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Abstract4

Understanding of terrestrial carbon and water cycles is currently hampered by an uncertainty in how to capture the5

large variety of plant responses to drought. In FLUXNET, the global network of CO2 and H2O flux observations, many6

sites do not uniformly report the ancillary variables needed to study drought response physiology. To this end, we out-7

line two data-driven indicators based on diurnal energy, water, and carbon flux patterns derived directly from the eddy8

covariance data and based on theorized physiological responses to hydraulic and non-stomatal limitations. Hydraulic9

limitations (i.e. intra-plant limitations to watermovement) are proxied using the relative diurnal centroid (C∗
ET ), which10

measures the degree to which the flux of evapotranspiration (ET) is shifted toward the morning. Non-stomatal limita-11

tions (e.g. inhibitions of biochemical reactions, RuBisCO activity, and/or mesophyll conductance) are characterized by12

the DiurnalWater:Carbon Index (DWCI), whichmeasures the degree of coupling between ET and gross primary produc-13

tivity (GPP) within each day. As a proof of concept we show the response of the metrics at 6 European sites during the14

2003 heatwave event, showing varied response of morning shifts and decoupling. Globally, we found indications of hy-15

draulic limitations in the form of significantly high frequencies of morning shifted days in dry/Mediterranean climates16

and savanna/evergreen plant functional types (PFT), whereas high frequencies of decoupling were dominated by dry17

climates and grassland/savanna PFTs indicating a prevalence of non-stomatal limitations in these ecosystems. Overall,18

both the diurnal centroid and DWCI were associated with high net radiation and low latent energy typical of drought.19

Using three water use efficiency (WUE) models, we found the mean differences between expected and observed WUE20

to be -0.09 to 0.44 umol/mmol and -0.29 to -0.40 umol/mmol for decoupled and morning shifted days respectively21

compared to mean differences -1.41 to -1.42 umol/mmol in dry conditions, suggesting that morning shifts/hydraulic22

responses are associated with an increase in WUE whereas decoupling/non-stomatal limitations are not.23

Introduction24

Processes such as photosynthesis and transpiration are so intimately linked that knowledge and assumptions about one25

process are needed to accurately understand the other. Unfortunately, the relationship between carbon and water cycles26
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is not fully understood [47], passing the biases and uncertainties caused by an incomplete carbon:water framework back27

onto flux estimates specifically and global water and carbon cycle interactions and dynamics in general [18, 46, 15]. One28

source of uncertainty that is increasingly being identified is the diverse responses of plants to water limitation [55, 9,29

44], which hampers the understanding and predictability of water and carbon cycles during drought. Here we outline30

potential causes of uncertainty in carbon:water dynamics in an effort to outline data-derived inductors based on current31

theory.32

Classically, vegetationwater and carbon fluxes are linked by stomates, where an open stomate allows CO2 to enter the leaf33

and, consequentially, water is lost. Most theoretical frameworksmake some form of assumption that carbon assimilation34

(A) and water losses (T) are both contingent primarily on leaf stomatal conductance (gs). This assumed relationship35

allows us to pass between the realms of carbon and water, based on the assumption that at any given time both A and T36

are proportional to the stomatal conductance multiplied by the difference in internal and external CO2 and water vapor37

concentrations. More specifically,38

A = gs · ∆c and T = 1.6 · gs · ∆v (1)

where Δc and Δv are the differences in inner and outer stomatal cavity concentrations of CO2 and water vapor, respec-39

tively. These diffusion equations lead to the relatively consistent carbon:water ratio, generally expressed as a water use40

efficiency (WUE = A/T ). At the ecosystem level where direct measurements of A and T are not available, WUE is sim-41

ply calculated as the ratio of gross primary productivity (GPP) to total evapotranspiration (ET) [22]. These carbon:water42

links are fundamental to understanding how stomata are regulated and underly key functioning inmechanistic plant and43

ecosystemmodels. One such set of models are those based on optimality theory which posit that plants tend to optimize44

carbon gains to water losses, such as those described by Katul et al. [17] and Katul, Palmroth, and Oren [16]. These45

concepts from Katul, which carry the assumptions of RuBisCO (light) limitation, were built upon by Zhou et al. [54] and46

Zhou et al. [52] to give the equation,47

uWUE = GPP ·
√

V PD

ET
(2)

where the
√

V PD accounts for the stomatal response to vapor pressure deficit (VPD) assuming stomatal response op-48

timizes carbon gain to water losses. Accounting for the VPD response allows for a more stable metric of WUE that is49

temporally more stable and physiologically more meaningful, such as when comparing the diurnal cycles of carbon and50

water. As ET is the sum of both T and non-biological evaporation (e.g. soil and intercepted evaporation), often periods51

during and shortly after rain events are excluded from WUE estimates to minimize the influence of non-plant evapora-52
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tion. Ultimately, calculations of WUE provide a simple summary of the cost in water per carbon gain and becomes an53

indicator for how plants have and will adapt to the physical limitations of their changing environments [18, 47].54

