1 Responses to reviewers' comments

2 3

Anonymous Referee #1 Received and published: 8 February 2017

4 5 This paper reports the results of experiments designed to elucidate the impacts of temperature 6 and CO2 increases on the growth of a diatom and *Phaeocystis*, and their competitive interactions. While the paper is of some interest, I am puzzled by many aspects of the study. Furthermore, we 7 8 recognize the extreme limitations of these types of experiments, even if done within the bounds 9 of reality (which this one was not). When attempting to look at only two factors alone, multiple 10 other factors are changing simultaneously in situ, and any one of those factors might have an 11 impact that is far greater than those tested. The simplest example is iron. Increasing temperature 12 might alter the rate of regeneration of iron to a great degree, as well as supplies from below (and 13 potentially other pathways, such as scavenging). Given that the authors have long published papers on the role of iron, it seems odd that this paper focuses solely on temperature and CO2. 14 15 Regardless of my many criticisms, I am ambivalent about the publication of the paper. I feel that the methods used are robust, but in truth the paper will have hardly any impact on our 16 17 understanding of climate change and the oceanic response to change. While there are no "fatal 18 flaws" that I see, it is not a citation classic either. Hence I vacillate between suggesting

19 "rejection" and "publish", and will simply leave that decision to the editor.

20

21 Response to Anonymous Referee #1

22 We agree with the reviewer that there are many factors that may affect the growth and

23 competitive success of Ross Sea phytoplankton, and we also agree that iron is certainly among

the most important. In fact, as the reviewer notes we have worked extensively on this topic in

the past, including a recent paper that used these same two Antarctic species to examine the

26 interactions between iron limitation and warming (Zhu et al. 2016, Marine Ecology Progress

27 Series 550: 39–51). We have also compared the responses of *Phaeocystis* and another Ross Sea
28 diatom (*Fragilariopsis*) to changing iron availability under a 'clustered' matrix of present or

future temperature, CO₂, and light (Xu et al. 2014, Limnol. Oceanogr., 59, 1919–1931). In terms

30 of experimental logistics, though, it is not practical to simulate all potential future changes in one

so of experimental logistics, mough, it is not practical to simulate an potential future changes in on set of factorial experiments, so we decided to focus particularly on temperature and CO₂ and

32 their interactions in this one.

33 These iron-replete experiments are arguably more realistic for our isolates than they would be for

34 many other Southern Ocean phytoplankton, since our cultures came from coastal McMurdo

35 Sound. This is an area that often experiences extended periods of springtime iron-replete

36 conditions, before eventually transitioning to late summer iron-limited conditions as the annual

bloom progresses and depletes the iron (Bertrand et al. 2015, PNAS 112). We originally
mentioned this rationale for doing the experiments with added iron in the Methods, but we have

38 intentioned this rationale for doing the experiments with added from in the Methods, but we had added more justification and detail in the revised version on lines 103-105. It has also been

40 suggested by some research that as iron addition stimulates the growth of both diatoms and

41 *Phaeocystis*, iron availability may not be a major distinguishing factor in the competition

42 between these two groups. As it is, we agree with the reviewer that our experiments address

43 warming and acidification responses in the absence of any differential effects of iron limitation,

44 and we have added text explicitly stating this on lines 107-109. We disagree with this reviewer

that there is a lack of community interest in understanding the interactions between warming andacidification in Ross Sea phytoplankton, regardless of other important factors like iron limitation,

stratification, UV, etc., and the other two reviewers seem to agree with us on this point.

- 46 47
- 47 48

49 **Responses to the specific comments:**

50 1. I realize this is a judgement matter, but I feel that a number of recent papers and reviews were

- not cited. Furthermore, some that were cited were inappropriately used e.g., line 37 Arrigo et
- al. deals with the Ross Sea, not the Southern Ocean, as does Smith et al.; Line 39: Sarmiento
- 53 argued that temperatures will not change significantly in the next 100 years, but stratification
- 54 will (although other papers argue that a small increase will occur; line 52: Caron said nothing
- about zoo- plankton and only looked at microzooplankton; Line 32: Gille looked at deep water
 changes in temperature, so this statement is misleading when talking about phyto- plankton.
- 57

58 We have updated the citations to include additional recent related papers and reviews in our manuscript, including Ryan-Keogh et al. 2017, Smith et al. 2014a and 2014b, 59 Smith and Jones 2015, and Sedwick et al. 2011. For the comments on the literature now 60 cited in our paper: Arrigo et al. (1999) and Smith et al. (2000) reported the distribution 61 and seasonal cycle of diatom and *Phaeocystis* in the Ross Sea, the same coastal Southern 62 Ocean polynya that our isolates came from. It seems a matter of semantics, but we now 63 refer specifically to the 'Ross Sea' in the text rather than generally to the shelf or coastal 64 waters of the Southern Ocean. Arrigo et al. (2008) studied the production of all the 65 Southern Ocean, and found that the Ross Sea is one of most productive regions in the 66 entire area (line 36): We have added other references to warming in the region to replace 67 68 Sarmiento et al. (1998), including Meredith and King 2005 and Smith et al. 2014 on lines 32 and 37. We have also cited Rose et al. (2009), Xu et al. (2014) and Zhu et al. (2016) 69 here to mention that temperature increases may promote the growth of phytoplankton in 70 the Southern Ocean. line 39: we have changed the wording of this section from 71 'zooplankton' to 'planktonic herbivores' to include microzooplankton in our manuscript, 72 line 50, and added an additional reference to Haberman et al. 2003 on line 52: Instead of 73 74 Gille (2002), as noted above we now use two references more appropriate to surface warming, Meredith and King (2005) and Smith et al. (2014). 75 76

2. Choice of temperatures. Nearly all models of the Ross Sea suggest that a temperature increase

- in the next century will be on the order of 2C. If the study is designed to mimic future changes,
- 79 why were temperatures from 0 to 10C used? This feature alone makes the results far less
- 80 interesting to the oceanographic community as a whole. In particular a competition at 6C doesn't
- 81 really tell us much. Why not run it at 2C?
- 82

We agree that the full range of temperatures we used exceeds likely maximum 83 warming levels in the region, at least for the next few centuries. However, there is 84 considerable value in examining the full range from 0°C to 10°C in order to generate 85 86 complete thermal functional response curves for these two phytoplankton. Complete curves are needed to allow us to calculate key quantitative parameters including 87 maximum growth temperatures, maximum growth rates, optimum temperatures, etc, and 88 so thoroughly understand their overall thermal physiology. In fact, using a broad range 89 of temperatures enabled the interesting and significant observation that both species (but 90 especially the pennate diatom) are in fact typically growing well below their optimum 91 growth temperatures in the current Ross Sea. One of our most important results is that all 92 93 degrees of foreseeable future warming, far from being deleterious, will in fact increase the potential maximum growth rates of the diatom relative to the prymnesiophyte. At any 94 rate, the (relatively) near future two degree temperature increase mentioned by the 95 reviewer is already included in our thermal response curves, which thus offer both the 96 near-term environmentally relevant information this reviewer requests, as well as 97 98 considerably more complete information on physiology at higher temperatures. The fact that we performed full thermal response curves rather than just examining two 99 100 temperatures in a simple dichotomous 'current' and 'future' scenario was commented on by Reviewer 3 as being one of the best features of our experimental design. For these 101 same reasons, we also deliberately extended our full CO₂ response curves out to very 102 elevated pCO₂ values that are not likely to occur in the Ross Sea in the near future, but 103 that still offer useful information about physiological responses to acidification. 104 The competition experiment (which was really a co-growth experiment, as was 105 pointed out by Reviewer 3) was run at 6C because this temperature lies within the 106 optimum growth range for both species (see Fig. 1). The experiment was simply 107

intended to test if our thermal response curves for both species individually were indeed predictive of growth rates in simple co-cultured model communities. It was not intended to accurately simulate near-future warming levels, but rather see if warmer conditions favor the diatom even when grown together with *Phaeocystis*. We have added text to better explain this in the revised manuscript on lines 125-132, and added discussion of this point on lines 331-334.

114

115 3. Was the *Phaeocystis* culture composed of colonies or solitary cells?

We added mention in our revised manuscript that our *Phaeocystis* cultures mostlyconsisted of small colonies on lines 95-96.

118

4. 4. Growth rates. Growth rates increased with temperature; certainly no surprise here.

Yes, certainly growth rates increase with temperature, but the surprise as noted aboveis that optimum temperatures especially for the diatom are well above any currently

relevant temperatures for the Ross Sea. We now make this key point more clearly in the revised manuscript on lines 234 and 315-316.

5. Fig. 3. C: chl ratios of 150 are NEVER seen in *Phaeocystis* dominated assemblages in theRoss Sea. Why are these so anomalous?

Similar C: chl ratios ranges have been observed by Smith et al. (2000) in situ in the Southern Ocean, and by Xu et al. (2014) and Zhu et al. (2016) in lab cultures. It seems likely that the amount of organic C associated with colonial Phaeocystis may be quite variable, as it depends not only on cell biomass but also especially on the amount of mucilage produced by the cells under any particular growth condition.

131

132 6. Fig. 5. Were experiments really run with zero CO2? Or was the origin simply assumed? If the

133 latter (which of course makes sense and is implied in the figure caption), that single value alters

the entire curve. It would have been good to run the experiments with ca. 25 or 50 ppm, as it is

not impossible that at least colonial *Phaeocystis* might utilize mucilage oxidation as a CO2

136 source.

137 We have updated our manuscript to mention that zero growth rate was assumed at zero ppm CO_2 (and below the seawater freezing point of about $-2^{\circ}C$) on lines 154-156. 138 As the reviewer notes, it is reasonable to assume that an obligate photoautotroph cannot 139 grow at zero CO₂ concentrations, and in fact there would be no practical way to grow 140 cells at 0 pCO₂ to obtain a real data point here. Likewise, it might be difficult to grow 141 them even at 25 or 50 uatm, as from our curves it looks like growth rates would be very 142 low here. The possibility of mucilage oxidation serving as a supplementary source of CO₂ 143 for Phaeocystis at low ambient pCO_2 is an interesting if speculative idea, and we have 144 added text to mention this during revisions on lines 392-394. 145

146

147 7. Line 318. Light intensity is an incorrect (and dated) term. Use irradiance or photon flux

density. Intensity is measured in lumens! Additionally, the discussion of temperature and

149 irradiance as "co-variables is a bit misleading. At temperatures en- countered in the Ross Sea,

stratification is overwhelmingly dominated by salinity, not temperature. Usually temperate

variations with depth can only arise after stratification due to salinity is initiated (such as near the

152 ice edge). Furthermore, during spring and parts of summer, often warmer water occurs at depth,

so (line 324) mixing does not necessarily lower temperature, and can even increase it.

We have updated the wording to get rid of light intensity and use irradiance throughout the paper instead, and have deleted the term "co-variables" for temperature and light. The reviewer is correct that there are some situations where deeper water can be slightly warmer than the surface mixed layer, but in general shallow mixed layers will have often have a tendency to warm up from solar heating relative to underlying water,

- 159 depending of course on the amount of ice melting occurring. We have rewritten this text
- to qualify it and make this discussion more realistic and relevant on lines 345-347.
- 161 8. Line 338. Again, if the Si:C ratio increases in a warmer ocean, flux does not necessarily
- increase, because Si rem- ineralization rates are temperature dependent. And because the
- temperature changes in the future ocean will be initially limited to the upper surface layer (at
- 164 least relevant to this study), the scale of remineralization likely will be only modestly impacted,
- if at all, especially in the regions where Si accumulations in sediments is greatest.
- We agree that Si remineralization rates are temperature dependent, and that this could partially offset higher Si export due to increased C:Si ratios. We have added this point into our discussion on lines 364-367 and 434-435.

