Response to Editors comments

All edits have been incorporated.

Reference to meristem in figure to has been changed to epithallus and change has been made in the figure.

Figure 5- vertical axis line has been changed to black and thickened, labels are already on this axis.

- 1 ANATOMICAL STRUCTURE OVERRIDES TEMPERATURE CONTROLS ON
- 2 MAGNESIUM UPTAKE CALCIFICATION IN THE ARCTIC/SUBARCTIC
- 3 CORALLINE ALGAE LEPTOPHYTUM LAEVE AND KVALEYA EPILAEVE
- 4 (RHODOPHYTA; CORALLINALES)
- 5 Merinda C. Nash
- 6 Walter Adey
- 7 Department of Botany, National Museum of Natural History, Smithsonian Institution,
- 8 Washington, DC, USA, 20560
- 9
- 10 Author for correspondence: <u>nashm@si.edu</u>
- 11 Running title: Magnesium and anatomy in coralline algae
- 12 Key words: Coralline algae, calcification, biomineralization, magnesium, temperature,

- 13 proxy
- 14

1	-
	5
-	<u> </u>

16 Abstrac	ct
------------	----

18	Calcified coralline red algae are ecologically key organisms in photic benthic
19	environments. In recent decades they have become important climate proxies, especially
20	in the Arctic and Subarctic. It has been widely accepted that Magnesium content in
21	coralline tissues is directly a function of ambient temperature, and this is a primary basis
22	for their value as a climate archive. In this paper we show for two genera of
23	Arctic/Subarctic corallines, Leptophytum laeve and Kvaleya epilaeve, that previously
24	unrecognized complex tissue and cell wall anatomy bears a variety of basal signatures for
25	Mg content, with the accepted temperature relationship being secondary. The
26	interfilament carbonate has lower Mg than adjacent cell walls and the hypothallial cell
27	walls have the highest Mg content. The internal structure of the hypothallial cell walls
28	can differ substantially from the perithallial radial cell wall structure. Using high-
29	magnification Scanning Electron Microscopy and etching we expose the nm-scale
30	structures within the cell walls and interfilament. Fibrils concentrate at the internal and
31	external edges of the cell walls. Fibrils ~ 10 nm thick appear to thread through the radial
32	Mg-calcite grains and form concentric bands within the cell wall. This banding may
33	control Mg distribution within the cell. Similar fibril banding is present in the
34	hypothallial cell walls but not the interfilament. Climate archiving with corallines can
35	achieve greater precision with recognition of these parameters.
36	Introduction

Rob Nash 9/11/17 11:46 AM Deleted: This paper is part of a series of investigations on controls on Mg uptake and distribution within the crusts of a range of coralline genera.

41	Understanding tissue complexity and the structural organization of cell wall calcification
42	in coralline algae is important for many reasons, including the growing use of these
43	organisms as climate proxies and concern for the ecological effects of ocean acidification.
44	There is a burgeoning interest in using coralline crusts as environmental proxies for late
45	Holocene temperature (Hetzinger et al. 2009, Gamboa et al. 2010, Halfar et al. 2010),
46	arctic ice sheet coverage (Halfer et al. 2013) and pH changes with time (Krayesky-Self et
47	al. 2016). Typically magnesium content is used as a key indicator of late Holocene
48	temperature fluctuations (Adey et al. 2013). Yet despite this utilization of coralline
49	carbonate crusts for proxy climate research, there has been little study of tissue and
50	cellular-scale physiology as it relates to the distribution of magnesium within the crust.
51	Nor are the basic mechanisms of calcification fully understood (Adey 1998). This is in
52	stark contrast to the status of other calcifiers used for proxy work, e.g. corals (Barnes and
53	Lough 1993), foraminifera (Bentov and Erez 2005) and bivalves (Wanamaker et al. 2008).
54	However, these well-known climate proxies have little application in the Arctic Region
55	of greatest climate change affects (Adey et al. 2013), and without a greater understanding
56	of coralline calcification physiology, precision proxy analysis of temperature and other
57	
	environmental conditions, using coralline algae, is limited.
58	environmental conditions, using coralline algae, is limited.
58 59	environmental conditions, using coralline algae, is limited. One of the key roles of corallines is the building of carbonate substrate that underpins
59	One of the key roles of corallines is the building of carbonate substrate that underpins

- 63 maerl substrate in the Mediterranean (Martin et al. 2014) and the dominant rocky benthos

64	biostromes and rhodoliths in many Arctic and Subarctic environments (Adey et al. 2013).
65	There are concerns that as atmospheric pCO_2 increases and consequent ocean
66	acidification increases, there will be negative impacts on the capacity of corallines to
67	continue building these important substrates (e.g. McCoy and Kamenos 2014), although
68	there are experimental studies that find no negative impacts (e.g. Cox et al., 2017). The
69	pace of research on the effects of temperature and climate change on coralline algae has
70	outpaced both the published data on anatomy and our understanding of the biochemical
71	processes controlling their carbonate skeletal building. For developing reliable past
72	climate proxy information using corallines and anticipating future climate change impacts
73	on these keystone calcifiers, as with any other organism, it is first necessary to understand
74	how these algae organize their tissues, build their skeleton and control cellular-scale
75	magnesium content.
75	magnesium coment.
75 76	magnesium coment.
	While numerous studies of coralline growth rates under a wide range of temperature and
76	
76 77	While numerous studies of coralline growth rates under a wide range of temperature and
76 77 78	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey
76 77 78 79	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo &
76 77 78 79 80	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo & Enríquez 2016), little attempt has been made to relate this information to calcification
76 77 78 79 80 81	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo & Enríquez 2016), little attempt has been made to relate this information to calcification processes. Also, it is only recently, with the use of higher magnification scanning electron
76 77 78 79 80 81 82	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo & Enríquez 2016), little attempt has been made to relate this information to calcification processes. Also, it is only recently, with the use of higher magnification scanning electron microscopy (SEM) (Adey et al. 2005, 2015a) that the earlier implications of anatomical
76 77 78 79 80 81 82 83	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo & Enríquez 2016), little attempt has been made to relate this information to calcification processes. Also, it is only recently, with the use of higher magnification scanning electron microscopy (SEM) (Adey et al. 2005, 2015a) that the earlier implications of anatomical complexity (Adey 1964, 1965,1966a, Cabioch and Giraud 1986) have been fully
76 77 78 79 80 81 82 83 83 84	While numerous studies of coralline growth rates under a wide range of temperature and light conditions have been published (Adey and McKibben 1970, Adey 1970, 1973, Adey and Vassar 1975, Kamenos et al. 2008, Diaz-Pulido et al. 2014, Vásquez-Elizondo & Enríquez 2016), little attempt has been made to relate this information to calcification processes. Also, it is only recently, with the use of higher magnification scanning electron microscopy (SEM) (Adey et al. 2005, 2015a) that the earlier implications of anatomical complexity (Adey 1964, 1965,1966a, Cabioch and Giraud 1986) have been fully appreciated. It has been proposed that calcification is a result of locally elevated pH

87	haustoria to derive nutrition from their hosts, yet present typical tissue and calcified wall	
88	structures (Adey and Sperapani 1971, Adey et al.1974). Also, anatomical and magnesium	
89	content studies of Arctic corallines demonstrate that growth continues in Arctic winter	
90	darkness (Halfar et al. 2011, Adey et al. 2013), indicating that calcification is not likely a	R
91	straight forward association with micro-saturation state, as seen in some algae (e.g.,	Derec
92	Halimeda, Adey 1998, Sinutok et al. 2012).	in
93		
94	Following on from the classical coralline studies, maturing around the turn of the 19 th	
95	century, Adey (1964, 1965, 1966a, b) laid out the basic tissue-structured anatomy of	
96	crustose corallines, adding the epithallium, intercalary meristem and cellular elongation	
97	(while calcified) to the classical model of perithallium and hypothallium. Later, SEM	
98	(Adey et al. 2005, Adey et al.2012) demonstrated greater sub-tissue complexity and	
99	added the calcified cell wall components inner wall (IW) and interfilament (IF). It should	R
100	be noted that while the interfilament is a minor component of total calcification in the	M the
101	species of this paper, it can be a major component in some genera (Adey et al. 2013,	ter eq pla
102	2015a).	ret 20
103		(point ce
104	In this paper, we show for the first time the cellular-scale and anatomical controls on	ca
105	magnesium distribution within the carbonate skeletons of two Arctic/Subarctic coralline	
106	species. These are Leptophytum leave (Stromfelt) Adey, and the epiphytic (and non-	
107	photosynthetic parasitic) Kvaleya epilaeve Adey and Sperapani, from the northern	
108	Labrador Coast. L. leave is photosynthetic and forms expansive, but thin crusts (up to	
109	one mm in thickness) generally on shell fragments and pebbles in deeper water (Adey	

Rob Nash 9/11/17 11:52 AM

Deleted: . There has been an experiment recording continued calcification at night and in the dark (experiment in progress)

Rob Nash 9/11/17 11:54 AM

Moved down [1]: In this paper, we rename the inner wall the cell wall and retain the terminology interfilament, noting this is equivalent to the middle lamella in higher plants (Esau 1953); interfilament has also been referred to as interstitial (Ragazzola et al. 2016). We use the abbreviations PCW and PIF (perithallial cell wall and perithallial interfilament) and HCW and HIF (hypothallial cell wall and interfilament) to designate the carbonate wall components.