Though assuming a rigid carbon:water relationship works well in conditions when ecosystems are moderately wet, con-55

ditions associated with the majority of carbon and water fluxes, an inflexible carbon:water assumption is unsatisfactory56

in that these assumptions may breakdown as plants shift from light to water limitations. Indeed, in a review of leaf level57

stomatal conductancemodels, Damour et al. [7] concluded that themajority of stomatalmodels fail to adequately capture58

the effects of drought. This failure to capture the effects of drought is not only disconcerting as water limited conditions59

are when ecosystems are most at risk, but an incomplete framework tends to propagates errors and uncertainties from60

models into estimates of the water and carbon cycles. For instance, in outlining a road map for improved modeling of61

photosynthesis, Rogers et al. [44] noted as key recommendations both improving information about water:carbon re-62

lations (in the form of the stomatal slope parameter g1) as well as improving understanding of the response of carbon63

assimilation to drought. Similarly, in an analysis of parameter uncertainties for a terrestrial biosphere model, Dietze64

et al. [9] found that two of the top five parameters contributing to the predictive uncertainty of net primary productivity65

were associated with plant water regulation. This uncertainty is reflected in the stomatal conductance parameterization66

exercise fromKnauer,Werner, and Zaehle [19], where the authors were able to improvemodel performance in predicting67

ECmeasured GPP and ET by including atmospheric effects (in the form of VPD) on stomatal conductance, but concluded68

that further improvement required global understanding of water limitation response variation across plant functional69

traits and growing conditions, which is currently unavailable.70

Two ideas to account for the errors in carbon:water assumptions under dry conditions have begun to emerge: that hy-71

draulic limitations in transporting water from root to leaf change stomatal responses and thus limit transpiration under72

high demand, or that changes in the intra-leaf processes of carbon transport and fixation under drought conditions result73

in non-stomatal limitations that impact carbon assimilation independently of water fluxes [34].74

As soil water potentials in the root zone become increasingly negative, the long-term plant strategy may turn from op-75

timizing carbon fixation to preventing damage to hydraulic architecture [48]. As such, stomata and transpiration are76

likely to increasingly respond not just to atmospheric conditions, but also soil moisture. Under this hydraulic limitation77

framework, a plant will be reacting to the inability to transport water, even though the key control mechanism for a plant78

is via the stomata, possibly expressed as an increase in sensitivity. Such assumptions are consistent with themechanisms79

encoded in some land surface and ecosystemmodels, which account for water limitations by scaling the water to carbon80

ratio in relation to available soil moisture. Though this method should link the leaf physiology to the soil and thus cap-81

ture some hydraulic limitation, it has been criticized for not capturing the variety of drought responses found in different82

plant species and ecosystems [8]. This diversity in plant responses has been pointed to as a key point of uncertainty in83

earth system models [9].84
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Though ecosystem water and carbon fluxes are predominantly controlled by stomates, non-stomatal or bio/photo-85

chemical inhibitions to carbon assimilation are worth considering as they have the capacity to decouple the water-carbon86

exchange. This decoupling could include conditions where the stomates are transpiring water but intra-leaf factors are87

slowing carbon fixation, changing the intrinsic water use efficiency directly. Intra-leaf factors could include effects such88

as production of reactive oxygen species [23]; environmental limitations to the photosynthetic pathways, such as leaf89

temperature [31]; or declines in mesophyll conductance [11]. Non-stomatal limitations have been observed at ecosystem90

scale [42, 32], though the exact mechanism is difficult to elucidate [40]. These effects likely vary between species, as91

well as with the rate of onset of drought, access to water, and other environmental conditions.92

Objectives93

There seems to be a collective conclusion that the breakdown of carbon:water assumptions needs to be better character-94

ized in general, and specifically for implementation in modeling frameworks [De Kauwe et al. [8]; Manzoni [25]; Zhou95

et al. [55]; Flexas et al. [11]; Egea, Verhoef, and Vidale [10];]. Though the problem is becoming clear, the way forward96

is hampered by an uncertainty in how to capture the large variety in the response to drought across climates, strate-97

gies, and species. In this sense, the use of EC measured diurnal patterns of carbon, water, and energy fluxes to derive98

clues on ecosystem drought responses at a daily resolution could prove valuable both as a means to identify potential99

periods of ecosystem stress, inform machine learning algorithms on ecophysiological conditions not found in environ-100

mental variables, as well as benchmarking a models ability to capture sub-daily dynamics. To this end, we propose two101

data-driven indicators of water stress, the diurnal water:carbon index (DWCI) and the relative diurnal centroid in LE102

(C∗
ET ). Both metrics are derived directly from the EC data and based on expected physiological responses to hydraulic103

and non-stomatal limitations. Using these data-driven indicators we then characterize the distribution of these limita-104

tions across a global spread of climate and vegetation types. Finally, we explore the ability of these indicators to detect105

the disagreements between modeled and observed water use efficiency, and explore how these biases may be attributed106

to hydraulic and non-stomatal limitations.107

Methods and Materials108

Data109

Carbon, water, and every fluxes measured with EC, as well as meteorological data, were obtained from the 2007110

FLUXNET La Thuile Synthesis Dataset [12]. Half-hourly latent heat and net ecosystem exchange (NEE) fluxes were111

collected and processed using standard QA/QC procedures [36], gap-filling and partitioning algorithms [41]. From the112
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database, half-hourly gross primary productivity (GPP) and ET data (derived from latent heat flux measurements) were113

downloaded and used for the following analysis. An interactive map of sites used can be found in File S1.114

In order to provide a consistent measure of ecosystem dryness that can be utilized across sites, the ratio of water evapo-115

rated to potential water evaporated was calculated as evaporative fraction (EF), or the fraction of actual ET to Potential116

