Interactive comment on “Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators” by Andreas Krause et al.

Anonymous Referee #1

Received and published: 26 June 2017

As currently written, it is difficult to discern the scientific questions the manuscript is attempting to address. While the authors describe in some detail “what” was done in the analyses, it was not clear “why” a particular analysis was conducted in the study. The manuscript indicated that land management for carbon mitigation could potentially have effects on a variety of ecosystem service indicators, but it was difficult to place the results into context to understand the main “take-home” messages that the authors intended to convey with the manuscript. As ecosystem service indicators can be interpreted as proxies for several ecosystem services (as indicated by the authors, see Section 2.4) and models can be applied to address a variety of scientific issues, it is not clear what the simulated effects on ecosystem service indicators are supposed to
mean without understanding the underlying scientific questions being addressed. There appears to be several scientific issues that the manuscript seems to be attempting to address along with some potentially interesting and useful information that is worthy of publication if these scientific issues could be clarified. Below, some ideas are suggested to help clarify the scientific issues and improve presentation of the results and discussion.

1) Overall, the motivation for the study in the manuscript appears to be that land management for enhancing carbon sequestration and/or reducing carbon loss (i.e. land-based mitigation) could have “unintended” effects on other ecosystem services provided by land ecosystems including biophysical processes that influence the Earth’s energy balance in addition to land carbon fluxes, the ability to provide food and fiber, the ability to moderate water availability, and the ability to improve air and water quality. Land-based mitigation may enhance some of these ecosystem services, but degrade other ecosystem services. Thus, the basic scientific question that the manuscript appears to be trying to address is “What is the impact of land management for carbon mitigation on other ecosystem services?”

The manuscript also recognizes that two general carbon mitigation approaches have been suggested in the past: 1) avoided deforestation in combination with afforestation and reforestation (ADAFF); and bioenergy production and consumption with carbon capture and storage (BECCS). In addition, the manuscript recognizes that instead of one approach or the other, some combination of these two mitigation approaches will most likely be implemented in the future. Thus, two secondary scientific questions that the manuscript appears to be trying to address are “Do the effects of land-based mitigation on other ecosystem services differ based on the mitigation approach?” and “If so, do the effects of one mitigation approach on other ecosystem services have a more dominant effect than the other mitigation approach?”

The manuscript also uses output from two land-use models (IMAGE/LPJmL and MAgPIE/LPJmL) to prescribe projections of land use for the study, but it is not clear why the authors are using two land-use scenarios in general or the results from these two
It may be that the authors simply wanted to examine how uncertainty of land-use projections to a single climate change scenario might influence the effects of land-based mitigation on ecosystem services to somewhat quantify the “noise” associated with evaluating effects. Or, the authors might have been attempting to address the scientific question “How do differences in the implementation of a particular mitigation approach influence the effect of land-based mitigation on other ecosystem services. Besides influencing different parts of the world (see Figure 2), the two land-use models also appeared to differ in the basic implementation of the land-based mitigation approaches (see Figure 1, Table A2). For the ADAFF mitigation approach, the IMAGE/LPJmL land-use projection appeared to gain natural areas mostly from the abandonment of pastures whereas the MAgPIE/LPJmL projection appeared to gain natural areas mostly from the abandonment of croplands. Also, for the BECCS/ADAFF option, it was interesting that the IMAGE/LPJmL land-use projection has more cropland than the baseline whereas the MAgPIE/LPJmL projection has less cropland than the baseline. For the BECCS mitigation option, all of the additional cropland appeared to be derived from the conversion of natural areas to agriculture in the IMAGE/LPJmL land-use projection whereas less additional cropland appeared to be derived from the conversion of natural areas to agriculture in the MAgPIE/LPJmL projection, but more cropland appeared to be derived from more intensive use of pastures. With the exception of noting that more natural area came from cropland in the MAgPIE/LPJmL ADAFF land-use projection, the authors did not really note these systematic biases in their analysis.

