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Abstract

Climate-driven changes in environmental conditions have significant and complex
effects on marine ecosystems. Variability in phytoplankton elements and biochemicals
can be important for global ocean biogeochemistry and ecological functions, while
there is currently limited understanding on how elements and biochemicals respond to
the changing environments in key coccolithophore species such as Emiliania huxleyi.
We investigated responses of elemental stoichiometry and fatty acids (FAS) in a strain
of E. huxleyi under three temperatures (12, 18 and 24 °C), three N:P supply ratios
(molar ratios 10:1, 24:1 and 63:1) and two pCO; levels (560 and 2400 patm). Overall,
C:N:P stoichiometry showed the most pronounced response to N:P supply ratios, with
high ratios of particulate organic carbon vs. particulate organic nitrogen (POC:PON)
and low ratios of PON vs. particulate organic phosphorus (PON:POP) in low N-media,
and high POC:POP and PON:POP in low P-media. The ratio of particulate inorganic
carbon vs. POC (PIC:POC) and polyunsaturated fatty acid proportions strongly
responded to temperature and pCO,, both being lower under high pCO, and higher
with warming. We observed synergistic interactions between warming and nutrient
deficiency (and high pCO;) on elemental cellular contents and docosahexaenoic acid
(DHA) proportion in most cases, indicating the enhanced effect of warming under
nutrient deficiency (and high pCO,). Our results suggest differential sensitivity of
elements and FAs to the changes in temperature, nutrient availability and pCO, in E.
huxleyi, which is to some extent unique compared to non-calcifying algal classes.
Thus, simultaneous changes of elements and FAs should be considered when
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predicting future roles of E. huxleyi in the biotic-mediated connection between
biogeochemical cycles, ecological functions and climate change.

Key words: Coccolithophores; elements; biochemicals; warming; nutrients; CO,



67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

1 Introduction

Climate change and intensive anthropogenic pressures have pronounced and
diverse effects on marine ecosystems. Physical and chemical properties in marine
ecosystems are changing simultaneously such as the concurrent shifts in temperature,
CO; and oxygen concentrations, and nutrient availability (Boyd et al., 2015). These
changes have altered trophic interactions in both bottom-up and top-down directions
and thus result in changes in community structure of different trophic levels and
ecosystem functions (Doney et al., 2012). Phytoplankton are the base of marine food
webs and major drivers of ocean biogeochemical cycling, and thus quantifying their
responses to changing oceanic conditions is a major challenge in studies of food web
structure and ocean biogeochemistry.

Coccolithophores are a key phytoplankton group in the ocean because of their
production of calcified scales called coccoliths. They are not only important
photosynthetic producers of organic matter (causing a draw-down of CO; in the
surface layer), but also play predominant roles in the production and export of
calcium carbonate to deeper layers (causing a net release of CO; into the atmosphere)
(Rost and Riebesell, 2004). Owning to the determination of these two processes on
ocean-atmosphere exchange of CO,, coccolithophores exhibit a complex and
significant influence on global carbon cycle (Rost and Riebesell, 2004). Of all
coccolithophores, Emiliania huxleyi is the most widely distributed and the most
abundant species (Winter et al., 2014), with the capacity to form spatially extensive
blooms in mid- to high-latitudes (Raitsos et al., 2006; Tyrrell and Merico, 2004).
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Evidence from in situ and satellite observations indicates that E. huxleyi is
increasingly expanding its range poleward in both hemispheres over the last two
decades, and contributing factors to this poleward expansion may differ between
regions and hemispheres (Winter et al., 2014). For example, warming and freshening
have promoted E. huxleyi blooms in the Bering Sea since the late 1970s (Harada et al.,
2012), while temperature and irradiance were best able to explain variability in E.
huxleyi-dominated coccolithophore community composition and abundance across the
Drake Passage (Southern Ocean) (Charalampopoulou et al., 2016). Hence, empirical
data on the responses of E. huxleyi to different environmental drivers would be critical
for fully understanding the roles of this prominent coccolithophore species in marine
ecosystems.

Extensive experimental studies have shown highly variable responses of E. huxleyi
to rising atmospheric CO, (reviewed by Feng et al., 2017a; Meyer and Riebesell,
2015), while other studies focused on the influence of other environmental factors
such as temperature (Rosas-Navarro et al., 2016; Sett et al., 2014; Sorrosa et al., 2005),
light intensity (Nanninga and Tyrrell, 1996; Xing et al., 2015) and nutrient availability
(Oviedo et al., 2014; Paasche, 1998). Responses of E. huxleyi to the interactions
between these different factors have recently received more attention (De Bodt et al.,
2010; Feng et al., 2008; Milner et al., 2016; Perrin et al., 2016; Rokitta and Rost,
2012). Many of these studies above focused on the physiological, calcification and
photosynthetic responses of E. huxleyi due to its considerable role in global carbon

cycle. However, biogeochemical cycles of the major nutrient elements (nitrogen and
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phosphorus) and carbon are tightly linked (Hutchins et al., 2009), and thus variability
in E. huxleyi C:N:P stoichiometry (cellular quotas and ratios of C, N and P) can also
be important in ocean biogeochemistry. Moreover, elemental budgets in organisms are
primarily determined by the physiology and biochemistry of biochemicals such as
proteins and fatty acids (FAs) (Anderson et al., 2004; Sterner and Elser, 2002). Thus,
studying simultaneous changes of elements and biochemicals enables the connection
between climate change and ecosystem functions such as elemental cycles. However,
shifts in resource nutrient content for consumers are often overlooked in climate
change ecology (Rosenblatt and Schmitz, 2016). Recently, Bi et al. (2017)
investigated responses of C:N:P stoichiometry and FAs to the interactions of three
environmental factors in the diatom Phaeodactylum tricornutum and the cryptophyte
Rhodomonas sp., showing dramatic effects of warming and nutrient deficiency, and
modest effects of increased pCO,. However, for the key coccolithophore species E.
huxleyi much less is known about the simultaneous changes in elemental
stoichiometry and biochemicals in response to multiple environmental factor changes.