ET (PET). PET was calculated as the daily fraction between the measured ET and estimated ET via a Priestly-Taylor117

model [38] using site measured net radiation (Rn) and air temperature (Tair). The slope (alpha parameter) was fit for118

each site-year using 95th quantile regression [20] instead of using the original 1.26 value derived for a “well watered119

crop” [38].120

In order to get high quality data and minimize the influence of abiotic evaporation (hereafter just evaporation), all data121

was filtered with the aim to include only non-gap filled data in the growing season with dry surface conditions. Growing122

seasonwas defined as all days where GPP > 1 gC ·m−2 ·d−1 and dailymean air temperature > 5 °C. These threshold were123

shown to give good response in the proposedmetrics while minimizing variability due to low diurnal signals, a sensitivity124

analysis of which can be found in supplementary Figure S2. In an effort to minimize contributions of evaporation, the125

conservative soil wetness index (CSWI) was employed which was designed to estimate whether the ecosystem is likely to126

have “dry” surfaces and therefore ET is likely to be dominated by transpiration. This approach requires a certain amount127

of evaporation to occur after a rain event before the surface is considered to be “dry” and can be contrasted to themethod128

of removing a set time period after rain employed in previous studies [30, 2, 18]. CSWI is calculating by first quantifying129

the storage at time t (St) as,130

St = min (St−1 + Pt − ETt, So) (3)

whereETt andPt are the ET and precipitation at time-step t respectively, St is effectively capped at a maximum storage131

value of So, which was set to 5 mm. Furthermore, to make the metric conservative in regards to assumed water inputs,132

any precipitation event will refill the storage from 0 mm,133

CSWI = max (St, min (Pt, So)) (4)

which has the effect of requiring all precipitation up to 5 mm to be evaporated from the system before negative storage134

can occur. Any gaps in the precipitation data were assumed to be a precipitation event of 5 mm in order to prevent135

any unmeasured precipitation from biasing the results by inadvertently including rainy days. Code and further outline136

of the algorithm can be found in File S3 as well as at Nelson [33]. Evaporation was assumed to be negligible when137

CSWI<0. This method was used over the more standard method of removing 1-5 days after a rain event, as it does not138
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make the assumption that the surface will dry in a fixed amount of time, instead relying on a minimum amount of ET.139

As a comparison, the median time period for the CSWI to go from fully wet (CSWI=5) to “dry” (CSWI<=0) was 3.5 days140

across all sites in summer, where summer was defined as the period when daily potential radiation above median daily141

potential radiation for each site.142

The data filtering as outlined in this section was designed to isolate periods firmly in the growing season when plants are143

active and the signal of ET is most likely to be dominated by plant controls.144

Relative diurnal centroid (C∗
ET )145

As soils dry, it becomes more difficult to transport stem and root zone moisture to the leaf, potentially causing hydraulic146

limitations for the plant to transport water. This shift was seen in eddy covariance data in a study by Wilson et al. [50],147

who examined the shift of latent compared to sensible heat, which suggested that a shift in water fluxes towards dawn148

can be indicative of afternoon stomatal closure. Shifts were further explored in a modeling study by Matheny et al. [29]149

which found that the morning shift was not well captured by models and attributed the errors to inadequate hydraulic150

limitations in themodels. The daily cycle of wetting and drying acts as a capacitor in the hydraulic circuit, allowing water151

stores to be more easily transported in the morning and depleting in the afternoon. As bulk soil moisture declines, this152

effect may be strong enough to shift the diurnal cycle of ET significantly toward the morning. Quantifying diurnal shifts153

in EC data using the diurnal centroid was first explored byWilson et al. [50]: defined as the flux weighted mean hour, or154

Cflux =
∑

fluxt · t∑
fluxt

(5)

where t is a regular, sub-daily time interval (here t measures as decimal hour at half-hourly time-step). The resulting155

Cflux is the weighted mean hour of the diurnal cycle of that particular flux for that particular day. For example, if a156

calculated CET for a given day (using measurements of decimal hour) equals 12.25, this would entail that the weighted157

mean for that day is 15 minutes past noon. Figure 1 shows an example of the shifts in the monthly average cycle from158

a wet month to a dry month. In order to isolate a shift, we then had to control for variations in global radiation (Rg),159

both fluctuations due to clouds and differences in the timing of solar noon. Therefore, the difference between the diurnal160

centroids of ET (CET ) and Rg (CRg) was calculated as161

C∗
ET = CRg − CET (6)

givingC∗
ET as the diurnal centroid of ET relative toRg. The resulting values ofC∗

ET are not tied to the carbon cycle, which162
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can be affected by non-stomatal limitations and generally shows a more prominent midday depression. Annotated code163

for the CSWI calculation can be found in File S4 as well as at Nelson [33]. Though a diurnal centroid can be calculated164

for any diurnal cycle, basing a metric on the morning shift of ET relative to Rg has the advantage of targeting the non-165

atmospheric drivers of the water flux, of which there are few ancillary variables.166

Figure 1: One month average cycle (soild lines) and accompanying diurnal centroid (vertical dashed lines) of incoming
shortwave radiation (Rg), evapotranspiration (ET), and gross primary productivity (GPP) at the Peuchabon, France (‘FR-
Pue’) site during 2003. May is relatively wet (32 mm rainfall, left) and July is relatively dry (0 mm rainfall, right). While
ET and Rg correspond well in the wet month, the dry month shows a distinct phase shift in both GPP and ET fluxes
towards the morning, as well as a midday depression in GPP.

