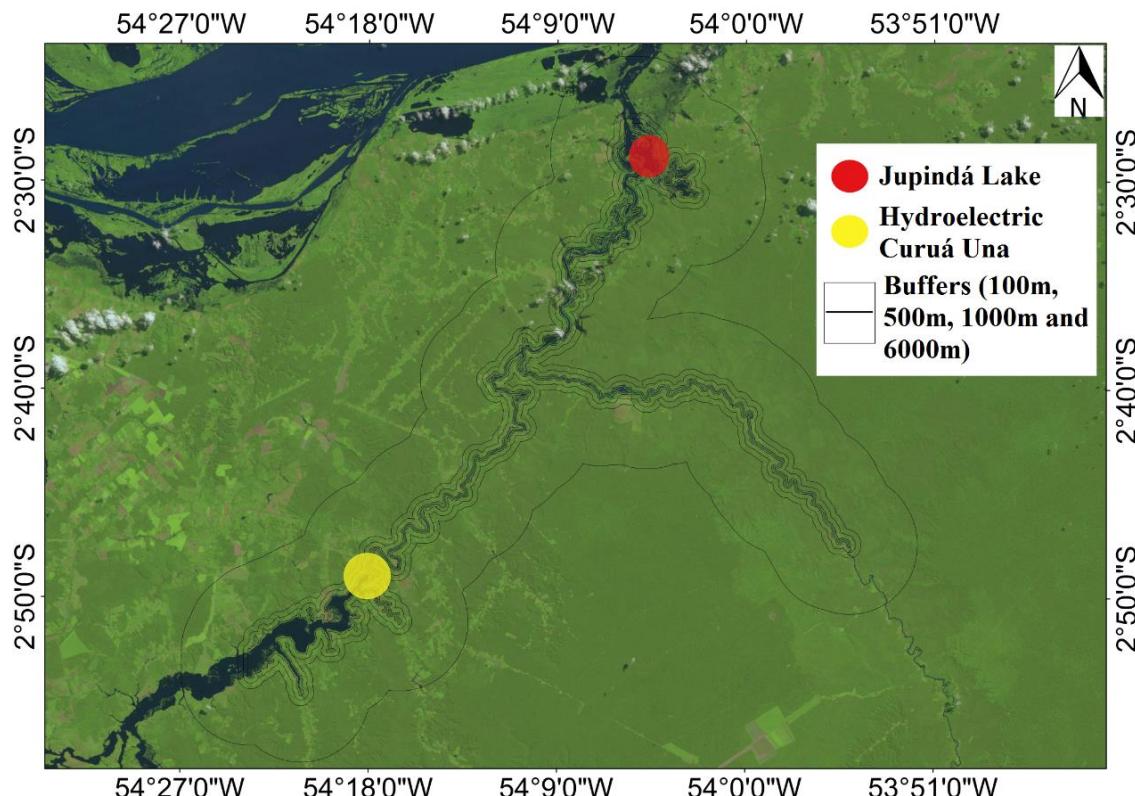
563

564

565

566

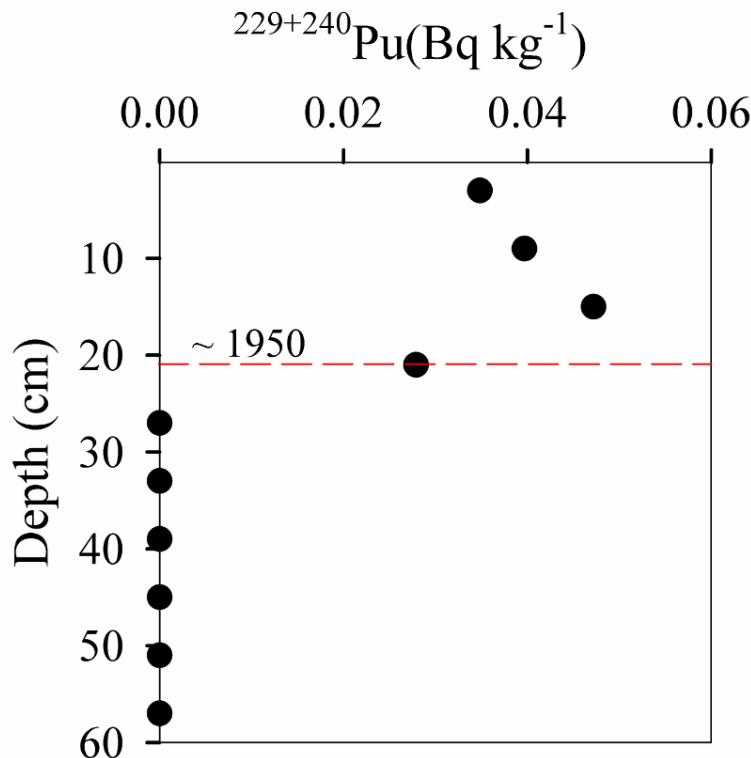
567


