

1 **Simultaneous shifts in elemental stoichiometry and fatty acids of**
2 ***Emiliania huxleyi* in response to environmental changes**

3

4 **Rong Bi^{1,2}, Stefanie M. H. Ismar², Ulrich Sommer² and Meixun Zhao¹**

5

6 ¹Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of

7 China, Ministry of Education/Laboratory for Marine Ecology and Environmental

8 Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao,

9 266000, China

10 ²Marine Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, 24105,

11 Germany

12 *Correspondence to:* Meixun Zhao (maxzhao@ouc.edu.cn)

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Climate-driven changes in environmental conditions have significant and complex
25 effects on marine ecosystems. Variability in phytoplankton elements and biochemicals
26 can be important for global ocean biogeochemistry and ecological functions, while
27 there is currently limited understanding on how elements and biochemicals respond to
28 the changing environments in key coccolithophore species such as *Emiliania huxleyi*.
29 We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain
30 of *E. huxleyi* under three temperatures (12, 18 and 24 °C), three N:P supply ratios
31 (molar ratios 10:1, 24:1 and 63:1) and two $p\text{CO}_2$ levels (560 and 2400 μatm). Overall,
32 C:N:P stoichiometry showed the most pronounced response to N:P supply ratios, with
33 high ratios of particulate organic carbon vs. particulate organic nitrogen (POC:PON)
34 and low ratios of PON vs. particulate organic phosphorus (PON:POP) in low N-media,
35 and high POC:POP and PON:POP in low P-media. The ratio of particulate inorganic
36 carbon vs. POC (PIC:POC) and polyunsaturated fatty acid proportions strongly
37 responded to temperature and $p\text{CO}_2$, both being lower under high $p\text{CO}_2$ and higher
38 with warming. We observed synergistic interactions between warming and nutrient
39 deficiency (and high $p\text{CO}_2$) on elemental cellular contents and docosahexaenoic acid
40 (DHA) proportion in most cases, indicating the enhanced effect of warming under
41 nutrient deficiency (and high $p\text{CO}_2$). Our results suggest differential sensitivity of
42 elements and FAs to the changes in temperature, nutrient availability and $p\text{CO}_2$ in *E.*
43 *huxleyi*, which is to some extent unique compared to non-calcifying algal classes.
44 Thus, simultaneous changes of elements and FAs should be considered when

45 predicting future roles of *E. huxleyi* in the biotic-mediated connection between
46 biogeochemical cycles, ecological functions and climate change.

47 **Key words:** Coccolithophores; elements; biochemicals; warming; nutrients; CO₂

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 **1 Introduction**

68 Climate change and intensive anthropogenic pressures have pronounced and
69 diverse effects on marine ecosystems. Physical and chemical properties in marine
70 ecosystems are changing simultaneously such as the concurrent shifts in temperature,
71 CO₂ and oxygen concentrations, and nutrient availability (Boyd et al., 2015). These
72 changes have altered trophic interactions in both bottom-up and top-down directions
73 and thus result in changes in community structure of different trophic levels and
74 ecosystem functions (Doney et al., 2012). Phytoplankton are the base of marine food
75 webs and major drivers of ocean biogeochemical cycling, and thus quantifying their
76 responses to changing oceanic conditions is a major challenge in studies of food web
77 structure and ocean biogeochemistry.

78 Coccolithophores are a key phytoplankton group in the ocean because of their
79 production of calcified scales called coccoliths. They are not only important
80 photosynthetic producers of organic matter (causing a draw-down of CO₂ in the
81 surface layer), but also play predominant roles in the production and export of
82 calcium carbonate to deeper layers (causing a net release of CO₂ into the atmosphere)
83 (Rost and Riebesell, 2004). Owing to the determination of these two processes on
84 ocean-atmosphere exchange of CO₂, coccolithophores exhibit a complex and
85 significant influence on global carbon cycle (Rost and Riebesell, 2004). Of all
86 coccolithophores, *Emiliania huxleyi* is the most widely distributed and the most
87 abundant species (Winter et al., 2014), with the capacity to form spatially extensive
88 blooms in mid- to high-latitudes (Raittos et al., 2006; Tyrrell and Merico, 2004).

89 Evidence from *in situ* and satellite observations indicates that *E. huxleyi* is
90 increasingly expanding its range poleward in both hemispheres over the last two
91 decades, and contributing factors to this poleward expansion may differ between
92 regions and hemispheres (Winter et al., 2014). For example, warming and freshening
93 have promoted *E. huxleyi* blooms in the Bering Sea since the late 1970s (Harada et al.,
94 2012), while temperature and irradiance were best able to explain variability in *E.*
95 *huxleyi*-dominated coccolithophore community composition and abundance across the
96 Drake Passage (Southern Ocean) (Charalampopoulou et al., 2016). Hence, empirical
97 data on the responses of *E. huxleyi* to different environmental drivers would be critical
98 for fully understanding the roles of this prominent coccolithophore species in marine
99 ecosystems.

100 Extensive experimental studies have shown highly variable responses of *E. huxleyi*
101 to rising atmospheric CO₂ (reviewed by Feng et al., 2017a; Meyer and Riebesell,
102 2015), while other studies focused on the influence of other environmental factors
103 such as temperature (Rosas-Navarro et al., 2016; Sett et al., 2014; Sorrosa et al., 2005),
104 light intensity (Nanninga and Tyrrell, 1996; Xing et al., 2015) and nutrient availability
105 (Oviedo et al., 2014; Paasche, 1998). Responses of *E. huxleyi* to the interactions
106 between these different factors have recently received more attention (De Bodt et al.,
107 2010; Feng et al., 2008; Milner et al., 2016; Perrin et al., 2016; Rokitta and Rost,
108 2012). Many of these studies above focused on the physiological, calcification and
109 photosynthetic responses of *E. huxleyi* due to its considerable role in global carbon
110 cycle. However, biogeochemical cycles of the major nutrient elements (nitrogen and

111 phosphorus) and carbon are tightly linked (Hutchins et al., 2009), and thus variability
112 in *E. huxleyi* C:N:P stoichiometry (cellular quotas and ratios of C, N and P) can also
113 be important in ocean biogeochemistry. Moreover, elemental budgets in organisms are
114 primarily determined by the physiology and biochemistry of biochemicals such as
115 proteins and fatty acids (FAs) (Anderson et al., 2004; Sterner and Elser, 2002). Thus,
116 studying simultaneous changes of elements and biochemicals enables the connection
117 between climate change and ecosystem functions such as elemental cycles. However,
118 shifts in resource nutrient content for consumers are often overlooked in climate
119 change ecology (Rosenblatt and Schmitz, 2016). Recently, Bi et al. (2017)
120 investigated responses of C:N:P stoichiometry and FAs to the interactions of three
121 environmental factors in the diatom *Phaeodactylum tricornutum* and the cryptophyte
122 *Rhodomonas* sp., showing dramatic effects of warming and nutrient deficiency, and
123 modest effects of increased $p\text{CO}_2$. However, for the key coccolithophore species *E.*
124 *huxleyi* much less is known about the simultaneous changes in elemental
125 stoichiometry and biochemicals in response to multiple environmental factor changes.

126 In the present study, we conducted semi-continuous cultures of *E. huxleyi* to
127 disentangle potential effects of temperature, N:P supply ratios and $p\text{CO}_2$ on *E. huxleyi*
128 elemental stoichiometry and FAs. The elevated levels of temperature and $p\text{CO}_2$ in our
129 study are within the predicted ranges of future ocean scenarios. The inter-annual
130 average temperature varied between 16 to 22 $^{\circ}\text{C}$ at the Azores
131 (<http://dive.visitazores.com/en/when-dive>; last accessed date: 22.08.2017), the source
132 region of our *E. huxleyi* strain, while annual mean sea surface temperature across the

133 North Atlantic (0 - 60 °N) is projected to reach 29.8 °C in 2100 according to the ocean
134 general circulation model (Lewandowska et al., 2014). Considerable seasonal, depth
135 and regional variations of $p\text{CO}_2$ have been observed in the present-day ocean (Joint et
136 al., 2011). In plankton-rich waters, respiration plus atmospheric CO₂-enrichment can
137 drive high regional $p\text{CO}_2$ at times today, e.g, up to 900 μatm in August, with the
138 minimum value of 192 μatm in April, in the Southern Bight of the North Sea
139 (Schiettecatte et al., 2007). In future oceans, $p\text{CO}_2$ is projected to increase with rising
140 atmospheric CO₂, being 851 - 1370 μatm by 2100 and 1371 - 2900 μatm by 2150
141 (RCP8.5 scenario of the IPCC report 2014) (IPCC, 2014). We tested the following
142 hypotheses in the present study: (i) elemental stoichiometry and FAs in *E. huxleyi*
143 show different sensitivity to considerable variations in temperature, N:P supply ratios
144 and $p\text{CO}_2$; (ii) the ratios of particulate organic carbon vs. particulate organic nitrogen
145 (POC:PON), POC vs. particulate organic phosphorus (POC:POP), and particulate
146 inorganic carbon vs. POC (PIC:POC) in *E. huxleyi* will reduce and the proportions of
147 unsaturated fatty acids will increase under projected future ocean scenarios; and (iii)
148 there are synergistic interactions between warming, nutrient deficiency and rising
149 $p\text{CO}_2$ on *E. huxleyi* elemental stoichiometry and FA composition.

150 **2 Material and methods**

151 **2.1 Experimental setup**

152 To address our questions on how multiple environmental drivers influence
153 elemental and FA composition in *E. huxleyi*, we performed a semi-continuous culture
154 experiment crossing three temperatures (12, 18 and 24 °C), three N:P supply ratios

155 (molar ratios 10:1, 24:1 and 63:1) and two $p\text{CO}_2$ levels (560 and 2400 μatm). The
156 strain of *E. huxleyi* (Internal culture collection reference code: A8) was isolated from
157 waters off Terceira Island, Azores, North Atlantic (38°39'22" N 27°14'08" W).
158 Semi-continuous cultures, as a practical surrogate for fully continuous culture, have
159 been successfully used to study the responses of phytoplankton stoichiometric and
160 biochemical composition to environmental changes such as nutrient availability (Feng
161 et al., 2017a; Lynn et al., 2000; Terry et al., 1985). Our temperature range setup was
162 based on the study of Lewandowska et al. (2014), who chose a temperature increment
163 of 6 °C, according to the ocean general circulation model under the IPCC SRES A1F1
164 scenario.

165 All cultures were exposed to a light intensity of 100 $\mu\text{mol photons} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ at a
166 16:8 h light:dark cycle in temperature-controlled rooms. The culture medium was
167 prepared with sterile filtered (0.2 μm pore size, Sartobran® P 300; Sartorius,
168 Goettingen, Germany) North Sea water with a salinity of 37 psu. Macronutrients were
169 added as sodium nitrate (NaNO_3) and potassium dihydrogen phosphate (KH_2PO_4) to
170 achieve three N:P supply ratios, i.e., 35.2 $\mu\text{mol} \cdot \text{L}^{-1}$ N and 3.6 $\mu\text{mol} \cdot \text{L}^{-1}$ P (10:1 mol
171 mol^{-1}), 88 $\mu\text{mol} \cdot \text{L}^{-1}$ N and 3.6 $\mu\text{mol} \cdot \text{L}^{-1}$ P (24:1 mol mol^{-1}) and 88 $\mu\text{mol} \cdot \text{L}^{-1}$ N and
172 1.4 $\mu\text{mol} \cdot \text{L}^{-1}$ P (63:1 mol mol^{-1}). Vitamins and trace metals were added based on the
173 modified Provasoli's culture medium (Ismar et al., 2008; Provasoli, 1963). Initial
174 $p\text{CO}_2$ of the culture medium was manipulated by bubbling with air containing the
175 target $p\text{CO}_2$. Three replicates were set up for each treatment, resulting in 54
176 experimental units. Each culture was kept in a sealed cell culture flask with 920 mL

177 culture volume. Culture flasks were carefully rotated twice per day at a set time to
178 minimize sedimentation.