Diurnal water carbon index (DWCI)167

If transpiration and carbon assimilation are predominantly controlled by stomatal conductance, it follows that their168

diurnal cycles should be largely in sync. In other words, regardless of a plants maximum T or A, if the stomates start to169

close, both rates should be decrease by a similar percentage. On the other hand, non-stomatal limitations that inhibit170

carbon assimilation independent of water have the capability to alter the diurnal cycle on just one flux, causing them to171

decouple. In an effort to quantify the degree of carbon:water coupling for an individual day, we examined the relationship172

of GPP and ET, where,173

ET ∝ GPP ·
√

V PD (7)

or,174
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ET = i · GPP ·
√

V PD (8)

This relationship incorporates the assumption that, at least over short time scales, the amount of carbon that enters175

the leaf is proportional to the amount of water that leaves, and also incorporates the non-linear response of stomates176

to VPD [17, 16, 54]. This model, though simple, has been shown to work well across a variety of EC sites [52]. Figure 2177

(upper panels a,b) shows a comparison between the daily cycles in a wet and drymonth. By calculating a daily correlation178

between the normalized daily cycles of ET and GPP ·
√

V PD, we come to a correlation coefficient for each day (see179

Figure 2, lower panels c,d). For well watered days in the growing season the two signals tend to bewell correlated (ρ>0.9),180

but tends to be less correlated in periods of stress, a comparison of which can be seen seen in Figure 2 (lower).181

As it is, this daily correlation coefficient is dependent on the signal strength, or magnitude, of the flux. Low correlation182

values could just as easily be from carbon:water decoupling as to a low signal to noise ratio. Therefore, to produce amore183

robust metric and account for these statistical decreases in correlation, we turned the daily correlation coefficient into184

an index based on its rank in a distribution of correlation coefficients from artificial datasets. These artificial datasets185

are constructed using the diurnal signal from potential radiation, with Gaussian noise (N (0, σ)) added according to the186

standard deviation random uncertainty of the ET and NEE fluxes, or187

LEartificial = Rgpot

Rgpot

· LE + N (0, σ2
LE|NEE) (9)

and188

NEEartificial = Rgpot

Rgpot

· NEE + N (0, σ2
NEE|LE) (10)

Uncertainties of the NEE and ET fluxes were estimated from the gap filling procedure of Reichstein et al. [41], with189

the uncertainty equal to the standard deviation of flux measurements within a time window and similar meteorological190

conditions. AsGPP is calculated fromgap-filled values ofNEE, the uncertainty fromNEEwas used forGPP. Furthermore,191

the correlation structure between the noises in LE and and NEE was preserved in the artificial dataset.192

In essence, by using the underlying signal frompotential radiation, both the artificial ET andGPP ·
√

V PD are perfectly193

correlated when no noise is added. Adding noise then isolates the decoupling effect of signal to noise ratio. An artificial194

correlation coefficient can then be calculated from the two artificial datasets in the samemanner as from the real dataset,195

and this experiment is repeated 100 times for each day, giving a daily distribution of artificial correlation coefficients. The196

rank of the real correlation coefficient in the distribution from the artificial set gives a probability that the carbon and197
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water signals are actually coupled. The resulting index has a range of 0-100, with 100 indicating that the real correlation198

coefficient was greater than the entire artificial set, and therefore it is very likely that carbon andwater are coupled. From199

this indexwe can now quantify if thewater and carbon signals are coupled for any given day, and therefore shed light onto200

whether the two fluxes are only controlled by the opening and closing of stomates. Annotated code for this calculation201

can be found in File S5 as well as at Nelson [33].202

Figure 2: Theoretical overview of diurnal water carbon index upper panels: Onemonth average diurnal cycle of incoming
shortwave radiation (Rg), evapotranspiration (ET), vapor pressure deficit (VPD), gross primary productivity (GPP), and
GPP ∗V PD−0.5 at thePeuchabonForest, France (‘FR-Pue’) site during 2003. Discrepencies betweenGPP ∗V PD−0.5

and ET increase from the relatively wet May (32 mm rainfall, left) to the relatively dry July (0 mm rainfall, right). lower
panels: These discrepencies are reflected in the daily correlation values between GPP ∗ V PD−0.5 and ET, giving an
indication of the appropriatness of the uWUE model for each day, as well as the degree of coupling between water and
carbon signals.

Models and parameter estimation203

In order to benchmark whether these metrics are capturing information that is possibly not being captured in modern204

model frameworks, three simple models were used to estimate WUE (GPP/ET) for each day at each site and compared205

to actual flux data. The purpose of the exercise was to evaluate if bias in the model predictions were associated with206

decoupled or morning shifted days, thus indicating that the metrics are corresponding to information that the models207

are unable to capture. Here we utilize three models to provide a spectrum of theoretical to empirical basis. The “Katul-208
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Zhou”model, as defined and used in calculation of the DWCI, is based in stomatal optimization theory [17, 16, 52], which209

makes the assumption that the WUE is constant if corrected by the effect of VPD, using an inverse square root as the210

assumed relationship. Though the constant nature of uWUE may not be correct, with the optimal carbon cost of water211

changing over day or weeks [26, 35], a yearly parameter of uWUEwas estimated which is consistent with other modeling212

exercises [53]. One step away from a theoretical basis is a revision of this model by Boese et al. [3], the “Boese” model,213

where an additional radiation term was added such that,214

ET = i · GPP ·
√

V PD + r · Rg (11)

where i and r are parameters fit to each site-year. This relationship with Rg was shown to have a better predictive per-215

formance for EC data from 115 sites [3]. The interpretation of this extra radiation term is not clear and is difficult to216

reconcile with the current understanding of physiology. It is possible the term could be related to biophysical effects,217

e.g. VPD at leaf surface vs the measured ambient VPD. Nevertheless, the Boese model is an empirical and ecosystem218

scale model that complements the theoretical and originally leaf-level model from Katul-Zhou.219

Parameters of these models were estimated for each site-year. The Boese model parameters were fit using trimmed least220

squares regression (TLS)whichminimizes the 90th percentile of SSE to prevent influence of large outliers [45, 43]. As the221

error in bothET andGPP are assumed to be of similarmagnitude, the i parameter in theKatul-Zhoumodel was calculated222

using geometric mean regression, where the final slope was calculated as the geometric mean of the parameters from223