568

569

570

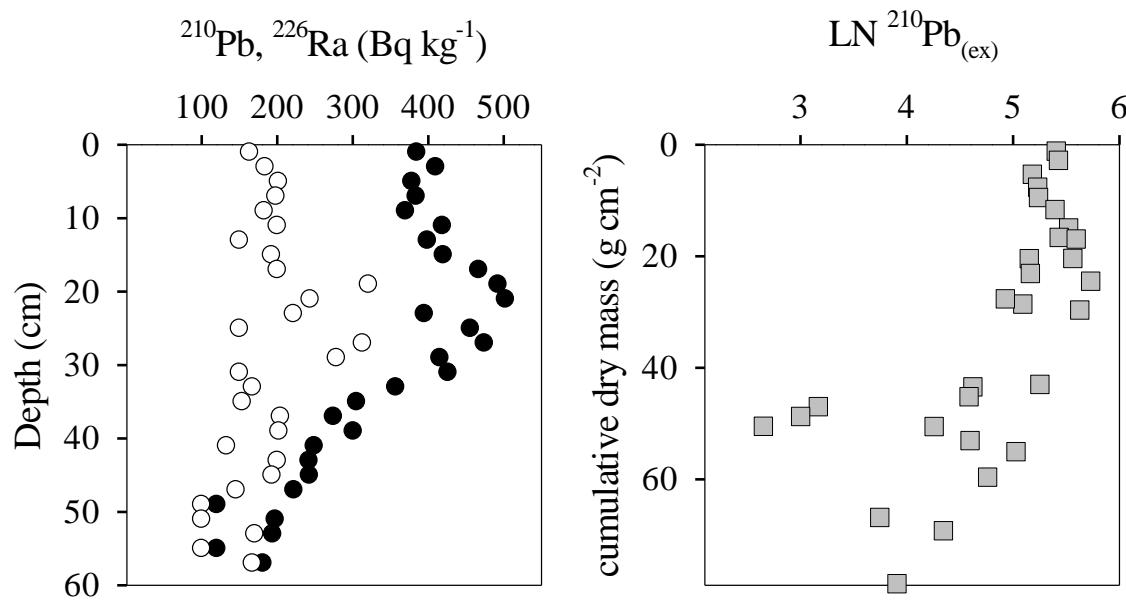
571
572
573
574
575
576
577
578
579
580
581


Figure 2.