In the present study, we conducted semi-continuous cultures of E. huxleyi to
disentangle potential effects of temperature, N:P supply ratios and pCO; on E. huxleyi
elemental stoichiometry and FAs. The elevated levels of temperature and pCO; in our
study are within the predicted ranges of future ocean scenarios. The inter-annual
average temperature varied between 16 to 22 °C at the Azores

(http://dive.visitazores.com/en/when-dive; last accessed date: 22.08.2017), the source

region of our E. huxleyi strain, while annual mean sea surface temperature across the
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North Atlantic (0 - 60 °N) is projected to reach 29.8 °C in 2100 according to the ocean
general circulation model (Lewandowska et al., 2014). Considerable seasonal, depth
and regional variations of pCO, have been observed in the present-day ocean (Joint et
al., 2011). In plankton-rich waters, respiration plus atmospheric CO,-enrichment can
drive high regional pCO, at times today, e.g, up to 900 xatm in August, with the
minimum value of 192 watm in April, in the Southern Bight of the North Sea
(Schiettecatte et al., 2007). In future oceans, pCO; is projected to increase with rising
atmospheric CO,, being 851 - 1370 watm by 2100 and 1371 - 2900 watm by 2150
(RCP8.5 scenario of the IPCC report 2014) (IPCC, 2014). We tested the following
hypotheses in the present study: (i) elemental stoichiometry and FAs in E. huxleyi
show different sensitivity to considerable variations in temperature, N:P supply ratios
and pCOy; (ii) the ratios of particulate organic carbon vs. particulate organic nitrogen
(POC:PON), POC vs. particulate organic phosphorus (POC:POP), and particulate
inorganic carbon vs. POC (PIC:POC) in E. huxleyi will reduce and the proportions of
unsaturated fatty acids will increase under projected future ocean scenarios; and (iii)
there are synergetic interactions between warming, nutrient deficiency and rising
pCO, on E. huxleyi elemental stoichiometry and FA composition.
2 Material and methods
2.1 Experimental setup

To address our questions on how multiple environmental drivers influence
elemental and FA composition in E. huxleyi, we performed a semi-continuous culture

experiment crossing three temperatures (12, 18 and 24 °C), three N:P supply ratios
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(molar ratios 10:1, 24:1 and 63:1) and two pCO, levels (560 and 2400 patm). The
strain of E. huxleyi (Internal culture collection reference code: A8) was isolated from
waters off Terceira Island, Azores, North Atlantic (3839’22 N 27<14'08" W).
Semi-continuous cultures, as a practical surrogate for fully continuous culture, have
been successfully used to study the responses of phytoplankton stoichiometric and
biochemical composition to environmental changes such as nutrient availability (Feng
et al., 2017a; Lynn et al., 2000; Terry et al., 1985). Our temperature range setup was
based on the study of Lewandowska et al. (2014), who chose a temperature increment
of 6 °C, according to the ocean general circulation model under the IPCC SRES A1F1
scenario.

All cultures were exposed to a light intensity of 100 pmol photons - m? - s* at a
16:8 h light:dark cycle in temperature-controlled rooms. The culture medium was
prepared with sterile filtered (0.2 pm pore size, Sartobran® P 300; Sartorius,
Goettingen, Germany) North Sea water with a salinity of 37 psu. Macronutrients were
added as sodium nitrate (NaNO3) and potassium dihydrogen phosphate (KH,PQ,) to
achieve three N:P supply ratios, i.e., 35.2 pmol -L™* N and 3.6 pmol -L™ P (10:1 mol
mol™), 88 pmol -L™ N and 3.6 pmol -L™ P (24:1 mol mol™) and 88 pmol -L™ N and
1.4 pmol -L™ P (63:1 mol mol™). Vitamins and trace metals were added based on the
modified Provasoli’s culture medium (Ismar et al., 2008; Provasoli, 1963). Initial
pCO, of the culture medium was manipulated by bubbling with air containing the
target pCO,. Three replicates were set up for each treatment, resulting in 54
experimental units. Each culture was kept in a sealed cell culture flask with 920 mL

8
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culture volume. Culture flasks were carefully rotated twice per day at a set time to
minimize sedimentation.

First, batch culture experiments were performed to obtain an estimate of the
observed maximal growth rate (umax, d™) under three temperatures, three N:P supply
ratios and two pCO; levels. umax Was calculated based on the changes of population
cell density within exponential phase (Bi et al., 2012). Once batch cultures reached
the early stationary phase, semi-continuous cultures were started with the algae from
batch cultures. The gross growth rate [¢ (d™), resulting from the process of
reproduction alone due to negligible mortality in cultures lacking predators (Lampert
and Sommer, 2007)] was applied as 20% of gmax. Using % of umax guarantees that the
strength on nutrient deficiency is equal through all temperature and pCO, treatments.
A fixed value of p would mean weak deficiency when i is low, and strong
deficiency when it is high. Based on | the equivalent daily renewal rate (D, d™*) can
be calculated according to the equation D = 1- e where t is renewal interval (here t
= 1 day). The volume of the daily renewal incubation water can be calculated by
multiplying D with the total volume of incubation water (920 mL). The incubation
water was exchanged with freshly made seawater medium with the target N:P supply
ratios, as well as pre-acclimated to the desired pCO, level. To counterbalance the
biological CO,-drawdown, the required amount of CO,-saturated seawater was also
added. Renewal of the cultures was carried out at the same hour every day. The steady
state in semi-continuous cultures was assessed based on the net growth rate [r (d™),

the difference between the gross growth rate and the loss rate (r = pu- D)]. When r
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was zero (at steady state), jpawas equivalent to D.
2.2 Sample analysis

Sampling took place at steady state for the following parameters: cell density,
dissolved inorganic carbon (DIC), total alkalinity (TA), pH, total particulate carbon
(TPC), POC, PON, POP and FAs. Cell density was counted daily in batch and
semi-continuous cultures (final cell density at steady state ranging between 1.50 x 10°
- 17.8 < 10° cells mL™, with the average value of 7.95 x 10° cells mL™). pH
measurements were conducted daily in semi-continuous cultures (Fig. S1), and the
electrode was calibrated using standard pH buffers (pH 4 and pH 7; WTW, Weilheim,
Germany).

DIC water samples were gently filtered using a single-use syringe filter (0.2 pm,
Minisart RC25; Sartorius, Goettingen, Germany) which was connected to the intake
tube of a peristaltic pump. Samples were collected into 10 ml glass vials, and all vials
were immediately sealed after filling. DIC was analyzed following Hansen et al.
(2013) using a gas chromatographic system (8610C; SRI-Instruments, California,
USA). Samples for TA analysis were filtered through GF/F filters (Whatman GmbH,
Dassel, Germany) and analyzed with the Tirino plus 848 (Metrohm, Filderstadt,
Germany). The remaining carbonate parameter pCO, was calculated using CO2SYS
(Pierrot et al., 2006) and the constants supplied by Hansson (1973) and Mehrbach et
al. (1973) that were refitted by Dickson and Millero (1987) (Table S1).

