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Abstract. Various observational data streams have been shown to provide valuable constraints on

the state and evolution of the global carbon cycle.
:::::
These

:::::::::::
observations

::::
have

:::
the

::::::::
potential

::
to

::::::
reduce

::::::::::
uncertainties

::
in
:::::

past,
:::::::
current,

:::
and

::::::::
predicted

::::::
natural

::::
and

::::::::::::
anthropogenic

::::::
surface

::::::
fluxes.

::
In

:::::::::
particular

::::
such

::::::::::
observations

:::::::
provide

:::::::::::
independent

::::::::::
information

:::
for

::::::::::
verification

::
of

::::::
actions

:::
as

::::::::
requested

:::
by

:::
the

::::
Paris

::::::::::
Agreement. It is, however, difficult to decide which variables to sample how, where and when5

in order to achieve an optimal use of the observational capabilities. Quantitative Network Design

(QND) assesses the impact of a given set of existing or hypothetical observations in a modelling

framework. QND has been used to optimise in situ networks and assess the benefit
:
to
:::

be
::::::::
expected

from planned space missions. This paper describes recent progress and points at aspects that are

not yet sufficiently addressed. It demonstrates the advantage of an integrated QND system that can10

simultaneously evaluate a multitude of observational data streams and assess their complementarity

and redundancy.
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1 Introduction

There is an increasing number of observational data streams that can constrain the global carbon

cycle (Scholze et al., 2017). A theoretical framework for integrating such observations into models15

of the carbon cycle is available (Rayner et al., 2016). Implementations of this framework, Carbon

Cycle Data Assimilation Systems (CCDASs Rayner et al., 2005), are in operation (see e.g. Kaminski

et al., 2013) and attempt to derive a consistent picture of the global carbon cycle.

In this context, an obvious challenge is the selection of observational sampling strategies that

allow us to extract a maximum of information on a selected aspect of the carbon cycle. Typical ques-20

tions are: There is funding for n additional flux towers and m additional continuous atmospheric

sampling sites available. Where to place them in order to maximise complementarity with the ex-

isting observational capabilities? Another question is the layout of space missions to sample, for

example, the column-integrated atmospheric carbon dioxide concentration (XCO2) or the fraction

of absorbed photosynthetically active radiation (FAPAR) by the land surface. In both examples, the25

in-situ sampling and the space mission, the optimal sampling strategy will typically depend on the

objective, i.e. on the question to be answered. The verification of anthropogenic CO2 emissions at

the scale of a megacity or country over some period in the past may probably require a sampling

strategy that is much different from the sampling strategy
:
a
::::::::
sampling

:::::::
strategy

:::::::
devised to constrain

the carbon-cycle climate feedback in 2100. The optimal sampling strategy will also depend on the30

“background” of other observations to which we add the new observations. And it will also depend

on the level of redundancy we wish to ensure in the observational information, in order to hedge us

against incidents such as instrumental failure/loss of a satellite.

The above two examples already illustrate the complexity of the task and the need for a systematic,

quantitative approach; purely relying on ad hoc choices guided by intuition is too dangerous. This35

contribution describes a formalism, called Quantitative Network Design (QND), that addresses the

evaluation (or even optimisation) of sampling strategies in a modelling framework. QND evaluates

a network, which is defined as a set of observations of specified variables at specified times and

locations (or their integrals) that can be simulated by a modelling system. The approach uses formal

uncertainty propagation of the observational information to selected target quantities that are also40

simulated/predicted by the modelling system. The definition of a set of target quantities formalises

the purpose of the network, i.e. the questions the network is supposed to answer, and the uncertainty

in the target quantity is the specific metric used to assess the performance of the network. In the above

example the target quantities would be regional and temporal integrals of the net carbon flux
:
or

:::
its

::::
fossil

:::::::::
emissions

::
or

::::::::
land-use

::::::
change

::::::::::
components. Typically, a network is compared with a simpler45

reference network. This reference network can be a network without any observations or a network

with standard background observations. The reduction in uncertainty with respect to the reference

network quantifies the added value or impact of the additional observations. Section 2 formalises
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these definitions and explains how QND differs from Observing System Simulation Experiments

(OSSEs) and Observing System Experiments (OSEs).50

Almost a decade ago Kaminski and Rayner (2008) summarised the state of QND in the context

of the global carbon cycle and concluded that “there is hardly any CCDAS applications to network

design”. Meanwhile this has changed, and section 3 summarises the progress and show a series of

successful applications.

Modelling systems that simultaneously simulate the components of the carbon cycle as a coupled55

system are computationally heavy, and embedding them into a QND framework even amplifies the

computational burden. It appears, hence, appealing to apply QND to component models for the sep-

arate evaluation of sub-networks that provide observations of the respective components. Section 4

illustrates the consequences of such a simplified approach in a highly simplified and in a more com-

plex example. Finally, section 5 recommends aspects of QND that need to be addressed by future60

work.

2 Methodology

The presentation of the methodology follows Kaminski and Rayner (2008) and Kaminski et al.

(2012b) using the notation introduced to this special issue by Rayner et al. (2016). The underlying

algebra is provided by Tarantola (2005) and Rayner et al. (2016). As mentioned the QND formalism65

performs a formal uncertainty propagation from the observations to a target quantity of interest

through a dedicated modelling chain. Hence, it is worth recalling the four influence factors which

produce uncertainty in a model simulation:

1. Uncertainty caused by the formulation of individual process representations and their numer-

ical implementation (structural uncertainty).70

2. Uncertain constants (process parameters) in the formulation of these processes (parametric

uncertainty).

3. Uncertainty in external forcing/boundary values (such as solar insulation or temperature) driv-

ing the relevant processes.