The manuscript uses the dynamic global vegetation model (DGVM) LPJ-GUESS to estimate land carbon sequestration/loss and the ecosystem service indicators. However, the land-use models also used a DGVM, i.e. LPJmL in their simulations. It is not clear from the manuscript what potential benefits were derived from using LPJ-GUESS instead of the LPJmL results for the analysis. Perhaps, some of the output for the ecosystem service indicators were just not available from the IMAGE/LPJmL and MAgPIE/LPJmL simulations to conduct the analyses. Or, perhaps there were improve-
ments in the representation of ecosystem processes in LPJ-GUESS than in LPJmL, which might provide other scientific questions that the authors think the manuscript might be addressing, but if so, it is not clear what these scientific questions are.

It is not clear why the authors have quantified carbon sequestration for the various simulations in the manuscript. Did they expect carbon sequestration rates to vary with mitigation approaches or implementation of those approaches in the two land-use change projections? Did they expect the effects on other ecosystem service indicators to depend on the magnitude of carbon sequestration rates? Or, did they want to indicate a level of the potential tradeoffs between carbon sequestration and other ecosystem services if the land management led to degradation of the other ecosystem service?

Besides examining overall effects at the global scale, the manuscript looks at how these land-based mitigation effects ecosystem service indicators over time (Figure A1 and A4) and space (Figure 4, A2, and A3). Thus, another scientific question the manuscript appears to address is “Do these land-based mitigation effects on other ecosystem services vary across the globe or change over time.

By clarifying the scientific questions being addressed in the Introduction and/or Methods sections will help the reader to understand the logic behind the analysis.

2) The manuscript appears to evaluate qualitative effects of land-based mitigation on other ecosystem services by using directional changes in ecosystem service indicators. In Table 2, the authors nicely indicate how the ecosystem service indicators relate to the various ecosystem services. However, Table 2 is not currently referenced until the Discussion section. As the information in Table 2 does not appear to depend on any study results, it would be better to move Table 2 to section 2.4 (and rename to be Table 1) to link how mitigation-induced changes in ecosystem services (i.e. the scientific questions) are being evaluated with the ecosystem service indicators. As several ecosystem service indicators appear to be related to a single ecosystem service and other ecosystem service indicators appear to be related to more than one ecosystem
service, the Results and Discussion sections could be reorganized to be consistent with the information presented in Table 2. Some of this organization already exists in the Discussion section of the manuscript with Section 4.3 describing the effects on water availability and potential implications on flood protection, Section 4.4 describing the effects on food production, and Section 4.5 describing the effects on water and air quality. Section 4.1 also appears to be describing carbon mitigation effects on other ecosystem services affecting climate change mitigation although the section title is described a little differently. Because Section 4.2 appears to be focused on comparing land-based carbon mitigation results of this study to other studies, it might be better to have this section occur (perhaps a new Section 4.1) before discussing the effects of land-based carbon mitigation on other ecosystem services in the later subsections. However, because the focus of the paper seems to be on the effects of land-based mitigation on other ecosystem services rather than land-based carbon mitigation per se, the text in this section tends to distract the reader from those messages so that it might be better to have this text in a section at the end of the Discussion, perhaps under a title of something like “Role of model assumptions on the uncertainty of land-based carbon mitigation and its relative importance to other ecosystem services”.

By moving Table 2 to Section 2.4, the current general organization of the Results section would be okay, but it would be desirable that between the Results and Discussion sections, the reader would understand the “take-home” messages. One “take-home” message may be that land-based carbon mitigation, regardless of mitigation approach:

- Reduces crop production
- Potentially improves water and air quality by reducing nitrogen loss

A second “take-home” message may be that the effects of carbon mitigation on some ecosystem services depend on the mitigation approach and sometimes depends on the particular implementation of the BECCS mitigation approach:

- ADAFF tends to enhance climate change mitigation by enhancing evapotranspiration
BECCS effects depend on land-use projection with IMAGE/LPJmL tends to reduce climate change mitigation by slightly reducing evapotranspiration and MAgPIE/LPJmL tends to enhance climate change mitigation by slightly enhancing evapotranspiration; ADAFF effects on climate change mitigation by evapotranspiration changes appear to dominate in the ADAFF/BECCS mitigation option.