TPC, POC, PON and POP samples were filtered onto pre-combusted and
pre-washed (5% ~ 10% HCI) GF/F filters (Whatman GmbH, Dassel, Germany). For
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POC samples, PIC was removed by exposing filters containing TPC to fuming
hydrochloric acid for 12h. Before analysis, filters were dried at 60 °C and stored in a
desiccator. POC and PON were simultaneously determined by gas chromatography
using an organic elemental analyzer (Thermo Flash 2000; Thermo Fisher Scientific
Inc., Schwerte, Germany) after Sharp (1974). POP was analyzed colorimetrically by
converting organic phosphorus compounds to orthophosphate (Hansen and Koroleff,
1999). PIC was determined by subtracting POC from TPC. PIC and POC production
were estimated by multiplying « with cellular PIC and POC content, respectively. As
the physiological (i.e., cellular) PIC and POC variations cannot directly be up scaled
to total population response (Matthiessen et al., 2012), PIC and POC contents in our
study were shown both on the cellular (as pg cell™) and the population (as pg ml™)
levels.

Fatty acid samples were taken on pre-combusted and hydrochloric acid-treated
GF/F filters (Whatman GmbH, Dassel, Germany), and stored at -80 °C before
measurement. FAs were measured as fatty acid methyl esters (FAMES) using a gas
chromatograph (Trace GC-Ultra; Thermo Fisher Scientific Inc., Schwerte, Germany)
according to the procedure described in detail in Arndt and Sommer (2014). The
FAME 19:0 was added as internal standard and 21:0 as esterification control. The
extracted FAs were dissolved with n-hexane to a final volume of 100 plL. Sample
aliquots (1 L) were given into the GC by splitless injection with hydrogen as the
carrier gas. Individual FAs were integrated using Chromcard software (Thermo Fisher
Scientific Inc., Schwerte, Germany) and identified with reference to the standards

11
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Supelco 37 component FAME mixture and Supelco Menhaden fish oil. FA data were
expressed as a percentage of total fatty acids (TFAS) (FA proportion, % of TFAS) to
better compare our results with those in previous studies. FAs were also quantified on
a per unit biomass (ng mg C™?), which is an ideal approach when considering
nutritional quality of phytoplankton for herbivores (Piepho et al., 2012).
2.3 Statistical analysis

Generalized linear mixed models (GLMMs) were applied to test the best model
explaining the variations in Lax, €lemental stoichiometry and FA composition, as this
method is more appropriate for non-normal data than classical statistical procedures
(Bolker et al., 2009). GLMMs combine the properties of two statistical models (linear
mixed models and generalized linear models) (Bolker et al., 2009) and have been
widely used in ecology (e.g., Bracewell et al., 2017; Fre&e et al., 2010; Jamil et al.,
2014), in which data sets are often non-normally distributed. In our study, response
variables included pnax, elemental stoichiometry [elemental cellular contents (as pg
cell™ and their molar ratios], POC and PIC population yield (as pg ml™) and
production (as pg cell* d*), FA proportion (as % of TFAs) and contents (as pg mg C™),
with temperature, N:P supply ratios and pCO, as fixed effects. Target distributions
were tested and link functions were consequently chosen. The link function is a
transformation of the target that allows estimation of the model

(https://www.ibm.com/support/knowledgecenter/SSLVMB 21.0.0/com.ibm.spss.statis

tics.help/idh_glmm_target.htm; last accessed date: 14.08.2017). For example, identity

link function is appropriate with any distribution except for multinomial, while logit
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can be used only with the binomial or multinomial distribution. For all response
variables, we tested models containing first order effects, and second and third order
interactions of the three factors. The model that best predicted targets was selected
based on the Akaike Information Criterion corrected (AlCc), i.e., a lower AlCc value
representing a better fit of the model. Changes of 10 units or more in AICc values
were considered as a reasonable improvement in the fitting of GLMMs (Bolker et al.,
2009). In case AICc values were comparable (< 10 units difference), the simpler
model was thus chosen, unless there were significant second or third order
interactions detected. According to differences in AICc values, models containing
only first order effects of the three factors were selected as the best models for most
response variables, while those also containing second order interactions were chosen
for cellular POC, PON, POP and PIC contents, and the proportions of saturated fatty
acid (SFA) and docosahexaenoic acid (22:6n-3; DHA) (bold letters in Table S2).
Models containing third order interactions were not selected for any response
variable.

Nested models were applied to test whether the response pattern to one factor (a
nested factor) was significant within another factor, in case significant second order
interactions were detected in GLMMs. The question a nested model addresses is that,
whether one factor plays a role under one (or several) configuration(s) of another
factor, but not under all configurations of that factor equally. Also, the nature
(antagonistic, additive, or synergistic) of significant second order interactions was
analysed according to Christensen et al. (2006). The observed combined effect of two

13



287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

factors was compared with their expected net additive effect [e.g., (factor; - control) +
(factor, - control)], which was based on the sum of their individual effects. If the
observed combined effect exceeded their expected additive effect, the interaction was
defined as synergism. In contrast, if the observed combined effect was less than the
additive effect, the interaction was defined as antagonism.

All statistical analyses were conducted using SPSS 19.0 (IBM Corporation, New
York, USA). Significance level was set to p < 0.05 in all statistical tests.

3 Results
3.1 Maximal growth rate (#max)

We observed a highly significant effect of temperature (bold letters in Table 1) and
non-significant effect of N:P supply ratios and pCO; on umax in E. huxleyi. Increasing
temperature stimulated zmax, CaUSING umax t0 be two to three times higher at the highest
temperature than those at the lowest temperature (Fig. 1).