ET = iGP P · GPP ·
√

V PD and GPP ·
√

V PD = ET

iET
(12)

Both the Katul-Zhou and Boese models are theoretically based and here implemented have the underlying assumptions224

of RuBisCO-limited conditions and constant carbon cost of water throughout the season which may not reflect reality.225

Therefore a fully empirical and highly non-linear model can give insight into how much information is actually stored226

in the data while minimizing any assumptions. As a fully empirical model, a random forest regression (RandomFore-227

stRegressor from Pedregosa et al. [37] based on Breiman [4]) was fit to half-hourly ET data for each site using Rg, VPD,228

Tair, GPP and year as input parameters. Values were estimated using 50 trees with predictions made using out-of-bag229

estimates to prevent over-fitted model predictions.230
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Figure 3: Monthly median diurnal water carbon index (DWCI, lower panels) and diurnal centroids (C∗
ET , upper panels)

for 6 sites in Europe. Data from all years available (black) is compared to 2003 (red) during which a drought event re-
sulted in high temperatures and low precipitation throughout the summer. Note DWCI of 0-100 indicate lowest-highest
probability of diurnal carbon:water coupling andC∗

ET of -1 to 1 indicate one hour morning shifted to one hour afternoon
shifted ET. Vertical bars represent interquartile range. Sites from 4 plant functional types: evergreen broadleaf (EBF),
deciduous broadleaf (DBF) and evergeen needleleaf (ENF) forests, as well as grasslands (GRA). Ecosystems show ten-
dancies of morning shifts (e.g. DK-Sor and NL-Loo) and carbon:water decoupling (e.g. ES-ES1 and HU-Bug) during the
drought year.

Results231

As a case study, C∗
ET and DWCI time-courses for six sites from Europe are shown in Figure 3, with an emphasis on232

2003 when the continent was struck by a heatwave that was shown to effect both the carbon and water cycles [6, 39,233

13]. For DWCI, forest sties showed high water:carbon coupling throughout the growing season, with the exception of234

Peuchebon (FR-Pue) which showed a regular seasonal cycle of decoupling. The grassland site (HU-Bg) showed a higher235

variability in DWCI compared to the forest sites (all others). All sites showed either a decrease in median DWCI or an236

increase in variability during 2003, generally in July or August, particularly at Hainich (DE-Hai), Bugacpuszta (HU-237

Bug), and El Saler (ES-ES1). This increase in decoupling during 2003 is consistent with the hypothesis of non-stomatal238

limitations being expressed in hot, dry conditions which can affect carbon fixing mechanisms. Median diurnal centroid239

values across all years varied in absolute magnitude, but were generally near or above zero, i.e. the water cycle showed240

no shift or an afternoon shift. One exception would be the Mediterranean oak forest of Puechabon, which shows a slight241

seasonal cycle of morning shifts going from a slight afternoon shift to a slight morning shift during June, July, and242

August. During drought years, sites that showed distinctive morning shifts were Puechabon (FR-Pue), Soroe (DK-Sor),243

and Loobos (NL-Loo). The framework that morning shifts are associated with water stress from soil moisture depletion244

would be supported by the increase inmorning shifts during 2003, though factors such as species composition and access245

to soil water would play a significant role and could account for the differences among sites. All sites had significantly246

different (p<0.05, Wilcoxon rank-sum test) DWCI values between 2003 and all other years except Puechabon, whereas247
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with C∗
ET only Puechabon, Soroe, and Loobos showed significant differences.248

Distribution of data driven indicators by vegetation type and climate249

Figure 4: The frequency of morning-shifted Diurnal Centroids (C∗
ET<-0.25 hours, upper panels a,b) and low diurnal wa-

ter carbon index (DWCI<25, lower panels c,d) for 690 fluxnet site-years/192 sites, grouped by climate group (left panels
a,c) and plant functional type (right panels b,d). Group labels on x-axis indicate the number of site-years/sites (n=site-
years/sites) for each category. Dashed line is the median for all site-years. Color shade indicates level of significance,
with light colors and dark colors having p-values <0.10 and <0.05 respectively (Wilcoxon–Mann–Whitney two-sample
rank-sum test), red and blue colors indicate distributions higher and lower respectively compared to data from all sites
excluding the group. Only sites-years with at least 20 data points and groups with more than 5 site-years were included.

The frequency of low values of diurnal centroid and DWCI across climate groups and plant functional types is shown250

in Figure 4. The thresholds designating decoupling and morning shifts were 25 and -0.25 for DWCI and C∗
ET respec-251

tively. These thresholds were chosen to highlight frequency differences between sites and were shown to have large252

metric responses under dry conditions while having low frequencies under wetter conditions (see sensitivity analysis in253

supplementary Figure S2). Furthermore, these thresholds results in a similar median frequency of uncoupled andmorn-254
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ing shifted days between all site-years being 8.7% and 9.4% of days respectively. The similarity in median frequencies255

across site-years allowed for easier inter-comparison between the two metrics. The frequency of decoupling and morn-256

ing shifts using these thresholds for each site can be found in the map found in File S1. Though there is a fairly large257

variance across climate groups and plant functional types, low values of both DWCI and C∗
ET occur at higher frequen-258

cies in savanna ecosystems and dry or Mediterranean climates. Conversely, lower frequencies of both metrics are seen259

in tropical, boreal, and temperate-continental climates. Strikingly, the arid and semi-arid climate group seems to be260

associated with the majority of low DWCI occurrences, with a median frequency of about 20% of days being uncoupled261

between site-years. Overall, frequencies were highly variable within plant functional types. Interestingly, C∗
ET seems262

to be more variable in moderately dry ecosystems with potentially deep roots, favoring woodier savannas and evergreen263

needle-leaf forests over grasslands and open shrub lands. In contrast, DWCI shows similarly high frequencies from sa-264

vannas and grasslands. The differing responses between tree and grass dominated ecosystems can be further seen in265