179 First, batch culture experiments were performed to obtain an estimate of the
180 observed maximal growth rate (μ_{\max} , d^{-1}) under three temperatures, three N:P supply
181 ratios and two $p\text{CO}_2$ levels. μ_{\max} was calculated based on the changes of population
182 cell density within exponential phase (Bi et al., 2012). Once batch cultures reached
183 the early stationary phase, semi-continuous cultures were started with the algae from
184 batch cultures. The gross growth rate [μ (d^{-1})], resulting from the process of
185 reproduction alone [due to negligible mortality in cultures lacking predators \(Lampert
186 and Sommer, 2007\)](#)] was applied as 20% of μ_{\max} . Using % of μ_{\max} guarantees that the
187 strength on nutrient deficiency is equal through all temperature and $p\text{CO}_2$ treatments.
188 A fixed value of μ would mean weak deficiency when μ_{\max} is low, and strong
189 deficiency when it is high. Based on μ , the equivalent daily renewal rate (D , d^{-1}) can
190 be calculated according to the equation $D = 1 - e^{-\mu t}$, where t is renewal interval (here t
191 = 1 day). The volume of the daily renewal incubation water can be calculated by
192 multiplying D with the total volume of incubation water (920 mL). The incubation
193 water was exchanged with freshly made seawater medium with the target N:P supply
194 ratios, as well as pre-acclimated to the desired $p\text{CO}_2$ level. To counterbalance the
195 biological CO_2 -drawdown, the required amount of CO_2 -saturated seawater was also
196 added. Renewal of the cultures was carried out at the same hour every day. The steady
197 state in semi-continuous cultures was assessed based on the net growth rate [r (d^{-1})
198 the difference between the gross growth rate and the loss rate ($r = \mu - D$)]. When r

199 was zero (at steady state), μ was equivalent to D .

200 **2.2 Sample analysis**

201 Sampling took place at steady state for the following parameters: cell density,
202 dissolved inorganic carbon (DIC), total alkalinity (TA), pH, total particulate carbon
203 (TPC), POC, PON, POP and FAs. Cell density was counted daily in batch and
204 semi-continuous cultures (final cell density at steady state ranging between 1.50×10^5
205 - 17.8×10^5 cells mL^{-1} , with the average value of 7.95×10^5 cells mL^{-1}). pH
206 measurements were conducted daily in semi-continuous cultures (Fig. S1), and the
207 electrode was calibrated using standard pH buffers (pH 4 and pH 7; WTW, Weilheim,
208 Germany).

209 DIC water samples were gently filtered using a single-use syringe filter (0.2 μm ,
210 Minisart RC25; Sartorius, Goettingen, Germany) which was connected to the intake
211 tube of a peristaltic pump. Samples were collected into 10 ml glass vials, and all vials
212 were immediately sealed after filling. DIC was analyzed following Hansen et al.
213 (2013) using a gas chromatographic system (8610C; SRI-Instruments, California,
214 USA). Samples for TA analysis were filtered through GF/F filters (Whatman GmbH,
215 Dassel, Germany) and analyzed with the Tirino plus 848 (Metrohm, Filderstadt,
216 Germany). The remaining carbonate parameter $p\text{CO}_2$ was calculated using CO2SYS
217 (Pierrot et al., 2006) and the constants supplied by Hansson (1973) and Mehrbach et
218 al. (1973) that were refitted by Dickson and Millero (1987) (Table S1).

219 TPC, POC, PON and POP samples were filtered onto pre-combusted and
220 pre-washed (5% ~ 10% HCl) GF/F filters (Whatman GmbH, Dassel, Germany). For

221 POC samples, PIC was removed by exposing filters containing TPC to fuming
222 hydrochloric acid for 12h. Before analysis, filters were dried at 60 °C and stored in a
223 desiccator. POC and PON were simultaneously determined by gas chromatography
224 using an organic elemental analyzer (Thermo Flash 2000; Thermo Fisher Scientific
225 Inc., Schwerte, Germany) after Sharp (1974). POP was analyzed colorimetrically by
226 converting organic phosphorus compounds to orthophosphate (Hansen and Koroleff,
227 1999). PIC was determined by subtracting POC from TPC. PIC and POC production
228 were estimated by multiplying μ with cellular PIC and POC content, respectively. As
229 the physiological (i.e., cellular) PIC and POC variations cannot directly be up scaled
230 to total population response (Matthiessen et al., 2012), PIC and POC contents in our
231 study were shown both on the cellular (as pg cell⁻¹) and the population (as μ g ml⁻¹)
232 levels.

233 Fatty acid samples were taken on pre-combusted and hydrochloric acid-treated
234 GF/F filters (Whatman GmbH, Dassel, Germany), and stored at -80 °C before
235 measurement. FAs were measured as fatty acid methyl esters (FAMEs) using a gas
236 chromatograph (Trace GC-Ultra; Thermo Fisher Scientific Inc., Schwerte, Germany)
237 according to the procedure described in detail in Arndt and Sommer (2014). The
238 FAME 19:0 was added as internal standard and 21:0 as esterification control. The
239 extracted FAs were dissolved with n-hexane to a final volume of 100 μ L. Sample
240 aliquots (1 μ L) were given into the GC by splitless injection with hydrogen as the
241 carrier gas. Individual FAs were integrated using Chromcard software (Thermo Fisher
242 Scientific Inc., Schwerte, Germany) and identified with reference to the standards

243 Supelco 37 component FAME mixture and Supelco Menhaden fish oil. FA data were
244 expressed as a percentage of total fatty acids (TFAs) (FA proportion, % of TFAs) to
245 better compare our results with those in previous studies. FAs were also quantified on
246 a per unit biomass ($\mu\text{g mg C}^{-1}$), which is an ideal approach when considering
247 nutritional quality of phytoplankton for herbivores (Piepho et al., 2012).

248 **2.3 Statistical analysis**

249 Generalized linear mixed models (GLMMs) were applied to test the best model
250 explaining the variations in μ_{max} , elemental stoichiometry and FA composition, as this
251 method is more appropriate for non-normal data than classical statistical procedures
252 (Bolker et al., 2009). GLMMs combine the properties of two statistical models (linear
253 mixed models and generalized linear models) (Bolker et al., 2009) and have been
254 widely used in ecology (e.g., Bracewell et al., 2017; Frère et al., 2010; Jamil et al.,
255 2014), in which data sets are often non-normally distributed. In our study, response
256 variables included μ_{max} , elemental stoichiometry [elemental cellular contents (as pg
257 cell^{-1}) and their molar ratios], POC and PIC population yield (as $\mu\text{g ml}^{-1}$) and
258 production (as $\text{pg cell}^{-1} \text{d}^{-1}$), FA proportion (as % of TFAs) and contents (as $\mu\text{g mg C}^{-1}$),
259 with temperature, N:P supply ratios and $p\text{CO}_2$ as fixed effects. Target distributions
260 were tested and link functions were consequently chosen. The link function is a
261 transformation of the target that allows estimation of the model
262 (https://www.ibm.com/support/knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.help/idh_glmm_target.htm; last accessed date: 14.08.2017). For example, identity
264 link function is appropriate with any distribution except for multinomial, while logit

265 can be used only with the binomial or multinomial distribution. For all response
266 variables, we tested models containing first order effects, and second and third order
267 interactions of the three factors. The model that best predicted targets was selected
268 based on the Akaike Information Criterion corrected (AICc), i.e., a lower AICc value
269 representing a better fit of the model. Changes of 10 units or more in AICc values
270 were considered as a reasonable improvement in the fitting of GLMMs (Bolker et al.,
271 2009). In case AICc values were comparable (< 10 units difference), the simpler
272 model was thus chosen, unless there were significant second or third order
273 interactions detected. According to differences in AICc values, models containing
274 only first order effects of the three factors were selected as the best models for most
275 response variables, while those also containing second order interactions were chosen
276 for cellular POC, PON, POP and PIC contents, and the proportions of saturated fatty
277 acid (SFA) and docosahexaenoic acid (22:6n-3; DHA) (bold letters in Table S2).
278 Models containing third order interactions were not selected for any response
279 variable.

280 Nested models were applied to test whether the response pattern to one factor (a
281 nested factor) was significant within another factor, in case significant second order
282 interactions were detected in GLMMs. The question a nested model addresses is that,
283 whether one factor plays a role under one (or several) configuration(s) of another
284 factor, but not under all configurations of that factor equally. Also, the nature
285 (antagonistic, additive, or synergistic) of significant second order interactions was
286 analysed according to Christensen et al. (2006). The observed combined effect of two

287 factors was compared with their expected net additive effect [e.g., (factor₁ - control) +
288 (factor₂ - control)], which was based on the sum of their individual effects. If the
289 observed combined effect exceeded their expected additive effect, the interaction was
290 defined as synergism. In contrast, if the observed combined effect was less than the
291 additive effect, the interaction was defined as antagonism.

292 All statistical analyses were conducted using SPSS 19.0 (IBM Corporation, New
293 York, USA). Significance level was set to $p < 0.05$ in all statistical tests.

294 **3 Results**

295 **3.1 Maximal growth rate (μ_{\max})**

296 We observed a highly significant effect of temperature (bold letters in Table 1) and
297 non-significant effect of N:P supply ratios and $p\text{CO}_2$ on μ_{\max} in *E. huxleyi*. Increasing
298 temperature stimulated μ_{\max} , causing μ_{\max} to be two to three times higher at the highest
299 temperature than those at the lowest temperature (Fig. 1).

300 **3.2 Elemental stoichiometry**

301 GLMMs results showed that cellular contents of POC, PON, POP and PIC
302 responded significantly to temperature and the **interactions** between temperature and
303 N:P supply ratios (bold letters in Table 1). Moreover, there were significant effects of
304 $p\text{CO}_2$ on cellular PIC content, and significant interactions between temperature and
305 $p\text{CO}_2$ on cellular **POP** and **PIC** contents. For cellular contents of POC, PON and POP,
306 increasing temperature and nutrient deficiency showed synergistic interactions (Table
307 S3), resulting in lower values at higher temperatures under N deficiency (N:P supply
308 ratio = 10:1 mol mol⁻¹) and increasing **values** with increasing temperature under P

309 deficiency (N:P supply ratio = 63:1 mol mol⁻¹) (Fig. 2 a-c; Nested model, $p < 0.001$).
310 Synergistic interactions were also observed between increasing temperature and
311 enhanced $p\text{CO}_2$ on cellular POP content (Table S3), showing the lowest value at low
312 $p\text{CO}_2$ level and the highest one at enhanced $p\text{CO}_2$ in response to increasing
313 temperature (Fig. 2g; Nested model, $p = 0.003$). For cellular PIC content, increasing
314 temperature and N deficiency had antagonistic interactions, while increasing
315 temperature and P deficiency showed synergistic interactions (Table S3). As a result,
316 cellular PIC content showed a slight decreasing trend with increasing temperature
317 under N deficiency and an increasing trend under higher N:P supply ratios (Fig. 2d;
318 Nested model, $p = 0.030$). Increasing temperature and enhanced $p\text{CO}_2$ affected
319 cellular PIC content synergistically (Table S3), with the negative response of cellular
320 PIC content to enhanced $p\text{CO}_2$ being significantly weaker as temperature increased
321 (Fig. 2h; Nested model, $p < 0.001$).