3.2 Elemental stoichiometry

GLMMs results showed that cellular contents of POC, PON, POP and PIC
responded significantly to temperature and the interactions between temperature and
N:P supply ratios (bold letters in Table 1). Moreover, there were significant effects of
pCO, on cellular PIC content, and significant interactions between temperature and
pCO, on cellular POP and PIC contents. For cellular contents of POC, PON and POP,
increasing temperature and nutrient deficiency showed synergistic interactions (Table
S3), resulting in lower values at higher temperatures under N deficiency (N:P supply
ratio = 10:1 mol mol™) and increasing values with increasing temperature under P

14
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deficiency (N:P supply ratio = 63:1 mol mol™) (Fig. 2 a-c; Nested model, p < 0.001).
Synergistic interactions were also observed between increasing temperature and
enhanced pCO; on cellular POP content (Table S3), showing the lowest value at low
pCO, level and the highest one at enhanced pCO; in response to increasing
temperature (Fig. 2g; Nested model, p = 0.003). For cellular PIC content, increasing
temperature and N deficiency had antagonistic interactions, while increasing
temperature and P deficiency showed synergistic interactions (Table S3). As a result,
cellular PIC content showed a slight decreasing trend with increasing temperature
under N deficiency and an increasing trend under higher N:P supply ratios (Fig. 2d;
Nested model, p = 0.030). Increasing temperature and enhanced pCO, affected
cellular PIC content synergistically (Table S3), with the negative response of cellular
PIC content to enhanced pCO, being significantly weaker as temperature increased
(Fig. 2h; Nested model, p < 0.001).

POC:PON, POC:POP and PON:POP responded significantly to N:P supply ratios
(bold letters in Table 1), while only POC:PON showed significant responses to
temperature, with non-significant effect of pCO, detected. Increasing N:P supply
ratios caused a decreasing trend in POC:PON (Fig. 3a) and an increase in POC:POP
(Fig. 3b), resulting in a positive relationship between PON:POP and N:P supply ratios
(Fig. 3c). The response of POC:PON to increasing temperature was complex, showing
a hump-shaped response under N deficiency and negative responses under higher N:P
supply ratios (Fig. 3a). PIC:POC responded significantly to temperature and pCO,,
with non-significant effect of N:P supply ratios detected (Table 1). PIC:POC increased
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with increasing temperature and decreased with enhanced pCO, (Fig. 3 d and h).
3.3 Fatty acids

The most abundant FA group was polyunsaturated fatty acids (PUFAS) (33% - 54%
of TFAs), followed by SFAs (22% - 46%) and monounsaturated fatty acids (MUFAS)
(13% - 27%), across the entire tested gradients of temperature, N:P supply ratios and
pCO; (Table S4). The high proportion of PUFAs was predominantly caused by high
amounts of DHA (12% - 31%) and 18:4n-3 (3% - 13%), and SFAs was mainly
represented by 14:0 (13% - 23%) and 16:0 (5% - 11%). The major individual MUFA
was 18:1n-9 (8% - 21%).

GLMMs results showed significant effects of temperature and pCO, on the
proportions of both MUFAs and PUFAs, and significant interactions between N:P
supply ratios and pCO, on SFAs (bold letters in Table 1). Increasing temperature
caused a decrease in the proportion of MUFAs and an increase in PUFAs (Fig. 4 a). In
contrast, enhanced pCO, resulted in an increase in MUFAs and a decrease in PUFAS
at higher temperatures (Fig. 4 ¢). Moreover, enhanced pCO, and N (and P) deficiency
affected SFA proportion synergistically (Table S3), with the unimodal response of
SFAto increasing N:P supply ratios being more pronounced at the high pCO, (Fig. S2;
Nested model, p < 0.001).

The proportion of major individual PUFAs (DHA) showed significant responses to
temperature and N:P supply ratios, and the interactions between temperature and N:P
supply ratios (and pCO,) (bold letters in Table 1). Increasing temperature and N:P
supply ratios caused an overall increase in DHA (Fig. 4 b). The interactions between
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increasing temperature and nutrient deficiency (and enhanced pCO,) affected DHA
synergistically (Table S3), and the positive effect of temperature became more
pronounced at lower N:P supply ratios (Nested model, p < 0.001) and at the low pCO,
(Nested model, p <0.001) (Fig. 4 b and d).
4 Discussion

Our study scales the impacts of temperature, N:P supply ratios and pCO, on
elemental stoichiometry and FA composition of the ubiquitously important calcifier E.
huxleyi, while accounting for their interactive effects. Overall, C:N:P stoichiometry
changed markedly in response to N:P supply ratios, showing a maximum of 62%
changes under P deficiency (Table 2). Both PIC:POC and PUFA proportion increased
with warming and decreased under high pCO,, indicating a partial compensation by
pCO; of a predominantly temperature-driven response. The overall response patterns
of C:N:P stoichiometry in our study are consistent with those on a global scale
(Martiny et al., 2013), and PUFA responses conform with the meta-analysis results on
haptophytes (Hixson and Arts, 2016). In line with these studies, we also detected
significant interactions between temperature, N:P supply ratios and pCO, on certain
response variables (e.g., cellular elemental contents and DHA proportion) (Table 1),
indicating variable response patterns of elemental stoichiometry and FA composition
in E. huxleyi under any given constellation of environmental factors. Our results thus
underscore the important effects of multiple environmental drivers, demonstrating
differential effects of the three environmental factors on elemental stoichiometry and
FA composition in E. huxleyi.
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4.1 Responses of maximal growth rate

Increasing temperature significantly accelerated umax of E. huxleyi in our study (Fig.
1; Table 1). This positive correlation between increasing temperature and growth rate
is typical for many E. huxleyi strains within the range of temperature 12 to 24 °C used
in our study (Feng et al., 2008; Rosas-Navarro et al., 2016; Sett et al., 2014; van
Bleijswijk et al., 1994). However, the extent to which growth rate of E. huxleyi
increases with increasing temperature varies between E. huxleyi strains, which may
contribute to specific biogeographic distribution of different strains (Paasche, 2002).
For example, growth rate of E. huxleyi from the Gulf of Maine (~ 42 °N) was 1.2
times higher at 26 °C than that at 16 °C, while growth rate of E. huxleyi from the
Sargasso Sea (~ 20 - 35°N) was 1.6 times higher at the higher temperature (Paasche,
2002). In our study, umax of E. huxleyi (from the Azores, ~ 38 °N) was two to three
times higher at the highest temperature than that at the lowest temperature, showing a
similar change pattern with that in the E. huxleyi strain from the Sargasso Sea. The
results above suggest that the biogeographic origin of an E. huxleyi strain is important
for their growth response to temperature.
4.2 Responses of C:N:P stoichiometry

N:P supply ratios showed highly significant effects on C:N:P stoichiometry (up to a
62% increase in PON:POP under P deficiency) in E. huxleyi in our study, with a
weaker effect of warming (a 6% decrease in POC:PON) and non-significant effect of
pCO, observed (Table 1; Table 2). Similarly, previous lab experiments also reported
that nutrient availability played a more important role than temperature and pCO; for
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C:N:P stoichiometry in different strains of E. huxleyi such as those from outer
Oslofjord (Skau, 2015) and from the Chatham Rise, east of New Zealand (Feng et al.,
2017b). Also, for marine phytoplankton community biomass on a global scale nitrate
concentration as a proxy of nutrient availability explained 36% and 42% of variation
in N:P and C:P, respectively, with the less variation explained by temperature (33%
and 38% of the variation in N:P and C:P, respectively) (Martiny et al., 2013).

