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Abstract. Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox

reactions and influencing the burial of organic carbon.  Large amounts of Fe enter the marine environment from boreal river

catchments associated with dissolved organic matter (DOM). However, the fate of this Fe pool in estuarine sediments has not

been extensively studied. Here we show that flocculation of DOM along salinity gradients in an estuary of the northern Baltic

Sea efficiently transfers Fe from the dissolved phase into particulate material that accumulates in the sediments. Consequently,5

we observe a decline with distance offshore in both the Fe content of the sediments and proportion of terrestrial material in the

sedimentary organic matter pool. Mössbauer spectroscopy and sequential extractions suggest that large amounts of Fe in

sediments of the upper estuarine zone are associated with organic matter as unsulfidized Fe (II) complexes, or present in the

form of ferrihydrite, implying a direct transfer of flocculated material to the sediments. Accordingly, the contribution of these

components to the total sedimentary Fe declines with distance offshore while other Fe phases become proportionally more10

important. Sediment core records show that the observed lateral distribution of Fe minerals has remained similar over recent

decades, despite variable Fe inputs from anthropogenic sources and eutrophication of the coastal zone. Pore water data suggest

that the vertical zonation of diagenetic processes in the sediments is influenced by both the availability of Fe and by bottom

water salinity, which controls the availability of sulfate (SO4
2-).
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1 Introduction

Iron (Fe) is present in marine and freshwater sediments in a wide range of phases. Reactive Fe minerals, such as oxides,

sulfides, phosphates and carbonates, are involved in diagenetic reactions in sediments and consequently influence the cycling

of carbon and nutrients (e.g., Berner, 1970; Slomp et al., 1996a,b; Lovley et al., 2004; Jilbert and Slomp, 2013; Kraal et al.,

2015; Robertson et al., 2016). Iron has also recently been shown to stabilize organic carbon in sediments, promoting carbon5

burial (Lalonde et al., 2012; Shields et al., 2016). Hence, the lateral and vertical distribution of Fe in sediments is important

for broader biogeochemical cycles. Critical to understanding the distribution of sedimentary Fe is a knowledge of the processes

converting Fe between its various forms, and how they vary spatially in aquatic systems.

In boreal terrestrial environments, Fe is released during the chemical weathering of Fe-bearing minerals in soils. These include

silicates in the fine fraction of till (Lahermo et al., 1996), and, especially in areas overlain with late- or post-glacial lacustrine10

and brackish water sediments, reactive Fe minerals (Virtasalo and Kotilainen, 2008). During weathering under oxic conditions

in the absence of organic ligands, Fe (II) is quickly oxidized to Fe (III), which in turn precipitates as oxides (Schwertmann and

Taylor, 1977). Typically, the first-formed oxide mineral is amorphous, highly reactive ferrihydrite (Fe3+
4–5(OH,O)12), which

may subsequently mature into crystalline oxides such as goethite and hematite (Raiswell, 2011). Although such maturation is

rapid in tropical and temperate systems, under the cold, low pH conditions of boreal aquatic environments its half-life may be15

several years (Schwertmann et al., 2004).

Weathering of Fe in boreal systems also frequently occurs under anoxic conditions, in the presence of dissolved organic

compounds such as humic and fulvic acids (Krachler et al., 2016), for example in peatland environments. These compounds

are effective chelators of dissolved Fe, and form complexes with Fe (II) in anoxic soil solution (Sundman et al., 2014). Such

complexes are typically nanoparticulate‒colloidal in size and hence pass through 0.2–0.45 µm pore-size filters, to operationally20

classify as dissolved material. The stability of Fe (II)-organic complexes in river systems depends on the concentration of

chelating organic compounds and the time available for oxidation (Ingri and Conrad, 2015).  Typically, dissolved Fe in

upstream areas of boreal catchments is dominated by Fe (III)-organic complexes, while increasing pH conditions further

downstream may convert the Fe in these complexes to ferrihydrite (Neubauer et al., 2013). Ferrihydrite itself is nanoparticulate

(Raiswell, 2011), and its high surface area and density of hydroxyl groups favor continued association with DOM colloids via25

sorption (Dzombak et al., 1990; Eusterhues et al., 2008).