4. Uncertainty about the state of the system at the beginning of the simulation (initial state).75

The first factor reflects the implementation of the model (code) while the others can be understood as

input quantities controlling the behaviour of a simulation using the given model implementation. The

QND procedure formalises these input quantities through the definition of a control vector, x. The

choice of the control vector is a subjective element in the QND procedure. A good choice covers

all input factors with high uncertainty and high impact on simulated observations ymod or target80

quantities f (Kaminski et al., 2012b; Rayner et al., 2016).
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Figure 1: Two-step procedure of QND formalism. Ovals denote data, rectangles denote processing.

The target quantity may be any quantity that can be extracted from a simulation with the under-

lying model, i.e. any potential model output, for example terrestrial net primary production (NPP)

integrated over an area and time interval, but also any component of the control vector (for example

a process parameter such as Q10 expressing the temperature dependency of the decomposition of85

organic material). In the general case, where the target quantity is not part of the control vector, the

QND procedure operates in two steps (figure 1). The first step (inversion step) uses the observational

information to reduce the uncertainty in the control vector, i.e. from a prior to a posterior state of

information, and the second step (prognostic step) propagates the posterior uncertainty forward to

the target quantity.90

In this procedure we take uncertainty into account by representing all variables, i.e. the prior

and posterior control vectors as well as the observations, their equivalents simulated by the model,

and the simulated target quantity by probability density functions (PDFs). We typically assume a

Gaussian form for the prior control vector and the observations, if necessary after a suitable transfor-

mation. For example, instead of the above Q10 we could use the transformed variable ln(Q10− 1)95

in our Gaussian control vector, which changes the PDF of Q10 such that values below 1 have zero

probability. The Gaussian PDFs’ covariance matrices express the uncertainty in the respective quan-

tities, i.e. U(x0) and U(yobs) for the prior control vector and the observations.

For the first QND step we use the model M as a mapping from control variables onto equivalents

of the observations. In our notation the observation operators that map the model state onto the100

individual data streams (see Kaminski and Mathieu (2017)) are absorbed in M . Let us first consider

the case of a linear model, for which we denote the Jacobian matrix by M′. In this case the posterior

control vector is described by a Gaussian PDF with covariance U(x), i.e. the uncertainty is given by

U(x)−1 =M′
T
U(y)−1M′+U(x0)

−1 (1)105
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where the data uncertainty U(y) combines U(yobs) with the uncertainty U(ymod) in the simulated

equivalents of the observations M(x):

U(y)2 =U(yobs)
2 +U(ymod)

2 (2)

The first term in equation (1) expresses the observational constraint and the second term the prior

information content. In the non-linear case we use equation (1) as an approximation of U(x).110

In the second step, the Jacobian matrix N′ of the model (now used as a mapping from the control

vector to target quantities and denoted by N ) is employed to propagate the posterior uncertainty in

the control vector U(x) forward to the uncertainty in a target quantity σ(f):

σ(f)2 =N′U(x)N′
T
+σ(fmod)

2 . (3)

If the model was perfect, σ(fmod) would be zero. In contrast, if the control variables were perfectly115

known, the first term on the right hand side would be zero. The terms U(ymod) in equation (2) and

σ(fmod) in equation (3) capture the structural uncertainty as well as the uncertainty in those process

parameters, boundary and initial values that are not included in the control vector.

::
To

:::::::
conduct

:
a
:::::::

correct
:::::
QND

::::::::::
assessment,

:::
the

::::::::::
requirement

::
on

:::
the

::::::
model

::
is

:::
not

::::
that

:
it
:::::::::

simulates
:::
the

:::::
target

::::::::
quantities

:::
and

::::::::::
observations

:::::
under

:::::::::::
investigation

::::::::
correctly,

:::
but

:::
the

::::::::::
requirement

:
is
::::
that

:
it
::::::::
provides120

:
a
:::::::
realistic

::::::::
sensitivity

::
of

:::
the

:::::
target

::::::::
quantities

::::
and

:::::::::::
observations

:::::
under

:::::::::::
investigation

::::
with

::::::
respect

::
to

::
a

::::::
change

::
in

:::
the

::::::
control

::::::
vector.

::
If

::::
these

:::::::::::
sensitivities,

:::
i.e.

:::
the

::::::::
Jacobians,

:::
are

::::::::
realistic,

:::
but

:::
the

:::::::::
simulation

::
of

:::::
target

::::::::
quantities

:::
and

:::::::::::
observations

::::::::
incorrect,

:::
we

:::
can

::::::
always

:::::
make

:
a
::::::
correct

:::::
QND

::::::::::
assessment

::::
with

:::::::::::
appropriately

::::
large

:::::
model

::::::::::
uncertainty.

::::
The

:::::
result

::
of

:::
the

:::::::::
assessment

::::
may

::::
then

::
be

:::
that

::
a
::::::::
particular

::::
data

:::::
stream

::
is
:::
not

::::::
useful

::
in

::::::::::
constraining

::
a

::::::::
particular

:::::
target

:::::::
quantity

:::::
given

::::::
current

:::::::::
modelling

::::::::::
capabilities.125

::
In

:::
this

:::::::
situation

:::
we

:::::
could

::::::
operate

:::
the

:::::
QND

::::::
system

::::
with

:::::::
reduced

:::::
model

::::::::::
uncertainty

::
to

::::::
explore

::::::
which

:::::::
accuracy

::
of

:::
the

:::::
model

::
is
:::::::
required

:::
for

:
a
::::
data

::::::
stream

::
to

::
be

:
a
::::::
useful

::::::::
constraint

::
on

::
a

::::
given

:::::
target

::::::::
quantity.