169 9. Line 343. This discussion is too restricted. First: will changes in the next century increase or 170 decrease Phaeocystis? A recent JGR paper suggests that it will increase Phaeocystis in the Ross 171 Sea on an annual basis due to the earlier "ice off", which coupled with the absolute irradiance levels and solar angles, generate a longer "low irradiance" environ- ment. While I agree that N 172 173 and C export will change with an assemblage change, I think it is not clear how future Ross Sea 174 phytoplankton will change. Certainly in previous work (Tortell et al.) different diatoms became 175 dominant under different conditions, so extrapolating ONE diatom to all diatoms is very speculative. 176

- We agree that we cannot extrapolate one diatom to all diatoms; we focused on 177 Pseudo-nitzschia subcurvata as our previous work in both the field and the lab suggests it 178 will be a particular beneficiary of warming in the Ross Sea, but we have now carefully 179 qualified our conclusions appropriately in the revisions on lines 439-441. Likewise, we 180 also cannot be 100% sure how the phytoplankton community composition and elemental 181 fluxes will be shifted by global change, and so we have broadened our final discussion to 182 include the alternative possibility explored in the new JGR paper mentioned here on lines 183 442-444. 184
- 185

186 **Response to Anonymous Referee #2**

187 This manuscript tests the response of two different phytoplankton species (Pseudo- nitzschia and 188 Phaeocysitis) to changes in a larger range of ph and temperature. The findings in the manuscript 189 are interesting and for importance regarding climate change impacts on biogeochemical cycles in 190 the Ross Sea. I think that the experimental setup is tedious, yet also necessary as a first step to 191 understand some response patterns.

- 192 Due to the approach taken, one could argue that the authors will not be able to dis- tinguish
- between CO2 and ph effect or the effect regarding metal availability under different pH. But

- 194 personally, I see these kind of studies to be useful for a first understanding.
- 195 I have to emphasize the care taken by the authors to keep the cells in a healthy growth phase
- using multiple dilutions and longer acclimation phases. This care is lacking in a lot of literature.
- 197 Thanks for the improvement in culture maintenance and acclimation. I see no issues in the
- 198 experimental setup, data analysis and evaluation as well as discussion! The writing is fine and
- the manuscript is well structured. I would argue that this study could be published with very
- 200 minor corrections.
- However, while reading through the paper I realized that it is a tiresome. I feel that this study,despite potentially being a useful source of information might not get a lot of attention due to the
- way it is written. Although scientific writing is dry, that authors could have tried to write the
- 204 manuscript more exciting. I will leave this to the editor and the other reviewers.
- 205 During revisions, we have tried to rewrite our manuscript to better highlight the 206 interesting aspects of the study for readers.
- 207 Minor comments: This manuscript seems to be relatively similar in its idea compared to a study
 208 by Trimborn et al 2013)- yet significant differences are apparent so I will not hold this against it.
 209 Nonetheless, the authors might want to compare some of the data between the mentioned paper
 210 in their manuscript.
- We agree that comparisons with the results of the related study by Trimborn et al. (2013) are needed, but we already cited this paper and made some of these comparisons in our manuscript on the former lines 360-365. In response to this comment, though, we have added further text to consider the results of Trimborn et al. (2013) in more depth (lines 387-389).
- 216 Please correct the typo in line 222 the "S" is missing the species name.
- The typo has been corrected in our revised manuscript at line 240.
- 218

219 Response to Referee #3, Andrew McMinn.

- 220 This paper makes an important contribution to our understanding of Southern Ocean
- 221 phytoplankton response to predicted ocean change. The manuscript is well written and quite
- readable. I recommend publication with a some modifications and changes.
- 223 The methods used in this study are mostly robust and appropriate and the experimental design

- 224 was well thought out. I am pleased to see that the cultures were established from the same
- location only 12 months before and that local sea water was used for culturing.
- 226 It was also good to see that the authors selected temperature and CO2 gradients rather than
- 227 merely a 'low' and a 'high' treatment. Too many OA studies just look at responses at 400 and
- $\sim 1000 \mu atm$. While this might provide a glimpse of a possible future ocean, it provides little
- reliable physiological information. The six CO2 and six temperature settings provide a good
- range and not only sensibly bracket likely future senarios, they also enable physiological
- responses to be determined. The development and use of thermal and CO2 functional response
- curves to interpret impacts makes a particularly useful contribution. These authors are leaders inthe application of this method.
- We appreciate the reviewer's positive comments about our experimental methods, the use of recently isolated cultures, and the importance of our study.
- The reasons for including an elemental analysis are not explained. There is no mention of themin the abstract or the introduction. A better initial justification is required.
- We mentioned that *Phaeocystis* and diatoms contribute in significantly different 238 ways to biogeochemical cycles of nutrients in the introduction due to their different 239 stoichiometry, but we have re-emphasized this in our revisions and added more detailed 240 descriptions of the differences (lines 48-50, lines 375-377, lines 444-448). The elemental 241 ratio analyses helped to us to confirm these differences, and reveal potential effects of 242 243 warming and acidification on these elemental ratios both in living phytoplankton and potentially in exported particles. We have tried to make our reasons for including these 244 data more evident in the revised paper. 245
- The authors discuss relevant literature on the impacts of temperature and CO2 but don't
 adequately include comments on other co-stressors, such as iron. While I don't believe it was
 necessary to include additional co-stressors in the experimental design, they should at least be
 acknowledged.
- We agree iron is an important factor for the growth of phytoplankton in the Southern Ocean. As noted in our response to Reviewer 1, we addressed iron limitation and its interactions with warming in Zhu et al. (2016) and interactions of iron with combined treatments of warming, CO_2 and irradiance in Xu et al. (2014), and have modified the text to point readers to these papers and recognize that iron is clearly an important factor that can't be neglected in the Ross Sea (lines 80-84, lines 105-108, lines

256 448-451).

I do have some real concerns about the competition study. Competition only occurs when the two species are resource limited. The species with the fastest growth rate is not always the most competitive; it is the species that requires the least amount of resource to reach its maximum growth rate (Titman 1976). The competition experiments described here were too short for competition to have occurred and we are merely seeing the results of the highest growth rate at the given temperature. The outcomes could be predicted solely from the half saturation coefficients given in Table 4.

It is unclear why the authors chose 6° for one of their competition experiments. Use of this
temperature rather than a more realistic future temperature should be justified. I think the
competition experiment should be removed but the discussion of completion included nut limited

to half saturation constants.

I found the remainder of the manuscript to be well written, well justified and well argued.

We agree the competition experiment might be better described as a co-incubation 269 or co-growth experiment to show whether the growth rates observed in unialgal cultures 270 are repeatable in mixed cultures. 6°C was chosen because the growth rates of these 271 phytoplankton started to differentiate significantly at this temperature, and this 272 temperature also lies within the optimal range for growth for both isolates (see Fig. 1). As 273 noted in our response to Reviewer 1, we did not intend this experiment to simulate any 274 275 specific future scenario. We agree with the reviewer's point that the experiment tests the relative maximum growth rates of both species at this temperature, rather than being a 276 277 true 'competition' experiment. We would like to retain these results for the reasons mentioned above, but have changed the text and no longer refer to it as a competition 278 279 experiment, but rather as a co-culture or co-incubation experiment. New text has been added to clearly recognize what this experiment does and doesn't show (lines 125-127, 280 281 lines 331-334).

Individual and interactive effects of warming and CO_2 on <i>Pseudo-nitzschia subcurvata</i> and	Formatted
Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica	
Zhi Zhu ¹ , Pingping Qu ¹ , Jasmine Gale ¹ , Feixue Fu ¹ , David A. Hutchins ¹	
1. Department of Biological Science, University of Southern California, Los Angeles, CA 90089,	
USA.	
Correspondence to: David A. Hutchins (dahutch@usc.edu)	
Abstract: We investigated the effects of temperature and CO ₂ variation on the growth and	
elemental composition of cultures of the diatom Pseudo-nitzschia subcurvata and the	
prymnesiophyte Phaeocystis antarctica, two ecologically dominant phytoplankton species	
isolated from the Ross Sea, Antarctica. To obtain thermal functional response curves, cultures	
were grown across a range of temperatures from 0°C to 14°C. In addition, a <u>co-culturing</u>	Deleted: competition
experiment examined the relative abundance of both species at 0°C and 6°C. CO ₂ functional	
response curves were conducted from 100 to 1730 ppm at 2° C and 8° C to test for interactive	
effects between the two variables. The growth of both phytoplankton was significantly affected	
by temperature increase, but with different trends. Growth rates of P. subcurvata increased with	
temperature from 0°C to maximum levels at 8°C, while the growth rates of <i>P. antarctica</i> only	
increased from 0°C to 2°C. The maximum thermal limits of <i>P. subcurvata</i> and <i>P. antarctica</i>	
where growth stopped completely were 14°C and 10°C, respectively. Although P. subcurvata	
outgrew P. antarctica at both temperatures in the co-incubation experiment, this happened much	Deleted: outcompeted
faster at 6°C than at 0°C. For <i>P. subcurvata</i> , there was a significant interactive effect in which	Deleted: competition
the warmer temperature decreased the CO2 half saturation constant for growth, but this was not	
the case for <i>P. antarctica</i> . The growth rates of both species increased with CO_2 increases up to	
425 ppm, and in contrast to significant effects of temperature, the effects of CO ₂ increase on their	
elemental composition were minimal. Our results suggest that future warming may be more	
favorable to the diatom than to the prymnesiophyte, while CO2 increases may not be a major	
factor in future competitive interactions between Pseudo-nitzschia subcurvata and Phaeocystis	
antarctica in the Ross Sea.	

1 Introduction

Global temperature is predicted to increase 2.6°C to 4.8°C by 2100 with increasing anthropogenic CO₂ emissions (IPCC, 2014). The temperature of the Southern Ocean has increased even faster than global average temperature (Meredith and King, 2005), and predicted future climate warming may profoundly change the ocean carbon cycle in this region (Sarmiento et al., 1998). The Ross Sea, Antarctica, is one of the most productive area in the ocean, and features annual austral spring and summer algal blooms dominated by *Phaeocystis* and diatoms that contribute as much as 30% of total primary production in the Southern Ocean (Arrigo et al., 1999, 2008; Smith et al., 2000, 2014a). The responses of phytoplankton in the <u>Ross Sea</u> to future temperature change (<u>Rose et al., 2009; Xu et al., 2014; Zhu et al., 2016) in combination with</u> intensified stratification (Sarmiento et al., 1998) could lead to intensified future diatom blooms (<u>Smith et al. 2014b)</u>, and the physiological effects of warming may partially compensate for a lack of iron throughout much of this region (Hutchins and Boyd, 2016).