In estuarine environments, elevated electrolyte strength along salinity gradients induces the flocculation of DOM (Sholkovitz

et al.  1978) and associated Fe (Boyle et al.,  1977) from river waters. This phenomenon is usually explained by the cation-

induced coagulation of colloidal humic substances, which carry a negative surface charge (Eckert and Sholkovitz 1976).

Flocculation is typically selective for humic substances of high molecular weight and larger colloidal particle size (Uher et al.,30

2001; Asmala et al., 2014). Consequently, the ‘truly dissolved’ Fe which passes through the flocculation zone of estuaries

Biogeosciences Discuss., doi:10.5194/bg-2017-181, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 19 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



4

(e.g., Dai and Martin, 1995) is associated with DOM of lower molecular weight and smaller colloidal particle size (e.g., < 3

nm), most likely in the form of fulvic acids (Stolpe and Hassellöv, 2007). This component may be more substantial than

previously thought and hence play a role in providing Fe as a micronutrient to the oceans (Kritzberg et al., 2014; Krachler et

al., 2016). However, the majority of dissolved Fe in river water is associated with higher-molecular weight DOM, hence most

riverine dissolved Fe is retained by flocculation in estuaries (Raiswell, 2011).5

Together with the deposition of riverine particulate Fe close to river mouths (Poulton and Raiswell, 2002, Li et al., 2016),

flocculation may be expected to act as an important mechanism of Fe sedimentation in the coastal zone. The role of flocculation

in Fe sedimentation may be enhanced in boreal estuarine systems, where high DOM fluxes maintain a relatively large

component of riverine Fe in the dissolved phase (Kritzberg et al., 2014). However, few studies have attempted to investigate

the connection between flocculation and the Fe distribution in boreal estuarine sediments. This is a significant gap in existing10

knowledge, since an increasing number of studies have demonstrated the importance of reactive Fe minerals in sedimentary

diagenesis in boreal coastal areas, including their roles in the anaerobic oxidation of methane (AOM) (Slomp et al., 2013;

Egger et al., 2015a) and in phosphorus retention in sediments (Reed et al., 2011; Norkko et al., 2012; Egger et al., 2015b).

Furthermore, Fe has recently been suggested to play an important role in carbon burial (Lalonde et al., 2012; Shields et al.,

2016) and nitrogen cycling (Robertson et al., 2016) in marine sediments.15

Understanding the distribution of Fe minerals in boreal sedimentary environments will improve our knowledge of the broader

role of Fe in sediment biogeochemistry. Here we present a combined study of water column, sediment and pore water chemistry

in a non-tidal estuarine system in the northern Baltic Sea, to investigate the impact of DOM flocculation on the distribution of

Fe in boreal coastal sediments. In the estuarine water column, we study the distribution of dissolved and particulate Fe and

organic matter, to assess the transfer of these components from the dissolved to particulate phase along the salinity gradient.20

Using sediment core data from selected locations, we show how processes in the water column control the lateral distribution

of Fe and organic matter in estuarine sediments. Furthermore, we investigate the degree to which these processes have

remained stable during recent changes in nutrient inputs to the coastal zone of the Baltic, and industrial activity in the vicinity

of our study sites.  Finally, we demonstrate how the lateral distribution of Fe, together with salinity and redox gradients,

influences the vertical diagenetic zonation of the sediments along the estuarine transect.25

2 Study location

The Finnish coastline of the western Gulf of Finland and Archipelago Sea (northern Baltic Sea) is characterized by a mosaic

of islands and small bays, intersected by a network of channel-like, non-tidal estuaries (Fig. 1a). The undulating mosaic

represents the bedrock surface known as the pre-Cambrian peneplain (Winterhalter et al., 1981), while the channels correspond

to fault lines in the bedrock (Hausen, 1948; Virtasalo et al., 2005). The entire area was covered by the Fennoscandian30

continental ice-sheet during the last glacial (Weichselian) maximum. The ice-margin retreat from the area ca. 12 ka ago was
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followed by the successive deposition of till, outwash, glaciolacustrine rhythmite, patchily-distributed debrites, postglacial

lacustrine clay and brackish-water mud drift (Virtasalo et al., 2007). These deposits provide the source material for mobile Fe

in the drainage basins of southern Finland, and each deposit has a distinct Fe mineralogy (Virtasalo and Kotilainen, 2008).