::
As

:::
an

:::::::
example

:::
for

::::::::
incorrect

:::::::::
simulation

:::
but

::::::
correct

:::::::::
sensitivity

:::
we

:::
can

:::::
think

::
of

::
a
:::::::
regional

::::::::
transport

:::::
model

:::
that

::::::::
simulates

:::
the

:::::
small

::::
scale

:::::::::
variability

::::
very

::::
well

:::
but

:::::
cannot

::::::
match

::
the

:::::::
absolute

::::::::::::
concentration

::::::
because

::
it

::::
runs

::::
with

:
a
:::::
wrong

::::::::::
large-scale

::::::::::
background.

::
In

::::::::
particular

:::::
when

:
it
::::::
comes

::
to

:::
new

::::
data

:::::::
streams130

:::
and

:::::
target

::::::::
quantities

:::
the

::::::::
accuracy

::
of

:::::
both,

:::
the

:::::::::
simulation

:::
and

:::
the

::::::::::
sensitivities,

:::
are

::::
hard

:::
to

:::::
assess.

:::
In

::
the

::::
case

:::
of

:
a
::::::
model

:::
that

::::::
misses

:::::::
relevant

::::::::
processes

:::
we

::::
may

::::::
expect

:::::
errors

::
in

::::
both

:::
the

:::::::::
simulation

::::
and

::
the

:::::::::::
sensitivities,

:::
and

:::::::::::
consequently

::::
also

::
in

:::
the

:::::
QND

::::::::::
assessment.

Our performance metric is the (relative) reduction in posterior target uncertainty σ(f)2, with re-

spect to a reference. To compare against the case without any observations we use, as the reference,135

the prior target uncertainty

σ(f0)
2 =N′U(x0)N

′T +σ(fmod)
2 . (4)

The uncertainty reduction with respect to the prior,

σ(f0)−σ(f)

σ(f0)
= 1− σ(f)

σ(f0)
, (5)
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quantifies the impact of the entire network. If we seek an extension of a background network by140

additional observations, we may want to use the posterior uncertainty for the background network as

reference. The uncertainty reduction against this reference then quantifies the impact or added value

of the additional observations.

We note that (through equation (1) and equation (3)) the posterior target uncertainty solely de-

pends on the prior and data uncertainties, the contribution of the model error to the uncertainty in145

the simulated flux, σ(fmod), as well as the linearised model responses of the simulated observation

equivalent and of the target quantities. The QND formalism does not require real observations and

can thus be employed to evaluate hypothetical candidate networks. Candidate networks are defined

by a set of observations characterised by observational data type, location, time, and data uncertainty.

Here, we define a network as the complete set of observations, y, used to constrain the model. The150

term network is not meant to imply that the observations are of the same type or that their sampling

is coordinated. For example, a network can combine in situ and satellite observations.

In practice, for pre-defined target quantities and observations, model responses can be pre-computed

and stored. A network composed of these pre-defined observations can then be evaluated in terms

of the pre-defined target quantities without any further model runs. Only matrix algebra is required155

to combine the pre-computed sensitivities with the data uncertainties. This allows the setup of QND

systems that interactively respond to user-specifications of networks.

For the interpretation of QND results it is useful to develop a qualitative understanding of the sen-

sitivity of the result to the inputs of the QND system. For example, the impact of an observation on

the target quantity, i.e. the uncertainty reduction compared to the prior increases when the Jacobian160

M′ increases: Through equation (1) an increase in M′ will translate into an increase in U(x)−1, i.e.

a reduced posterior uncertainty. In contrast, if M′ was 0, the observation would have no effect, i.e.

it would be irrelevant. In the same way, the impact of an observation increases when the data un-

certainty U(y) is reduced. On the other hand, an observation with very high data uncertainty would

have only a small effect. Possible reasons for high data uncertainty are high uncertainty in the obser-165

vation or little confidence in our capability to simulate the observation, as expressed by equation (2).

An increase in the prior uncertainty U(x0) reduces the second term in equation (1). This, in turn,

increases the prior and posterior control uncertainties and, thus, also the prior and posterior target

uncertainties. But for any relevant observation the increase of the posterior uncertainty is lower than

that of the prior uncertainty, because in equation (1) the increase in the prior uncertainty increases170

the weight of the constraint by the data, which is expressed by the first term. As a consequence the

increase in the prior uncertainty yields a higher uncertainty reduction. We note that from equation

(3) a given target quantity is linked by N′ to a one-dimensional sub-space of the control space. The

observation must achieve an uncertainty reduction in that sub-space to yield an uncertainty reduc-

tion in the target quantity. The contribution of the model error, σ(fmod), has the effect of reducing175

:::::::::
decreasing the uncertainty reduction. σ(fmod) will always remain the lower bound on the posterior
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target uncertainty, no matter how relevant the observations are. When comparing the performance of

two networks, we can pronounce their difference in uncertainty reduction by neglecting σ(fmod).

We will see in the following sections that for many QND applications, it is sufficient to evaluate

the performance of a small number of candidate networks and compare their performance for a range180

of reasonable target quantities. For applications with many candidate networks it is often impractical

to test every candidate network, and a formal minimisation algorithm is used to identify the network

with the lowest posterior uncertainty in the target quantity. In case of multiple target quantities, we

can minimise a suitable scalar function of their posterior uncertainties, e.g. their sum of squares.

An example for the mathematically rigorous analysis of the complexity of a network optimisation185

problem is provided by Krause et al. (2008). Often the posterior uncertainty calculation for a single

candidate network is computationally so demanding that applications are only tractable with more

pragmatic and efficient minimisation approaches that may yield sub-optimal results (see section 3).