- ADAFF tends to reduce climate change mitigation by slightly reducing albedo; BECCS tends to enhance climate change mitigation by slightly increasing albedo; ADAFF effects on climate change mitigation by albedo changes appear to dominate in the ADAFF/BECCS mitigation option.

- ADAFF tends to reduce water availability by slightly reducing runoff; BECCS effects depend on climate change mitigation with IMAGE/LPJmL tending to enhance water availability by slightly increasing runoff and MAgPIE/LPJmL tending to reduce water availability by slightly decreasing runoff; ADAFF effects on water availability by runoff changes appear to dominate in the ADAFF/BECCS mitigation option.

- ADAFF tends to increase flood protection by slightly reducing peak runoff; BECCS effects depend on climate change mitigation with IMAGE/LPJmL tending to decrease flood protection by slightly increasing peak runoff and MAgPIE/LPJmL does not seem to have an effect on flood protection; ADAFF effects on flood protection by peak runoff changes appear to dominate in the ADAFF/BECCS mitigation option.

- ADAFF degrades air quality by increasing BVOCs; BECCS enhances air quality by decreasing BVOCs; ADAFF degrades air quality by increasing BVOCs; ADAFF effects on air quality by BVOC changes appear to dominate in the ADAFF/BECCS mitigation option.

A third “take-home” message might be that the implementation of a mitigation approach (or “option”) influences the temporal and spatial variability of land-based carbon mitigation and its effects on other ecosystem services.
3) The additional amount of carbon uptake related to the simulated land-based mitigation efforts estimated by the study in the manuscript are 40 to 60% less than the 130 Gt C presumed by the studies that developed the IMAGE/LPJmL and MAgPIE/LPJmL land-use projections. This discrepancy where the same land-use projections have such large differences in simulated carbon sequestration rates suggests that there are some major differences in model assumptions between this study and the studies used to develop the land-use projections. The manuscript seems to attempt to address this discrepancy in the Abstract, the Methods section, the Results section and the Discussion section which distracts the reader from what otherwise appears to be the main focus of the manuscript, the effect of carbon mitigation activities on other ecosystem services, and confounds the “take-home” messages to be derived from the analysis in the manuscript. While the discrepancy in carbon sequestration rates should be addressed by the manuscript, the importance of the discrepancy needs to be related to the objectives of the manuscript.

One possibility might be to indicate that if there are trade-offs between land-based carbon mitigation and their effects on other ecosystem services, then decisions would depend on the magnitude of carbon mitigation that might be achieved to determine the worthiness of the mitigation activity. There may be, however, large uncertainties in the amount of carbon sequestration that may be estimated for a particular land-use projection based on assumptions used by various models and give the above example. Then describe some of the potential differences in assumptions that might affect carbon sequestration estimates, such as part of the text in current Section 4.2. As indicated in comment 2), this text may be organized into a section placed at the end of the Discussion with perhaps the title “Role of model assumptions on the uncertainty of land-based carbon mitigation and its relative importance to other ecosystem services”. While it is still worthwhile to indicate the assumed carbon sequestration used by the studies used to develop the land-use projections because it affected the distribution of the projected land use, mention of the 130 Gt C in the Abstract is more confusing than helpful and should be deleted. In addition, comparisons of the results of this study
to the carbon results of studies used to generate the land-use projections (including the comparisons of crop production) should be deleted from the Results section and restricted to the Discussion section where the results of this study are compared to other studies to provide perspective.

4) In the Methods section, the authors describe how bioenergy crops, carbon capture and storage, and afforestation are simulated in IMAGE/LPJmL and MAgPIE/LPJmL, but not LPJ-GUESS. Yet, the carbon dynamics in the analysis of the manuscript is being simulated by LPJ-GUESS using land-use change projections developed with IMAGE/LPJmL and MAgPIE/LPJmL. Thus, it would seem to make more relevant to describe how LPJ-GUESS estimates carbon dynamics for bioenergy crops, the influence of N fertilizer application on bioenergy crop production, carbon capture and storage, and afforestation rather than the land-use models in the Methods section and perhaps move the description of how these models estimate carbon dynamics of bioenergy crops, the influence of N fertilizer application on bioenergy crop production, carbon capture and storage, and afforestation are simulated by land-use models to the Appendix in support of how the land-use projections were developed.