The principal study area is the estuary of the Mustionjoki river and its adjacent archipelago (Fig. 1a). This river and its estuary

appear under several alternative Finnish-, Swedish- and English- language names in cartographic material and the scientific5

literature, including Karjaanjoki (e.g., Asmala et al., 2014), Pohjanpitäjänlahti (e.g., Virta, 1977), Pojoviken (e.g., Niemi, 1977)

and Pojo Bay. The First Salpausselkä ice-marginal formation intersects the estuary close to the town of Ekenäs (Fig. 1a). The

First Salpausselkä forms a shallow sill of < 10m water depth, separating the inner basin of the estuary (maximum water depth

39 m) from the slope of the archipelago towards the open Gulf of Finland (Fig. 1b).

3 Materials and methods10

3.1 Hydrographic profiling

Over 2 days of sampling onboard R/V Saduria and R/V J.A. Palmén in June 2015, water column temperature, salinity and

dissolved oxygen profiles were collected at stations A‒K in the estuary of the Mustionjoki river and adjacent archipelago,

using multiparameter water quality sondes (YSITM CTD with optical oxygen sensor and Valeport MiniCTD). The 11 vertical

profiles for each parameter were interpolated into cross-sectional contour plots using the SigmaplotTM software package (Fig.15

1b). Station A is situated at the mouth of the Mustionjoki river, while station K is situated 33 km due S of the river mouth (~40

km absolute distance along transect) in the open Gulf of Finland. The precise locations of the stations were selected on the

basis of suitability for sediment sampling; all are situated in 10‒100 m-scale bathymetric depressions where soft sediments are

expected to accumulate.

3.2 Sampling and analysis of suspended particulate organic matter20

During the sampling campaign in June 2015, discrete water samples were collected at 5 m depth intervals at stations A‒K in

the estuary of the Mustionjoki river and adjacent archipelago, using a 5 L LimnosTM water sampler. Water samples were

transferred onboard to acid-washed polyethylene bottles, stored at 4°C and filtered within 48 hours of sampling at Tvärminne

Zoological Station, Hanko, Finland. One 500 ml aliquot of each sample was filtered through pre-weighed, pre-combusted

(450°C for 4 h) WhatmanR GF/F filters (nominal pore size 0.7 µm). GF/F filters were freeze-dried and re-weighed to estimate25

total suspended solids (TSS). Total carbon (Ctot) and total nitrogen (Ntot) on the filters, and the stable isotopic ratio of carbon

relative to the Vienna Pee Dee Belemnite (δ13C), were estimated by thermal combustion elemental analysis-mass spectrometry

(TCEA-MS) at Tvärminne Zoological Station. Precision and accuracy of all parameters as checked by in-house and reference

standards was < 2.5% relative standard deviation (RSD). Particulate inorganic carbon and nitrogen are assumed insignificant

in this setting, hence Ctot. and Ntot. are assumed equal to organic carbon and nitrogen, respectively (Corg and Norg).30
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3.3 Sampling and analysis of particulate and dissolved Fe

During the sampling campaign in June 2015, two additional 250 ml aliquots of water from each sample were filtered through

parallel WhatmanR Nuclepore track-etched polycarbonate membrane filters (pore size 0.4 µm). Filtrate was collected in 15 ml

centrifuge tubes and acidified to 1M HNO3 for analysis of dissolved Fe and other elements by ICP-MS at University of Helsinki

Department of Geosciences and Geography. Filters were freeze-dried and acid-digested in Teflon TM vessels (digestion in 2.55

mL HF + 2.5 mL HClO4/HNO3 at volumetric ratio 3:2, reflux at 90°C for 12 h, followed by evaporation of acids until gel

texture and re-dissolution in 20 mL 1M SuprapurR HNO3). Analysis of particulate Fe (among other elements) in the resulting

digests was performed by ICP-OES at University of Helsinki Department of Food and Environmental Sciences (precision and

accuracy < 5% RSD as determined by in-house and reference standards). Values were converted to µmol L -1 using TSS

estimates from the corresponding GF/F filter.10

3.4 Sediment sampling

In September 2014 onboard R/V Saduria, sediments were collected from stations A‒K on the Mustionjoki estuary transect

using a GEMAXTM short gravity corer (internal diameter 9 cm, core length 30‒60 cm). Four to five sediment slices of 2 cm

thickness, evenly spaced with depth over the full length of the core, were obtained from each station (e.g., station K: 0‒2 cm;