Figure 5, where savanna and grassland ecosystems show a distinct decrease in DWCI under conditions of low EF, in con-266

trast to the forested sites which show a higher degree of carbon:water coupling, though still a slight decrease. Forested267

ecosystems show a higher degree of morning shift under low EF conditions when compared to grasslands, with savannas268

being somewhere between the two.269

The response of both variables to drought stress is further observed in Figure 6, where low mean values of both DWCI270

andC∗
ET are associated with conditions of high net radiation and low latent energy, indicative of drought. As this figure271

includes all days from all sites which meet the filtering outlined in the Data subsection of the Methods, i.e. dry periods272

in the growing season, these figures exhibit the universality of the metrics across climates, ecosystems, and time periods.273

This pattern is much cleaner with the diurnal centroid than with DWCI, though mean values are generally above 50 for274

most bins, indicating that most days are well coupled. Low values of both indicators are also seen under conditions275

with low Rn and high latent energy (as seen by the dark streak at the top edged in Figures 6c,e), which is generally not276

associated with drought stress. Further analysis showed that these points are also associated with energy balance over277

closure, where the sum of latent and sensible heat is greater than net radiation (ET+H>Rn, see Figure S2) and therefore278

likely represent a data problem rather than a physiological response. Removing all days where the energy balance is279

over closed did not alter the patterns associated with drought. Apart from the response to periods of high LE and low280

Rn, the metrics showed diverging response when looking at EF (ET/PET which is similar to LE/Rn) and VPD, with281

DWCI showing a much stronger response to VPD andC∗
ET showing a much stronger response to EF (Figure 6a,d). This282

difference in response would indicate that DWCI is more responsive to atmospheric demand (estimated via VPD) and283

C∗
ET is more responsive to water limitations. Both DWCI andC∗

ET also show a trend with low GPP, although in the case284

of the diurnal centroid the effect is limited to both low GPP and ET (Figure 6c,g).285
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Figure 5: Median diurnal water carbon index (DWCI, upper panel) and diurnal centroid (C∗
ET , lower panel) of plant

flunctional types binned by evaporative Fraction (EF, low values indicate dry conditions). Note DWCI of 0-100 indicate
lowest-highest probability of diurnal carbon:water coupling and C∗

ET of -1 to 1 indicate one hour morning shifted to
one hour afternoon shifted ET. Evergreen needleleaf (ENF), deciduous broadleaf (DBF), and evergreen boradleaf (EBF)
forests show increased morning shifts (low C∗

ET ) with decreasing EF when compared to grassland (GRA) sites which
tended to have decreased carbon:water decoupling (low DWCI) with decreasing EF. Savanna ecosystems (SAV) show a
high degree of decoupling and intermediate levels of morning shifts. Vertical bars represent interquartile range.
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Figure 6: MeanDWCI (upper panels) andC∗
ET (lower panels) with respect to evaporative fraction (EF) by vapor pressure

deficit VPD (a,d), latent energy (LE) by Rn (b,e) and LE by GPP (c,g). Note DWCI of 0-100 indicate lowest-highest
probability of diurnal carbon:water coupling andC∗

ET of -1 to 1 indicate one hour morning shifted to one hour afternoon
shifted ET. Points with high Rn and low LE are associated with both low DWCI and C∗

ET , indicating that both metrics
are related to water limitations. Though both metrics are associated with low EF, DWCI shows a much higher response
to atmospheric demand as measured by VPD, with C∗

ET showing very limited response. Both metrics, and DWCI in
particular, show low values with high ET and low Rn, though these points are also associated with over closed energy
balances (LE+H>Rn). Both metrics are associated with low GPP, but the C∗

ET is restricted to both low GPP and ET,
indicating water and carbon can decouple over a wider range of water stress. This also holds when points with energy
balance over-closer are excluded (data not shown).
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Difference between modeled and actual WUE286

Figure 7: Difference in modeled and measured WUE for Katul-Zhou (a), Boese (b), and random forest (c) models. The
random forest model was fit using Rg, VPD, Tair, GPP, and year. Thresholds designating dry, morning shifted, and C:W
uncoupled days were EF<0.2,C∗

ET<-0.25, and DWCI<25 respectively for each day. The distributions span from the 5th
to 95th percentiles, and the width of each gives an indication of the variance, which is larger in the sub groups compared
to all points. Furthermore, the mean difference inWUE (black lines) tends to be shifted in dry and morning shifted days
indicating a mean underestimation of WUE by the models mostly due to the long tails. Decoupled days show highter
variance, but no clear pattern in under- or over-estimation. The percentage of days in each category are designated next
to y-axis label in parenthesis.