The QND approach relies on the capability to propagate data uncertainty to target uncertainty. This

requirement is met by CCDASs and transport inversion systems that use an explicit representation190

of M′ (or alternatively the entire right-hand side of equation (1)) and of N′. The combination of

high-dimensional control and data spaces yields a large M′, which may render its computation and

the solution of equation (1) difficult or even impossible. As a consequence, the control space is often

reduced from the full space-time grid of the model to, e.g., scalar coefficients of large flux patterns

(big region approach). To reduce the dimension of the data space, equation (1) can also be solved195

in a sequential procedure, where each step uses only sub-sets of the observations and the posterior

control uncertainty from the previous step as prior (see e.g. Kaminski and Rayner, 2008). In contrast

to a fixed lag (Ensemble) Kalman Filter approach, it is then essential not to change the control space

from one step to the next (Feng et al., 2009).

There are other approaches than QND that employ data assimilation/inverse modelling systems200

for the design of observational networks but do not rely on the availability of posterior uncertainty.

As such techniques have not been applied in a CCDAS context, we only give brief summaries of the

approaches that are most popular in the numerical weather prediction (Masutani et al., 2010) and

chemical data assimilation (Timmermans et al., 2015) communities. Observing System Simulation

Experiments (OSSEs) are conducted as follows: First, a “true” control vector is selected. Second, a205

model (with suitable observations
::::::::::
observation operators) is used to generate pseudo-observations (in

a so-called nature run). Third, prior (see e.g. Chevallier et al., 2007) and data are perturbed according

to their respective uncertainties. Fourth, the inverse modelling system is used to retrieve a control

vector. As an indication of the combined performance of the network and the inverse modelling

system one can use the difference between true and retrieved control vectors or between simulations210

of some target quantity from the true and retrieved control vectors.
:::
For

:::::
linear

::::::::
Gaussian

::::::::
problems

:::
the

::
the

:::::::::
difference

:::::::
between

::::::::
retrieved

:::
and

::::
true

::::::
control

::::::
vectors

::
is

:
a
:::::::::
realisation

::
of
:::

the
::::::::
posterior

::::::::::
covariance.

The above procedure is termed identical twin experiment, if the nature run and the inverse modelling
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system employ the same model, which means the experiment is conducted under the assumption

of a model that perfectly represents the real world. Observing System Experiments (OSEs) use a215

network of real observations. They assesses the added value of a data stream by excluding it from

the network.
::::::
Unlike

:::::
QND,

:::::
which

:::::::
requires

::::
only

:::
the

::::
data

::::::::::
uncertainty, OSSEs and OSEs , hence, differ

from QND by their use of
::::::
require,

::
in

::::::::
addition,

:
pseudo (OSSEs) or real (OSEs) observations, in

addition to the data uncertainty. Further, they typically use metrics other than uncertainty reduction.

In contrast to QND, OSSEs and identical twin experiments can be employed to assess the impact of220

biases in the observations, the prior, or the model (see e.g. Engelen et al., 2002). Further approaches

to network design rely on the analysis of the patterns of variability in real (see e.g. Mahecha et al.,

2017) or pseudo-observations (see e.g. Shiga et al., 2013).

3 Evolution of the field

The QND approach is based on work by Hardt and Scherbaum (1994) who optimised the station225

locations for a seismographic network. QND was introduced to biogeosciences by Rayner et al.

(1996), who optimised the spatial distribution of the atmospheric network for sampling CO2 and

the δ13C isotope in terms of their capability to constrain, in an atmospheric transport inversion, the

global ocean uptake. Surprisingly, the optimal location for an additional site was over the Amazon

rain forest, the region with the highest prior flux uncertainty. In their QND system a site at this230

location would minimise the uncertainty in the global terrestrial flux, which through the atmospheric

budget would indirectly provide the best possible constraint on the total ocean flux. This mechanism

did not work anymore when they changed their target quantity from the globally integrated ocean

flux to a set of regionally integrated ocean fluxes.

This ground-braking study established the QND approach in the carbon cycle community and235

already illustrated the need for a careful formulation of the target quantity. It paved the way for

three lines of QND applications: The first continues the optimisation of the atmospheric in situ

sampling network for the use in atmospheric transport inversions. The second optimises the design

of missions sensing XCO2 from space for the use in transport inversions. The third line employs the

QND approach to terrestrial biosphere models. As our focus is on QND applications in a CCDAS,240

we only briefly point to the most relevant QND applications with atmospheric transport inversions,

more detail on this topic can be found in Kaminski and Rayner (2008).

Pure atmospheric applications of QND include the studies by Patra and Maksyutov (2002), Patra

et al. (2003a), Law et al. (2004), and Rayner (2004), which explored the dependency of the optimised

networks on several aspects of the problem formulation as well as the optimisation approach. While245

Rayner et al. (1996) used the simulated annealing approach to determine optimal station locations,

Patra and Maksyutov (2002) demonstrated that their incremental optimisation approach of iteratively

finding one optimal station location at a time combined comparable performance with higher compu-
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tational efficiency. Rayner (2004) introduced the use of genetic algorithms to tackle the optimisation

problem. The study addressed the specification of the model uncertainty contribution U(ymod) to the250

data uncertainty U(y) (which he derived from the spread of a multi-model ensemble) and demon-

strated its impact on the optimal network. The study by Law et al. (2004) explored several aspects

of the QND problem including higher temporal resolution of the data space and higher space-time

resolution of the flux space. They employed a global model but their target region was Australia. The

study optimised locations for high frequency sampling (4 hourly) in addition to a global background255

network that mainly consisted of flask sampling sites. In order to avoid so-called aggregation errors

(Kaminski et al., 2001) induced by prescribed flux patterns over coarse regions (typically of the size

of a continent) they divided their target region into 12 sub-regions. For the same reason, rather than

solving for a monthly flux field per region they split the flux into a constant and a day-time com-

ponent. To assess the magnitude of their aggregation error, they performed, in parallel to the QND260

assessments, identical twin experiments. The study also assessed the impact of data uncertainty or

prior uncertainty on the optimal networks. In contrast to the above studies, Lauvaux et al. (2012)

used real atmospheric observations and a regional model: High frequency samples were provided by

a network of up to 8 sites, and the study tested the effect of removing sites from the network. Due to

the limited domain, fluxes on the boundary had to be included in the control vector. Recent examples265

for QND studies addressing rather practical design questions with a regional model are provided by

Ziehn et al. (2014) for Australia and Nickless et al. (2015) for South Africa.