124	1966a, 1970). K. epilaeve is an epiphytic parasite, lacking in photosynthetic pigment, and
125	producing hypothallial haustoria that penetrate upper perithallial cells of L. leave (Adey
126	and Sperapani 1971). It is similar in physiology to the North Pacific Subarctic parasite
127	Ezo epiyessoense (Adey et al.1974), which, along with its host Lithophyllum yessoense,
128	lies in a distantly related coralline group. K. epilaeve is the only known Arctic genus of
129	algae (Adey et al. 2008) and is absent or of very limited occurrence in Subarctic waters,
130	where the host continues to be abundant (Adey and Sperapani 1971). Understanding and
131	contrasting calcification within these two species, both growing in the same temperature,
132	light and pH conditions, offers an opportunity to examine the wide variance of Mg
133	content as a function of skeletal anatomy and metabolic processes.
134	
135	Methods
136	Sample collection and site information
137	The sample was collected on 22 nd July 2013, at the commencement of Arctic summer,
138	
	from 16-18 m depth at inner Port Manvers Bay, Labrador. The collection site lies at 56°
139	from 16-18 m depth at inner Port Manvers Bay, Labrador. The collection site lies at 56° 57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a
139 140	
	57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a
140	57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a north/south passageway inside of S. Aulatsivik Island (Fig. 1A, <u>C</u>). Sea ice is extensive
140 141	57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a north/south passageway inside of S. Aulatsivik Island (Fig. 1A, <u>C</u>). Sea ice is extensive from November through early July, and the inter-island passages and bays are covered
140 141 142	57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a north/south passageway inside of S. Aulatsivik Island (Fig. 1A, <u>C</u>). Sea ice is extensive from November through early July, and the inter-island passages and bays are covered with sea ice through much of that period. At the collection site, the bottom was a
140 141 142 143	57.1' N; 61° 32.8' W., near the northern end of the 50 km long Port Manvers Run, a north/south passageway inside of S. Aulatsivik Island (Fig. 1A, <u>C</u>). Sea ice is extensive from November through early July, and the inter-island passages and bays are covered with sea ice through much of that period. At the collection site, the bottom was a shell/pebble gravel bed primarily of shell fragments and pebbles encrusted with <i>L. leave</i> ,

Rob Nash 9/11/17 11:56 AM **Deleted:** snow-covered land fast

148	Salinity was <u>30 and</u> measured using electronic induction instrumentation, November to	Rob Nash 9/11/17 11:56 AM
149	July near surface water temperatures, below the sea ice, are within the -1.5 to -1.8° C	Deleted: and was 30 ppt
150	range. Bottom summer temperature measured at the site on 22 nd July 2013 was 0.5°C.	
151	Since this is relatively early in the summer season, peak temperatures are likely to be	
152	between 3-5°C (Adey et al. 2015) with a mean growing season temperature of ~ 2 ° C.	
153	This mean estimate is based on measurements from eight sites in the region (182 km S to	
154	35 km N) with surface to bottom temperature records for 1964 (Adey 1966c) and 2013	
155	(Adey et al. 2015). These ranged from 1.9 to 5.6° C during summer at 15-20 m. The	
156	snow-covered land fast sea ice overlying the gravel rhodolith bed from which the samples	
157	were taken likely precludes significant solar energy from reaching the bottom for eight	
158	months of each year.	
150		
159	×	Pob. Nach 0/11/17 11:58 AM
160	The original sample is 2013-11(1) at the National Museum of Natural History.	Rob Nash 9/11/17 11:58 AM Deleted: .
	The original sample is 2013-11(1) at the National Museum of Natural History.	
160	The original sample is 2013-11(1) at the National Museum of Natural History. Analytical methods	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161		Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162	Analytical methods	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS)	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163 164	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS) The CCA sample was fractured, mounted using carbon tape and platinum coated prior to	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163 164 165	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS) The CCA sample was fractured, mounted using carbon tape and platinum coated prior to scanning electron microscopy energy dispersive spectroscopy (SEM-EDS). For these	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163 164 165 166	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS) The CCA sample was fractured, mounted using carbon tape and platinum coated prior to scanning electron microscopy energy dispersive spectroscopy (SEM-EDS). For these analyses, we used a Zeiss UltraPlus field emission scanning electron microscope	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163 164 165 166 167	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS) The CCA sample was fractured, mounted using carbon tape and platinum coated prior to scanning electron microscopy energy dispersive spectroscopy (SEM-EDS). For these analyses, we used a Zeiss UltraPlus field emission scanning electron microscope (FESEM) equipped with an HKL electron backscatter diffraction (EBSD) operated at 15	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by
160 161 162 163 164 165 166 167 168	Analytical methods Scanning electron microscopy- energy dispersive spectroscopy (SEM-EDS) The CCA sample was fractured, mounted using carbon tape and platinum coated prior to scanning electron microscopy energy dispersive spectroscopy (SEM-EDS). For these analyses, we used a Zeiss UltraPlus field emission scanning electron microscope (FESEM) equipped with an HKL electron backscatter diffraction (EBSD) operated at 15 kV, 11 mm working distance. SEM was carried out at the Australian National University	Deleted: - Rob Nash 9/11/17 11:58 AM Deleted: Species identification was made by

175 were used for imaging. The more common secondary (SE) electron showing topography,

176 backscatter electron imaging (BSE) which shows higher magnesium areas as darker

177 carbonate and is useful for rapid visual identification of mineral distribution.

178

179	A second round of EDS was undertaken using a NOVA NanoSEM FEI at the National
180	Museum of Natural History's Department of Mineralogy. Typically EDS measurements
181	are made using 15 kV (Nash et al. 2011) so that there is sufficient energy to dislodge
182	electrons from a range of elements, e.g. from lighter magnesium up to heavier strontium.
183	The EDS beam interacts with a roughly spherical-shaped region of carbonate beneath the
184	surface. This region is referred to as the interaction volume. At 15 kV the interaction
185	volume is $\sim 3~\mu m$ in diameter whereas the average cell wall thickness ranges from only
186	500 nm up to ~2 μm (occasionally thicker, up to 3 μm). Interfilament in these species
187	may be only a few grains wide, 200-500 nm up to 2 μm . These narrow areas of interest
188	in contrast to the larger beam interaction volume, pose a problem for obtaining accurate
189	Mg measurements for only cell wall or interfilament. For example, a measurement of the
190	cell wall may include minor amounts of carbonate from the adjacent interfilament and
191	vice versa. Generally even with this beam crossover, in our experience 15 kV is sufficient
192	to identify a significant offset in magnesium while still collecting information that may
193	be of interest such as strontium levels. However, where there are only a few grains of
194	interfilament, as in the L. leave, the 3 µm interaction volume is problematic. A range of
195	EDS settings were tested aiming to reduce the beam interaction volume so that Mg
196	content for each the cell wall and the interfilament could be individually measured
197	without the beam crossing into the adjacent substrate. A setting of 7 kV, working distance

Rob Nash 9/11/17 11:58 AM Deleted: enough

1996.4 mm and 1 nA current was used to measure the interfilament grains in the *L*. *leave*200with a count time of 20 seconds. The sample was carbon coated. This was calculated to201have an interaction volume of $<1 \mu m$. These results are reported separately to the main202data set.

203

204 *Sample preparation*

205	Initially the crust was fractured using shears and mounted in superglue. After first
206	imaging of the fractured crust, the sample was polished using 2000 gsm wet and dry
207	sandpaper then sonic cleaned in unbuffered deionized water for 2 minutes. This
208	preparation was used for SEM EDS measurements; 8-9 measurements were made for
209	each carbonate type of interest. Subsequently the sample was sonic cleaned in unbuffered
210	deionized water for 20 minutes. The deionized water has a pH of ~6.5. When cleaned
211	for 2 minutes the surface is very lightly etched allowing differentiation between different
212	Mg-calcite morphologies without altering the measured Mg content. After cleaning for
213	20 minutes there is a visible difference in the surface with much of the interfilament Mg-
214	calcite and smaller grains removed allowing imaging of nm scale cellular structures.
215	
216	X-ray diffraction methods
217	Powder XRD was carried out using a SIEMENS D501 Bragg-Brentano diffractometer
218	equipped with a graphite monochromator and scintillation detector, using $CuK\alpha$ radiation.
219	A subsample was broken off the edge of the crust. This piece included L. leave with
220	$r_{\rm entropy}$

- 220 surficial K. epilaeve. The sample was ground using a mortar and pestle. Fluorite was
- added as an internal standard. The sample was not bleached and acetone was not added

- 222 during the grinding as this has been found to occasionally induce alteration and
- 223 precipitation of other minerals in other coralline samples we have worked with. Scan
- interpretation for mol% MgCO₃ followed the methods described by Nash et al. (2013).