N deficiency caused overall high POC:PON and low PON:POP, while P deficiency
resulted in high POC:POP and PON:POP in E. huxleyi in this and most previous
studies (Langer et al., 2013; Leonardos and Geider, 2005b; Perrin et al., 2016). An
important biogeochemical question is the extent to which C:N:P stoichiometry
changes in response to N and P deficiency. We found that the high percent change in
PON:POP (a 62% increase) under P deficiency was mainly due to a 60% increase in
POC:POP, associated with the higher percent change in cellular POC content (a 50%
increase) and the lower percent change in cellular POP content (a 8% decrease) (Table
2). Under N deficiency, the 36% decrease in PON:POP was driven by a 33% increase
in POC:PON and a 15% decrease in POC:POP, along with similar percent changes in
cellular elemental contents (32% to 53% decrease). The more variable POC:POP
under P deficiency and the less variable POC:PON under N deficiency in our study
are consistent with the findings in global suspended particle measurements, which
showed the high variability of P:C in response to changes in phosphate and the less
variable N:C to changes in nitrate (Galbraith and Martiny, 2015). The consistence of
C:N:P stoichiometric responses in our study with those on a global scale may reflect
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the capacity of E. huxleyi to thrive under a wide range of environmental conditions.
This capacity was largely revealed by a pan-genome assessment, which distributed
genetic traits variably between strains and showed a suit of core genes for the uptake
of inorganic nitrogen and N-rich compounds such as urea (Read et al., 2013). In spite
of strain diversity within E. huxleyi, a recent study suggested that the global
physiological response of this species to nutrient environments is highly conserved
across strains and may underpin its success under a variety of marine environments
(Alexander, 2016).

Warming resulted in a significant, but slight decrease in POC:PON (-6%),
associated with a 8% decrease in cellular POC content and a 5% increase in cellular
PON content, while non-significant responses of POC:POP or PON:POP were
observed in E. huxleyi (Table 2). In the literature, variable changes of POC:PON to
warming were observed in E. huxleyi, showing positive (Borchard and Engel, 2012),
negative (Feng et al., 2008; Matson et al., 2016), and U-shaped responses
(Rosas-Navarro et al., 2016). Similar to our study, Borchard and Engel (2012) also
found that increasing temperature caused a stronger change in POC:PON than that in
POC:POP at higher P condition in the strain PML B92/11 from Bergen, Norway. The
mechanism behind the stronger change in POC:PON compared to POC:POP with
warming may be explained by the temperature-dependent physiology hypothesis,
which shows that organisms in warmer conditions require fewer P-rich ribosomes,
relative to N-rich proteins (Toseland et al., 2013).

The single effects of nutrient availability and temperature described above can be
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modulated by their interactions. We observed synergistic interactions between
warming and nutrient deficiency on cellular contents of POC, PON and POP, and
between warming and enhanced pCO; on cellular POP content (Table 1; Table S3).
An overall synergistic effect was also observed across 171 studies on the responses of
marine and coastal systems to multiple stressors (Crain et al., 2008). Furthermore,
although a 29% change emerged in cellular POP content with rising pCO,, we found
non-significant single effect of pCO, on E. huxleyi C:N:P stoichiometry. Previous
studies showed that rising pCO, seems to change phytoplankton stoichiometry under
specific conditions, e.g. at high light intensity (400 pmol photons - m™ - s™) (Feng et
al., 2008) and low nutrient loads (500 pmol photons - m - s at N:P supply ratio < 15
or N:P supply ratio > 30) (Leonardos and Geider, 2005a). In our study, we used
relatively lower light intensity (100 pmol photons - m™? - s than that in previous
studies, and did not investigate irradiance effects. Additional research is required to
assess the effects of other environmental factors such as irradiance and their
interactions on C:N:P stoichiometry in our E. huxleyi strain.

Taken together, our results indicate that C:N:P stoichiometry in E. huxleyi largely
reflected the changes in N:P supply ratios, across different temperatures and pCO,
levels. However, for two algal species from non-calcifying classes (the diatom P.
tricornutum and the cryptophyte Rhodomonas sp.) temperature had the most
consistent significant effect on stoichiometric ratios in our previous work (Bi et al.,
2017). The results above are consistent with the ranking of environmental control
factors in Boyd et al. (2010), which showed that temperature, nitrogen and
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phosphorus were ranked as important factors for major phytoplankton groups.
4.3 Responses of PIC:POC

Both pCO; and temperature had highly significant effects on PIC:POC in our study;,
with enhanced pCO, and warming resulting in an overall 49% decrease and a 41%
increase in PIC:POC, respectively, while N:P supply ratios showed no significant
effect (Table 1; Table 2). This result is in agreement with rankings of the importance
of environmental drivers on PIC:POC in a Southern Hemisphere strain of E. huxleyi
(isolated from the Chatham Rise), showing the order of pCO, (negative effect) >
temperature (positive effect) and non-significant effect of nitrate or phosphate (Feng
etal., 2017Db).

The negative effect of enhanced pCO, on PIC:POC has been widely observed for
different strains of E. huxleyi (Meyer and Riebesell, 2015 and references therein). The
negative response of PIC:POC to rising pCO; in our study was driven by the
significant decrease in cellular PIC content (calcification), with cellular POC content
(photosynthesis) showing non-significant changes (Table 1; Table 2). Previous studies
also showed a greater impact of ocean acidification on calcification than on
photosynthesis in coccolithophores (De Bodt et al., 2010; Feng et al., 2017a; Meyer
and Riebesell, 2015). Feng et al. (2017a) suggested that the decreased calcification in
E. huxleyi may be caused by the increased requirement of energy to counteract
intracellular acidification. The increased activity of carbonic anhydrase (CA) at low
pCO, may explain the lack of a significant effect of pCO, on the photosynthetic or
growth rate (Feng et al., 2017a), as up-regulation of CA at low DIC was previously
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observed (Bach et al., 2013).