322 POC:PON, POC:POP and PON:POP responded significantly to N:P supply ratios
323 (bold letters in Table 1), while only POC:PON showed significant responses to
324 temperature, with non-significant effect of $p\text{CO}_2$ detected. Increasing N:P supply
325 ratios caused a [decreasing](#) trend in POC:PON (Fig. 3a) and an increase in POC:POP
326 (Fig. 3b), resulting in a positive relationship between PON:POP and N:P supply ratios
327 (Fig. 3c). The response of POC:PON to increasing temperature was complex, showing
328 a hump-shaped response under N deficiency and negative responses under higher N:P
329 supply ratios (Fig. 3a). PIC:POC responded significantly to temperature and $p\text{CO}_2$,
330 with non-significant effect of N:P supply ratios detected (Table 1). PIC:POC increased

331 with increasing temperature and decreased with enhanced $p\text{CO}_2$ (Fig. 3 d and h).

332 **3.3 Fatty acids**

333 The most abundant FA group was polyunsaturated fatty acids (PUFAs) (33% - 54%
334 of TFAs), followed by SFAs (22% - 46%) and monounsaturated fatty acids (MUFAs)
335 (13% - 27%), across the entire tested gradients of temperature, N:P supply ratios and
336 $p\text{CO}_2$ (Table S4). The high proportion of PUFAs was predominantly caused by high
337 amounts of DHA (12% - 31%) and 18:4n-3 (3% - 13%), and SFAs was mainly
338 represented by 14:0 (13% - 23%) and 16:0 (5% - 11%). The major individual MUFA
339 was 18:1n-9 (8% - 21%).

340 GLMMs results showed significant effects of temperature and $p\text{CO}_2$ on the
341 proportions of both MUFAs and PUFAs, and significant interactions between N:P
342 supply ratios and $p\text{CO}_2$ on SFAs (bold letters in Table 1). Increasing temperature
343 caused a decrease in the proportion of MUFAs and an increase in PUFAs (Fig. 4 a). In
344 contrast, enhanced $p\text{CO}_2$ resulted in an increase in MUFAs and a decrease in PUFAs
345 at higher temperatures (Fig. 4 c). Moreover, enhanced $p\text{CO}_2$ and N (and P) deficiency
346 affected SFA proportion synergistically (Table S3), with the unimodal response of
347 SFA to increasing N:P supply ratios being more pronounced at the high $p\text{CO}_2$ (Fig. S2;
348 Nested model, $p < 0.001$).

349 The proportion of major individual PUFAs (DHA) showed significant responses to
350 temperature and N:P supply ratios, and the interactions between temperature and N:P
351 supply ratios (and $p\text{CO}_2$) (bold letters in Table 1). Increasing temperature and N:P
352 supply ratios caused an overall increase in DHA (Fig. 4 b). The interactions between

353 increasing temperature and nutrient deficiency (and enhanced $p\text{CO}_2$) affected DHA
354 synergistically (Table S3), and the positive effect of temperature became more
355 pronounced at lower N:P supply ratios (Nested model, $p < 0.001$) and at the low $p\text{CO}_2$
356 (Nested model, $p < 0.001$) (Fig. 4 b and d).

357 **4 Discussion**

358 Our study scales the impacts of temperature, N:P supply ratios and $p\text{CO}_2$ on
359 elemental stoichiometry and FA composition of the ubiquitously important calcifier *E.*
360 *huxleyi*, while accounting for their interactive effects. Overall, C:N:P stoichiometry
361 changed markedly in response to N:P supply ratios, showing a maximum of 62%
362 changes under **P** deficiency (Table 2). Both PIC:POC and PUFA proportion increased
363 with warming and decreased under high $p\text{CO}_2$, indicating a partial compensation by
364 $p\text{CO}_2$ of a predominantly temperature-driven response. The overall response patterns
365 of C:N:P stoichiometry in our study are consistent with those on a global scale
366 (Martiny et al., 2013), and **PUFA responses** conform with the meta-analysis results on
367 haptophytes (Hixson and Arts, 2016). In line with these studies, we also detected
368 significant interactions between temperature, N:P supply ratios and $p\text{CO}_2$ on certain
369 response variables (e.g., cellular **elemental contents** and DHA proportion) (Table 1),
370 indicating variable response patterns of elemental stoichiometry and FA composition
371 in *E. huxleyi* under any given constellation of environmental factors. Our results thus
372 underscore the **important effects** of multiple environmental drivers, demonstrating
373 differential effects of the three environmental factors on elemental stoichiometry and
374 FA composition **in** *E. huxleyi*.

375 **4.1 Responses of maximal growth rate**

376 Increasing temperature significantly accelerated μ_{\max} of *E. huxleyi* in our study (Fig.
377 1; Table 1). This positive correlation between increasing temperature and growth rate
378 is typical for many *E. huxleyi* strains within the range of temperature 12 to 24 °C used
379 in our study (Feng et al., 2008; Rosas-Navarro et al., 2016; Sett et al., 2014; van
380 Bleijswijk et al., 1994). However, the extent to which growth rate of *E. huxleyi*
381 increases with increasing temperature varies between *E. huxleyi* strains, which may
382 contribute to specific biogeographic distribution of different strains (Paasche, 2002).
383 For example, growth rate of *E. huxleyi* from the Gulf of Maine (~ 42 °N) was 1.2
384 times higher at 26 °C than that at 16 °C, while growth rate of *E. huxleyi* from the
385 Sargasso Sea (~ 20 - 35 °N) was 1.6 times higher at the higher temperature (Paasche,
386 2002). In our study, μ_{\max} of *E. huxleyi* (from the Azores, ~ 38 °N) was two to three
387 times higher at the highest temperature than that at the lowest temperature, showing a
388 similar change pattern with that in the *E. huxleyi* strain from the Sargasso Sea. The
389 results above suggest that the biogeographic origin of an *E. huxleyi* strain is important
390 for their [growth](#) response to temperature.

391 **4.2 Responses of C:N:P stoichiometry**

392 N:P supply ratios showed highly significant effects on C:N:P stoichiometry (up to a
393 62% [increase](#) in PON:POP under P deficiency) in *E. huxleyi* in our study, with a
394 weaker effect of warming ([a 6% decrease in POC:PON](#)) and non-significant effect of
395 $p\text{CO}_2$ observed (Table 1; Table 2). Similarly, previous lab experiments also reported
396 that nutrient availability played a more important role than temperature and $p\text{CO}_2$ for

397 C:N:P stoichiometry in different strains of *E. huxleyi* such as those from outer
398 Oslofjord (Skau, 2015) and from the Chatham Rise, east of New Zealand (Feng et al.,
399 2017b). Also, for marine phytoplankton community biomass on a global scale nitrate
400 concentration as a proxy of nutrient availability explained 36% and 42% of variation
401 in N:P and C:P, respectively, with the less variation explained by temperature (33%
402 and 38% of the variation in N:P and C:P, respectively) (Martiny et al., 2013).

403 N deficiency caused overall high POC:PON and low PON:POP, while P deficiency
404 resulted in high POC:POP and PON:POP in *E. huxleyi* in this and most previous
405 studies (Langer et al., 2013; Leonardos and Geider, 2005b; Perrin et al., 2016). An
406 important biogeochemical question is the extent to which C:N:P stoichiometry
407 changes in response to N and P deficiency. We found that the high percent change in
408 PON:POP (a 62% increase) under P deficiency was mainly due to a 60% increase in
409 POC:POP, associated with the higher percent change in cellular POC content (a 50%
410 increase) and the lower percent change in cellular POP content (a 8% decrease) (Table
411 2). Under N deficiency, the 36% decrease in PON:POP was driven by a 33% increase
412 in POC:PON and a 15% decrease in POC:POP, along with similar percent changes in
413 cellular elemental contents (32% to 53% decrease). The more variable POC:POP
414 under P deficiency and the less variable POC:PON under N deficiency in our study
415 are consistent with the findings in global suspended particle measurements, which
416 showed the high variability of P:C in response to changes in phosphate and the less
417 variable N:C to changes in nitrate (Galbraith and Martiny, 2015). The consistence of
418 C:N:P stoichiometric responses in our study with those on a global scale may reflect

419 the capacity of *E. huxleyi* to thrive under a wide range of environmental conditions.
420 This capacity was largely revealed by a pan-genome assessment, which distributed
421 genetic traits variably between strains and showed a suit of core genes for the uptake
422 of inorganic nitrogen and N-rich compounds such as urea (Read et al., 2013). In spite
423 of strain diversity within *E. huxleyi*, a recent study suggested that the global
424 physiological response of this species to nutrient environments is highly conserved
425 across strains and may underpin its success under a variety of marine environments
426 (Alexander, 2016).

427 Warming resulted in a significant, but slight decrease in POC:PON (-6%),
428 associated with a 8% decrease in cellular POC content and a 5% increase in cellular
429 PON content, while non-significant responses of POC:POP or PON:POP were
430 observed in *E. huxleyi* (Table 2). In the literature, variable changes of POC:PON to
431 warming were observed in *E. huxleyi*, showing positive (Borchard and Engel, 2012),
432 negative (Feng et al., 2008; Matson et al., 2016), and U-shaped responses
433 (Rosas-Navarro et al., 2016). Similar to our study, Borchard and Engel (2012) also
434 found that increasing temperature caused a stronger change in POC:PON than that in
435 POC:POP at higher P condition in the strain PML B92/11 from Bergen, Norway. The
436 mechanism behind the stronger change in POC:PON compared to POC:POP with
437 warming may be explained by the temperature-dependent physiology hypothesis,
438 which shows that organisms in warmer conditions require fewer P-rich ribosomes,
439 relative to N-rich proteins (Toseland et al., 2013).

440 The single effects of nutrient availability and temperature described above can be

441 modulated by their interactions. We observed synergistic interactions between
442 warming and nutrient deficiency on cellular contents of POC, PON and POP, and
443 between warming and enhanced $p\text{CO}_2$ on cellular POP content (Table 1; Table S3).
444 An overall synergistic effect was also observed across 171 studies on the responses of
445 marine and coastal systems to multiple stressors (Crain et al., 2008). Furthermore,
446 although a 29% change emerged in cellular POP content with rising $p\text{CO}_2$, we found
447 non-significant single effect of $p\text{CO}_2$ on *E. huxleyi* C:N:P stoichiometry. Previous
448 studies showed that rising $p\text{CO}_2$ seems to change phytoplankton stoichiometry under
449 specific conditions, e.g. at high light intensity (400 $\mu\text{mol photons} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) (Feng et
450 al., 2008) and low nutrient loads (500 $\mu\text{mol photons} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ at N:P supply ratio ≤ 15
451 or N:P supply ratio ≥ 30) (Leonardos and Geider, 2005a). In our study, we used
452 relatively lower light intensity (100 $\mu\text{mol photons} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) than that in previous
453 studies, and did not investigate irradiance effects. Additional research is required to
454 assess the effects of other environmental factors such as irradiance and their
455 interactions on C:N:P stoichiometry in our *E. huxleyi* strain.

456 Taken together, our results indicate that C:N:P stoichiometry in *E. huxleyi* largely
457 reflected the changes in N:P supply ratios, across different temperatures and $p\text{CO}_2$
458 levels. However, for two algal species from non-calcifying classes (the diatom *P.*
459 *tricornutum* and the cryptophyte *Rhodomonas* sp.) temperature had the most
460 consistent significant effect on stoichiometric ratios in our previous work (Bi et al.,
461 2017). The results above are consistent with the ranking of environmental control
462 factors in Boyd et al. (2010), which showed that temperature, nitrogen and

463 phosphorus were ranked as important factors for major phytoplankton groups.