8.5‒10.5 cm, 17‒19 cm, 25.5‒27.5 cm, 34‒36 cm). During sampling campaigns in 2015, GEMAXTM cores were taken from15

stations A, D (June) and J (April, June) and sliced completely at 1 cm resolution (0‒10 cm depth) and 2 cm resolution (10 cm

depth‒core base). In all campaigns, whole sediment slices were transferred immediately to plastic bags, dipped in water to seal

the bag, and deposited in a gas-tight jar that was flushed with nitrogen within 1 h of sampling and stored dark at 4°C. Due to

the large volume of tightly-packed sediment in each jar, visible oxidation effects during sampling were minimal. Subsamples

of wet sediment slices were obtained under nitrogen atmosphere, frozen, freeze-dried and homogenized, and stored in N2-filled20

gas-tight jars until further processing.

3.5 Analysis of sedimentary organic matter

Selected sediment samples were prepared for analysis of sedimentary organic matter. Sub-samples of dried, powdered

sediments were weighed into aluminium capsules. Total sedimentary carbon (Ctot) and nitrogen (Ntot), and the stable isotopic

ratio of carbon reported relative to Vienna Pee Dee Belemnite (δ13C), were estimated by thermal combustion elemental25

analysis-mass spectrometry (TCEA-MS) at Tvärminne Zoological Station and University of California, Davis, USA. Precision

and accuracy of all parameters as checked by in-house and reference standards was < 2.5% RSD. Sedimentary inorganic carbon

and nitrogen are assumed insignificant in this setting, hence Ctot and Ntot are assumed equal to organic carbon and nitrogen,

respectively (Corg and Norg).
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3.6 Quantification of organic matter sources

A simple two-component mixing model was applied for a first-order quantification of the relative contributions of terrestrial

plant-derived organic material (%OCterr), vs. riverine‒estuarine phytoplankton (%OCphyt), to total organic matter in both water

column and sediment samples. The calculation uses only the molar N/C ratio of organic matter, and end-member values,

N/CEM, based on the study of Goñi et al. (2003):5

௣௛௬௧ܥܱ% =
ቀே ஼⁄ ೞೌ೘೛೗೐ି	ே ஼⁄ ಶಾష೟೐ೝೝቁ

ቀே ஼⁄ ಶಾష೛೓೤೟ି	ே ஼⁄ ಶಾష೟೐ೝೝቁ
	× 100 (1)

௧௘௥௥ܥܱ% = 100 ௣௛௬௧ܥܱ%− (2)

where N/CEM-terr = 0.04, and N/CEM-phyt = 0.13. The calculation assumes that plant matter and phytoplankton are the only sources

of organic material present in the samples, that their N/C values are spatially and temporally fixed at the end-member values,

and that these values do not alter significantly during sedimentation and burial of organic matter. Fields in N/C vs. δ13C space,10

also taken from Goñi et al. (2003) and corresponding to riverine‒estuarine phytoplankton, marine phytoplankton, and terrestrial

C3 plants respectively, were used in the interpretation of the data.

3.7 Analysis of sedimentary Fe, S and Pb by ICP-OES

Selected sediment samples were prepared for ICP-OES analysis. Sub-samples of dried, powdered sediments were weighed

into Teflon digestion vessels and digested in an acid cocktail (digestion in 2.5mL HF + 2.5 mL HClO4/HNO3 at volumetric15

ratio 3:2, reflux at 90°C for 12 h, followed by evaporation of acids until gel texture and re-dissolution in 20 mL 1M SuprapurR

HNO3). ICP-OES analysis for total Fe, sulfur (S) and lead (Pb), among other elements, was performed at University of Helsinki

Department of Food and Environmental Sciences (precision and accuracy < 5% as determined by in-house and reference

standards).