Warming causes diverse responses of calcification and photosynthesis within E.
huxleyi species (Rosas-Navarro et al., 2016 and references therein; the present study).
Overall, our study showed that the increase in PIC:POC at high temperatures was
driven by a markedly increased cellular PIC content (28%) and a decreased cellular
POC content (-8%) (Table 1; Table 2), consistent with the responses of PIC:POC to
warming in other E. huxleyi strains such as the strain PML B92/11 (Sett et al., 2014)
and the strain CCMP3266 from the Tasman Sea (Matson et al., 2016). The positive
response of PIC:POC to increasing temperature may be explained by the allocation of
carbon to calcification rather than photosynthesis at high temperatures (Sett et al.,
2014).

Significant interactions were observed between temperature and N:P supply ratios,
and between temperature and pCO, on cellular particulate carbon contents in our
study (Table 1). For example, the negative relationship between cellular PIC content
and enhanced pCO, became weaker at higher temperatures (Fig. 2h). This result is in
agreement with the modulating effect of temperature on the CO; sensitivity of key
metabolic rates in coccolithophores, due to the shift of the optimum CO,
concentration for key metabolic processes towards higher CO, concentrations from
intermediate to high temperatures (Sett et al., 2014). Specifically, the interactions
between warming and nutrient deficiency (and high pCO;) synergistically affected
both PIC and POC cellular contents in most cases in our study (Table S3), indicating
that nutrient deficiency and high pCO; are likely to enhance the effect of warming on
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E. huxleyi calcification and photosynthesis efficiency.

In summary, our results showed an overall reduced PIC:POC in E. huxleyi under
future ocean scenarios of warming and higher pCO, (Fig. 3h; Table 2), consistent with
the reduced ratio of calcium carbon production to organic carbon during the E. huxleyi
bloom in previous mesocosm experiments (Delille et al., 2005; Engel et al., 2005). It
is worth noting that cellular PIC and POC contents are a measure for physiological
response and cannot be directly used to infer population response, as different
responses between cellular and population yields of PIC (and POC) (as pg ml™) to
environmental changes were evident in previous work (Matthiessen et al., 2012) and
the present study (Table S5, S6; Fig. S3, S4). Thus, scaling our results up to
coccolithophores carbon export should consider these uncertainties.

4.4 Responses of fatty acids

Our study provides one of the first experimental demonstrations of the relative
importance of temperature, N:P supply ratios and pCO; on E. huxleyi FA composition.
Both temperature and pCO, had significant effects on the proportions of MUFAs and
PUFAs, with warming causing larger changes in MUFAs and PUFASs than rising pCO»,
while significant effects of N:P supply ratios were only observed for DHA proportion
(Table 1; Table 2).

Increasing temperature caused a 20% decline in MUFA proportion and a 13%
increase in PUFA proportion in our study (Table 2). This result is consistent with the
negative response of MUFA proportion and positive response of PUFA proportion to
warming in other haptophytes based on a meta-analysis on 137 FA profiles (Hixson
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and Arts, 2016), showing an opposite response to general patterns of phytoplankton
FAs to warming. Although warming is expected to have a negative effect on the
degree of fatty acid unsaturation to maintain cell membrane structural functions
(Fuschino et al., 2011; Guschina and Harwood, 2006; Sinensky, 1974), variable FA
responses to warming were widely observed in different phytoplankton groups (Bi et
al., 2017; Renaud et al., 2002; Thompson et al., 1992). Contradictory findings were
even reported in meta-analyses on large FA profiles such as the absence (Galloway
and Winder, 2015) or presence (Hixson and Arts, 2016) of the negative correlation
between temperature and the proportion of long-chain EFAs in freshwater and marine
phytoplankton. While the underling mechanisms of variable FA responses are still
unclear, it is known that both phylogeny and environmental conditions determine
phytoplankton FA composition (Bi et al., 2014; Dalsgaard et al., 2003; Galloway and
Winder, 2015). In our study, we found significant interactions between temperature
and pCO, (and N:P supply ratios) on the individual FA component DHA, showing that
pCO, and nutrient availability may alter the effect of warming on E. huxleyi FA
composition.

Enhanced pCO, led to an overall 7% increase in MUFAs and a 7% decrease in
PUFAs (Table 2), consistent with FA response patterns in the E. huxleyi strain PML
B92/11 (Riebesell et al., 2000) and the strain AC472 from Western New Zealand,
South Pacific (Fiorini et al., 2010). Also in a natural plankton community (Raunefjord,
southern Norway), PUFA proportion was reduced at high pCO, level in the nano-size
fraction, suggesting a reduced Haptophyta (dominated by E. huxleyi) biomass and a
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negative effect of high pCO, on PUFA proportion (BermUdez et al., 2016). To date,
several mechanisms have been suggested to explain the reduced PUFAs at high pCO,
in green algae (Pronina et al., 1998; Sato et al., 2003; Thompson, 1996), with much
less work conducted in other phytoplankton groups. One possible mechanism was
demonstrated in the study on Chlamydomonas reinhardtii, showing that the repression
of the CO,-concentrating mechanisms (CCMs) was associated with reduced FA
desaturation at high CO, concentration (Pronina et al., 1998). Our observed decrease
in the proportion and content of PUFAs at higher pCO, (Table S6) fits well with the
mechanism proposed by Pronina et al. (1998), which may be attributed to the
repression of CCMs at high pCO; in E. huxleyi.

N and P deficiency caused no significant changes in the proportions of MUFASs and
PUFAs, while a 14% to 22% increase in DHA proportion was observed (Table 2).
While nutrients often play a major role on phytoplankton lipid composition (Fields et
al., 2014; Hu et al., 2008), the less pronounced effects of nutrient deficiency in our
study indicate a unique lipid biosynthesis in E. huxleyi. Indeed, Van Mooy et al. (2009)
suggested that E. huxleyi used non-phosphorus betaine lipids as substitutes for
phospholipids in response to P scarcity. Genes are also present in the core genome of
E. huxleyi for the synthesis of betaine lipids and unusual lipids used as
nutritional/feedstock supplements (Read et al., 2013). Therefore, the lack of
significant nutrient effects on most FA groups in E. huxleyi in our study may be
caused by the functioning of certain lipid substitutions under nutrient deficiency.