464 **4.3 Responses of PIC:POC**

465 Both $p\text{CO}_2$ and temperature had highly significant effects on PIC:POC in our study,
466 with enhanced $p\text{CO}_2$ and warming resulting in an overall 49% decrease and a 41%
467 increase in PIC:POC, respectively, while N:P supply ratios showed no significant
468 effect (Table 1; Table 2). This result is in agreement with rankings of the importance
469 of environmental drivers on PIC:POC in a Southern Hemisphere strain of *E. huxleyi*
470 (isolated from the Chatham Rise), showing the order of $p\text{CO}_2$ (negative effect) >
471 temperature (positive effect) and non-significant effect of nitrate or phosphate (Feng
472 et al., 2017b).

473 The negative effect of enhanced $p\text{CO}_2$ on PIC:POC has been widely observed for
474 different strains of *E. huxleyi* (Meyer and Riebesell, 2015 and references therein). The
475 negative response of PIC:POC to rising $p\text{CO}_2$ in our study was driven by the
476 significant decrease in cellular PIC content (calcification), [with cellular POC content](#)
477 ([photosynthesis](#)) [showing non-significant changes](#) (Table 1; Table 2). Previous studies
478 also showed a greater impact of ocean acidification on calcification than on
479 photosynthesis in coccolithophores (De Bodt et al., 2010; Feng et al., 2017a; Meyer
480 and Riebesell, 2015). Feng et al. (2017a) suggested that the decreased calcification in
481 *E. huxleyi* may be caused by the increased requirement of energy to counteract
482 intracellular acidification. The increased activity of carbonic anhydrase (CA) at low
483 $p\text{CO}_2$ may explain the lack of a significant effect of $p\text{CO}_2$ on the photosynthetic or
484 growth rate (Feng et al., 2017a), as up-regulation of CA at low DIC was previously

485 observed (Bach et al., 2013).

486 Warming causes diverse responses of calcification and photosynthesis within *E.*
487 *huxleyi* species (Rosas-Navarro et al., 2016 and references therein; the present study).

488 Overall, our study showed that the increase in PIC:POC at high temperatures was
489 driven by a **markedly** increased cellular PIC content (28%) and a decreased cellular
490 POC content (-8%) (Table 1; Table 2), consistent with the responses of PIC:POC to
491 warming in other *E. huxleyi* strains such as the strain PML B92/11 (Sett et al., 2014)
492 and the strain CCMP3266 from the Tasman Sea (Matson et al., 2016). The positive
493 response of PIC:POC to increasing temperature may be explained by the allocation of
494 carbon to calcification rather than photosynthesis at high temperatures (Sett et al.,
495 2014).

496 **Significant interactions were observed between temperature and N:P supply ratios,**
497 **and between temperature and $p\text{CO}_2$** on cellular particulate carbon contents in our
498 study (Table 1). For example, the negative relationship between cellular PIC **content**
499 and enhanced $p\text{CO}_2$ became weaker at **higher temperatures** (Fig. 2h). This result is in
500 agreement with the modulating effect of temperature on the CO_2 sensitivity of key
501 metabolic rates in cocolithophores, due to the shift of the optimum CO_2
502 concentration for key metabolic processes towards higher CO_2 concentrations from
503 intermediate to high temperatures (Sett et al., 2014). Specifically, the interactions
504 between warming and nutrient deficiency (and high $p\text{CO}_2$) synergistically affected
505 both PIC and POC cellular contents in most cases in our study (Table S3), indicating
506 that nutrient deficiency and high $p\text{CO}_2$ are likely to enhance the effect of warming on

507 *E. huxleyi* calcification and photosynthesis efficiency.

508 In summary, our results showed an overall reduced PIC:POC in *E. huxleyi* under
509 future ocean scenarios of warming and higher $p\text{CO}_2$ (Fig. 3h; Table 2), consistent with
510 the reduced ratio of calcium carbon production to organic carbon during the *E. huxleyi*
511 bloom in previous mesocosm experiments (Delille et al., 2005; Engel et al., 2005). It
512 is worth noting that cellular PIC and POC contents are a measure for physiological
513 response and cannot be directly used to infer population response, as different
514 responses between cellular and population yields of PIC (and POC) (as $\mu\text{g ml}^{-1}$) to
515 environmental changes were evident in previous work (Matthiessen et al., 2012) and
516 the present study (Table S5, S6; Fig. S3, S4). Thus, scaling our results up to
517 coccolithophores carbon export should consider these uncertainties.

518 **4.4 Responses of fatty acids**

519 Our study provides [one of](#) the first experimental [demonstrations](#) of the relative
520 importance of temperature, N:P supply ratios and $p\text{CO}_2$ on *E. huxleyi* FA composition.
521 Both temperature and $p\text{CO}_2$ had significant effects on the proportions of MUFA and
522 PUFA, with warming causing larger changes in [MUFA](#)s and PUFA than rising $p\text{CO}_2$,
523 while significant effects of N:P supply ratios [were](#) only observed for DHA proportion
524 (Table 1; Table 2).

525 Increasing temperature caused a 20% decline in MUFA proportion and a 13%
526 increase in PUFA proportion in our study (Table 2). This result is consistent with the
527 negative response of MUFA proportion and positive response of PUFA proportion to
528 warming in other haptophytes based on a meta-analysis on 137 FA profiles (Hixson

529 and Arts, 2016), showing an opposite response to general patterns of phytoplankton
530 FAs to warming. Although warming is expected to have a negative effect on the
531 degree of fatty acid unsaturation to maintain cell membrane structural functions
532 (Fuschino et al., 2011; Guschina and Harwood, 2006; Sinensky, 1974), variable FA
533 responses to warming were widely observed in different phytoplankton groups (Bi et
534 al., 2017; Renaud et al., 2002; Thompson et al., 1992). Contradictory findings were
535 even reported in meta-analyses on large FA profiles such as the absence (Galloway
536 and Winder, 2015) or presence (Hixson and Arts, 2016) of the negative correlation
537 between temperature and the proportion of long-chain EFAs in freshwater and marine
538 phytoplankton. While the underling mechanisms of variable FA responses are still
539 unclear, it is known that both phylogeny and environmental conditions determine
540 phytoplankton FA composition (Bi et al., 2014; Dalsgaard et al., 2003; Galloway and
541 Winder, 2015). In our study, we found significant interactions between temperature
542 and $p\text{CO}_2$ (and N:P supply ratios) on the individual FA component DHA, showing that
543 $p\text{CO}_2$ and nutrient availability may alter the effect of warming on *E. huxleyi* FA
544 composition.

545 Enhanced $p\text{CO}_2$ led to an overall 7% increase in MUFA and a 7% decrease in
546 PUFA (Table 2), consistent with FA response patterns in the *E. huxleyi* strain PML
547 B92/11 (Riebesell et al., 2000) and the strain AC472 from Western New Zealand,
548 South Pacific (Fiorini et al., 2010). Also in a natural plankton community (Raunefjord,
549 southern Norway), PUFA proportion was reduced at high $p\text{CO}_2$ level in the nano-size
550 fraction, suggesting a reduced Haptophyta (dominated by *E. huxleyi*) biomass and a

551 negative effect of high $p\text{CO}_2$ on PUFA proportion (Bermúdez et al., 2016). To date,
552 several mechanisms have been suggested to explain the reduced PUFAs at high $p\text{CO}_2$
553 in green algae (Pronina et al., 1998; Sato et al., 2003; Thompson, 1996), with much
554 less work conducted in other phytoplankton groups. One possible mechanism was
555 demonstrated in the study on *Chlamydomonas reinhardtii*, showing that the repression
556 of the CO_2 -concentrating mechanisms (CCMs) was associated with reduced FA
557 desaturation at high CO_2 concentration (Pronina et al., 1998). Our observed decrease
558 in the proportion and content of PUFAs at higher $p\text{CO}_2$ (Table S6) fits well with the
559 mechanism proposed by Pronina et al. (1998), which may be attributed to the
560 repression of CCMs at high $p\text{CO}_2$ in *E. huxleyi*.

561 N and P deficiency caused no **significant** changes in the proportions of MUFA and
562 PUFA, **while a** 14% to 22% increase in DHA proportion **was** observed (Table 2).
563 While nutrients often play a major role on phytoplankton lipid composition (Fields et
564 al., 2014; Hu et al., 2008), the less pronounced effects of nutrient deficiency in our
565 study indicate a unique lipid biosynthesis in *E. huxleyi*. Indeed, Van Mooy et al. (2009)
566 suggested that *E. huxleyi* used non-phosphorus betaine lipids as substitutes for
567 phospholipids in response to P scarcity. Genes are also present in the core genome of
568 *E. huxleyi* for the synthesis of betaine lipids and unusual lipids used as
569 nutritional/feedstock supplements (Read et al., 2013). Therefore, the lack of
570 significant nutrient effects on most FA groups in *E. huxleyi* in our study may be
571 caused by the functioning of certain lipid substitutions under nutrient deficiency.

572 In summary, our study showed stronger effects of $p\text{CO}_2$ and temperature, and a

573 weaker effect of N:P supply ratios on the proportions of unsaturated FAs in *E. huxleyi*.
574 It should be noted that using different units to quantify FA composition may cause
575 contradictory results, e.g., an increase in PUFA proportion (% of TFAs) but
576 non-significant changes in PUFA contents per biomass ($\mu\text{g mg C}^{-1}$) with increasing
577 temperature in our study (Table S5, S6). Moreover, PUFA contents per biomass in two
578 species of non-calcifying classes (*P. tricornutum* and *Rhodomonas* sp.) showed a
579 different response pattern from that observed in *E. huxleyi* in our study, i.e., a
580 significant negative effect of enhanced $p\text{CO}_2$ on PUFA contents in *E. huxleyi* (Table
581 S6), but a non-significant effect of $p\text{CO}_2$ on PUFA contents in *P. tricornutum* and
582 *Rhodomonas* sp. (Bi et al., 2017). This different response between phytoplankton
583 groups is in agreement with findings in mesocosm studies (Bermúdez et al., 2016;
584 Leu et al., 2013), suggesting that changes in taxonomic composition can cause
585 different relationships between PUFAs and $p\text{CO}_2$ in natural phytoplankton
586 community.

587 **4.5 Implications for marine biogeochemistry and ecology**

588 We observed an overall increase in POC:PON (with warming and N deficiency)
589 and POC:POP (with N and P deficiency) in *E. huxleyi*, while enhanced $p\text{CO}_2$ showed
590 no significant effects (Table 2). This result indicates that nitrogen and phosphorus
591 requirements in *E. huxleyi* are likely to reduce under projected future changes in
592 temperature and nutrient availability, and show minor changes in response to higher
593 $p\text{CO}_2$. Likewise, Hutchins et al. (2009) suggested negligible or minor effects of
594 projected future changes in $p\text{CO}_2$ on most phytoplankton phosphorus requirements.

595 Moreover, the overall low PIC:POC under future ocean scenarios (warming and
596 enhanced $p\text{CO}_2$) indicates that carbon production by the strain *E. huxleyi* in our study
597 acts as a carbon sink. This argument is consistent with the findings of the decreased
598 calcification with increasing $p\text{CO}_2$ in most coccolithophores (Beaufort et al., 2011;
599 Hutchins and Fu, 2017), which may reduce vertical exported fluxes of sinking
600 calcium carbonate and minimize calcification as a carbon source term, ultimately
601 downsizing the ocean's biological carbon cycle (Hutchins and Fu, 2017).