In the Ross Sea, the colonial prymnesiophyte *Phaeocystis antarctica* typically blooms in austral spring and early summer, and diatoms including *Pseudo-nitzschia subcurvata* and *Chaetoceros* spp. bloom later in the austral summer (Arrigo et al., 1999, 2000; DiTullio and Smith, 1996; Goffart et al., 2000; Rose et al., 2009). Both diatoms and *P. antarctica* play an important role in anthropogenic CO₂ drawdown and the global carbon cycle; additionally, they contribute significantly to the global silicon and sulfur cycles, respectively (Arrigo et al., 1999; Tréguer et al., 1995; Schoemann et al., 2005). Furthermore, the <u>N: P and C: P</u> ratios of *P. antarctica* are higher than those of diatoms, and thus they contribute unequally to the carbon, nitrogen, and phosphorus cycles (Arrigo et al., 1999, 2000). Diatoms are preferred by <u>many</u> planktonic herbivores, over *P. antarctica*, and so the two groups also differentially influence the food webs of the Southern Ocean (Knox, 1994; Caron et al., 2000; Haberman et al., 2003).

Arrigo et al. (1999) suggested that the spatial and temporal distributions of *P. antarctica* and diatoms in the Ross Sea are determined by the mixed layer depth, while Liu and Smith (2012) indicated that temperature is more important in shaping the distribution of these two

Deleted: Gille, 2002
Deleted: Southern Ocean
Moved (insertion) [1]
Deleted: may offset the decrease of carbon export caused by
Deleted: ;
Moved up [1]: Rose et al., 2009; Xu et al., 2014; Zhu et al., 2016)

Deleted: elemental

Deleted: and Deleted: are different

Deleted: marine
Deleted: zooplankton grazers

Deleted:

dominant groups of phytoplankton. Smith and Jones (2015) presented evidence for the	
importance of deep mixing and the critical depth for the timing of transitions from P. antarctica	
to diatom blooms. Zhu et al. (2016) observed that a 4°C temperature increase promoted the	
growth rates of several dominant diatoms isolated from Ross Sea, including P. subcurvata,	
Chaetoceros sp., and Fragilariopsis cylindrus, but not the growth rates of P. antarctica. In	
addition, both field and laboratory research has suggested that temperature increase and iron	
addition can synergistically promote the growth of Ross Sea diatoms (Rose et al., 2009; Zhu et	
al., 2016; Hutchins and Boyd, 2016). Thus, it is possible that phytoplankton community structure	
in this region may change in the future under a global warming scenario.	Deleted: the Southern Ocean

In addition to temperature increases, ocean uptake of 30% of total emitted anthropogenic CO_2 has led to a 0.1 pH unit decrease in surface water, corresponding to a 26% increase in acidity (IPCC, 2014). The global CO_2 concentration is predicted to increase to around 800 ppm by 2100, which will lead to a further decrease in surface seawater pH of 0.3–0.4 units (Orr et al., 2005; IPCC, 2014). CO_2 increases have been found to promote the growth and affect the physiology of many but not all phytoplankton species tested (Fu et al., 2007, 2008; King et al., 2011; Xu et al., 2014; Hutchins and Fu 2017).

Research on the effects of CO₂ increases on *Phaeocystis antarctica* and Antarctic diatoms is still scarce. Xu et al. (2014) suggested that future conditions (higher temperature, CO₂, and <u>irradiance</u>) may shift phytoplankton community structure towards diatoms and away from *P. antarctica* in the Ross Sea. Trimborn et al. (2013) discovered that the growth rates of *P. antarctica* and *P. subcurvata* were not significantly promoted by high CO₂ relative to ambient CO₂ at 3°C. In contrast, Wang et al. (2010) observed that the growth rates of the closely related temperate colonial species *Phaeocystis globosa* increased significantly at 750 ppm CO₂ relative to 380 ppm CO₂.

Many studies have shown that primary production in various parts of the Southern Ocean is limited by iron supply (Martin et al., 1990; Takeda, 1998; Boyd et al., 2000; Sedwick et al., 2000; Hutchins et al., 2002; Coale et al., 2004), and several have addressed the effects of iron Deleted: light intensity

Deleted: . Paul et al. (2015) also did not detect any significant effects of CO_2 increase on the growth of Baltic Sea phytoplankton in a mesocosm experiment. In

Deleted: research
Deleted: wed
Deleted: the
Deleted: of
Deleted: are
Deleted: research
Deleted: showed

and warming on the growth of phytoplankton from the Ross Sea (Rose et al., 2009; Zhu et al.

2016; Hutchins and Boyd 2016). Thus, an important goal of phytoplankton research is to also gain an understanding of how global warming together with ocean acidification may shift the phytoplankton community in the <u>Ross Sea (Arrigo et al., 1999; DiTullio et al., 2000)</u>. This study aimed to explore the effects of increases in temperature and CO₂ availability, both individually and in combination, on *P. antarctica* and *P. subcurvata* isolated from the Ross Sea, Antarctica. These results may shed light on the potential effects of global change on the marine ecosystem and the cycles of carbon and nutrients in the highly productive coastal polynyas of Antarctica.

2 Materials and Methods

2.1 Strains and growth conditions

P. subcurvata and P. antarctica were isolated from the ice edge in McMurdo Sound (77.62° S, 165.47° E) in the Ross Sea, Antarctica during January 2015; P. antarctica cultures grew as small colonies (~4-12 cells) in all the experiments. All stock cultures were grown in Aquil* medium (100 μ mol L⁻¹ NO₃⁻, 100 μ mol L⁻¹ SiO₄⁴⁻, 10 μ mol L⁻¹ PO₄³⁻) made with 0.2 μ Mfiltered seawater that was collected from the same Ross Sea locale as the culture isolates (Sunda et al., 2005). Stock and experimental cultures were grown in Fe-replete Aquil medium (0.5 µM), Although phytoplankton in the open Ross Sea polynya are generally proximately iron-limited (Ryan-Keogh et al. 2017), these culture conditions are relevant to the coastal McMurdo Sound ice edge environment in the early spring when Fe is relatively abundant, and typically not limiting. This 'winter reserve' iron is then drawn down in this nearshore environment over the course of the seasonal algal bloom to eventually reach limiting levels (Sedwick et al., 2011; Bertrand et al., 2015). Our experiments address warming and acidification responses in P. subcurvata and *P. antarctica* in the absence of any differential effects of Fe availability; interactive effects of Fe limitation with warming and/or acidification in these two species are presented in Xu et al. (2014) and Zhu et al. (2016). Cultures were maintained at 0°C in a walk-in incubator under 24 h cold white fluorescence light (80 μ mol photons m⁻² s⁻¹).

Deleted: Southern Ocean
Deleted: ______
Deleted: Southern Ocean

Deleted: Because s
Deleted: ,

Deleted: most closely resembled
Deleted:
Deleted: , prior to being
Deleted:
Formatted: Font:(Default) Times New Roman
Formatted: Font:Not Italic
Formatted: Font:(Default) Times New Roman

Deleted: *P. antarctica* cultures were mostly consist of small colonies in all the experiments.

2.2 Experimental design

For thermal functional response curves, experimental cultures of both phytoplankton were grown in triplicate 500 ml acid washed polycarbonate bottles and gradually acclimated by a series of step-wise transfers to a range of temperatures, including 0°C, 2°C, 4°C, 6°C, 8°C, and 10°C (*P. antarctica* died at 10°C) under the same light cycle as stock cultures. Cultures were diluted semi-continuously following Zhu et al. (2016). All of the cultures were acclimated to their respective temperatures for 8 weeks before the commencement of the experiment. At this point, after the growth rates were verified to be stable for at least three to five consecutive transfers, the cultures were sampled 48 h after dilution (Zhu et al., 2016).

For CO₂ functional response curves, *P. antarctica* and *P. subcurvata* were also grown in triplicate in a series of six CO₂ concentrations from ~100 ppm to ~1730 ppm in triplicate 500 ml acid washed polycarbonate bottles at both 2°C and 8°C using same dilution technique as above. The CO₂ concentration was achieved by gently bubbling with 0.2 μ m filtered air/CO₂ mixture (Gilmore, CA) and carbonate system equilibration was ensured by pH and dissolved inorganic carbon (DIC) measurements (King et al., 2015, see below).

An additional experiment tested whether temperature-related trends in growth rates observed in monocultures were maintained when both species were grown together in a simple model community. For this examination of thermal effects on the growth of *P. antarctica* and *P. subcurvata* in co-culture (pre-acclimated to respective temperatures), the isolates were mixed at equal Chl *a* (chlorophyll *a*) concentrations and grown together for 6 days in triplicate bottles at both 0°C and 6°C. These temperatures chosen to span the optimum growth ranges of both species (see Results, below). The relative abundance of each phytoplankton was then calculated based on cell counts taken on days 0, 3 and 6.

2.3 Growth rates

Cell count samples were counted on a Sedgewick Rafter Grid using an Olympus BX51 microscope before and after dilution for each treatment. Samples that couldn't be counted immediately were preserved with Lugol's (final concentration 2%) and stored at 4°C until counting. Specific growth rates (d⁻¹) were calculated following Eq. (1):

Deleted: To Deleted: e

Deleted: the two co-cultured species,

Deleted:

where N_0 and N_1 are the cell density at the beginning and end of a dilution period, respectively, and t is the duration of the dilution period (Zhu et al. 2016). The Q_{10} of growth rates was calculated following Chaui-Berlinck et al. (2002) as Eq. (2):

$$Q_{10} = (\mu_2 / \mu_1)^{10/(T - T)},$$

where μ_1 and μ_2 are the specific growth rates of the phytoplankton at temperatures T_1 and T_2 , respectively. The growth rates were fitted to Eq. (3) to estimate the thermal reaction norms of each species:

$$f(T) = ae^{bT}(1 - ((T-z)/(w/2))^2),$$
(3)

where specific growth rate f depends on temperature (T), temperature niche width (w), and other empirical parameters z, a, and b were estimated by maximum likelihood (Thomas et al., 2012; Boyd et al., 2013). Afterwards, the optimum temperature for growth and maximum growth rate were estimated by numerically maximizing the equation (Boyd et al., 2013). The growth rates of all the species at all the CO₂ levels were fitted to Michaelis-Menten equation as Eq. (4):

$$\mu = \mu_{\max} S/(K_m + S), \tag{4}$$

to estimate maximum growth rates (μ_{max}) and half saturation constants (K_m) for CO_2

concentration (S). In the CO_2 curve experiments growth rates for both these autotrophic species were assumed to be zero at 0 ppm CO_2 and in the thermal curve experiments growth rates were assumed to be zero at $-2_1^{\circ}C$, approximately the freezing point of seawater.

2.4 Elemental and Chl a analysis

Culture samples for particulate organic carbon/nitrogen (POC/PON) and particulate organic phosphorus (POP) analyses were filtered onto pre-combusted (500°C for 2 h) GF/F filters and dried at 60°C overnight. A 30 ml aliquot of *P. subcurvata* culture for each treatment were filtered onto 2 µm polycarbonate filters (GE Healthcare, CA) and dried in a 60°C oven overnight for biogenic silica (BSi) analysis. The analysis method of POC/PON and POP followed Fu et al. (2007), and BSi analysis followed Paasche et al. (1973). An aliquot of 30 to 50 ml from each treatment replicate was filtered onto GF/F filters and extracted with 90% acetone at

Deleted:

Formatted: Subscript

Formatted: Not Superscript/ Subscript

Formatted: Superscript

Deleted: samples

(2)

-20°C for 24 h for Chl *a* analysis. The Chl *a* concentration was then determined using the non-acidification method on a 10-AUTM fluorometer (Turner Design, CA) (Fu et al., 2007).