Figure 7 shows the difference between expected and observedWUE from the Katul-Zhou, Boese, and random forest (RF)287

models, with respect to conditions of drought as characterized by low evaporative fraction (EF<0.2), C:W decoupling288

(DWCI<25), and morning shifts (C∗
ET<-0.25). This exercise was designed to test whether the metrics were associated289

with bias in the models, indicating that the metrics are able to capture information that the models are not (as further290

outlined in Methods and Materials subsection “models and parameter estimation”). For all models, the dry days show291

the largest average shift between expected and observed WUE, followed by morning shifted days. Uncoupled days show292
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the smallest shifts for all models, with an overestimation ofWUE for the Katul-Zhou and Boesemodels and no significant293

shift ofWUEwith the random forestmodel. As all models were calibratedwithin a site-year, the over or under estimation294

of WUE indicate an inability of the model to capture a change in the system. Cases of mean mis-estimation tended to be295

influenced by long tails in the distribution with median differences being less exaggerated. However, these long tails are296

indicative of major model error in periods where the ecosystem is likely under stress conditions.297

Discussion298

Looking beyond sums and means299

The proposed metrics, DWCI and C∗
ET , depart from more traditional methods to summarize from sub-daily to daily300

timescales such as sums and means. This departure is advantageous in that it extracts added information that may have301

been otherwise ignored by turning the focus from signal amplitude to the signal shape. However, these newmetrics also302

come with their own set of caveats, most notably issues with data quality confounding interpretability. Both metrics are303

susceptible to noise, as one or two errant points within a day can be reflected as a decrease in correlation or a shift in304

diurnal centroid. This is evident from the existence of very afternoon shifted C∗
ET , sometimes by more than an hour,305

which the authors have no proposed explanation for other than noise in the data. However, attributing highly afternoon306

shifted points as poor data requires further investigation. Note here that the “resting” C∗
ET seems to be slightly after-307

noon shifted, which could be caused by real physiological factors such as differences in the incoming SW radiation (Rg)308

used in the calculation and net radiation (Rn), higher atmospherics demand (VPD) in the afternoon driving higher ET,309

or increased convection throughout the day resulting in higher transport of water away from the canopy, and is likely a310

combination of all three. Differences in resting C∗
ET between sites could also be from instrumental causes such as ra-311

diometric sensors which are not adequately leveled or dirty, though the consistent, slight afternoon shifts would suggest312

this is a real response. Despite the possible shortcomings, both metrics show a definite response to drought conditions313

across the broad array of sites, climates, and ecosystems contained in FLUXNET (see Figure 6), and give valuable in-314

sight into the underlying physiology. Given the broad nature of the analysis here, the metrics and hypothesis presented315

would benefit from site specific validations such as looking to see if the morning shits and decoupling are indeed asso-316

ciated with lower soil moisture levels, leaf water potentials, and/or decreases in sap flux. Sap flux in particular could317

give some interesting insights, as the diurnal patters in sap flux velocity will also have an offset to incoming radiation318

related to tree capacitance, therefore relating sap flow diurnal centroids to the ET diurnal centroid could give some infor-319

mation on changes in plant water recharge. Furthermore, the diurnal centroid base metrics complement the hysteresis320

quantification methods such as those employed by Zhou et al. [54] and Matheny et al. [29], with the advantage of C∗
ET321

being compensated for cloudy conditions and possibly comparatively less influence of noise, though an intercomparison322
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would be useful to explore the strengths and weaknesses of the different approaches. By providing both the equations323

and related code of the metrics, we the authors hope the metrics will be used by the community for both validation and324

to further ecophysiological understanding.325

Trees, grass, and drought stress326

By comparing climate groups and PFTs with the frequent occurrence of low DWCI and C∗
ET from Figure 4, we can note327

two striking differences: evergreen broad- and needle-leaf forests show high variability of morning shifted days but not328

uncoupled days, whereas grasslands show significantly high uncoupled but not morning shifted days. The pattern is329

further seen in Figure 5, where the distinct divergent responses of decoupling andmorning shifts between tree and grass330

dominated systems. This disparity may indicate an interaction of C∗
ET not only with drought, but hydraulic sensitivity.331

The association ofmorning shifts to hydraulic sensitivity is further strengthened by Figure 6a,dwhereC∗
ET shows amuch332

stronger response to EF rather than VPD, indicating that morning shifts of ET are not simply due to stomatal closure333

due to VPD but in fact a response to drought conditions. The shorter hydraulic system of grasses may not necessitate334

stomatal closure under high demands [14], thus causing less frequent phase shifts even under drought conditions. In335

contrast, tree ecosystems may only exhibit higher hydraulic stresses, associated with both dryness and a more sensitive336

hydraulic strategy. Temperate-continental and tropical climates all showed a low frequency of morning shifted days,337

even though they are occupied by large trees with cavitation susceptible vascular systems [21], suggesting that these338

ecosystems show limited drought stress even with the hydraulic susceptibility. Similarly, the high degree of variability339

of morning shifted frequency between site-years in sub-tropical/Mediterranean and evergreen broad- and needle-leaf340

forests could either indicate variation in the response in hydraulic stress between sites, or that hydraulic stress is only341

expressed some years, leading to high and low frequencies within the same site.342

In this way, it seems that though C∗
ET is less noisy as a drought indicator (see Figure 6), it may only be of use in tree343

systems that are more prone to hydraulic stress. However, this does put the metric in a rather unique position in that it344

could be used as a global scale hydraulic indicator, having potential application in exploring ecosystem level isohydricity345

[27], or the degree to which risks vascular system damage to continue to extract water. Isohydricity is intrinsically a346

concept that relates to an individual plant, as dynamics of rooting depth, hydraulic conductances, and sensitivities to347