602 Besides the overall increase in POC:PON and POC:POP, we found an overall
603 increase in the proportions of PUFAs (with warming and enhanced $p\text{CO}_2$) and DHA
604 (with warming, N and P deficiency and enhanced $p\text{CO}_2$) in *E. huxleyi* (Table 2), but a
605 decrease in PUFA and DHA contents per biomass with enhanced $p\text{CO}_2$ (Table S6).
606 The relationship between changes in stoichiometry and FA composition in
607 phytoplankton varies in a complex way with environmental conditions and algal
608 taxonomy (Bi et al., 2014; Pedro Cañavate et al., 2017; Sterner and Schulz, 1998). For
609 example, the correlation between PON:POC and PUFA contents per biomass was
610 negative in *Rhodomonas* sp. and positive in *P. tricornutum* under N deficiency (Bi et
611 al., 2014). Our findings thus indicate that elemental composition responses may be
612 coupled with responses in essential FA composition in the strain of *E. huxleyi* studied
613 under certain configurations of environmental drivers. Such a linkage between
614 stoichiometric and FA composition is important in studies of food web dynamics, as
615 the C:N and C:P stoichiometry and PUFAs both have been used as indicators of
616 nutritional quality of phytoplankton, with high POC:PON (and POC:POP) and low

617 contents in certain PUFAs often constraining zooplankton production by reducing
618 trophic carbon transfer from phytoplankton to zooplankton (Hessen, 2008; Jónasdóttir
619 et al., 2009; Müller-Navarra et al., 2000; Malzahn et al., 2016). In addition, other
620 factors such as the cell size of phytoplankton and nutritional requirements of
621 consumers can also influence trophic transfer efficiency (Anderson and Pond, 2000;
622 Sommer et al., 2016). Nevertheless, studies on plant-herbivore interactions reported
623 that changes in elemental and biochemical composition in phytoplankton can translate
624 to higher trophic levels (Kamya et al., 2017; Malzahn et al., 2010; Rossoll et al., 2012)
625 and refer to direct effects of environmental changes on low trophic level consumers,
626 which can be modified by indirect bottom-up driven impacts through the primary
627 producers (Garzke et al., 2016; Garzke et al., 2017).

628 **5 Conclusions**

629 Our study shows that N:P supply ratios had the strongest effect on C:N:P
630 stoichiometry, while temperature and $p\text{CO}_2$ played more influential roles on PIC:POC
631 and PUFA proportions in *E. huxleyi*. The specific response patterns of elemental ratios
632 and FAs have important implications for understanding biogeochemical and
633 ecological functioning of *E. huxleyi*. The observations presented here suggest
634 differential responses of elements and FAs to rising temperature, nutrient deficiency
635 and enhanced $p\text{CO}_2$ in *E. huxleyi*, being to some extent unique compared to algal
636 species from non-calcifying classes. Thus, the role of multiple environmental drivers
637 under the biodiversity context should be considered to truly estimate the future
638 functioning of phytoplankton in the changing marine environments.

639 **Data availability:** data sets are available upon request by contacting Meixun Zhao
640 (maxzhao@ouc.edu.cn and maxzhao04@yahoo.com).

641 **Author contribution:** R. Bi, S. Ismar, U. Sommer and M. Zhao designed the
642 experiments and R. Bi carried them out. R. Bi prepared the manuscript with
643 contributions from all co-authors.

644 **Competing interests:** the authors declare that they have no conflict of interest.

645

646 **Acknowledgements** The authors thank Thomas Hansen, Cordula Meyer, Bente
647 Gardeler and Petra Schulz for technical assistance. Birte Matthiessen and Renate
648 Ebbinhaus are gratefully acknowledged for providing the *E. huxleyi* strain. We thank
649 Dorthe Ozod-Seradj, Carolin Paul, Si Li, Xupeng Chi and Yong Zhang for their
650 assistance during the experiments, and Philipp Neitzschel, Kastriot Qelaj and Jens
651 Wernhöner for helping with DIC analysis. Jessica Garzke is acknowledged for her
652 comments on the calculation of interaction magnitude. This study was funded by the
653 National Natural Science Foundation of China (Grant No. 41521064; No. 41506086;
654 No. 41630966), the Scientific Research Foundation for the Returned Overseas
655 Chinese Scholars, State Education Ministry (Grant No. [2015]1098), the “111”
656 Project (B13030) and GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. This
657 is MCTL contribution 139.

658

659

660

661 **References**

662 Alexander, H.: Defining the ecological and physiological traits of phytoplankton across
663 marine ecosystems, Ph.D. thesis, Woods Hole Oceanographic Institution, Woods Hole,
664 USA, 179 pp., 2016.

665 Anderson, T. R., Boersma, M., and Raubenheimer, D.: Stoichiometry: linking
666 elements to biochemicals, *Ecology*, 85, 1193-1202, doi: 10.1890/02-0252, 2004.

667 Anderson, T. R. and Pond, D. W.: Stoichiometric theory extended to micronutrients:
668 Comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition
669 of marine copepods, *Limnol. Oceanogr.*, 45, 1162-1167, doi:
670 10.4319/lo.2000.45.5.1162, 2000.

671 Arndt, C. and Sommer, U.: Effect of algal species and concentration on development
672 and fatty acid composition of two harpacticoid copepods, *Tisbe* sp. and *Tachidius*
673 *discipes*, and a discussion about their suitability for marine fish larvae, *Aquac. Nutr.*,
674 20, 44-59, doi: 10.1111/anu.12051, 2014.

675 Bach, L. T., Mackinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D. C.,
676 Brownlee, C., and Riebesell, U.: Dissecting the impact of CO₂ and pH on the
677 mechanisms of photosynthesis and calcification in the coccolithophore *Emiliania*
678 *huxleyi*, *New Phytol.*, 199, 121-134, doi: 10.1111/nph.12225, 2013.

679 Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl,
680 N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., and
681 de Vargas, C.: Sensitivity of coccolithophores to carbonate chemistry and ocean
682 acidification, *Nature*, 476, 80-83, doi: 10.1038/nature10295, 2011.

683 Bermúdez, J. R., Riebesell, U., Larsen, A., and Winder, M.: Ocean acidification
684 reduces transfer of essential biomolecules in a natural plankton community, *Sci. Rep.-*
685 *UK*, 6, 27749, doi: 10.1038/srep27749, 2016.

686 Bi, R., Arndt, C., and Sommer, U.: Stoichiometric responses of phytoplankton species
687 to the interactive effect of nutrient supply ratios and growth rates, *J. Phycol.*, 48,
688 539-549, doi: 10.1111/j.1529-8817.2012.01163.x, 2012.

689 Bi, R., Arndt, C., and Sommer, U.: Linking elements to biochemicals: effects of
690 nutrient supply ratios and growth rates on fatty acid composition of phytoplankton
691 species, *J. Phycol.*, 50, 117-130, doi: 10.1111/jpy.12140, 2014.

692 Bi, R., Ismar, S. M. H., Sommer, U., and Zhao, M.: Environmental dependence of the
693 correlations between stoichiometric and fatty acid-based indicators of phytoplankton
694 food quality, *Limnol. Oceanogr.*, 62, 334-347, doi: 10.1002/lno.10429, 2017.

695 Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M.

696 H. H., and White, J.-S. S.: Generalized linear mixed models: a practical guide for
697 ecology and evolution, *Trends Ecol. Evol.*, 24, 127-135, doi:
698 10.1016/j.tree.2008.10.008, 2009.

699 Borchard, C. and Engel, A.: Organic matter exudation by *Emiliania huxleyi* under
700 simulated future ocean conditions, *Biogeosciences*, 9, 3405-3423, doi:
701 10.5194/bg-9-3405-2012, 2012.

702 Boyd, P. W., Lennartz, S. T., Glover, D. M., and Doney, S. C.: Biological
703 ramifications of climate-change-mediated oceanic multi-stressors, *Nat. Clim. Change*,
704 5, 71-79, doi: 10.1038/nclimate2441, 2015.

705 Boyd, P. W., Strzepek, R., Fu, F., and Hutchins, D. A.: Environmental control of
706 open-ocean phytoplankton groups: Now and in the future, *Limnol. Oceanogr.*, 55,
707 1353-1376, doi: 10.4319/lo.2010.55.3.1353, 2010.

708 Bracewell, S. A., Johnston, E. L., and Clark, G. F.: Latitudinal variation in the
709 competition-colonisation trade-off reveals rate-mediated mechanisms of coexistence,
710 *Ecol. Lett.*, 20, 947-957, doi: 10.1111/ele.12791, 2017.

711 Charalampopoulou, A., Poulton, A. J., Bakker, D. C. E., Lucas, M. I., Stinchcombe, M.
712 C., and Tyrrell, T.: Environmental drivers of coccolithophore abundance and
713 calcification across Drake Passage (Southern Ocean), *Biogeosciences*, 13, 5717-5735,
714 doi: 10.5194/bg-13-5917-2016, 2016.

715 Christensen, M. R., Graham, M. D., Vinebrooke, R. D., Findlay, D. L., Paterson, M. J.,
716 and Turner, M. A.: Multiple anthropogenic stressors cause ecological surprises in
717 boreal lakes, *Glob. Change Biol.*, 12, 2316-2322, doi:
718 10.1111/j.1365-2486.2006.01257.x, 2006.

719 Crain, C. M., Kroeker, K., and Halpern, B. S.: Interactive and cumulative effects of
720 multiple human stressors in marine systems, *Ecol. Lett.*, 11, 1304-1315, doi:
721 10.1111/j.1461-0248.2008.01253.x, 2008.

722 Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D., and Hagen, W.: Fatty acid
723 trophic markers in the pelagic marine environment, *Adv. Mar. Biol.*, 46, 225-340, doi:
724 10.1016/S0065-2881(03)46005-7, 2003.

725 De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K., and Chou, L.: Individual and
726 interacting effects of $p\text{CO}_2$ and temperature on *Emiliania huxleyi* calcification: study
727 of the calcite production, the coccolith morphology and the coccospHERE size,
728 *Biogeosciences*, 7, 1401-1412, doi: 10.5194/bg-7-1401-2010, 2010.

729 Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G.
730 J., Frankignoulle, M., Borges, A. V., Riebesell, U., and Gattuso, J. P.: Response of
731 primary production and calcification to changes of $p\text{CO}_2$ during experimental blooms

732 of the coccolithophorid *Emiliania huxleyi*, Global Biogeochem. Cy., 19, GB2023, doi:
733 10.1029/2004gb002318, 2005.

734 Dickson, A. and Millero, F.: A comparison of the equilibrium constants for the
735 dissociations of carbonic acid in seawater media, Deep-Sea Res., 34, 1733-1741, doi:
736 10.1016/0198-0149(87)90021-5, 1987.

737 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A.,
738 Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J.,
739 Rabalais, N. N., Sydeman, W. J., and Talley, L. D.: Climate change impacts on marine
740 ecosystems, Annu. Rev. Mar. Sci., 4, 11-37, doi:
741 10.1146/annurev-marine-041911-111611, 2012.

742 Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B.,
743 Gattuso, J. P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J.,
744 Pizay, M. D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A., and Riebesell, U.:
745 Testing the direct effect of CO₂ concentration on a bloom of the coccolithophorid
746 *Emiliania huxleyi* in mesocosm experiments, Limnol. Oceanogr., 50, 493-507, doi:
747 10.4319/lo.2005.50.2.0493, 2005.

748 Feng, Y., Roleda, M. Y., Armstrong, E., Boyd, P. W., and Hurd, C. L.: Environmental
749 controls on the growth, photosynthetic and calcification rates of a Southern
750 Hemisphere strain of the coccolithophore *Emiliania huxleyi*, Limnol. Oceanogr., 62,
751 519-540, doi: 10.1002/lo.10442, 2017a.