In summary, our study showed stronger effects of pCO, and temperature, and a
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weaker effect of N:P supply ratios on the proportions of unsaturated FAs in E. huxleyi.
It should be noted that using different units to quantify FA composition may cause
contradictory results, e.g., an increase in PUFA proportion (% of TFAs) but
non-significant changes in PUFA contents per biomass (ug mg C™) with increasing
temperature in our study (Table S5, S6). Moreover, PUFA contents per biomass in two
species of non-calcifying classes (P. tricornutum and Rhodomonas sp.) showed a
different response pattern from that observed in E. huxleyi in our study, i.e., a
significant negative effect of enhanced pCO, on PUFA contents in E. huxleyi (Table
S6), but a non-significant effect of pCO, on PUFA contents in P. tricornutum and
Rhodomonas sp. (Bi et al., 2017). This different response between phytoplankton
groups is in agreement with findings in mesocosm studies (BermUdez et al., 2016;
Leu et al., 2013), suggesting that changes in taxonomic composition can cause
different relationships between PUFAs and pCO, in natural phytoplankton
community.
4.5 Implications for marine biogeochemistry and ecology

We observed an overall increase in POC:PON (with warming and N deficiency)
and POC:POP (with N and P deficiency) in E. huxleyi, while enhanced pCO, showed
no significant effects (Table 2). This result indicates that nitrogen and phosphorus
requirements in E. huxleyi are likely to reduce under projected future changes in
temperature and nutrient availability, and show minor changes in response to higher
pCO,. Likewise, Hutchins et al. (2009) suggested negligible or minor effects of
projected future changes in pCO, on most phytoplankton phosphorus requirements.
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Moreover, the overall low PIC:POC under future ocean scenarios (warming and
enhanced pCO,) indicates that carbon production by the strain E. huxleyi in our study
acts as a carbon sink. This argument is consistent with the findings of the decreased
calcification with increasing pCO, in most coccolithophores (Beaufort et al., 2011;
Hutchins and Fu, 2017), which may reduce vertical exported fluxes of sinking
calcium carbonate and minimize calcification as a carbon source term, ultimately
downsizing the ocean’s biological carbon cycle (Hutchins and Fu, 2017).

Besides the overall increase in POC:PON and POC:POP, we found an overall
increase in the proportions of PUFAs (with warming and enhanced pCO,) and DHA
(with warming, N and P deficiency and enhanced pCO,) in E. huxleyi (Table 2), but a
decrease in PUFA and DHA contents per biomass with enhanced pCO, (Table S6).
The relationship between changes in stoichiometry and FA composition in
phytoplankton varies in a complex way with environmental conditions and algal
taxonomy (Bi et al., 2014; Pedro Cafavate et al., 2017; Sterner and Schulz, 1998). For
example, the correlation between PON:POC and PUFA contents per biomass was
negative in Rhodomonas sp. and positive in P. tricornutum under N deficiency (Bi et
al., 2014). Our findings thus indicate that elemental composition responses may be
coupled with responses in essential FA composition in the strain of E. huxleyi studied
under certain configurations of environmental drivers. Such a linkage between
stoichiometric and FA composition is important in studies of food web dynamics, as
the C:N and C:P stoichiometry and PUFAs both have been used as indicators of
nutritional quality of phytoplankton, with high POC:PON (and POC:POP) and low
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contents in certain PUFAs often constraining zooplankton production by reducing
trophic carbon transfer from phytoplankton to zooplankton (Hessen, 2008; J&nhasdGitir
et al., 2009; MUler-Navarra et al., 2000; Malzahn et al., 2016). In addition, other
factors such as the cell size of phytoplankton and nutritional requirements of
consumers can also influence trophic transfer efficiency (Anderson and Pond, 2000;
Sommer et al., 2016). Nevertheless, studies on plant-herbivore interactions reported
that changes in elemental and biochemical composition in phytoplankton can translate
to higher trophic levels (Kamya et al., 2017; Malzahn et al., 2010; Rossoll et al., 2012)
and refer to direct effects of environmental changes on low trophic level consumers,
which can be modified by indirect bottom-up driven impacts through the primary
producers (Garzke et al., 2016; Garzke et al., 2017).
5 Conclusions

Our study shows that N:P supply ratios had the strongest effect on C:N:P
stoichiometry, while temperature and pCO, played more influential roles on PIC:POC
and PUFA proportions in E. huxleyi. The specific response patterns of elemental ratios
and FAs have important implications for understanding biogeochemical and
ecological functioning of E. huxleyi. The observations presented here suggest
differential responses of elements and FAs to rising temperature, nutrient deficiency
and enhanced pCO; in E. huxleyi, being to some extent unique compared to algal
species from non-calcifying classes. Thus, the role of multiple environmental drivers
under the biodiversity context should be considered to truly estimate the future
functioning of phytoplankton in the changing marine environments.
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Fig. 1 Responses of the observed maximal growth rate (umax; mean = SE) to
temperature, N:P supply ratios and pCO, in Emiliania huxleyi. The selected model
contains only the first order effects of the three environmental factors, with the results

of AICc shown in Table S2.

Fig. 2 Responses of cellular contents of (a, e) particulate organic carbon (POC), (b, f)
particulate organic nitrogen (PON), (c, g) particulate organic phosphorus (POP) and
(d, h) particulate inorganic carbon (PIC) (mean =+ SE) to temperature, N:P supply
ratios and pCO, in Emiliania huxleyi. The selected models contain the first order
effects, and second order interactions of the three environmental factors for the four

response variables, with the results of AICc shown in Table S2.

Fig. 3 The ratios of (a, e) particulate organic carbon vs. particulate organic nitrogen
(POC:PON), (b, f) POC vs. particulate organic phosphorus (POC:POP), (c, g) PON vs.
POP (PON:POP) and (d, h) particulate inorganic carbon vs. POC (PIC:POC) (mean +
SE) in response to temperature, N:P supply ratios and pCO; in Emiliania huxleyi. The
selected models contain only the first order effects of the three environmental factors

for the four response variables, with the results of AICc shown in Table S2.

Fig. 4 Responses of the proportions of (a, ¢) monounsaturated fatty acids (MUFAS)
and polyunsaturated fatty acids (PUFASs), and (b, d) docosahexaenoic acid (DHA)
(mean £ SE) to temperature, N:P supply ratios and pCO, in Emiliania huxleyi. For
MUFA and PUFA proportions, the selected models contain only the first order effects
of the three environmental factors, and that for DHA proportion contains also second

order interactions, with the results of AICc shown in Table S2.
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Table 1. Results of the selected GLMMs testing for the effects of temperature, N:P

supply ratios and pCO; on the observed maximal growth rate (umax), €lemental

stoichiometry and fatty acid proportions in Emiliania huxleyi. Significant p values are

shown in bold; T: temperature; N:P: N:P supply ratios; TFA: total fatty acid; SFA:

saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty

acid; DHA: docosahexaenoic acid. Results of AICc are shown in Table S2.