The XCO2 can be observed from space and simulated by transport models. A series of pioneer-

ing QND studies (Rayner and O’Brien, 2001; O’Brien and Rayner, 2002; Rayner et al., 2002)

demonstrated the feasibility of the approach in transport inversions and delineated the require-270

ments for the implementation of the first satellite mission designed to observe atmospheric CO2

::::
with

:::::::
primary

::::::::
objective

::
to

:::::::
observe

::::::
XCO2

:
from space, the Orbiting Carbon Observatory (OCO,

Crisp et al., 2004). Since, the technique has been routinely applied in the evaluation of new space

mission concepts, e.g. by Patra et al. (2003b) for the Solar Occultation FTS for Inclined-orbit

Satellite (SOFIS), by Houweling et al. (2004), Miller et al. (2007), and Feng et al. (2009) for275

OCO, by (Kadygrov et al., 2009)
:::::::::::::::::::
Kadygrov et al. (2009) for the Greenhouse Gas Observing Satel-

lite (GOSAT), or by Bovensmann et al. (2015) for CarbonSat. The approach was also applied to

assess the active concepts of the Advanced Space Carbon and Climate Observation of Planet Earth

(A-SCOPE) mission (Hungershoefer et al., 2010) and the Active Sensing of CO2
::::
CO2 Emissions

over Nights, Days, and Seasons (ASCENDS) mission (Wang et al., 2014) as well as the geostationary280

concept of geoCARB (Rayner et al., 2014; O’Brien et al., 2016).

These mission assessment studies typically explore a low number of prescribed design options,

i.e. an optimisation algorithm is not used, and their target quantity is typically the net CO2 flux on

scales ranging from continental to that of the model grid, in some cases also the CH4 flux. Mission

performance was often compared to that of the ground-based network (flask/continuous) or space-285

9



borne instruments such as the Scanning Imaging Absorption Spectrometer for Atmospheric CHar-

tographY(SCIAMACHY) or the Atmospheric Infrared Sounder (AIRS) that were not specifically

designed to observe XCO2. For geoCARB, which is designed to resolve anthropogenic emissions,

observations of column-integrated CO are used as additional constraint and the uncertainty in the

emission factor was taken into account through it inclusion into the control vector (Rayner et al.,290

2014). Most of the QND assessments with transport inversion systems addressed, however, only a

single data stream.

We note that techniques other than QND were also applied for the assessment of space missions.

Identical twin experiments performed with variational transport inversion systems to assess the per-

formance of OCO include studies by Chevallier et al. (2007), Chevallier (2007), and Baker et al.295

(2010). Chevallier et al. (2007) used an ensemble generated by five inversions to approximate the

uncertainty reduction in control space. Baker et al. (2010) studied the effect of transport error, wrong

uncertainty specifications, and systematic errors in the observations. Chevallier (2007) demonstrated

the effect correlated data uncertainty.

Before addressing QND applications with CCDASs, we recall the impact of prior information.300

Within a given QND system, it is manifested in the sensitivity of the posterior target uncertainty with

respect to the prior control uncertainty. We need to keep in mind, however, that prior information

has already entered the construction of the QND system. This is through the selection of the suite

of models and observation operators (including their implementation) used in the QND system, and

then through the definition of the control vector. This includes the above-mentioned selection of the305

uncertain process parameters, initial and boundary conditions as well as their spatial differentiation.

For example, we can specify a process parameter as specific to a Plant Functional Type (PFT) or a

region or globally. In a transport inversion, the control vector may consist of fluxes on the space-time

grid of the model, or multipliers of prescribed patterns. In a CCDAS the model achieves a coupling

between the fluxes in space and time, which reduces the dimension of the control space.310

An initial QND application with a CCDAS was performed in the system based on the simple di-

agnostic biosphere model (SDBM Knorr and Heimann, 1995)
:::::::::::::::::::::::::::::
(SDBM; Knorr and Heimann, 1995).

The study (Kaminski et al., 2002) assessed the effect of adding a hypothetical direct flux observation

over the model’s broadleaf evergreen biome to the atmospheric flask sampling network as refer-

ence network. The study did not calculate the corresponding uncertainty reduction in flux space,315

i.e. the target quantities were the model’s control variables, a vector of two process parameters per

biome. Compared to the reference network, the additional observation achieved substantial uncer-

tainty reduction for the biome’s temperature dependency of the heterotrophic respiration. This was a

first indication
:::::::::::
quantification

:
of the complementary nature of atmospheric and ecosystem (i.e. direct

flux) measurements as constraints in a CCDAS.320

A more systematic assessment of the complementarity of atmospheric and ecosystem measure-

ments was performed by Kaminski et al. (2012b). The study employed the prognostic Biosphere
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Energy-Transfer HYdrology (BETHY, Knorr, 2000)
:::::::::::::::::::
(BETHY; Knorr, 2000) model, which composes

the global vegetation out of 13 PFTs. The control vector consisted of the initial atmospheric condi-

tion and the model’s process parameters, some of which were differentiated by PFT and some others325

were globally uniform. Target quantities were twenty-year averages of net ecosystem production

(NEP) and NPP integrated over a number of regions and over each of the model’s 2 by 2 degree

grid cells. They used pre-computed Jacobians for direct flux measurements over any land point on

the globe, for 15 selected sites for continuous sampling of atmospheric CO2, for 41 selected sites

for flask sampling of atmospheric CO2, and for all target quantities. Thanks to these pre-computed330