5) The second sentence of the Abstract is a bit awkward and confusing. “However, land-based mitigation’s prospect of success depends on potential side-effects on important ecosystem services.” It is not clear what the authors are trying to say here.

6) The first paragraph of the Discussion seems more appropriate to be in the Methods section (Section 2.4) It is also not clear what the last sentence of this paragraph in the Discussion is attempting to say: “The changes in our mitigation simulations will occur in addition to the changes originating from climate change, increased atmospheric CO2, and non-mitigation related LU/management changes over the century, thereby intensifying or dampening the supply of ES to human societies.” Perhaps the message is something like “Ecosystem services will be influenced by changes in climate, atmospheric chemistry and land use even in the absence of land management for carbon mitigation. To separate these non-mitigation effects from those effects associated with
a mitigation approach, we compare changes in ecosystem service indicators in the baseline simulations over the 21st century to the changes that occur when a mitigation approach is implemented. Land-based mitigation may potentially enhance or degrade another ecosystem service to human societies.”

7) In section 4.1, it would probably be worthwhile to note that using an Earth System Model of Intermediate Complexity, Hallgren et al. (2013) found that the unintended biogeophysical cooling effects of biofuels production more than compensated for the warming effects associated with enhanced release of greenhouse gases from the biofuels production at the global scale. This study also found that biofuel production had small impacts on global surface temperatures, but had larger impacts on regional surface temperatures, such as the Amazon Basin and part of the Congo Basin.

8) In section 4.1, it seems strange that the authors would discuss changes in BVOCs as part of the climate regulation via biogeochemical effects, but not changes in carbon storage, which would seem to be more substantial. In addition, wouldn’t changes in BVOCs and their effects on warming/cooling be included in the calculations of the effects of overall changes in the carbon budget on warming?

9) In Section 4.2, there are a couple of additional issues that might be influencing the discrepancies between LPJ-GUESS and the target value (i.e. 130 Gt C) used in the land-use models that seem to be missing from this Discussion. First, is the 130 Gt C actually CO2-C or CO2 equivalent C? If the latter, then some of the 130 Gt C could be greenhouse gases other than CO2 so that the discrepancy between LPJ-GUESS and the land-use models may not be as bad as indicated in the text. Second, was there a dynamic linkage between LPJmL and IMAGE or MAgPIE so that information on changes in land productivity and land management were passed iteratively between the two models such as in Reilily et al. (2012)? Or was information just passed between the two models non-iteratively, such as in Melillo et al. (2009)? The first approach would allow feedbacks to potentially influence carbon sequestration whereas the second approach would not allow such feedbacks. By prescribing land use, the
carbon dynamics of LPJ-GUESS would not be influenced by potential feedbacks that might have occurred if the land-use models and LPJmL passed information iteratively to estimate different carbon sequestration rates.

10) In the first sentence of Section 4.3, not clear what “replacing grassland, respectively shrublands, with large variability” means. Did the authors mean “replacing grasslands and shrublands, respectively, with large variability”. This strange wording associated with “respectively” occurs in several places in the manuscript.

11) In the fourth sentence of the third paragraph of Section 4.3, the sentence is awkward and difficult to understand. It might improve if the phrase “They found no longer a statistically significant correlation” became “They did not find a statistically significant correlation”.

12) In Section 4.4, the authors should relate the study results to Reilly et al. (2012) who found higher prices for agricultural products due to mitigation costs of land, energy, and other greenhouse gas controls in their ADAFF-like (i.e. the No Biofuels scenario in Reilly et al. 2012) and ADAFF/BECCS-like (i.e. Energy + Land scenario in Reilly et al. 2012), but did not find higher prices for agricultural products in the BECCS-like (i.e. the Energy-Only scenario in Reilly et al. 2012) scenario because the higher mitigation costs were offset by benefits of avoided environmental damage to other ecosystem services.

References


C10