2.5 pH and dissolved inorganic carbon (DIC) measurements

pH was measured using a pH meter (Thermo Scientific, MA), calibrated with pH 7 and 10 buffer solutions. For DIC analyses, an aliquot of 25 mL was preserved with 200 μ L 5% HgCl₂ and stored in the dark at 4°C until analysis. Total DIC was measured using <u>a</u> CM140 Total Inorganic Carbon Analyzer (UIC Inc., IL). An aliquot of 5 mL sample was injected into the sparging column of Acidification Unit CM5230 (UIC Inc., IL) followed by 2 ml 10% phosphoric acid. By using flow rates controlled pure nitrogen as carrier gas, <u>and</u> the CO₂ released from the DIC pool in the sample was quantified <u>with a CM5015 CO₂ Coulometer (UIC Inc., IL) using</u> absolute coulometric titration. The carbonate buffer system was sampled for each of the triplicate bottles in each treatment at the beginning and end of the experiments; reported values are final ones. The *p*CO₂ in growth media was calculated using CO2SYS (Pierrot et al., 2006). These carbonate system measurements are shown in Table 1, along with the corresponding calculated *p*CO₂ values calculated. Kinetic parameters were calculated using the individual calculated *p*CO₂ values for each replicate (see above), but for convenience, the CO₂ treatments are referred to in the text using the mean value of all experimental bottles, rounded to the nearest 5 ppm: these values are 100 ppm, 205 ppm, 260 ppm, 425 ppm, 755 ppm, and 1730 ppm.

2.6 Statistical analysis

All statistical analyses and model fitting, including student t-tests, ANOVA, Tukey's HSD test, two-way ANOVA, and thermal reaction norms estimation were conducted using the open source statistical software R version 3.1.2 (R Foundation).

3 Results

3.1 Temperature effects on growth rates

Temperature increase significantly affected the growth rates of both *P. antarctica* and *P. subcurvata*, but with different trends (p < 0.05) (Fig. 1). The specific growth rates of *P. subcurvata* increased from 0°C to 8°C (p < 0.05), and then significantly decreased at 10°C (p < 0.05).

Deleted: by

0.05) (Fig. 1). The growth rates of *P. antarctica* significantly increased from 0°C to 2°C, and plateaued at 4°C and 6°C, and then significantly decreased from 6°C to 8°C (p < 0.05) (Fig. 1). *P. antarctica* and *P. subcurvata* stopped growing at 10°C and 14°C, respectively (Fig. 1A). The specific growth rates of *P. subcurvata* were not significantly different from those of *P. antarctica* at 0°C, 2°C and 4°C, but became significantly higher than *P. antarctica* at 6°C, and remained significantly higher than *P. antarctica* through 8°C and 10°C (p < 0.05) (Fig. 1A). The optimum temperatures for growth of *P. antarctica* and *P. subcurvata* were 4.85°C and 7.36°C,

addition, the estimated temperature niche width of *P. subcurvata* ($-2^{\circ}C - 12.19^{\circ}C$) is wider than that of *P. antarctica* ($-2.0^{\circ}C$ to $9.52^{\circ}C$) (Table 2); calculated minimum temperatures estimated from the thermal niche width equation were less than -2.0° , the freezing point of seawater, and so growth is assumed to terminate at -2.0° . The Q10 value of the growth rate of *P. antarctica* from 0°C to 4°C is 2.11, which is lower than the Q10 values 3.17 for *P. subcurvata* over the same temperature interval (p < 0.05) (Table 2).

3.2 Temperature effects on elemental composition

The C:_N and N: P ratios of *P. subcurvata* were unaffected by changing temperature (Fig. 2A, B), but the C: P, C: Si, and C: Chl *a* ratios of this species were significantly affected (p < 0.05) (Fig. 2C, D, Fig. 3). The C: P ratios of *P. subcurvata* were slightly but significantly lower in the middle of the tested temperature range. They were higher at 8°C and 10°C than at 2°C, 4°C, and 6°C (p < 0.05) (Fig. 2C), and also significantly higher at 10°C than at 0°C (Fig. 2C). The C: Si ratios of *P. subcurvata* showed a similar pattern of slightly lower values at mid-range temperatures; at 0°C and 2°C they were significantly higher than at 6°C and 8°C (p < 0.05) (Fig. 2D), and significantly higher at 2°C and 10°C than at 4°C and 8°C, respectively (Fig. 2D). The C: Chl *a* ratios of *P. subcurvata* also showed this trend of somewhat lower values in the middle of the thermal gradient. At 0°C, 8°C and 10°C, C: Chl *a* ratios were significantly higher than at 2°C, 4°C, and 6°C (p < 0.05), and also significantly higher at 10°C than at 0°C and 8°C (Fig. 3).

Deleted: and the optimum temperatures of these two species are

The C: N, N: P, C: P, and C: Chl *a* ratios of *P. antarctica* were not significantly different across the temperature range (Fig. 2A, B, C, Fig. 3). The N: P ratios of *P. antarctica* were significantly higher than those of *P. subcurvata* at 2°C, 6°C, and 8°C (p < 0.05) (Fig. 2B). Additionally, the C: P ratios of *P. antarctica* were significantly higher than those of *P. antarctica* were significantly higher than values of *P. subcurvata* at all the temperatures tested (p < 0.05) (Fig. 3).

Temperature change significantly affected the cellular carbon (C) quotas, cellular nitrogen (N) quotas, cellular phosphorus (P) quotas, cellular silica (Si) quotas, and cellular Chl *a* quotas of *P. subcurvata* (p < 0.05) (Table 3). The cellular C and N quotas of *P. subcurvata* were significantly higher at 8°C than at 0°C (p < 0.05) (Table 3), the cellular P quotas of *P. subcurvata* were significantly higher at 4°C than at 0°C, 2°C, and 10°C (p < 0.05) (Table 3), and the cellular Si quotas of *P. subcurvata* were significantly higher at 4°C and 6°C than at 0°C (p < 0.05) (Table 3). The extreme temperatures significantly decreased the cellular Chl *a* quotas of *P. subcurvata*, as the cellular Chl *a* quotas of this species were significantly higher at 4°C, 6°C, and 8°C than at 0°C and 2°C.

Temperature change significantly affected the cellular P quotas and cellular Chl *a* quotas of *P. antarctica* (p < 0.05), but not the cellular C and N quotas (p > 0.05) (Table 3). The cellular P quotas of *P. antarctica* were significantly higher at 0°C than at 8°C (p < 0.05) (Table 3), and the Chl *a* quotas of the prymnesiophyte were significantly lower at 8°C than at 0°C, 2°C, and 6°C (p < 0.05) (Table 3).

3.3 Co-incubation at two temperatures

A warmer temperature favored the dominance of *P. subcurvata* over *P. antarctica* in the <u>model community</u> experiment. Although *P. subcurvata* increased its abundance relative to the prymnesiophyte at both temperatures by day 6, this increase was larger and happened much faster at 6°C (from 31% to 72%) relative to 0°C (from 31% to 38%) (p < 0.05) (Fig. 4).

3.4 CO₂ effects on specific growth rates at two temperatures

Deleted:

Deleted: co-incubation

The carbonate system was relatively stable across the range of CO₂ levels during the course of the experiment (Table 1). <u>CO₂ concentration significantly affected the growth rates of</u> *P. subcurvata* at both temperatures (Fig. 5). The growth rates of the diatom at 2°C increased steadily with CO₂ concentration increase from 205 ppm to 425 ppm (p < 0.05), but were saturated at 755 ppm and 1730 ppm (Fig. 5A). Similarly, the growth rates of *P. subcurvata* at 8°C increased with CO₂ concentration increase from 205 ppm to 260 ppm (p < 0.05), and were saturated at 425 ppm, 755 ppm and 1730 ppm (Fig. 5B). The growth rates of the diatom at all CO₂ concentrations tested at 8°C were significantly higher than at 2°C (p < 0.05); for instance, the maximum growth rate of *P. subcurvata* at 8°C was 0.88 d⁻¹, significantly higher than the value of 0.60 d⁻¹ at 2°C (p < 0.0.5) (Table 4). In addition, the *p*CO₂ half saturation constant (K_m) of *P. subcurvata* at 8°C was 10.7 ppm, significantly lower than 66.0 ppm at 2°C (p < 0.0.5) (Table 4). Thus, temperature and CO₂ concentration increase interactively increased the growth rates of *P. subcurvata* (p < 0.05).

CO₂ concentration also significantly affected the growth rates of *P. antarctica* at both 2°C and 8°C. The growth rates of the prymnesiophyte at both 2°C and 8°C increased with CO₂ concentration increase from 100 ppm to 260 ppm (p < 0.05), and were saturated at 425 ppm and 755 ppm (Fig. 5C, D). The growth rates of *P. antarctica* at 2°C decreased slightly at 1730 ppm relative to 425 ppm and 755 ppm (p < 0.05) (Fig. 5C). The maximum growth rate of *P. antarctica* at 8°C was 0.43 d⁻¹, significantly lower than the value of 0.61 d⁻¹ at 2°C (p < 0.05) (Table 4). The *p*CO₂ half saturation constants of *P. antarctica* at 2°C and 8°C were not significantly different (Table 4), and thus no interactive effect of temperature and CO₂ was observed on the growth rate of the prymnesiophyte (p > 0.05).

3.5 CO₂ effects on elemental composition at two temperatures

 CO_2 concentration variation didn't affect the C: N, N: P, or C: P ratios of *P. subcurvata* at either 2°C or 8°C. The C: Si ratios of *P. subcurvata* were significantly higher at 1730 ppm relative to lower *p*CO₂ levels, except at 755 ppm at 8°C (p < 0.05) (Table 5). The N: P ratios of *P. subcurvata* at 8°C were significantly higher than at 2°C at all the CO₂ levels tested except 100 **Deleted:** The growth rates of both phytoplankton were assumed as 0 at 0 ppm CO₂ (Fig. 5).

Deleted: at

Deleted:

ppm (p < 0.05) (Table 5). The C: P ratios of *P. subcurvata* at 8°C were significantly higher than at 2°C at all the CO₂ levels tested (p < 0.05) (Table 5). The C: Si ratios of *P. subcurvata* at CO₂ levels lower than 755 ppm at 8°C were significantly lower than at 2°C (p < 0.05) (Table 5). The higher temperature also significantly increased the C: Chl *a* ratios of *P. subcurvata* at all the CO₂ levels tested (p < 0.05) (Table 5). Additionally, the temperature increase and CO₂ concentration increase interactively decreased the C: Chl *a* ratios of *P. subcurvata* (p < 0.05) (Table 5).

The CO₂ concentration increase did not affect the C: N, N: P, and C: P ratios of *P*. *antarctica* at either 2°C or 8°C. The carbon to Chl *a* ratios of *P*. *antarctica* were significantly higher at 1730 ppm than at all lower CO₂ concentrations at 2°C. Similarly, at 8°C the carbon to Chl *a* ratios of this species also were significantly higher at 425 ppm, 755 ppm, and 1730 ppm than at lower CO₂ concentrations (p < 0.05) (Table 5), and significantly higher at 1730 ppm than at 425 ppm and 755 ppm (p < 0.05) (Table 5).

The warmer temperature significantly decreased the C: N ratios of *P. antarctica* at 260 ppm and 755 ppm CO₂ (p < 0.05) (Table 5), and C: P ratios also decreased at 100 ppm and 205 ppm(p < 0.05) (Table 5). The C: Chl *a* ratios of *P. antarctica* at CO₂ levels higher than 205 ppm were significantly higher at 8°C relative to 2°C (p < 0.05) (Table 5). Temperature and CO₂ concentration increase interactively increased the C: Chl *a* ratios of *P. antarctica* (p < 0.05) (Table 5). (Table 5).