582
583
584
585
586
587
588
589
590
591
592
593
594
595

596
597
598
599
600
601
602
603
604
605
606

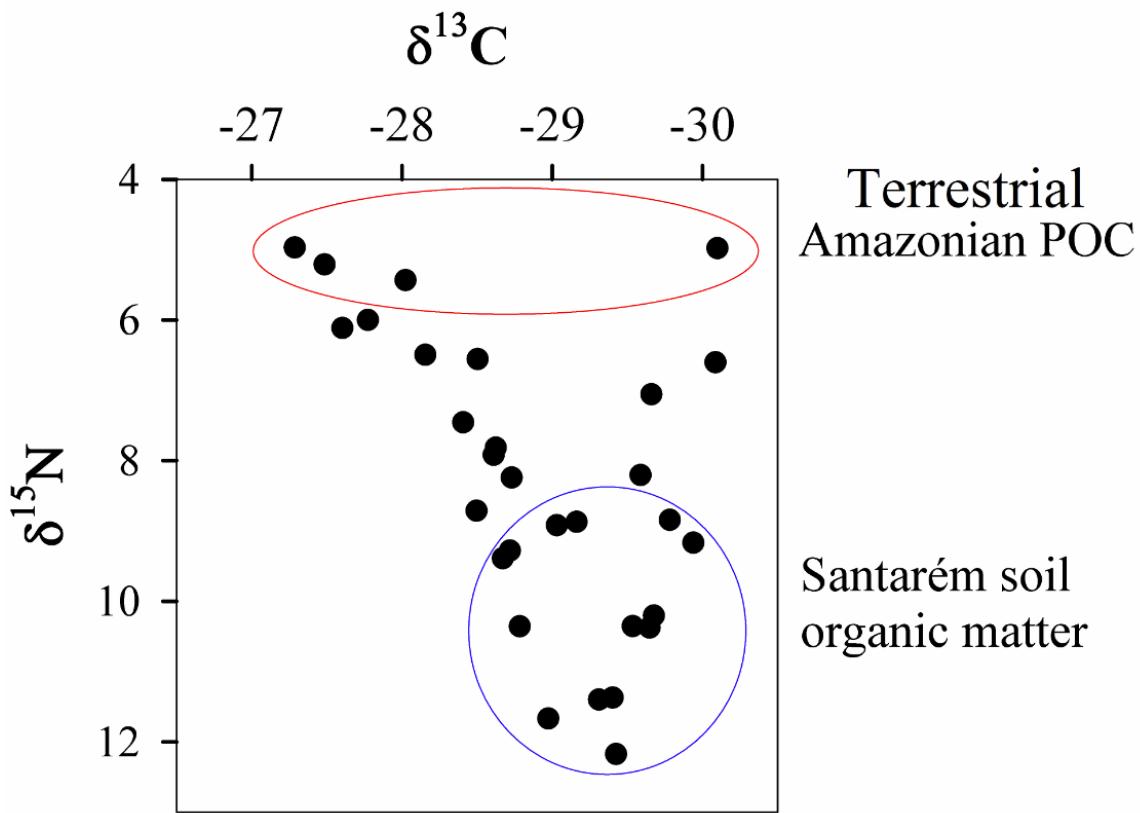
Figure 3.



607
608
609
610
611
612
613
614
615
616
617
618
619
620

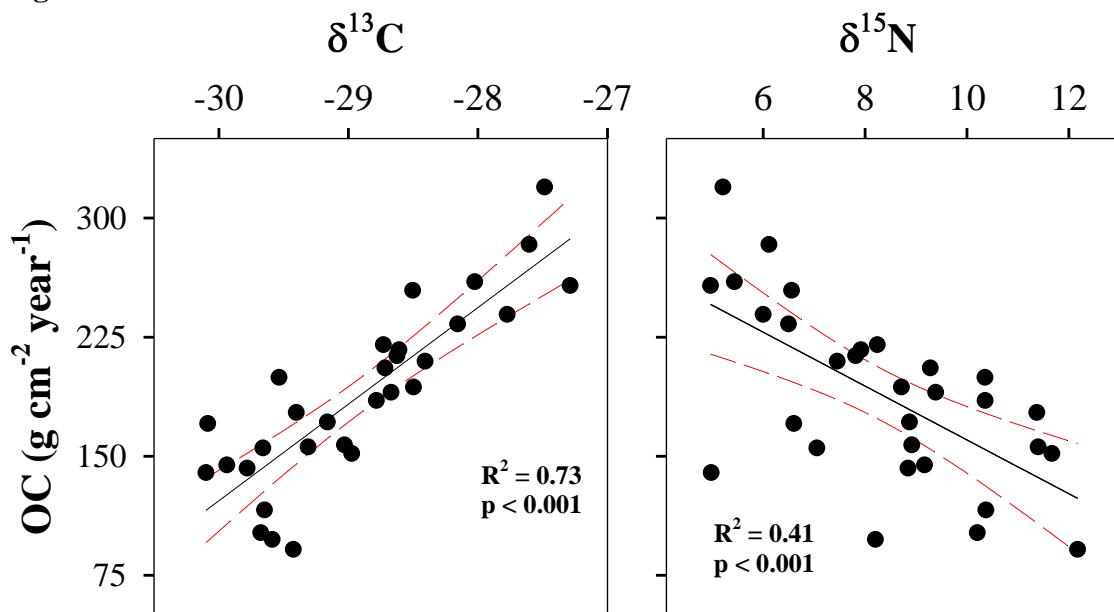
621
622
623
624
625
626
627
628
629
630
631