Jacobians they could construct an interactive tool for assessments of user-specified networks. The

study showed that a network with one flux site over each of the model’s PFTs populating Europe is

sufficient to infer the terrestrial carbon budget of that continent. With only one of these PFTs un-

sampled (incomplete flux network), the posterior flux uncertainty drastically increases. In the model

study we can, of course, avoid such incomplete networks, as we know the number and distribution of335

the PFTs. Since this is not the case for the real world, such incompleteness is likely. The study also

showed that the addition of an atmospheric network (in this case the flask network) provides a pro-

tection against the risk of missing a PFT or failure of a flux site. Through a set of experiments with

an increased number of PFTs (up to 325) the robustness of the above findings against the dimension

of the PFT space was shown. The study demonstrated the above-mentioned difference between QND340

with atmospheric transport inversions and a CCDAS: Through the model equations the constraint of

an observation taken at a particular point in time and space can act as a constraint to fluxes at another

point in time and space.

The complementarity of flux and atmospheric networks was confirmed by Koffi et al. (2013).

They employed the same model (BETHY) with two different atmospheric transport models, with345

combinations of two flux networks, two flask sampling networks (respectively with 62 and 77 sites),

and one network of continuous atmospheric sampling (27 sites). Atmospheric sampling frequencies

varied between monthly and 3-hourly. Their target quantities were the process parameters in the

control vector. They found that their atmospheric networks perform well in constraining parameters

that impact NEP but are not well suited to constrain parameters that impact Gross Primary Production350

(GPP).

The study of Szolgayová et al. (2016) builds on the flux and flask network definitions of Kaminski

et al. (2012b). It employed the CCDAS QND system to assess the uncertainty reduction in CO2

fluxes through the combined network. The study then used a real options model to quantify the

economic value of this uncertainty reduction and contrasted it with the cost of the network. They355

found a positive net value of the network that, in sensitivity tests, proved robust for a range of

assumptions entering the model.

The first QND assessment of a space mission with a CCDAS evaluated several design options

for the above-mentioned A-SCOPE mission (Kaminski et al., 2010). These design options were the
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wave band and the observational uncertainty, and the target quantities were twenty-year averages360

of NEP and NPP. Owing to the active instrument’s high sampling frequency, despite higher data

uncertainty the constraint from A-SCOPE observations outperformed the constraint from the flask

samples. The atmospheric transport was represented by a pre-computed Jacobian
:::::::
mapping

:::::
fluxes

:::
on

:::::::::::
concentration

:::::::
changes. To reduce the dimension of that Jacobian and the associated computational

burden, the sensitivity of XCO2 samples with respect to fluxes within the same latitude band and365

more than two months prior to the observations was assumed to be uniform. Switching to monthly

mean observations had little impact on the posterior uncertainty.

A further CCDAS study (Kaminski et al., 2012a) assessed the constraint provided by an optical

mission. Target quantities were regional NEP and NPP as well as two hydrological quantities, namely

the plant available soil moisture and the evapotranspiration. The optical mission was represented by370

a product of the FAPAR similar to that derived from the MEdium Resolution Imaging Spectrometer

(MERIS) by Gobron et al. (1997). Details on this data stream are provided by the contribution of

Scholze et al. (2017). The observation operator for FAPAR is a newly developed phenology scheme

(Knorr et al., 2010) that shows smooth dependence of simulated FAPAR in response to changes in

process parameters. The inclusion of this observation operator added further uncertain process pa-375

rameters and, thus, extended the control vector. Atmospheric flask samples were included as further

data stream. Again, the required observational and target Jacobians we pre-computed and exploited

to set up an interactive QND system. The system can evaluate both data streams, flask samples of

CO2 and FAPAR, individually and in combination. For the FAPAR data stream it allowed to change

::::::
changes

:::
to aspects of the mission such as the accuracy of the product and the length of the mission.380

The study demonstrated a moderate added value of FAPAR in constraining carbon fluxes and a high

added value in constraining hydrological quantities as well as the complementarity of FAPAR to

atmospheric CO2.

Solar-Induced Fluorescence (SIF) is a further observational constraint from space and also pre-

sented in the contribution of Scholze et al. (2017). Its assessment in a CCDAS requires a dedicated385

observation operator such as the SCOPE model by van der Tol et al. (2009). Koffi et al. (2015) cou-

pled SCOPE with BETHY and provided a first set of sensitivity tests. Norton et al. (2017) present

a QND assessment for the SIF product retrieved from GOSAT. The target quantity is the GPP at

grid scale. The study adds to the control vector, as an extra component, a scalar multiplier of the

incoming solar radiation, an external forcing term of BETHY.390

Rayner et al. (2010) focused on the anthropogenic component of the carbon cycle and constructed

a Fossil Fuel Data Assimilation System (FFDAS) that assimilates statistics of national emissions,

modelled population density, and remote sensing observations (nightlights) into a model of the fossil

fuel emissions. Posterior uncertainty is approximated by a 25-member ensemble of inversions for

perturbed prior and observations. The system was employed to quantify (through the uncertainty395
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reduction in fossil fuel emissions) the impact of hypothetical measurements of the annual mean
14CO2 concentration collected by a network of 194 atmospheric sites.

We note that all of the above CCDAS-based QND studies explored a set of candidate networks or

mission concepts. None of them applied a formal optimisation algorithm.