The CO₂ concentration increase didn't affect the cellular C, N, P, or Si quotas of *P*. subcurvata at 2°C, or the C quotas and N quotas at 8°C. The Si quotas of *P*. subcurvata were significantly lower at 1730 ppm CO₂ than at 100 ppm and 205 ppm at 8°C (p < 0.05) (Table 6). The cellular Chl *a* quotas of *P*. subcurvata were significantly lower at 8°C relative to 2°C at CO₂ higher than 205 ppm (p < 0.05) (Table 6). The temperature increase significantly increased the cellular Si quota of *P*. subcurvata at all the CO₂ levels tested except 1730 ppm (p < 0.05) (Table 6). Additionally, warming and CO₂ concentration interactively decreased the cellular Si quotas of *P*. subcurvata (p < 0.05) (Table 6). The C, N, and P quotas of *P. antarctica* were not affected by CO₂ increase at 2°C, and N and P quotas were not affected by CO₂ increase at 8°C, either. However, the C quota of *P. antarctica* at 1730 ppm CO₂ was significantly higher than CO₂ levels lower than 755 ppm at 8°C (p < 0.05) (Table 6). The Chl *a* per cell of *P. antarctica* at 1730 ppm CO₂ was significantly less than at lower CO₂ levels at both 2°C and 8°C (p < 0.05) (Table 6). For *P. antarctica*, the Chl *a* per cell values at 100 ppm, 205 ppm, and 755 ppm CO₂ at 8°C were significantly lower relative to 2°C (p < 0.05) (Table 6). Temperature increase and CO₂ concentration increase interactively increased the C and N quotas of *P. antarctica* (p < 0.05) (Table 6).

4 Discussion

As has been documented in previous work, the diatom P. subcurvata and the prymnesiophyte P. antarctica responded differently to warming (Xu et al., 2014; Zhu et al. 2016). In the Ross Sea as elsewhere, temperature determines both phytoplankton maximum growth rates (Bissinger et al., 2008) and the upper limit of growth (Smith, 1990) in a speciesspecific manner. Thermal functional responses curves of phytoplankton typically increase in a normally distributed pattern, with growth rates increasing up to the optimum temperature range, and then declining when temperature reaches inhibitory levels (Boyd et al., 2013; Fu et al., 2014; Xu et al., 2014; Hutchins and Fu, 2017). Specific growth rates of *P. subcurvata* reached optimal levels at 8°C, demonstrating that this species grows fastest at temperatures substantially above any temperatures found in the present-day Ross Sea. In contrast, growth rates of P. antarctica saturated at 2°C. Zhu et al. (2016) found that 4°C warming significantly promoted the growth rates of P. subcurvata but not P. antarctica. Xu et al. (2014) found that the growth rates of another strain of P. antarctica (CCMP3314) decreased in a multi-variable "year 2100 cluster" condition (6°C, 81 Pa CO₂, 150 μ mol photons m⁻² s⁻¹) relative to the "current condition" (2°C, 39 Pa CO₂, and 50 µmol photons m⁻² s⁻¹) and the "year 2060 condition" (4°C, 61 Pa CO₂, and 100 μ mol photons m⁻² s⁻¹). In our study, the Q10 value of *P. subcurvata* from 0°C to 4°C was 3.11, nearly 50% higher than the Q10 value of P. antarctica across the same temperature range (2.17), and similar to the Q10 values observed for different strains of these two species in Zhu et

Deleted: Southern Ocean

Deleted: while those

al. (2016). Our results showed that the maximal thermal limit of *P. antarctica* was reached at 10°C, as was also observed by Buma et al. (1991), while *P. subcurvata* did not cease to grow until 14°C. Clearly, *P. subcurvata* has a superior tolerance to higher temperature compared to *P. antarctica*.

The <u>co-incubation experiment with *P. subcurvata* and *P. antarctica* at 0°C and 6°C confirmed that the diatom <u>retained its growth</u> advantage at the higher temperature when growing together with *P. antarctica*. Although we do not know what role (if any) competition for resources like nutrients may have played in determining the outcome of this experiment, it did demonstrate clearly that thermal growth response trends in simple model communities are consistent with those seen in unialgal cultures. Xu el al. (2014) observed that the diatom *Fragilariopsis cylindrus* was dominant over *P. antarctica* under "year 2060 conditions" (4°C, 61 Pa CO₂, and 100 µmol photons m⁻² s⁻¹). These experiments support the results of a Ross Sea field survey which suggested that water temperature structured the phytoplankton assemblage (Liu and Smith, 2012), and may shed light on why *P. antarctica* is often dominant in cooler waters in the springtime, while diatoms often dominate in summer (DiTullio and Smith, 1996; Arrigo et al., 1999; DiTullio et al., 2000; Liu and Smith, 2012).</u>

Besides temperature, mixed layer depth and <u>irradiance also likely play a role in the</u> competition between diatoms and *P. antarctica* (Arrigo et al., 1999; Arrigo et al., 2010, <u>Smith</u> and Jones 2015). Arrigo et al. (1999) observed that *P. antarctica* dominated the southern Ross Sea region with deeper mixed layers, while diatom dominated the regions with shallower mixed layer depths. <u>The niches of these two groups of phytoplankton are difficult to define by either</u> light or by temperature, <u>since shallow surface stratification tends to promote both solar heating</u> and high irradiance, while deep mixing often lowers both light and temperatures. <u>Jt is worth</u> considering whether these two phytoplankton groups are each best adapted to a different environmental matrix of both variables. This concept of different light/temperature niches for Ross Sea diatoms and *P. antarctica* is worthy of further investigation.

Deleted: competition
Deleted: between
Deleted: of
Deleted: had an additional competitive
Deleted: m
Deleted: over P. antarctica

Deleted: also	
Deleted: outcompeted	
Deleted: competition	

Deleted: light intensity

Deleted: i

Deleted: To some extent temperature and irradiance can often be considered co-variables, as shallow surface stratification promotes both solar heating and high irradiance, while deep mixing lowers both light and temperatures. Thus, rather than bein Deleted: beg segregate Deleted: d Deleted: s Deleted: Temperature change affected the C: P, N: P and C: Si ratios of *P. subcurvata*, due to the combined effects of the different responses of cellular C, P, and Si quotas. The C: P and N:P ratios of *P. subcurvata* increased at the two highest temperatures tested. This might be due to an increase in protein translation efficiency and a corresponding decrease in phosphate-rich ribosomes with warming, which can result in a decreased cellular P requirement per unit of carbon in marine phytoplankton (Toseland et al., 2013). Similarly lowered P quotas at higher temperatures have been documented in other studies as well (Xu et al., 2014; Boyd et al., 2015; Hutchins and Boyd, 2016). This result suggests that the amount of carbon exported per unit phosphorus by *P. subcurvata* (and perhaps other diatoms) in the <u>Ross Sea</u> may increase as temperature increases in the future (Toseland et al., 2013).

In contrast, the decreasing trend of C: Si ratios in *P. subcurvata* appears to be largely due to higher cellular Si quotas at temperatures at and above 4°C. Although the physiological reason(s) for increased silicification with warming are currently not understood, this trend also may have biogeochemical consequences. This decrease of cellular C: Si ratios at higher temperature may tend to enhance Si export, with the qualification that biogenic Si remineralization rates also increase with temperature (Ragueneau et al. 2000), and thus could potentially offset this trend.

Previous studies have shown that nutrient drawdown by diatoms and *P. antarctica* are different, due to differing elemental ratios of these two groups (Arrigo et al., 1999; <u>Smith et al.</u>, 2014a; Xu et al., 2014). Our results generally corresponded to this trend, as the N: P ratios of *P. antarctica* were higher than *P. subcurvata* at 2°C, 6°C and 8°C and C: P ratios of *P. antarctica* were higher than *P. subcurvata* at 6°C and 8°C (p < 0.05) (Fig. 2). Although elemental ratios of the prymnesiophyte were largely unaffected by temperature, a predicted increase of diatom and decrease of *P. antarctica* contributions to phytoplankton production caused by warming will likely change nutrient export ratios (Smith et al., 2014a, b). It is possible that N and C export per unit P may decrease with a phytoplankton community shift from *P. antarctica* dominance to diatom dominance (Arrigo et al., 1999; Smith et al., 2014a, b; Xu et al., 2014).

Deleted:

Deleted: Southern Ocean

Deleted: significant

Deleted: It's been reviewed by Moved down [2]: Ragueneau et al. (2000) Formatted: Font:(Default) Times New Roman, 12 pt Deleted: that the Deleted: depend on Moved (insertion) [2] Deleted: (Deleted: and the Deleted: Si export may decrease in the region in the future warmer scenario, These results but Deleted: the decrease of C: Si ratios at higher temperature may Deleted: e Deleted: decrease Deleted: suggest that Si export by diatoms in the Southern Ocean could be enhanced under future global warming Deleted: the Deleted: phytoplankton relative abundance shifts Deleted: at the cost of decrease of P. antarctica contribution Deleted: (such as those observed in our competition experiment) Deleted: Thus

Deleted: Xu et al., 2014

Our results showed that the growth rates of both P. subcurvata and P. antarctica exhibited moderate limitation by CO2 levels lower than ~425 ppm at both 2°C and 8°C; this observation is significant, since during the intense Ross Sea summertime phytoplankton bloom pCO_2 can sometimes drop to very low levels (Tagliabue and Arrigo, 2016). However, at CO_2 concentrations beyond current atmospheric levels of ~400 ppm, growth rates of P. subcurvata or P. antarctica were CO₂-saturated. Although a general model prediction suggests that an atmospheric CO₂ increase from current levels to 700 ppm could increase the growth of marine phytoplankton by 40% (Schippers et al., 2004), our results instead correspond to previous studies which showed negligible effects of elevated CO2 on various groups of phytoplankton (Goldman, 1999; Fu et al., 2007; Hutchins and Fu 2017). In particular, Trimborn et al. (2013) found that increasing CO₂ had no effect on growth rates of Southern Ocean isolates of P. subcurvata and P. *antarctica*. The minimal effects of changing CO_2 levels on many phytoplankton groups have been suggested to be due to efficient carbon concentrating mechanisms (CCMs) that allow them to avoid CO₂ limitation at low pCO₂ levels (Burkhardt et al., 2001; Fu et al., 2007; Tortell et al., 2008). For instance, both P. subcurvata and P. antarctica have been shown to strongly downregulate activity of the important CCM enzyme carbonic anhydrase as CO2 increases (Trimborn et al. 2013). Clearly, though, for our two species their CCM activity was not sufficient to completely compensate for carbon limitation at low pCO_2 levels. Although speculative, it is possible that *P. antarctica* could have an ability to subsidize growth at very low CO₂ levels through oxidation of organic carbon from the colony mucilage. Our results also showed that very high CO₂ (1730 ppm) significantly reduced the growth rate of P. antarctica relative to 425 ppm and 755 ppm at 2°C; negative effects of high CO₂ on an Antarctic microbial community were also observed by Davidson et al. (2016). This inhibitory effect might be due to the significantly lower pH at 1730 ppm (~7.4), which could entail expenditures of additional energy to maintain pH homeostasis within cells.