752 Feng, Y., Roleda, M. Y., Armstrong, E., Law, C. S., Boyd, P. W., and Hurd, C. L.:
753 Environmental controls on the elemental composition of a Southern Hemisphere
754 strain of the coccolithophore *Emiliania huxleyi*, Biogeosciences Discuss., 1-35, doi:
755 10.5194/bg-2017-332, 2017b.

756 Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F.-X., Rose, J. M., and Hutchins, D. A.:
757 Interactive effects of increased pCO₂, temperature and irradiance on the marine
758 coccolithophore *Emiliania huxleyi* (Prymnesiophyceae), Eur. J. Phycol., 43, 87-98,
759 doi: 10.1080/09670260701664674, 2008.

760 Fields, M. W., Hise, A., Lohman, E. J., Bell, T., Gardner, R. D., Corredor, L., Moll, K.,
761 Peyton, B. M., Characklis, G. W., and Gerlach, R.: Sources and resources: importance
762 of nutrients, resource allocation, and ecology in microalgal cultivation for lipid
763 accumulation, Appl. Microbiol. Biot., 98, 4805-4816, doi:
764 10.1007/s00253-014-5694-7, 2014.

765 Fiorini, S., Gattuso, J.-P., van Rijswijk, P., and Middelburg, J.: Coccolithophores lipid
766 and carbon isotope composition and their variability related to changes in seawater
767 carbonate chemistry, J. Exp. Mar. Biol. Ecol., 394, 74-85, doi:
768 10.1016/j.jembe.2010.07.020, 2010.

769 Frøe, C. H., Kruetzen, M., Mann, J., Connor, R. C., Bejder, L., and Sherwin, W. B.:
770 Social and genetic interactions drive fitness variation in a free-living dolphin
771 population, Proc. Natl. Acad. Sci. U. S. A., 107, 19949-19954, doi:
772 10.1073/pnas.1007997107, 2010.

773 Fuschino, J. R., Guschina, I. A., Dobson, G., Yan, N. D., Harwood, J. L., and Arts, M.
774 T.: Rising water temperatures alter lipid dynamics and reduce N-3 essential fatty acid
775 concentrations in *Scenedesmus obliquus* (Chlorophyta), J. Phycol., 47, 763-774, doi:
776 10.1111/j.1529-8817.2011.01024.x, 2011.

777 Galbraith, E. D. and Martiny, A. C.: A simple nutrient-dependence mechanism for
778 predicting the stoichiometry of marine ecosystems, Proc. Natl. Acad. Sci. U. S. A.,
779 112, 8199-8204, doi: 10.1073/pnas.1423917112, 2015.

780 Galloway, A. W. E. and Winder, M.: Partitioning the relative importance of phylogeny
781 and environmental conditions on phytoplankton fatty acids, Plos One, 10, e0130053,
782 doi: 10.1371/journal.pone.0130053, 2015.

783 Garzke, J., Hansen, T., Ismar, S. M. H., and Sommer, U.: Combined effects of ocean
784 warming and acidification on copepod abundance, body size and fatty acid content,
785 Plos One, 11, e0155952, doi: 10.1371/journal.pone.0155952, 2016.

786 Garzke, J., Sommer, U., and Ismar, S. M. H.: Is the chemical composition of biomass
787 the agent by which ocean acidification influences on zooplankton ecology?, Aquat.
788 Sci., 79, 733-748, doi: 10.1007/s00027-017-0532-5, 2017.

789 Guschina, I. A. and Harwood, J. L.: Mechanisms of temperature adaptation in
790 poikilotherms, Febs Lett., 580, 5477-5483, doi: 10.1016/j.febslet.2006.06.066, 2006.

791 Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater
792 Analysis, Grasshoff, K., Kremling, K., and Ehrhardt, M. (Eds.), WILEY-VCH,
793 Weinheim, Germany, 159-228, 1999.

794 Hansen, T., Gardeler, B., and Matthiessen, B.: Technical Note: Precise quantitative
795 measurements of total dissolved inorganic carbon from small amounts of seawater
796 using a gas chromatographic system, Biogeosciences, 10, 6601-6608, doi:
797 10.5194/bg-10-6601-2013, 2013.

798 Hansson, I.: A new set of acidity constants for carbonic acid and boric acid in
799 seawater, Deep-Sea Res., 20, 661-678, doi: 10.1016/0011-7471(73)90100-9, 1973.

800 Harada, N., Sato, M., Oguri, K., Hagino, K., Okazaki, Y., Katsuki, K., Tsuji, Y., Shin,
801 K.-H., Tadai, O., Saitoh, S.-I., Narita, H., Konno, S., Jordan, R. W., Shiraiwa, Y., and
802 Grebmeier, J.: Enhancement of coccolithophorid blooms in the Bering Sea by recent
803 environmental changes, Global Biogeochem. Cy., 26, GB2036, doi:
804 10.1029/2011gb004177, 2012.

805 Hessen, D. O.: Efficiency, energy and stoichiometry in pelagic food webs; reciprocal
806 roles of food quality and food quantity, Freshwater Rev., 1, 43-57, doi:
807 10.1608/frj-1.1.3, 2008.

808 Hixson, S. M. and Arts, M. T.: Climate warming is predicted to reduce omega-3,
809 long-chain, polyunsaturated fatty acid production in phytoplankton, Glob. Change
810 Biol., 22, 2744-2755, doi: 10.1111/gcb.13295, 2016.

811 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and
812 Darzins, A.: Microalgal triacylglycerols as feedstocks for biofuel production:
813 perspectives and advances, Plant J., 54, 621-639, doi:
814 10.1111/j.1365-313X.2008.03492.x, 2008.

815 Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat. Microbiol.,
816 2, 17058, doi: 10.1038/nm microbiol.2017.58, 2017.

817 Hutchins, D. A., Mulholland, M. R., and Fu, F.: Nutrient cycles and marine microbes
818 in a CO₂-enriched ocean, Oceanography, 22, 128-145, doi: 10.5670/oceanog.2009.103,
819 2009.

820 IPCC: Climate change 2014: Synthesis report. Contribution of working groups I, II
821 and III to the fifth assessment report of the intergovernmental panel on climate change,
822 Geneva, Switzerland, 151 pp., 2014.

823 Ismar, S. M. H., Hansen, T., and Sommer, U.: Effect of food concentration and type of
824 diet on *Acartia* survival and naupliar development, Mar. Biol., 154, 335-343, doi:
825 10.1007/s00227-008-0928-9, 2008.

826 Jónasdóttir, S. H., Visser, A. W., and Jespersen, C.: Assessing the role of food quality
827 in the production and hatching of *Temora longicornis* eggs, Mar. Ecol. Prog. Ser., 382,
828 139-150, doi: 10.3354/meps07985, 2009.

829 Jamil, T., Kruk, C., and ter Braak, C. J. F.: A unimodal species response model
830 relating traits to environment with application to phytoplankton communities, Plos
831 One, 9, e97583, doi: 10.1371/journal.pone.0097583, 2014.

832 Joint, I., Doney, S. C., and Karl, D. M.: Will ocean acidification affect marine
833 microbes?, Isme Journal, 5, 1-7, doi: 10.1038/ismej.2010.79, 2011.

834 Kamya, P. Z., Byrne, M., Mos, B., Hall, L., and Dworjanyn, S. A.: Indirect effects of
835 ocean acidification drive feeding and growth of juvenile crown-of-thorns starfish,
836 *Acanthaster planci*, P. Roy. Soc. B-Biol. Sci., 284, 20170778, doi:
837 10.1098/rspb.2017.0778, 2017.

838 Lampert, W. and Sommer, U.: Limnoecology, Oxford University Press, Oxford, 2007.

839 Langer, G., Oetjen, K., and Brenneis, T.: Coccolithophores do not increase particulate

840 carbon production under nutrient limitation: A case study using *Emiliania huxleyi*
841 (PML B92/11), J. Exp. Mar. Biol. Ecol., 443, 155-161, doi:
842 10.1016/j.jembe.2013.02.040, 2013.

843 Leonardos, N. and Geider, R. J.: Elemental and biochemical composition of
844 *Rhinomonas reticulata* (Cryptophyta) in relation to light and nitrate-to-phosphate
845 supply ratios, J. Phycol., 41, 567-576, doi: 10.1111/j.1529-8817.2005.00082.x, 2005a.

846 Leonardos, N. and Geider, R. J.: Elevated atmospheric carbon dioxide increases
847 organic carbon fixation by *Emiliania huxleyi* (Haptophyta), under nutrient-limited
848 high-light conditions, J. Phycol., 41, 1196-1203, doi:
849 10.1111/j.1529-8817.2005.00152.x, 2005b.

850 Leu, E., Daase, M., Schulz, K. G., Stuhr, A., and Riebesell, U.: Effect of ocean
851 acidification on the fatty acid composition of a natural plankton community,
852 Biogeosciences, 10, 1143-1153, doi: 10.5194/bg-10-1143-2013, 2013.

853 Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U., and
854 Worm, B.: Effects of sea surface warming on marine plankton, Ecol. Lett., 17,
855 614-623, doi: 10.1111/ele.12265, 2014.

856 Lynn, S. G., Kilham, S. S., Kreeger, D. A., and Interlandi, S. J.: Effect of nutrient
857 availability on the biochemical and elemental stoichiometry in the freshwater diatom
858 *Stephanodiscus minutulus* (Bacillariophyceae), J. Phycol., 36, 510-522, doi:
859 10.1046/j.1529-8817.2000.98251.x, 2000.

860 Müller-Navarra, D. C., Brett, M. T., Liston, A. M., and Goldman, C. R.: A highly
861 unsaturated fatty acid predicts carbon transfer between primary producers and
862 consumers, Nature, 403, 74-77, doi: 10.1038/47469, 2000.

863 Malzahn, A. M., Doerfler, D., and Boersma, M.: Junk food gets healthier when it's
864 warm, Limnol. Oceanogr., 61, 1677-1685, doi: 10.1002/lno.10330, 2016.

865 Malzahn, A. M., Hantsche, F., Schoo, K. L., Boersma, M., and Aberle, N.:
866 Differential effects of nutrient-limited primary production on primary, secondary or
867 tertiary consumers, Oecologia, 162, 35-48, doi: 10.1007/s00442-009-1458-y, 2010.

868 Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin, S. A.,
869 and Lomas, M. W.: Strong latitudinal patterns in the elemental ratios of marine
870 plankton and organic matter, Nat. Geosci., 6, 279-283, doi: 10.1038/ngeo1757, 2013.

871 Matson, P. G., Ladd, T. M., Halewood, E. R., Sangodkar, R. P., Chmelka, B. F., and
872 Iglesias-Rodriguez, D.: Intraspecific differences in biogeochemical responses to
873 thermal change in the coccolithophore *Emiliania huxleyi*, Plos One, 11, e0162313, doi:
874 10.1371/journal.pone.0162313, 2016.

875 Matthiessen, B., Eggers, S. L., and Krug, S. A.: High nitrate to phosphorus regime

876 attenuates negative effects of rising $p\text{CO}_2$ on total population carbon accumulation,
877 Biogeosciences, 9, 1195-1203, doi: 10.5194/bg-9-1195-2012, 2012.

878 Mehrbach, C., Culberson, C., Hawley, J., and Pytkowicz, R.: Measurement of the
879 apparent dissociation constants of carbonic acid in seawater at atmospheric pressure,
880 Limnol. Oceanogr, 18, 897-907, doi: 10.4319/lo.1973.18.6.0897, 1973.