4 Separate and integrated QND400

Modelling systems that simultaneously simulate the components of the carbon cycle as a coupled

system are computationally heavy, and a QND framework even amplifies the computational bur-

den. For example, the QND systems by Kaminski et al. (2012b) used a terrestrial biosphere model

coupled to two atmospheric transport models to evaluate the combination of one terrestrial and two

atmospheric networks with surface flux integrals as target quantities. To reduce the computational405

demands one may think of a strategy that treats the QND problem separately per model and network

component and then integrates the results (in the following termed “separate QND”). In the example

of Kaminski et al. (2012b) this would mean computing three posterior uncertainty estimates for the

surface flux, one by evaluating the terrestrial network in a QND system around the terrestrial model,

and each of the two others by using a QND system for each of the atmospheric networks with the410

corresponding transport model. As the three component networks are independent, one could argue

that the respective posterior uncertainties are uncorrelated and, hence, the square root of the sum of

the squares of the three posterior flux uncertainties would yield the posterior uncertainty that could

be achieved by the combination of the three component networks. In the following we contrast this

separate QND approach with the integrated QND for the coupled model, we do this first in a highly415

simplified example and then in the system of Kaminski et al. (2012b).

4.1 Simplified Model

Let us first consider a highly simplified model, in which our target quantity, the net flux f , directly

depends on two parameters p1 and p2, each representing a component model:

f = p1 + p2 (6)420

For simplicity, let’s assume both parameters have the same uncorrelated prior uncertainty σ(p0).

Which then yields for the prior uncertainty σ(f0) of the flux:

σ(f0)
2 = 2σ(p0)

2 (7)

Now let’s assume we have two component networks, one can only constrain p1 and reduce the

uncertainty by a factor k, and the other network can only constrain p2, for simplicity it reduces the425
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Figure 2: Schematic illustration of PDFs in parameter space (upper panel) and flux space (lower

panel). Prior parameter PDF in blue. Posterior PDFs for separate (integrated) QND in black (red).

Projections onto posterior flux uncertainty with QND for either component network (black) or inte-

grated QND (red)

uncertainty by the same factor of k. If we construct a QND system around both component models

that can evaluate both networks simultaneously we would have (red PDF in figure 2)

σ(f)2 = (k∗k·
:
σ(p0))

2 +(k∗k·
:
σ(p0))

2 = 2k2∗·σ(p0)2 = k2∗·σ(f0)2 (8)

If we use only either of the two sub-networks we reduce the uncertainty only for one of the

parameters we have (black PDF in figure 2):430

σ(f)2 = (k∗k·
:
σ(p0))

2 +(σ(p0))
2 = (1+ k2)σ(p0)

2 (9)
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To combine the flux estimates provided by the two sub-networks we could use their (for simplicity

evenly weighted) average:

f =
1

2
(f1 + f2) (10)

If we ignore for a moment that they are based on the same parameter prior, f1 and f2 are indepen-435

dent and we get for the uncertainty in f :

σ(f)2 =
1

4
(σ(f1)

2 +σ(f2)
2) (11)

Applying Eq. 9 to both estimates we have:

σ(f)2 =
1

4
(2(1+ k2)σ(p0)

2) =
1

2
(1+ k2)σ(p0)

2 (12)

The double use of the prior produces correlated uncertainty and increases σ(f). For a small k, i.e.440

efficient networks or large prior uncertainty, this effect is small. The lower limit (for k approaching

0) in the separate QND case is

σ(f)2 =
1

2
∗σ(p0)2 (13)

while in the integrated QND case (Eq. 8) it is zero. This means that the separate QND approach

drastically underestimates the network performance.445

4.2 Complex example

The above example is very much simplified, and before generalising the finding we need to consider

the consequences of the simplifications. The assumption of only two parameters is not a serious

limitation: For the case of two larger sets of parameters, with each set only “seen” by one of the

component networks the example would work similarly. The assumption of full complementarity of450

the two sub-networks is more important. If there were parameters that neither system could observe,

not even the integrated QND could bring the posterior flux uncertainty to zero. On the other hand,

a given data stream tends to be good on one subset of the parameter space and weaker on another

one. If there is at least some complementarity, the integrated model can take advantage of this com-

plementarity, while in the separate QND approach the badly observed parts of the parameter space455

have the potential to spoil the performance.

To adapt the above algebra to such a case is a bit cumbersome, because constraining two or

more parameters simultaneously would involve matrix inversion. It is easier to run an example (with

two sub-networks) in the system of Kaminski et al. (2012b): We define a simple flask observing
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network composed of the two sites MLO and SPO and a simple flux network by a site in Europe (0460

degree longitude and 50 degree N latitude) with the tool’s default PFT fractions at that site. For both

networks we use the tool’s default uncertainty. We ,
::::

i.e.
:
1
::::
ppm

:::
for

:::::
flask

:::
and

:::
10

::::::::::::
gCm−2day−1

:::
for

:::
flux

:::::::::::
observations.

:::
We

::::
first

:
set the model error to zero, which yields very low posterior uncertainty

but makes the contrast between the networks more drastic. The resulting posterior NEP uncertainties

for Europe are 0.29 GtC/yr for the flux network and 0.21 GtC/yr for the flask network. Using Eq. 11465

this yields a posterior uncertainty of the combined estimate of

σ(f) =
1

2

√
(0.212 +0.292) GtC/yr = 0.18 GtC/yr (14)

By contrast the integrated QND yields a posterior uncertainty for Europe of 0.06 GtC/yr, a factor

of three lower.

:::
The

::::::::::
uncertainty

:::::::::
component

:::::::::
reflecting

:::::
model

:::::
error

::::::
clearly

:::::::
depends

:::
on

:::
the

::::::
quality

:::
of

:::
the

::::::
model470

::::
used.