Warming from 2°C to 8°C had a significant interactive effect with CO₂ concentration in *P. subcurvata*, as maximum growth rates were higher and the half saturation constant ($K_{1/2}$) for

Deleted: pCO₂

Deleted: several other Deleted: different Deleted: Deleted: including Formatted: Subscript Deleted: antarctica Deleted: (Goldman, 1999; Fu et al., 2007, Trimborn et al., 2013) Deleted: higher than 400 ppm Deleted: these Deleted: Deleted: s Formatted: Subscript Formatted: Subscript Formatted: Subscript Deleted: ; Trimborn et al., 2013), although c

Formatted: Font:Italic Formatted: Subscript growth was much lower at the warmer temperature. In contrast, warming decreased the maximal growth rates of *P. antarctica* over the range of CO₂ concentrations tested, and failed to change its $K_{1/2}$ for growth. The decreased CO₂ $K_{1/2}$ of *P. subcurvata* at high temperature might confer a future additional competitive advantage over *P. antarctica* in the late growing season when pCO₂ can be low (Tagliabue and Arrigo, 2016) and temperatures higher, although temperatures are generally never as high as 8°C in the current Ross Sea (Liu and Smith, 2012). The CO₂ $K_{1/2}$ of *P. antarctica* at 2°C was however significantly lower than that of *P. subcurvata* at this temperature, which may be advantageous to the prymnesiophyte when water temperatures are low in the spring.

The effects of pCO₂ variation on the elemental ratios of *P. subcurvata* and *P. antarctica* were minimal relative to those of temperature increase. Previous research on the effects of CO₂ on the elemental ratios of phytoplankton has shown that the elemental composition of phytoplankton may change with CO₂ availability (Burkhardt et al., 1999; Fu et al., 2007, 2008; Tew et al., 2014; reviewed in Hutchins et al., 2009). Hoogstraten et al. (2012) found that CO₂ concentration change didn't change the cellular POC, PON, C: N ratios, or POC to Chl *a* ratios of the temperate species *Phaeocystis globosa*. In contrast, Reinfelder (2014) observed that the N and P quotas of several diatoms decreased with increasing CO₂ and led to increased C: N, N: P, and C: P ratios. King et al. (2015) found that high CO₂ could increase, decrease or not affect the C: P and N: P ratios of several different phytoplankton species. Our results resemble those of studies with other phytoplankton that found that the effects of CO₂ concentration can be negligible on C: N, N: P, or C: P ratios (Fu et al., 2007; Hutchins et al., 2009; Hoogstraten et al., 2012; King et al., 2015).

In contrast to C:_N:_P ratios, we observed that the C: Si ratios of *P. subcurvata* were significantly higher at 1730 ppm compared to almost all of the lower CO_2 levels. This increase in C: Si ratios was due to a decrease in cellular Si quotas at 1730 ppm CO_2 . Milligan et al. (2004) observed that the silica dissolution rates of a temperate diatom increased significantly in high CO_2 relative to in low CO_2 cultures. Tatters et al. (2012) found a similar trend in the temperate

toxic diatom *Pseudo-nitzschia fraudulenta*, in which cellular C: Si ratios were higher at 765 ppm than at 200 ppm CO₂. This suggests that future increases in diatom silicification at elevated pCO₂ could partially or wholly offset the decreased silicification <u>and higher dissolution rates of silica</u> observed at warmer temperatures (above); to fully predict net trends, further interactive experiments focusing on silicification as a function across a range of both temperature and pCO₂ are needed.

In conclusion, our results indicate that P. subcurvata from the Ross Sea are better adapted to higher temperature than is P. antarctica. Diatoms are a diverse group, but if their general thermal response is similar to that of this *Pseudo-nitzschia* species, they may thrive under future global warming scenarios while the relative dominance of P. antarctica in this region may wane, In contrast, another recent study has suggested that warming might indirectly favor P. antarctica springtime dominance by leading to large areas of open water at a time when incident light penetration is low and mixed layers are still relatively deep (Ryan-Keogh et al. 2017). Because of the differences in elemental ratios in the two groups, ecological shifts that favor diatoms may significantly increase the export of phosphorus and silicon relative to carbon and nitrogen, while increased P. antarctica dominance will increase carbon export relative to nutrient fluxes, as well as enhancing the organic sulfur cycle. Our conclusions must be qualified as they were obtained using Fe-replete culture conditions, similar to conditions often found early in the growing season in McMurdo Sound. However, Fe limitation generally prevails later in the season here, and elsewhere in the offshore Ross Sea. Irradiance is an additional key environmental factor to consider in both the present and future in this region (Smith and Jones, 2015). Thus, in addition to warming and CO₂ increases, the interactive effects of light and Fe with these two factors should also be considered (Xu et al., 2014; Boyd et al., 2015; Hutchins and Boyd 2016; Hutchins and Fu 2017). Considering the differences between the responses of the diatom and P. antarctica to warming and ocean acidification seen here, as well to warming and Fe in previous work (Zhu et al., 2016), models attempting to predict future changes in community structure and primary

Deleted: antarctica

{	Deleted: , suggesting
{	Formatted: Font:Italic
-{	Deleted: that
-{	Deleted: in under future global warming scenarios

Deleted: Such an Deleted: e

Deleted: change
Deleted: the biogeochemical cycles of
Deleted: ,
Deleted: phosphorus, silicon, and
Deleted: This
Deleted: be
Deleted: it
Deleted: was
Deleted: ; which
Deleted: prevail
Deleted: another

production in the Ross Sea polynya may need to realistically incorporate a complex network of

interacting global change variables.

Author contribution

Z. Zhu, F. X. Fu, D. A. Hutchins designed the experiments, Z. Zhu, P. Qu, and J. Gale carried them out, and Z. Zhu and D. A. Hutchins wrote the manuscripts.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

We want to thank Kai Xu for isolating all these phytoplankton strains. Support for this research was provided by National Science Foundation grant ANT 1043748 to D. A. Hutchins

References

Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M.,

and Lizotte, M. P.: Phytoplankton community structure and the drawdown of nutrients and CO₂ in the Southern Ocean, Science, 283, 365-367, 1999.

Arrigo K. R., DiTullio G. R., Dunbar R. B., Robinson D. H., Van Woert M., Worthen D. L.,

Lizotte M. P.: Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea, J. Geophys Res: Oceans, 105, 8827-8846, 2000.

Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean,

1997-2006, J. Geophys Res, 113, C08004, doi:10.1029/2007JC004551, 2008.

Arrigo, K. R., Mills, M. M., Kropuenske, L. R., van Dijken, G. L., Alderkamp, A. C., and

Robinson, D. H.: Photophysiology in two major Southern Ocean phytoplankton taxa:

photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under

different irradiance levels, Integrative and Comparative Biology, 50(6), 950-966, 2010.

Bertrand, E.M., McCrow, J.P., Zheng, H., Moustafa, A., McQuaid, J., Delmont, T., Post, A.,

Sipler, R., Spackeen, J., Xu, K., Bronk, D., Hutchins, D.A., and Allen, A.E.: Phytoplankton-

Deleted: Southern Ocean
Deleted: coastal
Deleted: s

Deleted:

bacterial interactions mediate micronutrient colimitation in the Southern Ocean, P. Natl. Acad.

Sci. USA, 112. doi:10.1073/pnas.1501615112, 2015.

Bissinger, J. E., Montagnes, D. J., Sharples, J., and Atkinson, D.: Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression, Limnol. Oceanogr., 53, 487, 2008.

Boyd, P. W., Rynearson, T. A., Armstrong, E. A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D.A.,

Kudela, R.M., Litchman, E., Mulholland, M.R. and Passow, U.: Marine phytoplankton

temperature versus growth responses from polar to tropical waters-outcome of a scientific

community-wide study, PLoS One, 8, available at:

http://dx.doi.org/10.1371/journal.pone.0063091, 2013.

Boyd, P. W., Dillingham, P. W., McGraw, C. M., Armstrong, E. A., Cornwall, C. E., Feng, Y.

Y., Hurd, C.L., Gault-Ringold, M., Roleda, M.Y., Timmins-Schiffman, E. and Nunn, B. L.:

Physiological responses of a Southern Ocean diatom to complex future ocean conditions, Nature Climate Change, 6, 207-213, 2015.

Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, D. C.,
Bowie, A. R., Buesseler, K. O., Chang, H., and Charette, M.: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407(6805): 695-702, 2000.
Buma, A. G. J., Bano, N., Veldhuis, M. J. W., and Kraay, G. W.: Comparison of the pigmentation of two strains of the prymnesiophyte *Phaeocystis* sp., Neth. J. Sea Res., 27(2), 173-182, 1991.

Burkhardt, S., Zondervan, I., and Riebesell, U.: Effect of CO₂ concentration on C: N: P ratio in marine phytoplankton: A species comparison, Limnol. Oceanogr., 44, 683-690, 1999. Burkhardt, S., Amoroso, G., Riebesell, U., and Sültemeyer, D.: CO₂ and HCO₃ ⁻¹ uptake in marine diatoms acclimated to different CO₂ concentrations, Limnol. Oceanogr., 46, 1378-1391, 2001.

Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M., and Shalapyonok, L.: Microzooplankton herbivory in the Ross sea, Antarctica, Deep-Sea Res. Pt. II, 47(15), 32493272, 2000.

Chaui-Berlinck, J. G., Monteiro, L. H. A., Navas, C. A., and Bicudo, J. E. P.: Temperature effects on energy metabolism: a dynamic system analysis, P. Roy. Soc. Lond. B Bio., 269, 15-19, 2002.

Coale, K. H., Johnson, K. S., Chavez, F. P., Buesseler, K. O., Barber, R. T., Brzezinski, M. A., Cochlan, W. P., Millero, F. J., Falkowski, P. G., Bauer, J. E., and Wanninkhof, R. H.: Southern Ocean iron enrichment experiment: carbon cycling in high-and low-Si waters, Science, 304(5669), 408-414, 2004.

Davidson, A. T., McKinlay, J., Westwood, K., Thompson, P. G., van den Enden, R., de Salas, M., Wright, S., Johnson, R., and Berry, K.: Enhanced CO₂ concentrations change the structure of Antarctic marine microbial communities, Mar. Ecol-Prog. Ser., 552, 92-113, 2016. DiTullio, G. R., and Smith, W. O.: Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J. Geophys Res: Oceans, 101, 18467-18477, 1996. DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., Robinson, D. H., Leventer, A., Barry, J.P., VanWoert, M.L. and Dunbar, R. B.: Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica, Nature, 404, 595-598, 2000. El-Sabaawi, R., and Harrison, P. J.: Interactive effects of irradiance and temperature on the photosynthetic physiology of the pennate diatom Pseudo-nitzschia Granii (Bacillariophyceae) from the northeast Subarctic Pacific, J. Phycol., 42, 778-785, 2006. Fabry, V. J. (2008). Marine calcifiers in a high-CO2 ocean. Science, 320(5879), 1020-1022. Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., and Hutchins, D. A.: Effects of increased temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria), J. Phycol., 43, 485-496, 2007. Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J., and Hutchins, D. A.: A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum, Harmful Algae, 7, 76-90, 2008.

Fu, F. X., Yu, E., Garcia, N. S., Gale, J., Luo, Y., Webb, E. A., and Hutchins, D. A.: Differing responses of marine N₂ fixers to warming and consequences for future diazotroph community structure, Aquat. Microb. Ecol., 72, 33-46, 2014.

Gille, S. T.: Warming of the Southern Ocean since the 1950s, Science, 295, 1275-1277, 2002.

Goldman, J. C.: Inorganic carbon availability and the growth of large marine diatoms, Mar. Ecol-Prog. Ser., 180, 81-91, 1999.

Haberman, K. L., Ross, R. M., and Quetin, L. B.: Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages, J. Exper. Mar. Biol.

Ecol., 283, 97-113, 2003.