225	۲	
226	Terminology	Rob Nash 9/11/17 12:01 PM Deleted:
227	In this paper, we rename the inner wall the cell wall and retain the terminology	Rob Nash 9/11/17 11:54 AM
228	interfilament, noting this is equivalent to the middle lamella in higher plants (Esau 1953);	Moved (insertion) [1]
229	interfilament has also been referred to as interstitial (Ragazzola et al. 2016). We use the	
230	abbreviations PCW and PIF (perithallial cell wall and perithallial interfilament) and	
231	HCW and HIF (hypothallial cell wall and interfilament) to designate the carbonate wall	
232	components.	
233		
234	Results	
235	SEM imaging overview	
236	The specimen of L. laeve encased an aragonite carbonate shell. (Fig. 2A). The crust is	
237	approximately 500 <u>um</u> thick (Fig. 2B) with a basal hypothallus ~80 <u>um</u> s thick. <i>K</i> .	Rob Nash 9/11/17 12:02 PM
238	epilaeve has been considered to be an adelphoparasite, a species very closely related to its	Deleted: microns Rob Nash 9/11/17 12:03 PM
239	host. Although diminutive, and superficially appearing as scattered white sand grains, K.	Deleted: micron
240	epilaeve can densely coat L. leave. Although often appearing as densely crowded	
241	conceptacles, it can possess the full basic array of anatomical features: hypothallium,	
242	perithallium and epithallium (the latter mostly absent, Adey and Sperapani 1971) (Fig.	
243	2B). L. laeve typically has an epithallium that is one cell layer of rounded ovoid, thin	
244	walled cells that are often absent in SEM sections. The K. epilaeve grows directly on the	
245	L. laeve meristem (Fig. 2C, D) and there was no evidence of excavation required (by	

250 borers or grazers), prior to settlement. This suggests that unlike the typical sloughing 251 relationship with epiphytes wherein epithallium builds up under the epiphyte until it 252 sloughs off, the L. leave does not recognize K. epilaeve as foreign. The perithallial cell 253 walls of L. laeve contain radially-oriented grains of Mg-calcite; the interfilament is thin 254 and has carbonate grains randomly orientated in a plane parallel to the filament axis or 255 cell top/ bottom. The interfilament shows up strongly as stripes on vertical fracture 256 sections (Figs. 2B, C). Note for easiest viewing of the fine structures, the figure images 257 are best viewed on screen rather than in print. 258 259 The first layer formed by the K. epilaeve has angular grains parallel to the L. laeve 260 surface (Fig. 2E). The bottom part of the cell wall is without radial structure and has 261 submicron beads appearing to calcify along and within organic fibrils (Fig. 2E). Organic 262 fibrils are visible between the basal layer of K. epilaeve carbonate grains and the 263 meristem of the L. leave (Fig. 2F) suggesting a method of attachment in addition to the 264 haustoria developed by some hypothallial cells (Adey and Sperapani 1971). There were 265 no haustoria visible in our SEM sample. Fine radial grains typically observed in cells of L. 266 *leave* beneath the meristem were not apparent in the cell walls of the L. *laeve* meristem 267 (Fig. 2E,F) suggesting this surficial carbonate may have been altered or remineralised

268 during the attachment process.

269

270 SEM-EDS

271 Measurements for magnesium content in *Leptophytum leave* were undertaken on both the 272 upper (side with conceptacles) and under (without conceptacles) crusts (Fig. $\underline{3}A$, D). The

- 273 parasite, *Kvaleya epilaeve* was present on both surfaces (Fig. 2A, B Fig. 3A).
- 274 Measurements of *K. epilaeve* were made on the underside.

275	
The Mg content of the perithallial and hypothallial cell walls of <i>L. leave</i> was measured	
277 (Fig. $\frac{3}{2}$ A-D) as well as what appeared to be a transitional cell type between the basal	
hypothallus and the typical perithallial cells (Fig. 2 D-F). These transitional cells are	
within the perithallus but have thin cell walls similar to the hypothallial cells. There are	
clear visual differences between the cell walls of the three cell types. The perithallial cell	
walls are 1-2 <u>ums</u> wide with clearly radial Mg-calcite (Fig. 2B, F). The basal	
hypothallial cells are elongated relative to the perithallial cells and their cell walls are	Rob Nash 9/11/17 12:04 PM Deleted: micron
283 narrower and do not always show radial cell wall structure (Fig. 2C). The transitional	
cells have elongate cells relative to the perithallus but less so than the hypothallus, and	
their cell walls are thinner, $\sim 0.5 - 1 \mu m$ and do not show radial structures. The	Rob Nash 9/11/17 12:04 PM
	1100 Masil 9/11/17 12.04 FIVI
286 interfilament of <i>L. laeve</i> has only a single layer of Mg-calcite grains (Fig. 2B, F), as noted	Deleted: micron
 interfilament of <i>L. laeve</i> has only a single layer of Mg-calcite grains (Fig. 2B, F), as noted above showing as a thin line on longitudinal axial fractures; fractures along the 	Deleted: micron
	Deleted: micron
above showing as a thin line on longitudinal axial fractures; fractures along the	Deleted: micron
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). 	Deleted: micron
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). 	Deleted: micron
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). The <i>K. epilaeve</i> in the portion of the sample mounted for SEM did not present the typical 	Deleted: micron
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). The <i>K. epilaeve</i> in the portion of the sample mounted for SEM did not present the typical elongated hypothallial cells as shown by Adey and Sperapani (1971), as this cut is not 	
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). The <i>K. epilaeve</i> in the portion of the sample mounted for SEM did not present the typical elongated hypothallial cells as shown by Adey and Sperapani (1971), as this cut is not longitudinally placed on a growing lobe. The key difference between the perithallus of 	Deleted: micron Rob Nash 9/11/17 12:04 PM Deleted: micron
 above showing as a thin line on longitudinal axial fractures; fractures along the interfilament appear as conspicuous vertical stripes (Figs. 2C). The <i>K. epilaeve</i> in the portion of the sample mounted for SEM did not present the typical elongated hypothallial cells as shown by Adey and Sperapani (1971), as this cut is not longitudinally placed on a growing lobe. The key difference between the perithallus of the <i>L. laeve</i> and <i>K. epilaeve</i> was the presence of wide (1-2 µms) areas of interfilament in 	Rob Nash 9/11/17 12:04 PM

- are present as vertical stripes on vertical fractures (Fig. 3B). EDS measurements were
 taken for both the *K. epilaeve* cell wall and interfilament (Fig. 4A, B). As the interaction
 volume of the EDS beam is ~ 3 µms (Methods) and the cell wall and interfilament
 thickness range from 1-3 µms, the values measured for both may include small amounts
 of the other, although every effort was made to place the beam on the widest part of the
 appropriate band. A second set of measurements was taken for the *L. leave* cell wall and
 interfilament using lower kV and the results are reported separately.
- 306

307 Mg content

308 Bulk whole sample content of Mg, determined by powder XRD was 10.8 mol% MgCO₃ 309 (Mg/Ca 0.13). The EDS-determined average Mg content ranged from 9.1 (K. epilaeve 310 Perithallial interfilament) to 16.7 mol% MgCO₃ (L. leave upper Hypothallial cell wall), 311 (Table 1, Fig.6). The highest measured individual Mg content, 19.6 mol% MgCO₃, was 312 in the L. leave upper crust HCW. Generally the Mg content of interfilament was lower 313 than cell walls, and perithallial cell walls had the highest Mg content. The lowest values 314 were for the K. epilaeve PIF and PCW, 9.1 and 10.1 mol% MgCO₃ respectively, not 315 significantly different at significance level of 0.05 but are significantly different at 316 significance level of 0.1 (p= 0.068) (Table 2). Keeping in mind the values for the cell 317 wall and interfilament include a small amount of carbonate from the other, we consider 318 the p=0.068 result likely does represent a true significant difference between the two. The 319 PCW for the L. laeve was slightly higher at 11.2 and 12.9 mol% MgCO₃ (under and 320 upper crust respectively), these were not significantly different from each other (p=0.112).

321 The combined average of the upper and under *L. leave* cell walls (12.2 mol% MgCO₃)

Rob Nash 9/11/17 12:04 PM Deleted: micron Rob Nash 9/11/17 12:04 PM Deleted: micron

324	was significantly higher (p=0.025) than the K. epilaeve cell wall. However, comparing
325	only the L. leave cell wall of the under crust, the same side as the K. epilaeve, there was
326	no significant difference (p=0.124). The greatest difference between the upper and under
327	L. laeve crust was found between the hypothallial cell walls. The under HCW averaged
328	12.3 mol% MgCO ₃ , whereas the upper HCW was 4.4 mol% higher at 16.7 mol% MgCO ₃ .
329	The upper HCW was significantly higher than the <i>L. leave</i> PCW's but not different from
330	the transitional CW's (15.6 mol% MgCO ₃). Based on the graph in figure 5 this upper
331	range of Mg would equate to temperatures above 9.3°C, more than double the known
332	summertime highs at the sampling site.
333	
334	The results for comparison of the cell wall and interfilament grains in the <i>L. leave</i> using 7
335	kV showed the interfilament, 8.5 mol% MgCO ₃ (n=6), was significantly lower (p=0.001)
336	than the cell wall, 11.1 mol% MgCO ₃ (n=8).
337	
338	Structural features
339	Cell wall
340	Within the radial Mg-calcite structure (PCW) of the K. epilaeve, a concentric banding
341	pattern is present (Fig. 7 A-C). The radial Mg-calcite grains are not always one
342	continuous long grain. The banding is aligned to the presence of organic fibrils that
343	appear regularly throughout the PCW (Fig. 7B). Organic fibrils, ~10 nm thick, are
344	parallel to the cell wall edges. These are spaced 30-40 nm apart throughout the middle of
345	the cell wall. It appears that the fibrils are mineralized. At the outer edges of the cell wall

347	7B, C) that is infilled with carbonate. The parallel fibrils are connected to the radial Mg-
348	calcite grains, appearing as if to continue through the grain (Fig. 7C), similar to fence
349	wire threading through fence posts at pre-defined spacing. There are also fibrils that
350	drape over the grains. Where the fibrils concentrate to a mesh, this is also calcified but
351	with smaller grains without regular shape. In the K. epilaeve interfilament (PIF), the
352	grains are aligned to the cell wall surface (Fig. 7C). Fibrils also run through the PIF and
353	attach to the interfilament grains but not with the regular pattern seen in the cell wall.
354	Looking at a cross section of the cell wall from the top down (Fig. 7D), the fibrils can be
355	seen to form a dense mesh.