Figure 4.


632

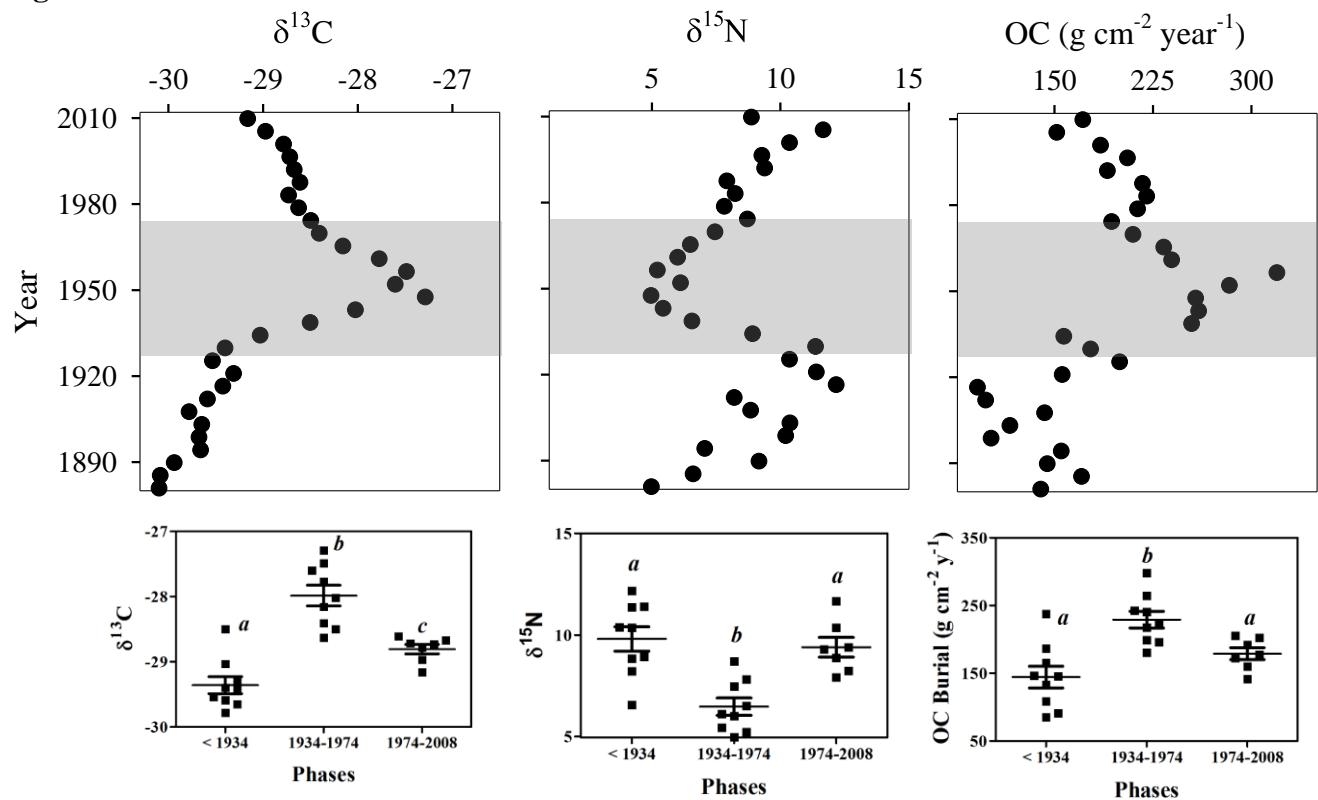
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661
662