VPD can vary within individuals of the same species at the same location. However, these factors are all interrelated,348

as hydraulic and stomatal conductances drive transpiration dynamics which control the rate of depletion of root zone349

water which can then feed back to stomatal sensitivity, such as via ABA signaling [49]. As such, current estimates of350

isohydricity require plant level measurements, which are currently restrained to the individual scale, i.e. from actual leaf351

measurements [28] or to global scale, but only 0.5 degree resolution estimates from radar [21]. This limitation of large352

and small scales leaves a knowledge gap at the size of an eddy covariance footprint, hindering the study of ecosystem353
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response to drought. However, under the assumption that the morning shifts seen under low evaporative fraction are354

related to increased stomatal sensitivity in response to root zone moisture depletion, it may be possible to compare the355

onset and speed with which the diurnal centroid shifts toward the mornings as ecosystems dry. In this way, one could356

infer the ecosystem response to soil moisture, without explicitly knowing the soil moisture. The resulting relationship357

could prove useful as a data derived ecosystem functional property, giving direct information on variations in water358

limitation response.359

C:W decoupling and energy balance closure360

In addition to error from single data points, both metrics, but especially the DWCI, show some relationship with energy361

balance over closure. Energy balance mismatch is a common phenomenon in EC measurements, with under closure362

(ET+H<Rn) being a more common concern [24, 51]. Issues with energy balance closure can be, among other causes,363

attributed to advection, where energy, water, and carbon are transported in and out of the tower footprint, complicating364

an absolute accounting of these quantities [1, 5, 50]. The apparent association of DWCI and over closure could be due to365

transfer of moist air from the surrounding landscape, causing the DWCI to be more contingent on the mixing of source366

air and less from plant controls. In this scheme, the over closure seen in Figure 6 could be caused by themixing of outside367

moist air into the drier air from the EC site, causing an increase in latent energy. However, the infiltrating air sources368

could also have similar or drier moisture levels which would not necessarily be seen as over closure. In this scenario, this369

infiltrating air could contain varying carbon and water concentrations, again causing a carbon:water decoupling, but one370

that would not be associated with over closure. If this effect has no diurnal pattern, and thus does not generally influence371

the mean diurnal centroid in ET, it could explain why the patterns with dryness are much clearer withC∗
ET compared to372

DWCI. This would have the implication that DWCI is then amixture of advection and non-stomatal signals, complicating373

the biological interpretability. However, the association with dryness in both metrics gives credence that they do indeed374

reflect some physiology, if we assume EBC should not be influenced by dryness level. Furthermore, if potential stress375

conditions are removed, the DWCI could be useful as a metric of advection in the system, even when the energy balance376

is relatively well closed.377

WUE shifts associated with metrics and not captured by models378

Figure 7 demonstrates the strong tendency of themodels to underestimationWUE in dry conditions. This is true even for379

the fully non-linear and empirical random forest model, indicating that the model under-performance is not necessarily380

due to an incomplete model framework, but due to a lack of information to constrain the problem. Given the association381

of both metrics with drought (Figure 6), one could expect that the models would underestimate WUE in uncoupled and382
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morning shifted days. Though this is the case withmorning shifted days, decoupling shows no underestimations ofWUE,383

with even a mean overestimation in the case of the Katul-Zhou and Boese models. Given the limitations outlined in the384

previous sections, one could blame noise for the lack of WUE shift, but this does not reconcile with the higher frequency385

of decoupling during dry days which should bias theWUE estimates. Furthermore, as the more empirical random forest386

model reduces the prediction variability, leaving a slight WUE underestimation, indicating that some of the overestima-387

tion from the Katul-Zhou and Boesemodelsmay be tied to limitations of the underlying assumptions, yet the distribution388

from the RF model still lacks the long tails of underestimation characteristic of the dry points. Extending these findings389

to the underlying hypotheses of the metrics, namely hydraulic and non-stomatal limitations, we could conclude that the390

hydraulic controls do impose a greater water use advantage than non-stomatal limitations. In other words, the findings391

suggest that days with water:carbon decoupling, and possibly non-stomatal limitations, do not improve WUE, whereas392

hydraulic responses can improve WUE. As WUE is a ratio, this does not shed any light onto the change in productivity,393

as low values of WUEmay indicate that a plant is still productive, but at a higher water cost. However, solid conclusions394

would require further analysis with some site specifics measurements of actual plant function.395

Though the models used here are relatively simple and lack the complexities and feedbacks found in more vigorous396

ecosystem models, Matheny et al. [29] also demonstrated the fundamental inability of 9 different land-surface models397

with 4 different stomatal conductance schemes to capture diurnal variability which the authors attributed to inadequate398

representation of how water gets from the soil to the leaf. Given the demonstrated phenomenon of morning shifts and399

decoupling across sites under dry conditions, the metrics here provide a benchmarking tool for mechanistic models to400

test their ability to replicate these patterns, suggesting that the models are capable of expressing hydraulic and non-401

stomatal limitations. Furthermore, in the case of machine learning approaches, the metrics may provide a useful input402

parameter which summarizes these diurnal effects, as is evidence by the difference in response the bias in RF modeled403

WUE, i.e. while bothmetrics are associated with low EF, RFWUEwas underestimated withmorning shifted days but not404

decoupled days implying that two different strategies are being captured by the metrics. As such, by demonstrating the405

utility of themetrics, and providing code and explanations for calculation, we hope they become useful to the community406

at large.407

Conclusion408

Both the DWCI and the C∗
ET demonstrate an ability to show consistent patterns with drought across a broad array409

of sites, climates, and ecosystems, with the added advantage of being tied to theoretical underpinnings. Particularly,410

the demonstrated patterns give novel information about carbon water relations and hydrological dynamics that are not411

currently present at ecosystem scale across a database as large as FLUXNET. These metrics and their underlying theory412

provide a data derived example differentiating the hydrological response of tree and grass plant functional types, as well413
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as give evidence for the presence and absence of a WUE advantage from hydraulic and stomatal limitations respectively.414

Going forward, these metrics can be used as a tool to further understand the diversity of ecosystem drought responses.415
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