Similar features are visible in the *L. laeve* PCW (Fig. 8A, B), although the organic fibrils
are not as well exposed. Possibly these cell wall grains are less susceptible to dissolution
in the etching treatment making it more difficult to expose the organic features. The
radial cell wall grains appear anchored to the external edge of the cell wall, immediately
adjacent the interfilament.

362

After etching for 20 minutes, more of the organic fibrils are exposed in the *K. epilaeve* interfilament (Fig. 9A) revealing a porous membrane. PIF grains have angular edges in contrast to the rounded sides of the cell wall grains. The *L. laeve* perithallial interfilament has rice-grain shaped Mg-calcite flattened against the external side of the cell wall (Fig. 9B) with attachment fibrils. Fibrils are visible stretching between the flattened interfilament grains on adjacent cells (Fig. 9C).

369

370 Hypothallial cell walls at 200-500 nm wide are much thinner than perithallial cell walls 371 (Fig. 10 A-C). The HCW internal structure appears roughly radial (Fig. 10 A-C). But, the 372 radial structure is not always well developed with parts of the HCW exhibiting a distinct 373 break down the middle of the radial structures (Fig. 10C). There are fibrils parallel to the 374 cell wall appearing to go through the wall grains similarly to the perithallial cell walls. 375 Interfilament grains are present, as in perithallial cells (Fig. 10B, C). The HCW wall can 376 have two clearly defined morphologies (Fig. 10C). The wall adjacent to the interfilament 377 is narrowest at ~200 nm, has closely spaced organic fibrils and is poorly calcified 378 compared to the inner part of the wall (300-400 nm wide) and appears more like a 379 mineralized membrane. The wider inner part of the cell wall has radial grains but without

- the well-defined shape of the PCW radial grains. Similar to the perithallial cell walls,
- there are fibrils appearing to thread through the hypothallial cell wall grains.
- 382
- 383 The transitional cells between the hypothallus and perithallus have features from both
- types present (Fig. 10D). The cell walls can be narrow, <200 nm, poorly mineralized
- similarly to the outer part of the hypothallial cell wall. Parts of the cell wall resemble the
- 386 perithallial cell walls, with radial grains and wall width of nearly 1 um, although along
- the same wall this changes to ~200 nm wide and a poorly mineralized membrane. The
- 388 parallel fibrils are also present within the transitional cell walls. Interfilament grains are
- 389 present comparably to those between hypothallial and perithallial cells.
- 390

391 Discussion

392 Site temperature, ecology and growth

393 The site of collection for this specimen (Fig. 1A) is a pavement of coralline encrusted, 394 roughly flat to ovoid shells and pebbles often with dish shapes. Many, such as the 395 specimen employed in this study have a concave surface (due to the original mollusk shape). The benthic surface that we show in figure 1B is likely quite stable with time in 396 397 the moderate reversing tidal current environment of the site. The conceptacles of L. leave, 398 requiring considerable solar energy for construction; all appear on the upper side of the 399 specimen and further assist our determination of orientation. Since the sea ice does not 400 clear the area until late June or early July, solar energy has already peaked, by the time 401 the benthos at 15-17 m receives significant light. Effectively, the growing season is July 402 through November, and with a mean growing season temperature of $< 2^{\circ}$ C. Based on the

Rob Nash 9/11/17 12:04 PM **Deleted:** micron

404	lateral growth rates (5-7 μ m/day) found by Adey (1970), a season of lateral growth would
101	
405	provide less than one mm of extension. As we discuss below, the vertical growth in this
406	species is slower than the lateral growth. The layering seen in figure <u>2</u> B likely represents
407	4-5 years of vertical growth. At 80-100 μ m of perithallial addition/year, this relates well
408	to the 100-200 μm /year found with extensive data in the same region for
409	Clathromorphum compactum (Adey et al. 2015b).
410	
411	Considering that Leptophytum leave crusts can be many cm broad and rarely exceed 500
412	μ m in thickness, except by overgrowing of earlier crusts, it can be assumed that after
413	initial formation, upwards perithallial growth is either very slow, perhaps limited by the
414	development of conceptacles for which considerable photosynthate must be dedicated. L.
415	leave is a deep water species (Adey 1966a, b, 1968, 1971) and requires little solar energy
416	to grow and carry out its life cycle; however, as shown by Adey (1970), the rate of
417	hypothallial extension falls with light reduction, and it would be expected that growth on
418	the underside of a shell-encased fragment would be present but less than that on the upper
419	surface.
420	

421 Temperature and magnesium

422 One of the challenges using samples collected at a single point in time is that the growth
423 history cannot always be precisely tied to previous points in time and temperature. As
424 discussed in the previous section, this crust likely represents 4-5 years of growth. Thus
425 the XRD mol% MgCO₃ is an average for that period. The individual EDS measurement

426 spots cannot be tied to a particular time of year or temperature. However, the annual

427 temperature range is not large, estimated to be ~ 4 °C across the growing season.

428

429	The XRD Mg content is within the range for average winter and summer Mg contents for
430	Clathromorphum compactum collected from Arctic Bay, Kingitok and Quirpon (Halfar et
431	al. 2011, 2013). The EDS-determined average Mg content for each carbonate type had a
432	range of 7.6 mol% MgCO ₃ , from 9.1 (K. epilaeve interfilament) to 16.7 mol% MgCO ₃ (L.
433	laeve upper crust hypothallus). The L. laeve upper hypothallus has 84% more Mg than
434	the K. epilaeve interfilament. Although the exact time and temperature of formation for
435	each component is not known, the temperature range (~4 °C) alone is highly unlikely to
436	explain the Mg difference. Studies on Mg content in CCA for temperature proxies have
437	used regressions with temperature records to determine a range of responses from 0.266
438	mol % (Williamson et al. 2014), ~1.0 (Halfar et al. 2000; Darrenougue et al. 2013) to
439	1.76 mol% MgCO ₃ (Kamenos et al. 2008) per degree celsius of temperature increase.
440	Only the Kamenos et al. (2008) calibration is close to explaining the range here.
441	However, that calibration was for branches of the rhodolith Lithothamnion glaciale.
442	Using temperature calibrations for crust CCA in experimental treatments, where
443	temperature was the only condition changed (Diaz-Pulido et al. 2014; Nash et al. 2016), a
444	calibration of 0.33 mol%/°C is obtained. This rate is in agreement with results from
445	Williamson et al. (2014), Chave and Wheeler (1964) and Adey (1965). Using 0.33, a shift
446	of 7.6 mol% equates to 23°C of change, nearly four times greater than the maximum
447	annual range at this site. The magnesium offsets in different parts of the crust are clearly
448	aligned to anatomical features and not controlled by temperature. This proposal is

449 supported by recent results for species of CCA Phymatolithon that also demonstrated 450 anomalously higher Mg in hypothallial cells across four species collected from differeing 451 locations (Nash and Adey 2017). Within these offsets there may still be a response to 452 temperature over the seasons, but it was beyond the capacity of this study to investigate 453 seasonal changes. It is noteworthy that the upper crust hypothallus average of 16.7 mol% 454 MgCO₃ is equivalent to new surface crust of tropical Porolithon onkodes grown at 30° C 455 (Diaz Pulido et al. 2014). 456 457 Structural features 458 There are three main types of calcified structures within the vegetative tissues of 459 Leptophytum leave and Kvaleya epilaeve: (1) the radial Mg-calcite within the cell walls 460 of the perithallium, (2) the interfilament in both the perithallium and hypothallium and 461 (3) the thin hypothallial cell walls. Each has distinctively different features and 462 magnesium content. The more elongate (and thinner-walled) cells of the hypothallus have 463 been reported for other species of Melobesioideae (Adey 1964, 1965, 1966a). However, 464 this is the first study to show that the internal cell wall Mg-calcite structure and their 465 magnesium content differs from perithallial cell wall. Probably these thinner elongated 466 hypothallial cell walls are a result of relatively rapid growth during lateral extension. 467 There are numerous examples documenting higher Mg in parts of crusts that have grown 468 faster during the warmer seasons (e.g. Clathromorphum compactum and C. nereostratum

by Adey et al. 2013). In this case the Mg increase is associated with anatomical change,

470 <u>not temperature</u>. The mechanistic process by which more Mg is incorporated into the

471 HCW and how this relates to growth rate is not known. <u>The *K. epilaeve* perithallial cells</u>

Rob Nash 9/11/17 1:04 PM Deleted: re Rob Nash 9/11/17 1:05 PM Deleted: is no elevated