881 Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores
882 to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671-1682, doi:
883 10.5194/bg-12-1671-2015, 2015.

884 Milner, S., Langer, G., Grelaud, M., and Ziveri, P.: Ocean warming modulates the
885 effects of acidification on *Emiliania huxleyi* calcification and sinking, Limnol.
886 Oceanogr., 61, 1322-1336, doi: 10.1002/lno.10292, 2016.

887 Nanninga, H. J. and Tyrrell, T.: Importance of light for the formation of algal blooms
888 by *Emiliania huxleyi*, Mar. Ecol. Prog. Ser., 136, 195-203, doi: 10.3354/meps136195,
889 1996.

890 Oviedo, A. M., Langer, G., and Ziveri, P.: Effect of phosphorus limitation on coccolith
891 morphology and element ratios in Mediterranean strains of the coccolithophore
892 *Emiliania huxleyi*, J. Exp. Mar. Biol. Ecol., 459, 105-113, doi:
893 10.1016/j.jembe.2014.04.021, 2014.

894 Paasche, E.: Roles of nitrogen and phosphorus in coccolith formation in *Emiliania*
895 *huxleyi* (Prymnesiophyceae), Eur. J. Phycol., 33, 33-42, doi:
896 10.1017/s0967026297001480, 1998.

897 Paasche, E.: A review of the coccolithophorid *Emiliania huxleyi* (Prymnesiophyceae),
898 with particular reference to growth, coccolith formation, and
899 calcification-photosynthesis interactions, Phycologia, 40, 503-529, doi:
900 10.2216/i0031-8884-40-6-503.1, 2002.

901 Pedro Cañavate, J., Armada, I., and Hachero-Cruzado, I.: Common and
902 species-specific effects of phosphate on marine microalgae fatty acids shape their
903 function in phytoplankton trophic ecology, Microb. Ecol., 74, 623-639, doi:
904 10.1007/s00248-017-0983-1, 2017.

905 Perrin, L., Probert, I., Langer, G., and Aloisi, G.: Growth of the coccolithophore
906 *Emiliania huxleyi* in light- and nutrient-limited batch reactors: relevance for the
907 BIOSOPE deep ecological niche of coccolithophores, Biogeosciences, 13, 5983-6001,
908 doi: 10.5194/bg-13-5983-2016, 2016.

909 Piepho, M., Arts, M. T., and Wacker, A.: Species-specific variation in fatty acid
910 concentrations of four phytoplankton species: does phosphorus supply influence the
911 effect of light intensity or temperature?, J. Phycol., 48, 64-73, doi:

912 10.1111/j.1529-8817.2011.01103.x, 2012.

913 Pierrot, D., Lewis, E., and Wallace, D.: MS Excel program developed for CO₂ system
914 calculations: ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Centre, Oak
915 Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, 2006.

916 Pronina, N. A., Rogova, N. B., Furnadzhieva, S., and Klyachko-Gurvich, G. L.: Effect
917 of CO₂ concentration on the fatty acid composition of lipids in *Chlamydomonas*
918 *reinhardtii* cia-3, a mutant deficient in CO₂-concentrating mechanism, Russ. J. Plant
919 Physiol., 45, 447-455, 1998.

920 Provasoli, L.: Growing marine seaweeds., in: Proc. 4th Internatl. Seaweed Symp., De
921 Virville, A. D. and Feldmann, J. (Eds.), Pergamon Press, Oxford, UK, 9-17, 1963.

922 Raitsos, D. E., Lavender, S. J., Pradhan, Y., Tyrrell, T., Reid, P. C., and Edwards, M.:
923 Coccolithophore bloom size variation in response to the regional environment of the
924 subarctic North Atlantic, Limnol. Oceanogr., 51, 2122-2130, doi:
925 10.4319/lo.2006.51.5.2122, 2006.

926 Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., Mayer, C.,
927 Miller, J., Monier, A., Salamov, A., Young, J., Aguilar, M., Claverie, J. M.,
928 Frickenhaus, S., Gonzalez, K., Herman, E. K., Lin, Y. C., Napier, J., Ogata, H., Sarno,
929 A. F., Shmutz, J., Schroeder, D., de Vargas, C., Verret, F., von Dassow, P., Valentin, K.,
930 Van de Peer, Y., Wheeler, G., Allen, A. E., Bidle, K., Borodovsky, M., Bowler, C.,
931 Brownlee, C., Cock, J. M., Elias, M., Gladyshev, V. N., Groth, M., Guda, C., Hadaegh,
932 A., Iglesias-Rodriguez, M. D., Jenkins, J., Jones, B. M., Lawson, T., Leese, F.,
933 Lindquist, E., Lobanov, A., Lomsadze, A., Malik, S. B., Marsh, M. E., Mackinder, L.,
934 Mock, T., Mueller-Roeber, B., Pagarete, A., Parker, M., Probert, I., Quesneville, H.,
935 Raines, C., Rensing, S. A., Riano-Pachon, D. M., Richier, S., Rokitta, S., Shiraiwa, Y.,
936 Soanes, D. M., van der Giezen, M., Wahlund, T. M., Williams, B., Wilson, W., Wolfe,
937 G., Wurch, L. L., Dacks, J. B., Delwiche, C. F., Dyhrman, S. T., Gloeckner, G., John,
938 U., Richards, T., Worden, A. Z., Zhang, X. Y., and Grigoriev, I. V.: Pan genome of the
939 phytoplankton *Emiliania* underpins its global distribution, Nature, 499, 209-213, doi:
940 10.1038/nature12221, 2013.

941 Renaud, S. M., Thinh, L.-V., Lambrinidis, G., and Parry, D. L.: Effect of temperature
942 on growth, chemical composition and fatty acid composition of tropical Australian
943 microalgae grown in batch cultures, Aquaculture, 211, 195-214, doi:
944 10.1016/S0044-8486(01)00875-4, 2002.

945 Riebesell, U., Revill, A. T., Holdsworth, D. G., and Volkman, J. K.: The effects of
946 varying CO₂ concentration on lipid composition and carbon isotope fractionation in
947 *Emiliania huxleyi*, Geochim. Cosmochim. Ac., 64, 4179-4192, doi:
948 10.1016/s0016-7037(00)00474-9, 2000.

949 Rokitta, S. D. and Rost, B.: Effects of CO₂ and their modulation by light in the

950 life-cycle stages of the coccolithophore *Emiliania huxleyi*, Limnol. Oceanogr., 57,
951 607-618, doi: 10.4319/lo.2012.57.2.0607, 2012.

952 Rosas-Navarro, A., Langer, G., and Ziveri, P.: Temperature affects the morphology
953 and calcification of *Emiliania huxleyi* strains, Biogeosciences, 13, 2913-2926, doi:
954 10.5194/bg-13-2913-2016, 2016.

955 Rosenblatt, A. E. and Schmitz, O. J.: Climate change, nutrition, and bottom-up and
956 top-down food web processes, Trends Ecol. Evol., 31, 965-975, doi:
957 10.1016/j.tree.2016.09.009, 2016.

958 Rossoll, D., Bermúdez, R., Hauss, H., Schulz, K. G., Riebesell, U., Sommer, U., and
959 Winder, M.: Ocean acidification-induced food quality deterioration constrains trophic
960 transfer, Plos One, 7, e34737, doi: 10.1371/journal.pone.0034737, 2012.

961 Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses to
962 environmental changes, in: Coccolithophores: From molecular processes to global
963 impact, Thierstein, H. R. and Young, J. R. (Eds.), Springer, Heidelberg, Germany,
964 99-125, 2004.

965 Sato, N., Tsuzuki, M., and Kawaguchi, A.: Glycerolipid synthesis in *Chlorella kessleri*
966 11h - II. Effect of the CO₂ concentration during growth, BBA-Mol. Cell Biol. L., 1633,
967 35-42, doi: 10.1016/s1388-1981(03)00070-2, 2003.

968 Schiettecatte, L. S., Thomas, H., Bozec, Y., and Borges, A. V.: High temporal
969 coverage of carbon dioxide measurements in the Southern Bight of the North Sea,
970 Mar. Chem., 106, 161-173, doi: 10.1016/j.marchem.2007.01.001, 2007.

971 Sett, S., Bach, L. T., Schulz, K. G., Koch-Klavsen, S., Lebrato, M., and Riebesell, U.:
972 Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and
973 calcification to increasing seawater pCO₂, PLoS ONE, 9, e88308, doi:
974 10.1371/journal.pone.0088308, 2014.

975 Sharp, J.: Improved analysis for particulate organic carbon and nitrogen from
976 seawater., Limnol. Oceanogr., 19, 984-989, doi: 10.4319/lo.1974.19.6.0984, 1974.

977 Sinensky, M.: Homeoviscous adaptation - a homeostatic process that regulates the
978 viscosity of membrane lipids in *Escherichia coli*, Proc. Natl. Acad. Sci. U. S. A., 71,
979 522-525, doi: 10.1073/pnas.71.2.522, 1974.

980 Skau, L. F.: Effects of temperature and phosphorus on growth, stoichiometry and size
981 in three haptophytes, M.S. thesis, Centre for Ecological and Evolutionary Synthesis
982 (CEES), Section for Aquatic Biology and Toxicology (AQUA), University of Oslo,
983 Oslo, Norway, 64 pp., 2015.

984 Sommer, U., Peters, K. H., Genitsaris, S., and Moustaka-Gouni, M.: Do marine
985 phytoplankton follow Bergmann's rule *sensu lato*?, Biol. Rev., 92, 1011-1026, doi:

986 10.1111/brv.12266, 2016.

987 Sorrosa, J. M., Satoh, M., and Shiraiwa, Y.: Low temperature stimulates cell
988 enlargement and intracellular calcification of Coccolithophorids, Mar. Biotechnol., 7,
989 128-133, doi: 10.1007/s10126-004-0478-1, 2005.

990 Sterner, R. W. and Elser, J. J.: Ecological stoichiometry: The biology of elements from
991 molecules to the biosphere, Princeton University Press, Princeton, U.S.A., 2002.

992 Sterner, R. W. and Schulz, K.: Zooplankton nutrition: recent progress and a reality
993 check, Aquat. Ecol., 32, 261-279, doi: 10.1023/A:1009949400573, 1998.

994 Terry, K. L., Laws, E. A., and J., B. D.: Growth rate variation in the N:P requirement
995 ratio of phytoplankton, J. Phycol., 21, 323-329, doi, 1985.

996 Thompson, G. A.: Lipids and membrane function in green algae, BBA-Lipid Lipid
997 Met., 1302, 17-45, doi: 10.1016/0005-2760(96)00045-8, 1996.

998 Thompson, P. A., Guo, M.-x., Harrison, P. J., and Whyte, J. N. C.: Effects of variation
999 in temperature. II. On the fatty acid composition of eight species of marine
1000 phytoplankton, J. Phycol., 28, 488-497, doi: 10.1111/j.0022-3646.1992.00488.x,
1001 1992.

1002 Toseland, A., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., Lenton, T.
1003 M., Valentin, K., Pearson, G. A., Moulton, V., and Mock, T.: The impact of
1004 temperature on marine phytoplankton resource allocation and metabolism, Nat. Clim.
1005 Change, 3, 979-984, doi: 10.1038/nclimate1989, 2013.

1006 Tyrrell, T. and Merico, A.: *Emiliania huxleyi*: bloom observations and the conditions
1007 that induce them, in: Coccolithophores: From molecular processes to global impact,
1008 Thierstein, H. R. and Young, J. R. (Eds.), Springer, Heidelberg, Germany, 75-97,
1009 2004.