Hoogstraten, A., Peters, M., Timmermans, K. R., and De Baar, H. J. W.: Combined effects of inorganic carbon and light on *Phaeocystis globosa* Scherffel (Prymnesiophyceae), Biogeosciences, 9, 1885-1896, 2012.

Hutchins, D.A., Mulholland, M.R. and Fu, F. X .: Nutrient cycles and marine microbes in a CO2-

enriched ocean, Oceanography, 222 128-145, 2009.

Hutchins, D.A. and Boyd, P.W.: Marine phytoplankton and the changing ocean iron cycle,

Nature Climate Change, 6, 1071-1079, 2016.

Hutchins D. A., and Fu, F. X. Microorganisms and ocean global change. *Nature Microbiology*, In press, 2017,

Hutchins, D. A., Sedwick, P. N., DiTullio, G. R., Boyd, P. W., Queguiner, B., Griffiths, F. B., and Crossley, C.: Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: Experimental results from the SAZ Project, J. Geophys. Res. Oceans, 106(C12), 31559-31572, 2001.

IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Formatted: Line spacing: double, No bullets or numbering

Deleted:

Formatted: Font:(Default) Times New Roman, Not Bold

Deleted:

Formatted: Font:(Asian) 宋体, Font color: Auto

King, A. L., Sanudo-Wilhelmy, S. A., Leblanc, K., Hutchins, D. A., and Fu, F. X.: CO₂ and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom, The ISME J., 5, 1388-1396, 2011.

King, A. L., Jenkins, B. D., Wallace, J. R., Liu, Y., Wikfors, G. H., Milke, L. M., and Meseck, S.L.: Effects of CO₂ on growth rate, C: N: P, and fatty acid composition of seven marine

phytoplankton species, Mar. Ecol-Prog. Ser., 537, 59-69, 2015.

Knox, G. A.: The Biology of the Southern Ocean, Cambridge University Press, New York, USA, 1994.

Liu, X., and Smith, W. O.: Physiochemical controls on phytoplankton distributions in the Ross Sea, Antarctica, J. Marine Syst., 94, 135-144, 2012.

Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters, Nature, 345(6271), 156-158, 1990.

Meredith, M. P., and King, J. C.: Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century, Geophys. Res. Lett., 32, L19604, doi:10.1029/2005GL024042, 2005.

Milligan, A. J., Varela, D. E., Brzezinski, M. A., and Morel, F. M.: Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO₂, Limnol. Oceanogr, 49, 322-329, 2004.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F. and Key, R. M.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681-686, 2005. Paasche, E.: Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species, Mar. Biol., 19, 262-269, 1973.

Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Fischer, G., Francois, R., and Heinze, C.: A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global and Planet. Change, 26, 317-365, 2000. Deleted: Paul, C., Matthiessen, B., and Sommer, U.: Warming, but not enhanced CO₂ concentration, quantitatively and qualitatively affects phytoplankton biomass, Mar. Ecol-Prog. Ser., 528, 39-51, 2015. . Reinfelder, J. R.: Carbon dioxide regulation of nitrogen and phosphorus in four species of marine phytoplankton, Mar. Ecol-Prog. Ser., 466, 57-67, 2012.

Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO₂ system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006.

Rose, J. M., Feng, Y., DiTullio, G. R., Dunbar, R. B., Hare, C. E., Lee, P. A., Lohan, M.C.,

Long, M.C., Smith, W.O., Sohst, B.M., and Tozzi, S.: Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages, Biogeosciences, 6, 3131-3147, 2009.

Ryan-Keogh, T. J., DeLizo, L. M., Smith, W. O. Jr., Smith, Sedwick, P. N., McGillicuddy, D. J.

Jr., Moore, C. M., and Bibby, T. S. Temporal progression of photosynthetic-strategy in

phytoplankton in the Ross Sea, Antarctica, J. Mar. Sys., 166, 87-96,

DOI:10.1016/j.jmarsys.2016.08.014, 2017.

Sarmiento, J. L., Hughes, T. M., Stouffer, R. J., and Manabe, S.: Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245-249, 1998.

Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO2 promotes

phytoplankton productivity, Ecol. Lett, 7, 446-451, 2004.

Schoemann V., Becquevort S., Stefels J., Rousseau V., Lancelot C.: Phaeocystis blooms in the

global ocean and their controlling mechanisms: a review, J. Sea Res., 53, 43-66, 2005.

In: Smith, W. O.: Polar Oceanography, Chemistry, Biology and Geology, Academic Press, Massachusetts, USA, 1990.

Sedwick, P. N., DiTullio, G. R., and Mackey, D. J.: Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters, J. Geophys. Res.: Oceans, 105(C5), 11321-11336, 2000.

Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M. C., Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O., and DiTullio, G. R.: Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Formatted: Normal, Line spacing: double

Formatted: Font:(Default) Times New Roman, No underline Formatted: Font:(Default) Times New Roman, No

underline
Formatted: Font:(Default) Times New Roman, No
underline

Deleted:

Formatted: Font:(Asian) Times New Roman, Font color: R,G,B (34,34,34), Pattern: Clear (White) Deleted:

Antarctic continental shelf. J. Geophys. Res.: Oceans, 116: C12019, DOI:	Formatted: Font:(Default) Times New Roman
10.1029/2010JC006553, 2011.	Formatted: Font:(Default) Times New Roman
Smith W O Ainley D G Arrigo K R and Dinniman M S. The oceanography and ecology	Formatted: Pattern: Clear (White)
of the Ross Sea. Annual Review of Marine Science, 6, 469-487, 2014a.	defined, Space After: 9.3 pt, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tabs: 0.15", Left + 0.5", Left
Smith, W. O., Dinniman, M. S., Hofmann, E. E., and Klinck, J. M.: The effects of changing	Formatted: Line spacing: double
winds and temperatures on the oceanography of the Ross Sea in the 21st century. GeophyS. Res.	
Lett., 41, 1624-1631, 2014b.	
Smith, W.O., Jr., and Jones, R.M.: Vertical mixing, critical depths, and phytoplankton growth in	
the Ross Sea. ICES J. Mar. Sci., 72, 6, 1952-1960, 2015.	Formatted: Font:(Default) Times New Roman
Smith, W. O., Marra, J., Hiscock, M. R., and Barber, R. T.: The seasonal cycle of phytoplankton	Formatted: Font color: R,G,B (34,34,34), Pattern: Clear (White)
biomass and primary productivity in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 47, 3119-	
3140, 2000.	
Takeda S.: Influence of iron availability on nutrient consumption ratio of diatoms in oceanic	
waters, Nature, 393(6687), 774-777, 1998.	
Tagliabue, A., and Arrigo, K.R.: Decadal trends in air-sea CO ₂ exchange in the Ross Sea	
(Antarctica), Geophys. Res. Lett., 43 ₂ 5271-5278, 2016.	
Tatters, A.O., Fu, F.X. and Hutchins, D.A.: High CO ₂ and silicate limitation synergistically	
increase the toxicity of <i>Pseudo-nitzshia fraudulenta</i> , PLoS ONE, 7, available at:	
http://dx.doi.org/10.1371/journal.pone.0032116, 2012.	
Tew, K. S., Kao, Y. C., Ko, F. C., Kuo, J., Meng, P. J., Liu, P. J., and Glover, D. C.: Effects of	
elevated CO_2 and temperature on the growth, elemental composition, and cell size of two marine	
diatoms: potential implications of global climate change, Hydrobiologia, 741, 79-87, 2014.	
Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: A global pattern of thermal	
adaptation in marine phytoplankton, Science, 338, 1085-1088, 2012.	
Tortell, P. D., Payne, C., Gueguen, C., Li, Y., Strzepek, R. F., Boyd, P. W., and Rost, B., Uptake	
and assimilation of inorganic carbon by Southern Ocean phytoplankton. Limnol. Oceanogr., 53,	
1266-1278, 2008.	

Toseland, A. D. S. J., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., Lenton,

T.M., Valentin, K., Pearson, G.A., Moulton, V. and Mock, T. (2013). The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change, 3(11), 979-984.

Treguer, P., Nelson, D. M., Van Bennekom, A. J., and DeMaster, D. J.: The silica balance in the world ocean: a reestimate, Science, 268, 375, 1995.

Trimborn, S., Brenneis, T., Sweet, E., and Rost, B.: Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction, Limnol. Oceanogr., 58, 997-1007, 2013.

Wang, Y., Smith, W. O., Wang, X., and Li, S.: Subtle biological responses to increased CO₂ concentrations by *Phaeocystis globosa* Scherffel, a harmful algal bloom species, Geophys. Res. Lett., 37, L09604, doi:10.1029/2010GL042666, 2010.

Xu, K., Fu, F. X., and Hutchins, D. A.: Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability, Limnol. Oceanogr., 59, 1919-1931, 2014.

Zhu, Z., Xu, K., Fu, F., Spackeen, J. L., Bronk, D. A., and Hutchins, D. A.: A comparative study of iron and temperature interactive effects on diatoms and *Phaeocystis antarctica* from the Ross Sea, Antarctica, Mar. Ecol-Prog. Ser., 550, 39-51, 2016.

Table 1. The measured pH and dissolved inorganic carbon (DIC), and calculated pCO2 of P. subcurvata

and P. antarctica at 2°C and 8°C in each treatment. Values represent the means and errors are the

standard deviations of triplicate bottles.

P. subo	curvata	P. ant	arctica
2°C	8°C	2°C	8°C
pН			
8.36±0.04	8.51±0.04	8.40 ± 0.03	8.45±0.03
8.25 ± 0.04	8.36±0.01	8.22±0.04	8.29±0.01
8.07±0.01	8.17±0.01	8.09 ± 0.02	8.14±0.00
7.86 ± 0.02	7.99±0.01	7.85±0.01	7.94±0.00
7.68±0.01	7.79±0.02	7.65±0.01	7.75±0.00
7.35±0.01	7.46±0.02	7.34±0.01	7.45±0.00
DIC (µmol/kg)			
1890.1±26.6	1846.5±15.8	1847.1±30.0	1831.1±22.7
2049.1±10.8	1985.7±2.1	2033.9±15.0	2014.2±19.9
2131.3±9.4	2067.5±4.7	2136.6±5.6	2085.3±15.3
2190.4±2.8	2156.1±13.9	2168.1±12.4	2167.4±21.5
2260.0±22.2	2234.8±10.3	2252.1±11.5	2238.7±12.0
2340.1±19.4	2334.5±18.8	2338.2±12.1	2323.7±11.5
pCO_2 (ppm)			
109.1±9.3	94.4±10.1	96.6±9.5	108.8±8.8
158.6±15.5	150.3±3.6	171.2±14.4	183.6±4.2
263.1±5.9	254.2±9.9	246.4±9.9	280.3±0.6
450.2±17.3	414.9±12.0	462.2±12.1	480.9±4.7
740.9±10.6	708.8±23.5	786.9±10.3	784.1±4.8
1751.2±35.9	1675.3±49.4	1769.9±59.5	1720.3±18.3

Table 2. Statistical comparison of the results for each of the three thermal traits: Optimum temperature

(°C), Maximum growth rate (d⁻¹) and temperature niche width (W)* of *P. subcurvata* and *P. antarctica*.