474	had lower Mg than the L. leave perithallial cells. Cabioch and Giraud (1986) described
475	the <i>perithallial</i> cells as being a later stage of development than <i>epithallial</i> cells.
476	Epithallial cells do not have fully developed rounded cell walls of the perithallial cells
477	(Adey 2015a, b). Although Mg-content of epithallial carbonate is lower than the
478	perithallial values (Diaz-Pulido et al. 2014, Nash et al. 2015, 2016), the lower Mg
479	measured here is not considered a result of different cell type as the K. epilaeve cell walls
480	have the radial calcite similarly to the perithallial L. Leave, indicating that these are
481	similarly well developed. Considering the time of collection in early summer, it is quite
482	possible that the K. epilaeve growth closest to the L. leave surface was laid down closer
483	to winter and in cooler temperatures, this being a likely explanation for the lower Mg
484	<u>content.</u>
485	
485 486	
	Calcification and photosynthesis
486	<i>Calcification and photosynthesis</i> The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell
486 487	
486 487 488	The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell
486 487 488 489	The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell wall and interfilament features to those of the photosynthesizing host, <i>L. leave</i> , suggests
486 487 488 489 490	The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell wall and interfilament features to those of the photosynthesizing host, <i>L. leave</i> , suggests that the precipitation of the Mg-calcite is not directly driven by photosynthesis as has
486 487 488 489 490 491	The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell wall and interfilament features to those of the photosynthesizing host, <i>L. leave</i> , suggests that the precipitation of the Mg-calcite is not directly driven by photosynthesis as has been suggested for coralline algae (Ries 2010) and demonstrated for calcifying green
486 487 488 489 490 491 492	The parasitic epiphyte <i>K. epilaeve</i> is not known to photosynthesize. The similarity of cell wall and interfilament features to those of the photosynthesizing host, <i>L. leave</i> , suggests that the precipitation of the Mg-calcite is not directly driven by photosynthesis as has been suggested for coralline algae (Ries 2010) and demonstrated for calcifying green algae <i>Halimeda</i> , (e.g. Adey 1998, Sinutok et al. 2012). Rather, considering also the

496 possibility of increased calcification as photosynthetic rates increase (e.g. Borowitzka

497 1981).

498 Banding and magnesium uptake

499 The concentric banding of organic fibrils within the perithallial cell wall may offer

500 insight into controls on Mg variation within the cell wall. The dominant visual

501 morphological pattern is the radial Mg-calcite crystals. In contrast, other work indicates

the dominant pattern of Mg distribution within the cell may be unrelated to the radial

- 503 features. Concentric zonations of higher Mg content have been shown, using back scatter
- 504 electron imaging, in cell walls of tropical *Porolithon onkodes* (Nash et al. 2011).
- 505 Ragazzola et al. (2016) using NanoSIMs, also showed clear concentric banding of Mg
- 506 within summer cell walls of *Lithothamnion glaciale*. These published observations
- 507 together with the results in this study suggest there could be a strong organic control on
- 508 Mg distribution within the cell, with this being related to the concentric fibrils. Possibly
- the fibril organics enable higher Mg incorporation than the organics involved in the radial
- 510 structures. Ragazzola et al. (2016) further documented a decreased prominence of Mg
- 511 banding in winter cells of *L. glaciale* and for those grown in CO₂ enriched conditions.
- 512 Results from our study offer an insight as to possible temperature or CO₂-driven
- 513 ultrastructure changes that may result in decreased Mg content. If the banded fibrils
- 514 observed in this study are normally similarly present in the *L. glaciale*, then an absence of
- 515 the Mg bands for their winter and elevated CO₂ treatment suggests that these fibrils could
- 516 either be absent, or the organic structure or composition has changed and no longer
- 517 enables elevated Mg.
- 518

Rob Nash 9/11/17 1:07 PM Deleted: is interesting from a magnesium perspective. Rob Nash 9/11/17 1:08 PM Deleted:

522 Relevance to Climate Archiving

523	This study has several implications for climate archiving using corallines. Most
524	importantly, anatomical controls can override temperature influences on Mg composition.
525	We do not suggest current studies are inadequate because the finer scale (submicron)
526	scale variations are not captured. These fine scale variations will not change the general
527	trends or conclusions. Rather, we suggest caution regarding interpretation of data where a
528	change in Mg is visibly associated with a change in cell type as temperature may not be
529	the only possible driver of Mg change. While hypothallial areas can usually be easily
530	excluded from most climate archiving (but see Bougeois et al. 2015), less obvious
531	anatomically different tissues such as the elevated Mg transitional cell walls may not be
532	noticeable at low magnification. This may lead to a false positive result identifying such a
533	region as reflecting a time of higher temperature. As well as these tissue-scale differences,
534	the cellular scale differences may also need to be considered. Any seasonal change in
535	relative proportion of CW to IF can shift the [Mg] in absence of any temperature-
536	influenced change. For example if $CW = 10 \text{ mol}\% \text{ MgCO}_3$ and $IF = 8 \text{ mol}\% \text{ MgCO}_3$,
537	and crust changes from 90:10 CW:IF to 50:50 this would equate to a change in of 9.8 to 9
538	mol% for measurements of bulk crust (i.e. spot sizes larger than the cell size, or smaller
539	spot sizes averaged without reference to their anatomical placement). This change
540	equates to a 2-3 degrees using a temperature calibration of 0.33 mol% MgCO ₃ °C. Should
541	the difference in cell wall and interfilament mol% MgCO3 be larger, then the total
542	average will change more substantially. Furthermore, the bulk magnesium results for
543	different CCA species with differing proportions of cell wall:interfilament from the same
544	temperature environments will have a range of non-temperature related Mg content that is

545	controlled by the cell wall:interfilament. This change in structure, if seasonally correlated,
546	will be indirectly related to temperature, but there may be other influences such as light.
547	For example, CCA continue to grow in darkness using stored photosynthates, after ice
548	sheets have formed above (Halfar et al. 2013), however, it is not known if a switch to
549	using stored energy results in any anatomical changes. If there were changes, these would
550	only be indirectly related to temperature. More recently Sletten et al. (2017) found
551	anatomical changes (banding) in Lithothamnion rhodoliths were unrelated to temperature
552	and proposed these were driven by differences in light exposure. Thus, the best CCA
553	temperature climate archives, as compared to seasonal archives, are likely to be those
554	with the least seasonally varying ultrastructure changes.
555	
556	Understanding the combined contribution of anatomical and temperature changes to
557	measured magnesium may help explain the variation of Mg-temperature calibrations in
558	the published literature. Typically it is the rhodoliths that show the highest response of
559	Mg to temperature, e.g. Lithothamnion glaciale at 1-1.76 mol% MgCO ₃ (Halfar et al.
560	2000; Kamenos et al. 2008) per degree celsius of temperature increase compared to
561	Clathromorphum compactum at 0.7 mol% MgCO ₃ (Halfar et al. 2010). The L. glaciale
562	has distinct seasonal changes shifting to a clear band of elongated cells during summer.
563	The rhodolith summer cells have similarities in appearance to the hypothallial cells in this
564	study. Possibly the higher measured Mg in the long cells of the rhodolith is a result in
565	part of a switch towards a more perithallial style cell and may not be entirely temperature
566	related. This proposition is supported by Sletten et al. (2017) who found a switch to

567 <u>elongated cells with higher Mg that was unrelated to seasonality.</u> In contrast, anatomical

568 changes in *C. compactum* (Adey et al. 2013) are not so extreme.

569

570 Suggestions for improving analytical methods

571	Our work is ongoing in this area of research and as more species and ultrastructures are
572	studied we expect to be able to provide more detailed guidance on utilizing Mg from
573	CCA for climate proxies. However, in the interim, there are several steps that could be
574	incorporated into routine analyses to improve the accuracy of Mg climate proxies. Firstly,
575	it should become a routine part of analyses that the ultrastructure is assessed to determine
576	if the ratio of cell wall to interfilament carbonate changes regularly with seasons. Second,
577	when possible as well as the larger spot sizes used in sampling transects, e.g. 10-20 ums,
578	make discrete spot analyses using the smallest reliable interaction volume possible to
578 579	make discrete spot analyses using the smallest reliable interaction volume possible to determine indicative Mg offsets between the cell wall and interfilament so that this can be
579	determine indicative Mg offsets between the cell wall and interfilament so that this can be
579 580	determine indicative Mg offsets between the cell wall and interfilament so that this can be adjusted for if necessary, in the final interpretation. Third, ensure that hypothallial growth
579 580 581	determine indicative Mg offsets between the cell wall and interfilament so that this can be adjusted for if necessary, in the final interpretation. Third, ensure that hypothallial growth is not included in sampling transects. Usually the basal hypothallus is easily avoided, but

584

585 Conclusion

It appears that within these CCA, there is a strong control on the uptake of Mg in relation
to the different anatomical components. This is in contrast to the suggestion by Ries
(2010), based on Mg:Ca in seawater manipulation experiments, that corallines exert little
or no control over their Mg uptake other than to specify the polymorph. <u>Recent work</u>

Rob Nash 9/11/17 12:04 PM Deleted: micron

591	indicates that the interfilament and perithallial carbonate react similarly to temperature,
592	but the responsive hypothallial carbonate is inconclusive (Nash and Adey 2017). It would
593	be interesting to identify if each of interfilament, perithallial and hypothallial cell walls
594	reacted similarly to changes in seawater Mg:Ca, or if there were differences in anatomical
595	controls. Crucially, it is necessary to keep in mind the biological controls on Mg uptake
596	when using CCA Mg changes as a climate proxy.
597	
598	While the focus of this study has been the distribution of Mg with different anatomical
599	features, the high-magnification images are the first to show the cellular-scale organic
600	structures together with the carbonate components. The orientation of the crystals in the
601	interiflament and the cell walls are in agreement with lower-magnification SEM studies
602	on a range of algal species (Cabioch and Giraud 1986, Adey et al. 2013). The
603	combination of gentle etching and high-magnification SEM has revealed previously
604	unknown features such as the fibrils threading through the radial Mg-calcite (Fig. 7C).
605	Further, showing that the Mg content varies with anatomical features suggests that the
606	calcification may be a different process, or have different controls, for each carbonate
607	type. This adds an extra level of complexity when considering how environmental
608	changes, such as increasing temperature, may impact on the capacity of the CCA to
609	continue their important substrate provision ecological role.
610	