1010 van Bleijswijk, J. D. L., Kempers, R. S., Veldhuis, M. J., and Westbroek, P.: Cell and
1011 growth characteristics of types A and B of *Emiliania huxleyi* (Prymnesiophyceae) as
1012 determined by flow cytometry and chemical analyses, J. Phycol., 30, 230-241, doi:
1013 10.1111/j.0022-3646.1994.00230.x, 1994.

1014 Van Mooy, B. A. S., Fredricks, H. F., Pedler, B. E., Dyhrman, S. T., Karl, D. M.,
1015 Koblizek, M., Lomas, M. W., Mincer, T. J., Moore, L. R., Moutin, T., Rappe, M. S.,
1016 and Webb, E. A.: Phytoplankton in the ocean use non-phosphorus lipids in response to
1017 phosphorus scarcity, Nature, 458, 69-72, doi: 10.1038/nature07659, 2009.

1018 Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M., and Brown, C. W.:
1019 Poleward expansion of the coccolithophore *Emiliania huxleyi*, J. Plankton Res., 36,
1020 316-325, doi: 10.1093/plankt/fbt110, 2014.

1021 Xing, T., Gao, K., and Beardall, J.: Response of growth and photosynthesis of
1022 *Emiliania huxleyi* to visible and UV irradiances under different light regimes,
1023 *Photochem. Photobiol.*, 91, 343-349, doi: 10.1111/php.12403, 2015.

1024

1025 **Fig. 1** Responses of the observed maximal growth rate (μ_{\max} ; mean \pm SE) to
1026 temperature, N:P supply ratios and $p\text{CO}_2$ in *Emiliania huxleyi*. The selected model
1027 contains only the first order effects of the three environmental factors, with the results
1028 of AICc shown in Table S2.

1029 **Fig. 2** Responses of cellular contents of (a, e) particulate organic carbon (POC), (b, f)
1030 particulate organic nitrogen (PON), (c, g) particulate organic phosphorus (POP) and
1031 (d, h) particulate inorganic carbon (PIC) (mean \pm SE) to temperature, N:P supply
1032 ratios and $p\text{CO}_2$ in *Emiliania huxleyi*. The selected models contain the first order
1033 effects, and second order interactions of the three environmental factors for the four
1034 response variables, with the results of AICc shown in Table S2.

1035 **Fig. 3** The ratios of (a, e) particulate organic carbon vs. particulate organic nitrogen
1036 (POC:PON), (b, f) POC vs. particulate organic phosphorus (POC:POP), (c, g) PON vs.
1037 POP (PON:POP) and (d, h) particulate inorganic carbon vs. POC (PIC:POC) (mean \pm
1038 SE) in response to temperature, N:P supply ratios and $p\text{CO}_2$ in *Emiliania huxleyi*. The
1039 selected models contain only the first order effects of the three environmental factors
1040 for the four response variables, with the results of AICc shown in Table S2.

1041 **Fig. 4** Responses of the proportions of (a, c) monounsaturated fatty acids (MUFAs)
1042 and polyunsaturated fatty acids (PUFAs), and (b, d) docosahexaenoic acid (DHA)
1043 (mean \pm SE) to temperature, N:P supply ratios and $p\text{CO}_2$ in *Emiliania huxleyi*. For
1044 MUFA and PUFA proportions, the selected models contain only the first order effects
1045 of the three environmental factors, and that for DHA proportion contains also second
1046 order interactions, with the results of AICc shown in Table S2.

1047

1048

1049

1050

1051 Table 1. Results of the selected GLMMs testing for the effects of temperature, N:P
 1052 supply ratios and $p\text{CO}_2$ on the observed maximal growth rate (μ_{max}), elemental
 1053 stoichiometry and fatty acid proportions in *Emiliania huxleyi*. Significant p values are
 1054 shown in bold; T: temperature; N:P: N:P supply ratios; TFA: total fatty acid; SFA:
 1055 saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty
 1056 acid; DHA: docosahexaenoic acid. Results of AICc are shown in Table S2.

Variable	Factor	Coefficient \pm SE	t	p
$\mu_{\text{max}} (\text{d}^{-1})$	Intercept	-1.368 \pm 0.225	-6.075	<0.001
	T	0.074 \pm 0.010	7.082	<0.001
	$p\text{CO}_2$	<0.001 \pm <0.001	-0.472	0.644
	N:P	<0.001 \pm 0.002	-0.162	0.873
POC cellular content (pg cell $^{-1}$)	Intercept	3.683 \pm 0.377	9.779	<0.001
	T	-0.089 \pm 0.020	-4.577	<0.001
	$p\text{CO}_2$	<0.001 \pm <0.001	-0.929	0.358
	N:P	-0.008 \pm 0.008	-0.996	0.324
	T \times $p\text{CO}_2$	<0.001 \pm <0.001	1.886	0.066
	T \times N:P	0.001 \pm <0.001	3.477	0.001
	$p\text{CO}_2 \times$ N:P	<0.001 \pm <0.001	-0.359	0.721
PON cellular content (pg cell $^{-1}$)	Intercept	1.208 \pm 0.491	2.458	0.018
	T	-0.083 \pm 0.026	-3.259	0.002
	$p\text{CO}_2$	<0.001 \pm <0.001	-0.873	0.387
	N:P	-0.008 \pm 0.011	-0.709	0.482
	T \times $p\text{CO}_2$	<0.001 \pm <0.001	1.549	0.128
	T \times N:P	0.001 \pm 0.001	2.802	0.007
	$p\text{CO}_2 \times$ N:P	<0.001 \pm <0.001	0.165	0.870
POP cellular content (pg cell $^{-1}$)	Intercept	-0.564 \pm 0.468	-1.206	0.234
	T	-0.091 \pm 0.024	-3.751	<0.001
	$p\text{CO}_2$	<0.001 \pm <0.001	-1.656	0.104
	N:P	-0.018 \pm 0.010	-1.840	0.072
	T \times $p\text{CO}_2$	<0.001 \pm <0.001	2.396	0.021
	T \times N:P	0.001 \pm <0.001	2.410	0.020
	$p\text{CO}_2 \times$ N:P	<0.001 \pm <0.001	0.572	0.570
PIC cellular content (pg cell $^{-1}$)	Intercept	3.293 \pm 0.406	8.122	<0.001
	T	-0.067 \pm 0.021	-3.193	0.003
	$p\text{CO}_2$	-0.001 \pm <0.001	-5.519	<0.001
	N:P	-0.003 \pm 0.009	-0.292	0.772
	T \times $p\text{CO}_2$	<0.001 \pm <0.001	4.584	<0.001
	T \times N:P	0.001 \pm <0.001	2.340	0.024

POC:PON (mol mol ⁻¹)	<i>p</i> CO ₂ × N:P	<0.001 ± <0.001	0.111	0.912
	Intercept	2.741 ± 0.081	33.823	<0.001
	T	-0.008 ± 0.004	-2.169	0.035
	<i>p</i> CO ₂	<0.001 ± <0.001	0.153	0.879
	N:P	-0.004 ± 0.001	-5.430	<0.001
POC:POP (mol mol ⁻¹)	Intercept	5.423 ± 0.128	42.300	<0.001
	T	-0.007 ± 0.006	-1.242	0.220
	<i>p</i> CO ₂	<0.001 ± <0.001	0.069	0.945
	N:P	0.012 ± 0.001	9.617	<0.001
PON:POP (mol mol ⁻¹)	Intercept	2.702 ± 0.145	18.590	<0.001
	T	0.001 ± 0.007	0.157	0.876
	<i>p</i> CO ₂	<0.001 ± <0.001	-0.169	0.866
	N:P	0.016 ± 0.001	11.200	<0.001
PIC:POC	Intercept	0.460 ± 0.066	7.010	<0.001
	T	0.025 ± 0.003	8.184	<0.001
	<i>p</i> CO ₂	<0.001 ± <0.001	-12.837	<0.001
	N:P	<0.001 ± 0.001	-0.166	0.869
SFA proportion (% of TFAs)	Intercept	3.506 ± 0.145	24.178	<0.001
	T	-0.012 ± 0.008	-1.538	0.131
	<i>p</i> CO ₂	<0.001 ± <0.001	-0.238	0.813
	N:P	-0.004 ± 0.003	-1.248	0.218
	T × <i>p</i> CO ₂	<0.001 ± <0.001	1.816	0.076
	T × N:P	<0.001 ± <0.001	1.657	0.104
	<i>p</i> CO ₂ × N:P	<0.001 ± <0.001	-2.487	0.016
MUFA proportion (% of TFAs)	Intercept	30.259 ± 1.344	22.518	<0.001
	T	-0.579 ± 0.063	-9.240	<0.001
	<i>p</i> CO ₂	0.001 ± <0.001	2.269	0.028
	N:P	-0.014 ± 0.014	-1.050	0.299
PUFA proportion (% of TFAs)	Intercept	32.264 ± 2.300	14.028	<0.001
	T	0.638 ± 0.107	5.949	<0.001
	<i>p</i> CO ₂	-0.002 ± 0.001	-2.769	0.008
	N:P	0.034 ± 0.023	1.453	0.152
DHA proportion (% of TFAs)	Intercept	2.204 ± 0.185	11.887	<0.001
	T	0.054 ± 0.010	5.611	<0.001
	<i>p</i> CO ₂	<0.001 ± <0.001	1.874	0.067
	N:P	0.010 ± 0.004	2.735	0.009
	T × <i>p</i> CO ₂	<0.001 ± <0.001	-2.946	0.005
	T × N:P	-0.001 ± <0.001	-2.898	0.006
	<i>p</i> CO ₂ × N:P	<0.001 ± <0.001	1.249	0.218

1057

1058

1059

1060

1061 Table 2. The changes in cellular **elemental** contents (as pg cell⁻¹), elemental molar
 1062 ratios and the proportions of major fatty acid groups and docosahexaenoic acid (DHA)
 1063 (as % of total fatty acids) in response to warming, N and P deficiency and enhanced
 1064 *p*CO₂ in *Emiliania huxleyi*. Here, **only significant changes are shown based on**
 1065 **GLMM results in Table 1**. Red and blue arrows indicate a mean percent increase and
 1066 decrease in a given response, respectively.

Response	Effect				
	Warming	-N	-P	Enhanced <i>p</i> CO ₂	Interactions
POC cellular content	⬇ -8%	⬇ -39%	⬆ 50%	-	T×N:P supply
PON cellular content	⬆ 5%	⬇ -53%	⬆ 52%	-	T×N:P supply
POP cellular content	⬆ 9%	⬇ -32%	⬇ -8%	⬆ 29%	T×N:P supply T×CO ₂
PIC cellular content	⬆ 28%	⬇ -31%	⬆ 65%	⬇ -36%	T×N:P supply T×CO ₂
POC:PON	⬇ -6%	⬆ 33%	-	-	
POC:POP	-	⬇ -15%	⬆ 60%	-	
PON:POP	-	⬇ -36%	⬆ 62%	-	
PIC:POC	⬆ 41%	-	-	⬇ -49%	
SFA proportion	-	⬇ -7%	⬇ -15%	⬆ 7%	N:P supply×CO ₂
MUFA proportion	⬇ -20%	-	-	⬆ 7%	
PUFA proportion	⬆ 13%	-	-	⬇ -7%	
DHA proportion	⬆ 16%	⬆ 14%	⬆ 22%	⬇ -7%	T×N:P supply T×CO ₂

1067 Changes $\geq 25\%$ Changes $< 25\%$ - No significant change
 1068
 1069
 1070
 1071
 1072
 1073

1074 **Fig. 1**

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Fig. 2

1093

1094

1095

1096

1097

1098 **Fig. 3**

1099

1100

1101

1102

1103 **Fig. 4**

1104

1105