Species	Optimum temperature (°C)	Maximum growth rates (d ⁻¹)	W upper CI	W lower CI	Q ₁₀
P. subcurvata	7.36	0.86	12.19	< -2.0	3.17
P. antarctica	4.85	0.66	9.52	< -2.0	2.11

* The statistical results for the lower bound of temperate niche width in both species were lower than -2.0°C, the freezing point of seawater

Table 3. The effects of temperature on the C quota (pmol cell⁻¹), N quota (pmol cell⁻¹), P quota (pmol cell⁻¹), Si quota (pmol cell⁻¹), and chl *a* per cell (pg cell⁻¹) of *P. subcurvata* and *P. antarctica*. Values represent the means and errors are the standard deviations of triplicate bottles.

	P. subcurvata	P. antarctica
C quota		
0°C	1.91±0.14	2.64 ± 0.34
2°C	2.11±0.19	2.49±0.41
4°C	2.15±0.12	2.50±0.23
6°C	2.07±0.13	2.26±0.18
8°C	2.33±0.14	2.17±0.22
10°C	2.17±0.13	
N quota		
0°C	0.27±0.03	0.39 ± 0.03
2°C	0.29±0.03	0.36 ± 0.02
4°C	0.33±0.02	$0.40{\pm}0.01$
6°C	0.31±0.01	0.35±0.02
8°C	0.36±0.05	$0.34{\pm}0.03$
10°C	0.33±0.04	
P quota		
0°C	$0.02{\pm}0.00$	0.03 ± 0.00
2°C	0.02 ± 0.00	$0.02{\pm}0.00$
4°C	0.03 ± 0.00	0.03±0.01
6°C	0.03 ± 0.00	$0.02{\pm}0.00$
8°C	0.03 ± 0.00	$0.02{\pm}0.00$
10°C	0.02 ± 0.00	
Si quota		
0°C	0.23±0.02	
2°C	0.23±0.06	
4°C	0.30±0.01	
6°C	0.30 ± 0.03	
8°C	0.34±0.01	
10°C	0.28 ± 0.04	
Chl a per ce	ll (pg/cell)	
0°C	0.48 ± 0.01	0.23 ± 0.03
2°C	0.57 ± 0.07	0.22 ± 0.02
4°C	0.64 ± 0.01	$0.20{\pm}0.01$
6°C	0.68 ± 0.05	0.21±0.00
8°C	0.58 ± 0.03	0.17 ± 0.02
10°C	0.46 ± 0.03	

Table 4. Comparison of the curve fitting results for maximum growth rate (d^{-1}) and half saturation

constants (K_m), calculated from the CO₂ functional response curves of *P. subcurvata* and *P. antarctica* at

 $2^{\circ}C~$ and $8^{\circ}C.$ Values represent the means and errors are the standard errors from fitting.

Species	Maximum growth rates (d ⁻¹)	K _m
P. subcurvata		
2°C	$0.60{\pm}0.18$	66.4±10.39
8°C	$0.88{\pm}0.02$	9.8±5.34
P. antarctica		
2°C	0.61 ± 0.02	26.4±8.23
8°C	0.41 ± 0.02	22.1±11.15

Table 5 The effects of CO₂ on the C: N, N: P, C: P, C: Si, and C: Chl a ratios of P. subcurvata and P.

antarctica at 2°C and 8°C. Values represent the means and errors are the standard deviations of triplicate bottles.

	P. subcurvata		P. antarctica	
	2°C	8°C	2°C	8°C
C: N				
100 ppm	6.6±0.26	7.1±0.68	7.22±0.50	6.95±0.35
205 ppm	6.7±0.24	7.5±0.32	7.74±0.21	6.56±1.15
260 ppm	6.7±0.32	7.3±0.18	8.07±0.52	6.99±0.27
425 ppm	6.7±0.05	6.6±0.05	7.21±0.81	6.19±0.13
755 ppm	6.8±0.20	7.1±0.68	7.98 ± 0.44	6.79±0.22
1730 ppm	7.1±0.82	7.4±1.07	8.15±0.48	7.05±0.91
N: P				
100 ppm	10.4 ± 0.85	14.5 ± 2.28	16.4±1.24	13.9±0.20
205 ppm	10.8 ± 1.01	13.3±0.42	16.6±1.12	15.7±2.77
260 ppm	10.3±1.28	14.0±0.56	14.3±1.24	14.5±2.38
425 ppm	11.3±0.84	16.5±0.28	17.1±1.83	17.2 ± 1.98
755 ppm	9.9±0.28	14.3±1.34	14.2 ± 2.60	11.6±4.11
1730 ppm	10.4 ± 1.02	15.5±1.84	15.5±0.56	15.1±1.85
C: P				
100 ppm	68.6±3.10	101.0±6.43	117.7±4.08	96.7±4.86
205 ppm	72.7±4.82	99.3±7.05	128.2±5.98	101.0 ± 1.91
260 ppm	69.1±7.68	103.0±4.88	115.5±7.25	101.0±13.04
425 ppm	76.3±5.19	109.0±2.20	122.3±4.85	106.0±11.14
755 ppm	67.2±1.38	101.0±5.80	113.5±22.50	78.6±27.09
1730 ppm	73.4±1.22	114.0±5.99	126.2±12.10	105.0±6.26
C: Si				
100 ppm	7.8 ± 0.80	5.6±0.32		
205 ppm	7.4±0.30	5.6±0.24		
260 ppm	7.3±0.23	6.1±0.38		
425 ppm	7.5±0.23	6.1±0.06		
755 ppm	7.4±0.66	6.3±0.36		
1730 ppm	8.0 ± 0.88	7.1±0.47		
C: Chl a (µg/	μg)			
100 ppm	43.6±1.14	70.7±5.01	160.4 ± 6.68	197.4±29.35
205 ppm	45.2±2.91	67.3±4.42	157.5±4.95	194.0±17.14
260 ppm	41.6±3.31	60.1±9.45	138.3±15.19	169.8±9.20
425 ppm	37.2±2.58	72.5±2.35	180.2 ± 20.10	232.4±20.47
755 ppm	42.2±3.62	68.7±6.29	167.5±5.06	282.5±15.30
1730 ppm	46.3±2.23	85.3±15.70	276.5±36.57	460.3±15.21

Table 6 The effects of CO₂ on the C quota (pmol cell⁻¹), N quota (pmol cell⁻¹), P quota (pmol cell⁻¹), Si quota (pmol cell⁻¹), and chl *a* per cell (pg cell⁻¹) of *P. subcurvata* and *P. antarctica* at 2°C and 8°C. Values represent the means and errors are the standard deviations of triplicate bottles.

	P. subcurvata		P. antarctica		
	2°C	8°C	2°C	8°C	
C quota					
100 ppm	2.0±0.15	2.64 ± 0.06	2.57 ± 0.03	2.15±0.22	
205 ppm	2.1±0.12	2.67±0.31	2.72 ± 0.28	2.35±0.19	
260 ppm	1.9 ± 0.04	2.28 ± 0.18	2.51±0.36	2.21±0.04	
425 ppm	1.8 ± 0.04	2.43±0.15	2.31±0.05	2.28 ± 0.46	
755 ppm	2.1±0.09	2.26 ± 0.05	2.47±0.17	2.81±0.15	
1730 ppm	2.1±0.30	2.47±0.18	2.43±0.10	2.96 ± 0.30	
N quota					
100 ppm	0.30±0.03	0.38 ± 0.04	0.36 ± 0.03	0.31±0.03	
205 ppm	0.30±0.03	0.36 ± 0.03	0.35 ± 0.03	0.36 ± 0.06	
260 ppm	0.29±0.01	0.31±0.02	0.31±0.06	0.32 ± 0.02	
425 ppm	0.27±0.01	0.37 ± 0.06	$0.32{\pm}0.03$	0.37 ± 0.05	
755 ppm	0.30 ± 0.02	0.32 ± 0.03	0.31±0.03	0.41 ± 0.01	
1730 ppm	0.29±0.05	$0.34{\pm}0.06$	$0.30{\pm}0.03$	0.43 ± 0.10	
P quota					
100 ppm	0.03 ± 0.00	0.03 ± 0.00	$0.02{\pm}0.00$	$0.02{\pm}0.00$	
205 ppm	0.03 ± 0.00	0.03 ± 0.00	$0.02{\pm}0.00$	$0.02{\pm}0.00$	
260 ppm	0.03 ± 0.00	$0.02{\pm}0.00$	$0.02{\pm}0.00$	$0.02{\pm}0.00$	
425 ppm	0.02 ± 0.00	0.02 ± 0.00	$0.02{\pm}0.00$	$0.02{\pm}0.01$	
755 ppm	0.03 ± 0.00	0.02 ± 0.00	$0.02{\pm}0.00$	$0.04{\pm}0.02$	
1730 ppm	0.03 ± 0.00	$0.02{\pm}0.00$	$0.02{\pm}0.00$	0.03 ± 0.00	
Si quota					
100 ppm	0.26 ± 0.02	0.47 ± 0.04			
205 ppm	0.28 ± 0.02	$0.48{\pm}0.07$			
260 ppm	0.27±0.01	0.37 ± 0.03			
425 ppm	0.25±0.01	$0.40{\pm}0.04$			
755 ppm	0.28±0.03	0.36 ± 0.03			
1730 ppm	0.26±0.01	0.35 ± 0.05			
Chl a per cell (pg/cell)					
100 ppm	0.54±0.05	0.45 ± 0.04	$0.19{\pm}0.01$	0.13 ± 0.02	
205 ppm	$0.54{\pm}0.04$	0.48 ± 0.05	0.21±0.02	0.15 ± 0.02	
260 ppm	0.56±0.03	0.46 ± 0.04	0.22 ± 0.04	$0.16{\pm}0.01$	
425 ppm	0.60 ± 0.04	$0.40{\pm}0.04$	$0.16{\pm}0.02$	0.12 ± 0.01	
755 ppm	0.59±0.06	0.40±0.03	0.18±0.01	0.12 ± 0.00	
1730 ppm	0.53±0.06	0.35±0.05	0.11±0.02	0.08 ± 0.01	

Figure legends

Fig. 1. Thermal functional response curves showing specific growth rates (and fitted curves) of *Pseudo-nitzschia subcurvata* and *Phaeocystis antarctica* across a range of temperatures from 0°C to 14°C. Values represent the means and error bars represents the standard deviations of triplicate samples.

Fig. 2. The C: N ratios (A), N: P ratios (B), and C: P ratios (C) of *Pseudo-nitzschia subcurvata* and *Phaeocystis antarctica* and (D) the C: Si ratios of *Pseudo-nitzschia subcurvata* from the thermal response curves shown in Fig. 1 for a range of temperatures from 0°C to 10°C. Values represent the means and error bars represents the standard deviations of triplicate samples.

Fig. 3. The C: Chl *a* ratios of *Pseudo-nitzschia subcurvata* and *Phaeocystis antarctica* from the thermal response curves shown in Fig. 1 for a range of temperatures from 0°C to 10°C. Values represent the means and error bars represents the standard deviations of triplicate samples.

Fig. 4. The relative abundance of *Pseudo-nitzschia subcurvata* in a 6 day competition experiment with *Phaeocystis antarctica* at 0°C and 6°C. The competition experiments were started with equal Chl *a* concentrations for both species, and the relative abundance was calculated based on cell counts. Values represent the means and error bars represents the standard deviations of triplicate samples.

Fig. 5. CO₂ functional response curves showing specific growth rates (and fitted curves) across a range of CO₂ concentrations from ~100 ppm to ~1730 ppm at 2°C and at 8°C. *Pseudo-nitzschia subcurvata* at 2°C (A) and 8°C (B) and *Phaeocystis antarctica* at 2°C (C) and 8°C (D). Values represent the means and error bars represents the standard deviations of triplicate samples.

Fig. 3