611 Acknowledgments

- 612 Thanks to the Centre for Advanced Microscopy at the Australian National University and
- 613 the Mineral Sciences department at the Smithsonian Institution for assistance with SEM-
- 614 EDS.
- 615
- 616 References
- 617 Adey, W. 1964. The Genus Phymatolithon in the Gulf of Maine. Hydrobiologia
- 618 24:377-420.
- Adey, W. 1965. The Genus *Clathromorphum* in the Gulf of Maine. *Hydrobiologia*26:539-573.
- 621 Adey, W. 1966a. The Genera Lithothamnium, Leptophytum (nov. gen.) and
- 622 Phymatolithon in the Gulf of Maine. Hydrobiologia 28:321-368.
- 623 Adey, W. 1966b. The Genus *Pseudolithophyllum* in the Gulf of Maine.
- 624 *Hydrobiologia* 27:479-597.
- 625 Adey, W. 1966c. The Distribution of Saxicolous Crustose Corallines in the
- 626 Northwestern North Atlantic. J. Phycol. 2:49-54.
- 627 Adey, W. 1970. The Effects of Light and Temperature on Growth Rates in
- 628 Boreal-Subarctic Crustose Corallines. J. Phycol. 6:269-276.
- 629 Adey, W. 1973. Temperature Control of Reproduction and Productivity in a
- 630 Subarctic Coralline Alga. *Phycologia* 12:111-118.
- 631 Adey, W. 1978a. Coral Reef Morphogenesis: A Multidimensional Model.
- 632 *Science* 202:831-837.
- 633 Adey, W. 1978b. Algal Ridges of the Caribbean Sea and West Indies. *Phycologia*
- 634 17:361-367.

- 635 Adey, W. 1998. Coral Reefs: algal structured and mediated ecosystems in shallow,
- 636 turbulent alkaline seas. J. Phycol. 34:393-406.
- 637 Adey, W. & D. McKibbin. 1970. Studies of the Maerl Species of the Ria de Vigo.

638 Bot. Mar. 8:100-106.

- 639 Adey, W. & C. Sperapani. 1971. The Biology of Kvaleya epilaeve, A New
- 640 Parasitic Genus and Species of Corallinaceae. *Phycologia* 10:29-42.
- 641 Adey, W., T. Masaki & H. Akioka. 1974. Ezo epiyessoense, A New Parasitic Genus and
- 642 species of Corallinaceae. *Phycologia* 13:329-344.
- 643 Adey, W. & J. M. Vassar. 1975. Colonization, Succession and Growth Rates of
- 644 Caribbean Crustose Corallines. *Phycologia* 14:55-69.
- 645 Adey, W., Y. Chamberlain, & L. Irvine. 2005. A SEM-Based Analysis of the
- 646 Morphology, reproduction and ecology of *Lithothamnion tophiforme* Unger
- 647 (Corallinales, Rhodophyta), an Arctic coralline. J. Phycol. 41:1010-1024.
- 648 Adey, W., Lindstrom, S., Hommersand M. & Muller, K. 2008. The biogeographic origin
- of Arctic endemic seaweeds: A thermogeographic view. J. Phycol. 44:1384-1394.
- 650 Adey, W., Halfar, J. & Williams, B. 2013. The coralline genus Clathromorphum Foslie
- 651 emend Adey; biological, physiological and ecological factors controlling
- 652 carbonate production in an Arctic/Subarctic climate archive. *Smithsonian*
- 653 *Contributions to the Marine Sciences* 40:1-83.
- 654 Adey, W., Hernandez-Kantun, J. J., Johnson, G. & Gabrielson, P. 2015a. DNA
- 655 sequencing, anatomy and calcification patterns support a monophyletic, Subarctic,
- 656 carbonate reef-forming *Clathromorphum* (Hapalidiaceae, Corallinales,
- 657 Rhodophyta). J. Phycol. 51:189-203.

- 658 Adey, W., Halfar, J., Humphreys, A. Belanger, D., Gagnon, P. & Fox, M. 2015b.
- 659 Subarctic rhodolith beds promote longevity of crustose coralline algal buildups 660 and their climate archiving potential. Palaios 30:281-293.
- 661 Amado-Filho, G., Moura, R., Bastos, A., Salgado, L., Sumida, P., Guth, A., Francini-
- 662 Filho, R., Pereira-Filho, G., Abrantes, D., Brasileiro, P., Bahia, R., Leal, R.,
- 663 Kaufman, L., Kleypas, J., Farina, M. & Thompson, F. 2012. Rhodolith Beds are
- 664 major CaCO3 bio-factories in the Tropical South West Atlantic. Plos One 7
- 665 (4):e35171.
- 666 Bahia, R., Abrantes, D., Brasileiro, P., Pereira-Filho, G. & Amado-Filho, G. 2010.
- 667 Rhodolith bed structure along a depth gradient on the northern coast of Bahia
- 668 State, Brazil. Brazilian J. Oceanography 58:323-337.
- 669 Barnes, D. J., & Lough, J. M. 1993. On the nature and causes of density banding in
- 670 massive coral skeletons. J. Exp. Mar. Biol. Ecol. 167:91-108.
- 671 Bentov, S., & Erez, J. 2005. Novel observations on biomineralization processes in
- 672 foraminifera and implications for Mg/Ca ratio in the shells. Geology 33:841-844.
- 673 Borowitzka, M. A. 1981. Photosynthesis and Calcificaton in the Articulated Coralline

674 Red Algae Amphiroa anceps and A. foliacea. Mar. Biol. 62:17-23.

- 675 Bougeois, L., Williams, B., Halfar, J., Konar, B., Adey, W., Kronz, A. & Wortmann, U.G.
- 676 2015. Does the coralline alga Leptophytum facundum (Kjellman) capture
- 677 paleoenvironmental variability in the Arctic Ocean? Arctic, Antarctic, and Alpine
- 678 Research 47:375-387.
- 679 Chave, K. & B. Wheeler. 1965. Mineralogical changes during growth in the red alga Clathromorphum compactum. Science 147:621.
- 680

681	Cox, T. E., M. Nash, F. Gazeau, M. Déniel, E. Legrand, S. Alliouane, P. Mahacek, A. Le	
682	Fur, J-P. Gattuso, & S. Martin. 2017. Effects of in situ CO2 enrichment on	Rob Nash 9/11/17 11:51 AM Formatted: Font:(Default) Times New Roman, 12 pt
683	Posidonia oceanica epiphytic community composition and mineralogy. Mar.	
684	<i>Biol.</i> 164:103.	
685	Darrenougue, N., De Deckker, P., Payri, C., Eggins, S., & Fallon, S. 2013. Growth and	Rob Nash 9/11/17 11:51 AM Formatted: Font:English (AUS)
686	chronology of the rhodolith-forming, coralline red alga Sporolithon	
687	durum. Marine Ecology Progress Series 474:105-119.	
688	Diaz-Pulido, G., Nash, M.C., Anthony, K.R., Bender, D., Opdyke, B.N., Reyes-Nivia, C.	
689	& Troitzsch, U., 2014. Greenhouse conditions induce mineralogical changes and	
690	dolomite accumulation in coralline algae on tropical reefs. Nature	
691	communications, 5.	
692		
693	Esau, K. 1953. Plant Anatomy. John Wiley and Sons. New York. 735 pp.	
694	Nash, M. C., Opdyke, B. N., Troitzsch, U., Russell, B. D., Adey, W. H., Kato, A., Diaz-	
695	Pulido G., et al. 2013. Dolomite-rich coralline algae in reefs resist dissolution in	
696	acidified conditions. Nat. Clim. Change 3:268-272.	
697	Halfar, J., Zack, T., Kronz, A., & Zachos, J. C. 2000. Growth and high-resolution	
698	paleoenvironmental signals of rhodoliths (coralline red algae)- A new biogenic	
699	archive. J. Geophysical Research 105:22-107.	
700	Gamboa, G., Halfar, J., Hetzinger, S., Adey, W., Zack, T., B. Kunz, B., & Jacob, D. 2010.	
701	Mg/Ca ratios in coralline algae as proxies for NW Atlantic temperature variations.	
702	J. Geophysical Research-Oceans 115:1-12.	

- 703 Halfar, J., Hetzinger, S., Adey, W., Zack, T., Gamboa, G., Kunz, B., Williams, B., Jacob,
- D. 2010. Coralline algal growth increment widths archive North Atlantic climate
 variability. *Palaeogeography, Palaoeoclimatology, Palaeoecology* 302:71-80
- Halfar, J., Adey, W., Kronz, A., Edinger, E., & W. Fitzhugh, W. 2013. Unprecedented
 sea-ice decline archived by novel multi-century annual-resolution algal proxy.
- 708 PNAS 110: 197837-19741.
- 709 Harvey, A. S., Harvey, R. M., & Merton, E. 2016. The distribution, significance and
- vulnerability of Australian rhodolith beds: a review. *Marine and Freshwater Research* doi.org/10.1071/MF15434.
- 712 Hetzinger, S., Halfar, J., Kronz, A., Steneck, R.S., Adey, W., Lebednik, P. A. & Schone,
- 713 B. R. 2009. High-Resolution Mg/Ca Ratios in a coralline Red Alga As a Proxy
- for Bering Sea Temperature Variations from 1902-1967. *Palaios* <u>24</u>:406-412.
- 715 Kamenos, N., Cusack, M., & Moore, P. G. 2008. Coralline Algae Are Global
- Paleothermometers with Bi-Weekly Resolution. *Geochimica et Cosmochimica Acta* 72:771–779.
- 718 Kamenos, N. A., & Law, A. 2010. Temperature controls on coralline algal skeletal
- 719 growth. J. Phycol. 46:331-335.
- 720 Krayesky-Self, S., Richards, J., Rahmatian M., & Fredericq, S. 2016. Aragonite infill in
- 721 overgrown conceptacles of coralline Lithothamnion spp (Hapalidaceae,
- 722 Hapalidiales, Rhodophyta): new insights in biomineralization and
- phylominerology. J. Phycol. 52:161-173.