Variable Factor Coefficienct =SE t p
Hmax (d'l) Intercept -1.368 +0.225 -6.075 <0.001
T 0.074 +0.010 7.082 <0.001
pCO, <0.001 £<0.001 -0.472 0.644
N:P <0.001 +0.002 -0.162 0.873
POC cellular content (pg cell)  Intercept 3.683 +0.377 9.779 <0.001
T -0.089 +0.020 -4.577 <0.001
pCO, <0.001 £<0.001 -0.929 0.358
N:P -0.008 #0.008 -0.996 0.324
T X pCO; <0.001 £<0.001 1.886 0.066
T X NP 0.001 £=<0.001 3.477 0.001
pCO, X N:P <0.001 £<0.001 -0.359 0.721
PON cellular content (pg cell™)  Intercept 1.208 +0.491 2.458 0.018
T -0.083 +0.026 -3.259 0.002
pCO, <0.001%<0.001 -0.873 0.387
N:P -0.008 +0.011 -0.709 0.482
T X pCO; <0.001 £<0.001 1.549 0.128
T X NP 0.001 #+0.001 2.802 0.007
pCO, X N:P <0.001 £<0.001 0.165 0.870
POP cellular content (pg cell™)  Intercept -0.564 +0.468 -1.206 0.234
T -0.091 +0.024 -3.751 <0.001
pCO, <0.001 £<0.001 -1.656 0.104
N:P -0.018 +0.010 -1.840 0.072
T X pCO, <0.001 %<0.001 2.396 0.021
T X NP 0.001 #£<0.001 2.410 0.020
pCO, X N:P <0.001 £<0.001 0.572 0.570
PIC cellular content (pg cell™) Intercept 3.293 +0.406 8.122 <0.001
T -0.067 +0.021 -3.193 0.003
pCO, -0.001 #*=<0.001 -5.519 <0.001
N:P -0.003 %=0.009 -0.292 0.772
T X pCO, <0.001 £<0.001 4.584 <0.001
T X NP 0.001 #£<0.001 2.340 0.024
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1058

1059

1060

POC:PON (mol mol™)

POC:POP (mol mol™)

PON:POP (mol mol™)

PIC:POC

SFA proportion (% of TFAS)

MUFA proportion (% of TFAS)

PUFA proportion (% of TFASs)

DHA proportion (% of TFAS)

pCO, X N:P

Intercept
T

pCO,
N:P
Intercept
T

pCO,
N:P
Intercept
T

pCO,
N:P
Intercept
T

pCO,
N:P
Intercept
T

pCO,
N:P

T xpCO;,
T x<N:P
pCO, xN:P
Intercept
T

pCO;
N:P
Intercept
T

pCO;
N:P
Intercept
T

pCO,
N:P

T X pCO,
T X N:P

pCOz X N:P

<0.001 #*+<0.001
2.741 +0.081
-0.008 *0.004
<0.001 #*+<0.001
-0.004 *+0.001
5.423 +0.128
-0.007 #0.006
<0.001 #*+<0.001
0.012 +0.001
2.702 *+0.145
0.001 *0.007
<0.001 #*=<0.001
0.016 *+0.001
0.460 %0.066
0.025 #0.003
<0.001 #*=<0.001
<0.001 #0.001
3.506 +0.145
-0.012 +0.008
<0.001 %+<0.001
-0.004 +0.003
<0.001 %+<0.001
<0.001 %+<0.001
<0.001 %+<0.001
30.259 +1.344
-0.579 %+0.063
0.001 £+<0.001
-0.014 +0.014
32.264 +2.300
0.638 £0.107
-0.002 +0.001
0.034 £0.023
2.204 +0.185
0.054 #+0.010
<0.001 #*<0.001
0.010 #0.004
<0.001 #*<0.001
-0.001 *+<0.001
<0.001 #*<0.001

0.111
33.823
-2.169

0.153
-5.430
42.300
-1.242
0.069
9.617
18.590
0.157
-0.169
11.200
7.010
8.184

-12.837
-0.166
24178
-1.538
-0.238
-1.248

1.816
1.657
-2.487
22,518
-9.240
2.269
-1.050
14.028
5.949
-2.769
1.453
11.887
5.611
1.874
2.735
-2.946
-2.898
1.249

0.912
<0.001
0.035
0.879
<0.001
<0.001
0.220
0.945
<0.001
<0.001
0.876
0.866
<0.001
<0.001
<0.001
<0.001
0.869
<0.001
0.131
0.813
0.218
0.076
0.104
0.016
<0.001
<0.001
0.028
0.299
<0.001
<0.001
0.008
0.152
<0.001
<0.001
0.067
0.009
0.005
0.006
0.218
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Table 2. The changes in cellular elemental contents (as pg cell®), elemental molar

ratios and the proportions of major fatty acid groups and docosahexaenoic acid (DHA)

(as % of total fatty acids) in response to warming, N and P deficiency and enhanced

pCO; in Emiliania huxleyi. Here, only significant changes are shown based on

GLMM results in Table 1. Red and blue arrows indicate a mean percent increase and

decrease in a given response, respectively.

Effect
Response . Enhanced .
Warming -N - Interactions
pCO,
POC celllar content W -8% W -30% Ah50% - TXN:P supply
PON cellular content 4\ 59 * 539 * 500, - TXN:P supply
TXN:P suppl
POP cellular content 4 9% ’ -32% W -8% ‘ 29% TXCOzsupp y
TXN:P suppl
PIC cellular content ‘28% -31% ‘ 65% ’ -36% T:COQSUpp y
POC:PON x.mﬁwg “}33% - -
POC:POP - ¥ 15% oo -
PON:POP - 36% Ap62% -
PIC:POC A - - W 4%
SFA proportion - V-7% W-15% 4 7% N:P supplyXCO,
MUFA proportion V¥ -20% - - 4 7%
PUFA proportion 4 13% - - ¥ 7%
DHA proportion 6% A1a% 2% ¥ -T% KCN:QSUW'V

* v Changes >25% 4 ¥ Changes < 25%

- No significant change
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