Figure 5.

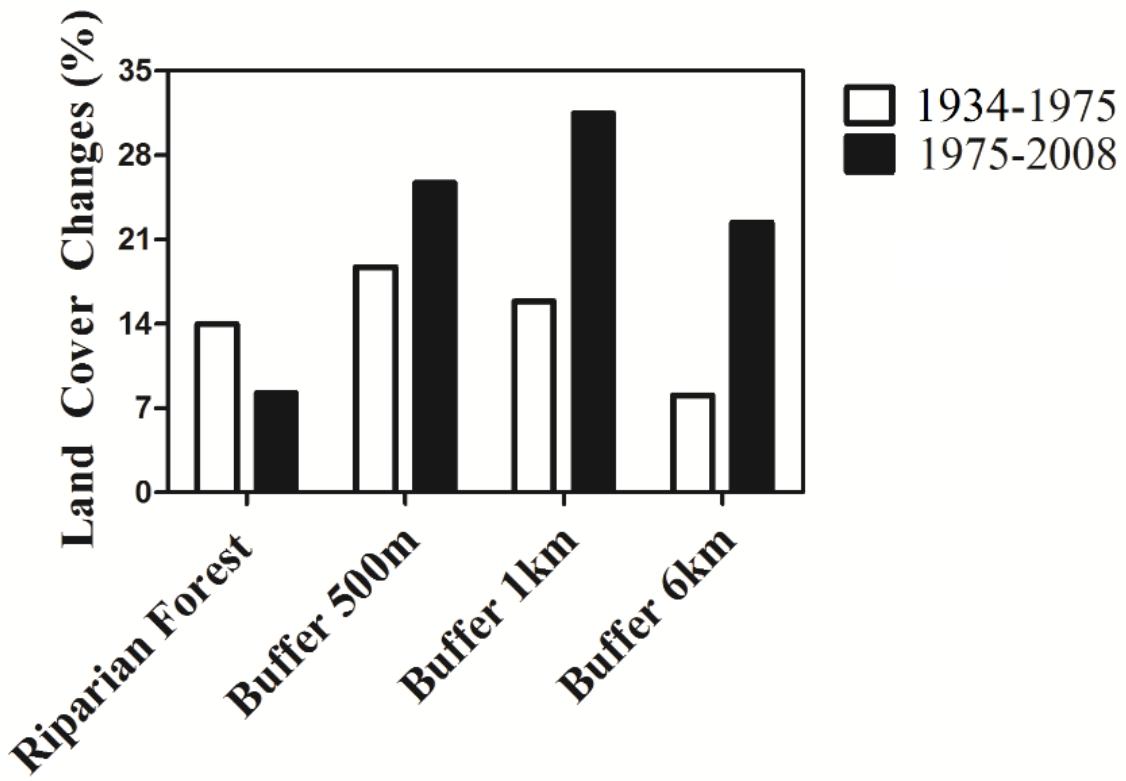
663
664
665
666
667
668
669
670
671
672
673
674
675

676
677
678
679
680
681
682
683
684
685
686


Figure 6.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

704
705
706
707
708
709
710
711
712
713
714


Figure 7.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

730
731
732
733
734
735
736
737
738
739
740

Figure 8.

741