724	Martin, C. S., Giannoulaki, M., De Leo, F., Scardi, M., Salomidi, M., Knittweis, L., Pace,
725	M. L. et al. 2014. Coralligenous and maërl habitats: predictive modelling to
726	identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4.
727	McCoy, S. J., & Kamenos, N. A. 2015. Coralline algae (Rhodophyta) in a changing
728	world: integrating ecological, physiological, and geochemical responses to global
729	change. J. Phycol. 51:6-24.
730	Nash, M.C. & Adey, W., 2017. Multiple phases of mg calcite in crustose coralline algae
731	suggest caution for temperature proxy and ocean acidification assessment: lessons
732	from the ultrastructure and biomineralisation in Phymatolithon (Rhodophyta,
733	Corallinales). J. Phycol. In press. 10.1111/jpy.12559
734	Nash, M. C., Troitzsch, U., Opdyke, B., Trafford, J., Russell, B., & Kline, D. 2011. First
735	discovery of dolomite and magnesite in living coralline algae and its
736	geobiological implications. Biogeosciences. 8, 3331-3340.
737	Nash, M. C., Opdyke, B. N., Wu, Z., Xu, H. & Trafford J. M. 2013. Simple X-ray
738	diffraction techniques to identify Mg calcite, dolomite, and magnesite in tropical
739	coralline algae and assess peak asymmetry. J. Sed. Res. 83:1085-1099.
740	Nash, M. C., Uthicke, S., Negri, A.P., & Cantin, N. E. 2015. Ocean acidification does not
741	affect magnesium composition or dolomite formation in living crustose coralline
742	algae, Porolithon onkodes in an experimental system. Biogeosciences 12:5247-
743	5260.
744	Nash M.C., Martin S., Gattuso J-P. 2016. Mineralogical response of the Mediterranean
745	crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification
746	and warming. <i>Biogeosciences Discussions</i> doi:10.5194/bg-2016-160.

747	Ragazzola, F., Foster, L. C., Jones, C. J., Scott, T. B., Fietzke, J., Kilburn, M. R., &
748	Schmidt, D. N. 2016. Impact of high CO ₂ on the geochemistry of the coralline
749	algae Lithothamnion glaciale. Scientific reports, 6, 20572.
750	Ries, J. 2010. Review: Geological and Experimental Evidence for Secular Variation in
751	Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological
752	Calcification. <i>Biogeosciences</i> , 7:2795–2849.
753	Sletten, H. R., Andrus, C. F. T., Guzmán, H. M., & Halfar, J. 2017. Re-evaluation of
754	using rhodolith growth patterns for paleoenvironmental reconstruction: An
755	example from the Gulf of Panama. Palaeogeography, Palaeoclimatology,
756	Palaeoecology 465:264-277.
757	Sinutok, S., Hill, R., Doblin, M. A., Kühl, M., & Ralph, P. J. 2012. Microenvironmental
758	changes support evidence of photosynthesis and calcification inhibition in
759	Halimeda under ocean acidification and warming. Coral Reefs 31:1201-1213.
760	Sherman, C.E., Fletcher, C., Rubin, K., Simmons, K. & Adey, W. 2014. Sea-level and
761	reef accretion history of Marine Oxygen Isotope Stage 7 and late stage 5 based on
762	age and facies of submerged late Pleistocene reefs, Oahu, Hawaii. Quaternary Res.
763	81:138-150.
764	Sletten, H.R., Andrus, C.F.T., Guzmán, H.M. & Halfar, J., 2017. Re-evaluation of using
765	rhodolith growth patterns for paleoenvironmental reconstruction: An example
766	from the Gulf of Panama. Palaeogeography, Palaeoclimatology,
767	Palaeoecology, 465:264-277.
768	

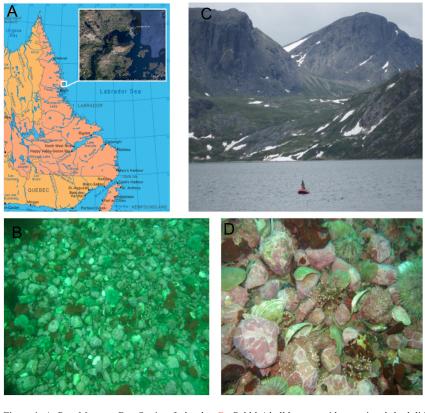
769	Vásquez-Elizondo, R.M. and Enríquez, S., 2016. Coralline algal physiology is more
770	adversely affected by elevated temperature than reduced pH. Scientific reports, 6,
771	<u>p.19030.</u>
772	Wanamaker, A., Kreutz, K., Schone, B., Pettigrew, N., Borns, H., Introne, D., Belknap,
773	D., Maasch, K. & Feindel, S. 2008. Coupled North Atlantic slope water forcing
774	on Gulf of Maine temperatures over the past millennium. Climate Dynamics
775	31:183-194.
776	Williamson, C. J., Najorka, J., Perkins, R., M. L. Yallop, M. L. & Brodie, J. 2014.
777	Skeletal mineralogy of geniculate corallines: providing context for climate change
778	and ocean acidification research. Marine ecology progress series 513:71-84.

780 Tables

	K.epilaeve		L. laeve						
	IF	CW	CW Under	CW Upper	CW comb.	Under Hyp.	Upper transit.	Upper Hyp.	
mol% MgCO3	9.1%	10.1%	11.2%	12.9%	12.2%	12.3%	15.6%	16.7%	
St. Dev.	1.0%	1.2%	1.2%	2.5%	2.2%	0.7%	1.7%	1.7%	
Mg/Ca	0.100	0.113	0.126	0.149	0.138	0.140	0.185	0.200	

781

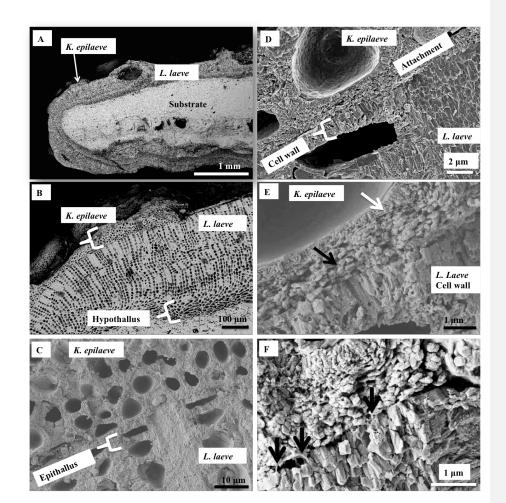
 Table 1: SEM-EDS results. Conversion of mol% to Mg/Ca is included.


	Average mol% and n	epilaeve	K. epilaeve CW	<i>L. laeve</i> under CW	L. laeve upper CW	L. leave CW both	<i>L. laeve</i> under Hyp.	<i>L. laeve</i> upper Hyp.
K. epilaeve	9.1 %							
IF	n=9							
K. epilaeve	10.1%							
ĊŴ	n=8	0.069						
L. laeve	11.2%							
under CW	n=8		0.129					
L. laeve	12.9%							
upper CW	n=9		0.012	0.112				

L. leave CW both	12.2% n=17	0.024					
L. laeve	12.3%		0.052	0.470	0.014		
under Hyp.	n=8 16.7%		0.052	0.470	0.914		
<i>L. laeve</i> upper Hyp.	n=8				<0.001	<0.001	
L. laeve	15.6%						
upper trans.	n=8				<0.001	<0.001	0.259

782 Table 2: T-test *p* values for 15 kV spot EDS.

783


784 Figures

785

Figure 1: A. Port Manvers Bay Station, Labrador. <u>B</u>. Pebble/shell bottom with occasional rhodoliths at 1517 m. Coralline covered pebbles range from about 5-10 cm diameter. <u>C. Collecting site in western Port</u>

788 Manvers Bay. D. Close-up of bottom shown in figure 1C.

790 Figure 2: Overview of K. epilaeve on L. laeve. A. Overview (BSE). L. laeve has been partly overgrown by

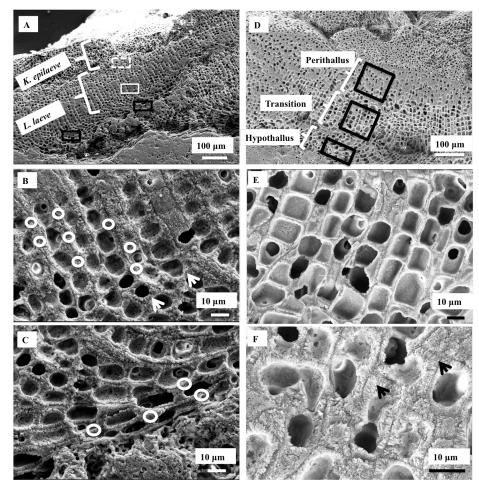
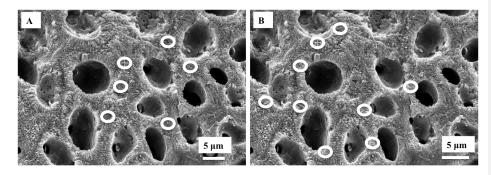
791	K. epilaeve. B .	Closer up (BSE) K. epilaeve l	has a very thin perithallium w	ith thicker buildup for its