::::
For

::::::::
example,

:
a
::::::

model
::::
that

:::::::
achieves

::
a
:::::
20%

:::::::::
uncertainty

:::
in

:::
the

::::
NEP

:::::::::
simulated

::::
over

:::::::
Europe

:::::
would

::::::
(based

::
on

:::
the

::::::
20-year

::::::::
posterior

::::
NEP

:::::::
average

::
of

::::
0.39

::::::
GtC/yr

:::::::
inferred

::
by

::::::::::::::::::
Scholze et al. (2007))

::::
have

:
a
:::::::
σ(fmod)::

of
::::
0.08

::::::
GtC/yr.

::::::
Using

:::
this

:::::
value

::
in

:::
the

::::::::
evaluation

:::
of equation (3),

::::::
would

:::::::
increase

:::
the

:::::::
posterior

::::
NEP

:::::::::::
uncertainties

:::
for

::::::
Europe

::
in

:::
the

:::::::
separate

:::::
QND

::
to

::::
0.30

::::::
GtC/yr

:::
for

:::
the

:::
flux

:::::::
network

::::
and

::
to

::::
0.22

::::::
GtC/yr

:::
for

:::
the

::::
flask

::::::::
network,

:::
i.e.

::::::::
according

::
to
:
equation (11)

:
a
:::::::::
combined

:::::::
posterior

::::::::
estimate475

::
of

::::
0.19

::::::
GtC/yr,

:::::
while

:::
the

:::::::::
integrated

:::::
QND

:::::
would

:::::
yield

:
a
::::::::
posterior

:::::::::
uncertainty

:::
of

::::
0.10

::::::
GtC/yr,

:::
i.e.

::
a

:::::
factor

::
of

:::
two

::::
less.

:

5 Suggested next steps

The study by Szolgayová et al. (2016) indicated the role of QND in assessments of the economic

value of a carbon observing system. Such assessments are an important and obvious next step as480

they can provide an objective quantitative basis to decision makers.

We demonstrated the need for an integrated QND approach, i.e. jointly in a
:
a
::::
joint

::::::::::
assessment

::
of

::
all

:::::::
relevant

::::
data

:::::::
streams

::
in

::
an

:::::::::
integrated

:
model that includes all components required to handle

all relevant
:::::::
simulate

:::::
these data streams. In the last decade there were several demonstrations of

the QND approach in a CCDAS, for atmospheric data streams (CO2 and XCO2) and for land data485

streams (direct flux measurements, FAPAR, SIF). This
:::
The

:
list of (potential) further direct (e.g.

biomass) or indirect (e.g. soil moisture) observational constraints on the carbon cycle is much longer

(see e.g. Raupach et al., 2005; Ciais et al., 2014; Scholze et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Raupach et al., 2005; Ciais et al., 2014; Scholze et al., 2017; Dolman et al., 2016).

Our examples also demonstrate that QND assessments can evaluate
:::
can

::::::
assess

:::
the

::::::::::::::
complementarity

::
of in situ and satellite observations ,

::
as

::::
well

::
as

:::
real

::::
and hypothetical data streams , and complementarity490

of data streams
::
for

::
a

::::
range

::
of

:::::::
suitable

:::::
target

::::::::
quantities. This is exactly what is needed to support

:::::
guide

the evolution of the observing system
::
an

::::::::
observing

::::::
system

::::
that

:::
can

::::::
reduce

:::::::::::
uncertainties

::
in

::::::::
estimated

::::::
natural

:::
and

::::::::::::
anthropogenic

::::::
fluxes,

::
as

::::::::
requested

::
by

:::
the

:::::
Paris

:::::::::
Agreement.
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::
To

:::::
cover

:
a
::::::::
particular

::::
data

::::::
stream

::
or

:::::
target

:::::::
quantity,

:::
the

:::::
model

::
in

:::
the

::::
core

::
of

:::
the

:::::
QND

::::::
system

:::::
needs

::
to

::
be

:::::::
capable

::
of

:::::::::
simulating

:::
in

:
a
:::::::
realistic

:::::::
manner

:::
the

:::::::::
sensitivity

::
of

::::
the

::::
data

::::::
stream

::::::::::::
(observational495

::::::::
Jacobian)

:::
and

:::::
target

::::::::
quantity

:::::
(target

:::::::::
Jacobian)

::::
with

::::::
respect

::
to
:::::::

changes
:::

in
:::
the

::::::
control

::::::
vector.

:
With

regard to natural fluxes, a suitable QND system should also include an ocean component, to allow

the evaluation of oceanic data streams .
:::
and

:::::
target

:::::::::
quantities,

::::
e.g.

:::::::::::
acidification. The same holds for

the inclusion of a methane emissions component (see e.g. Houweling et al., 2017). With regard

to anthropogenic fluxes, fossil emissions and land management modules are needed. The above-500

mentioned FFDAS is an obvious candidate for coupling into a CCDAS. A first demonstration of the

inclusion of a fossil emissions module into a CCDAS was provided by Hooker-Stroud (2008).

We explained that the setup of a QND system also relies on subjective choices. It is, hence, ad-

visable to have multiple QND systems in operation; relying on a single one appears risky. It may

be useful to also operate a “light” variant of such a system, which relies on pre-computed Jacobians505

and can rapidly test design questions. A “heavier” system could then be used for a subsequent in-

depth analysis of the most promising configurations. It is also necessary to better understand the

effect of such subjective choices, in order to minimise their impact on the assessment. This includes

the selection of component models and the specification of the control vector, including its resolu-

tion/discretisation in space, time, and other dimensions of the model, for example the space
::::::
spaces510

of plant functional types
::
or

::
of

:::::
fossil

::::::::
emission

::::::
sectors. This also concerns approximations we make

to reduce the size of the Jacobians, e.g. pre-aggregation of observations.

At the technical level, formal optimisation algorithms have so far only been used in QND with

transport inversions, not in a CCDAS. Progress at this level would be useful, especially for the design

of the in situ network.515
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