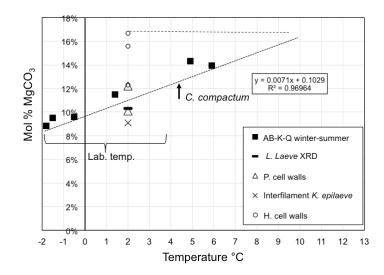
792 conceptacle. C. Close up (SE) and D showing attachment zone of K. epilaeve hypothallus on the epithallus

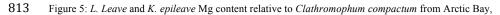
793 of the L. laeve. E. (SE) The cell wall in the L. laeve is roughly radial whereas the K. epilaeve cell wall does

- 794 not appear properly mineralized with nm-scale beads of Mg-calcite along what appears to be organic fibrils
- (white arrow). The K. epilaeve Mg-calcite layer at the attachment zone has coarse angular grains roughly
- parallel to the *L. laeve* surface (black arrow). F. (SE) Organic fibrils are visible (black arrows) between the
- base of the *K. epilaeve* and the surface of the *L. laeve* suggesting this is the attachment mechanism.

Rob Nash 9/11/17 1:49 PM Deleted: meristem

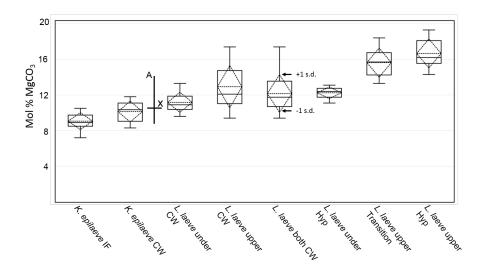




Figure 3: Overview of *L. laeve* and *K. epilaeve* and EDS sites (white circles) in *L. laeve*. A-C. Sites on the underside of the pebble. D-F. Sites on the upper side of the pebble. A. White dashed box- cell wall and
interfilament in *K. epilaeve*. White box- perithallial cell wall *L. laeve*. Black box- hypothallus *L. laeve*. B.
EDS sites for cell wall measurements of *L. laeve*. Circle size indicates approximate area of measurement (3
ums). Cell wall radial Mg-calcite (arrowheads). C. EDS sites for hypothallus (right box in A). D. EDS sites
on sample upper side for *L. laeve*. E. *L. leave*. F. *L. leave*. Cell walls in upper side are visually comparable
to cell walls in underside with radial Mg-calcite (arrowheads) in cell walls and minimal interfilament.


Rob Nash 9/11/17 12:04 PM Deleted: micron

809 | Figure 4: Detail of EDS sites in K. epilaeve (dashed white box in Fig. 2A) A. EDS sites (white circles) for

810 interfilament. B. EDS sites for cell wall.

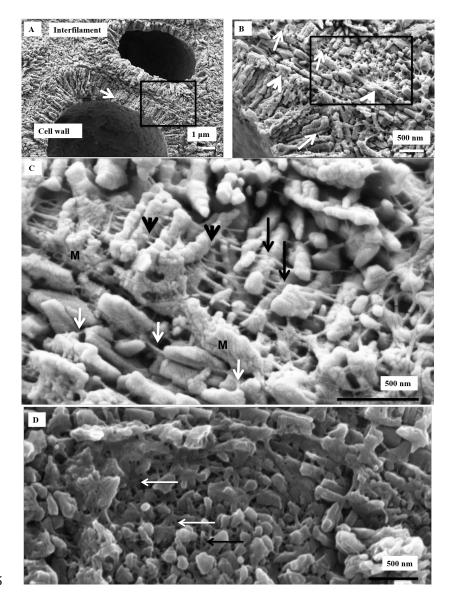


814 Kingitok and Quirpon (Halfar et al. 2010, 2013). Lab – Labrador sea. Heavy dashed line- best fit for *C*.

compactum. Light dashed line- indicates the temperature equivalent on the *C. compactum* line for the *L*.

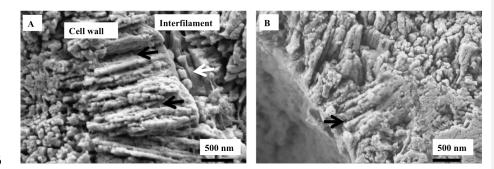
leave hypothallial Mg-content.

 $819 \qquad \mbox{Figure 6: Box plot of EDS mol\% MgCO_3 results. Box represents the 2^{nd} and 3^{rd} quartiles. The lower and$


820 upper bars are the minimum and maximum values (excluding an outlier for *L. laeve* under cell wall). The

821 solid middle line within the box is the median value and the dash middle line the average. The dashed

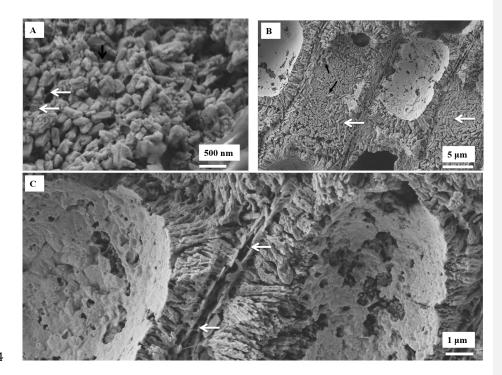
822 diamond box represents one standard deviation. The drawn-on cross represents the XRD mol% (X) and the


823 seasonal range (A) of mol% for the Arctic Bay – Kingitok – Quirpon dataset in figure 5.

824

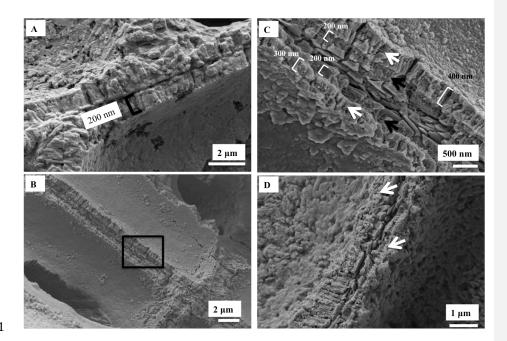
- 826 Figure 7: K. epilaeve cell wall structure. Crust polished and cleaned for 2 minutes. A. Cell walls have radial
- 827 Mg-calcite whereas the interfilament grains are orientated either parallel to the filament axis or randomly
- 828 within the corner junctions. Within the radial cell walls a secondary concentric banding pattern is visible
- 829 (white arrow). Black box enlarged in B. B. Organic fibrils, ~10nm wide, run parallel to cell wall edges

- 830 (black arrows). Fibrils are concentrated along the outer of the cell wall (white arrows). Black box enlarged
- 831 in C. C. The cell wall fibrils appear to string through the centre of the radial grains (black arrowheads),
- 832 Other fibrils drape over the grains (black arrows). Fibrils are present in the interfilament (white arrows). M
- 833 mineralized membrane. D. Plan view of cell wall grains. Organic fibrils form a dense mesh (white
- 834 arrows).
- 835



837 | Figure 8: L. laeve cell wall structure. A. Cleaned for 2 minutes. Cell wall radial crystals are 1.5 um length

- 838 cylindrical grains. Fibrils are present (black arrows) but not as easy to see as in the *K. epilaeve*.
- 839 Interfilament grains parallel to cell wall with organic fibrils (white arrows) also running parallel to cell wall.
- 840 B. Etched for 20 minutes. Fibrils appear similarly as in the *K. epilaeve* with the fence post-wire structure
- 841 (black arrows).


842

Rob Nash 9/11/17 12:04 PM Deleted: micron

845 Figure 9: Interfilament structures in K. epilaeve (A) and L. laeve (B, C). A. K. epilaeve etched for 20

- 846 minutes. Fibrils (black arrow) and porous membrane (white arrows). **B**. *L*. *Laeve* etched for 20 minutes.
- 847 Interfilament grains are flattened against the external sides of the cell wall (white arrows) attached by
- 848 fibrils (black arrows). C. Fibrils visible stretched across the space between cell walls with 2 layers of
- 849 interfilament grains (white arrows).
- 850

851

852 Figure 10: Hypothallus and transitional cells in *L. leave*. Cleaned 2 minutes. A. Hypothallus underside.

853 Organic film covering wall structures. Walls ~200 nm wide, roughly radial structure within cell wall. B.

854 Cleaned 2 minutes, hypothallus in upper crust. Roughly radial structure within cell walls. Black box

enlarged in C. C. The wall adjacent to the interfilament is narrowest at ~200 nm, has closely spaced organic

856 fibrils (black arrows) and is poorly calcified compared to the inner part of the wall (300-400 nm wide)

857 where radial grains are present. There are fibrils parallel to the cell wall appearing to go through the wall

grains similarly to the perithallial cell walls (white arrows). D. Transitional cell wall. The calcification in

the lower of the left side wall is comparable to the perithallial cell wall with radial grains. The right side

860 wall and upper part of the left side (white arrows) are poorly calcified and appear as a calcified membrane

- rather than a properly developed cell wall.
- 862