3.8 Estimate of sedimentation rates using sedimentary Pb profiles20

Sedimentation  rates  for  stations  A,  D  and  J  were  estimated  on  the  basis  of  total  Pb  (Pbtot) profiles measured on the three

GEMAXTM cores from 2015. Each core profile showed a distinct peak in Pbtot (Supplementary Figure 1) which was assigned

to the year 1970 (Renberg et al., 2001; Zillen et al., 2012). A first order estimate of sedimentation rate was calculated assuming

constant mass accumulation over the period 1970‒2015.
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3.9 Sequential extraction and analysis of sedimentary Fe phases

Selected sediment samples were subjected to the sequential extraction procedure for Fe described by Poulton and Canfield

(2005). Sub-samples of dried, powdered sediments were weighed into extraction vessels and a series of reagents was applied

(Table 2). After each addition, samples were placed in an orbital shaker for the duration of the extraction, then centrifuged at

3000 rpm for 5 minutes before decanting the supernatant. To limit the risk of oxidation affecting the Fe speciation during the5

extraction, stages 1‒4 of the extraction procedure were performed under nitrogen atmosphere, and reagents were purged with

nitrogen for 30 mins prior to addition to the samples. All supernatants were analyzed for Fe (among other elements) by

Microwave Plasma-Atomic Emission Spectroscopy (MP-AES) at University of Helsinki Department of Geosciences and

Geography. Replicate extraction of parallel samples yielded RSD values of < 15% for all stages of the procedure.

The Poulton and Canfield (2005) protocol does not include an explicit stage for the extraction of Fe from sulfide minerals. For10

the  purposes  of  this  study,  we  assumed  the  dominant  sulfide  mineral  present  in  the  samples  to  be  pyrite  (FeS2), which is

insoluble in stages 1‒5 of the protocol (Poulton and Canfield, 2005). Hence, we estimated the contribution of sulfide-bound

Fe to total Fe according to:

݁ܨ	݂݈݁݀݅ݑܵ = 0.5 × (all units µmol g-1)	ܵ	݈ܽݐ݋ܶ (3)

This is a conscious approximation, since sediments from this region are known to also contain iron monosulfide (FeS) (e.g.,15

Egger et al., 2015a, Yu et al., 2015); however the approximation has no bearing on the main conclusions of the study. The sum

of the 5 stages of the sequential extraction procedure, plus the estimated contribution of sulfide-bound Fe, were subtracted

form total Fe as determined by ICP-OES, to estimate residual (non-soluble) Fe, assumed to be present in unreactive silicate

minerals:

݁ܨ	݈ܽݑ݀݅ݏܴ݁ = ݁ܨ	݈ܽݐ݋ܶ − 5	݋ݐ	1	ݏ݁݃ܽݐܵ∑ − (all units µmol g-1) ݁ܨ	݂݈݁݀݅ݑܵ (4)20

3.10 Mössbauer spectroscopy of sedimentary Fe phases

Surface sediment samples (0–1 cm) from stations A and D sampled in June 2015 were prepared for Mössbauer spectroscopy.

Sub-samples of dried, powdered sediments (station A: 52 ±9 mg; station D: 97 ±9 mg) were placed in acrylic glass tubs with

a circular cross section of ~1 cm². Mössbauer spectra were collected using a miniaturized Mössbauer spectrometer MIMOS II

(Klingelhöfer et al. 2003) with a 57Co in Rh matrix radiation source in constant acceleration mode. The source had an activity25

of ~1.4 GBq and the instrument was set up in backscattering geometry. Measurements were performed at room temperature.

Spectra were calibrated against alpha-iron at room temperature and fitted with an in-house routine (Mbfit) using Lorentzian

line profiles. Mbfit is based on the least-squares minimization routine MINUIT (James 2004). Quantification of iron-bearing

phases and iron oxidation states is based on relative subspectral areas. No f-factor correction was applied.
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3.11 Pore water sampling

Prior to sediment slicing during the June 2015 campaign, pore water was sampled through pre-drilled holes (⌀	4 mm) in the

GEMAXTM coring tubes, using RhizonsTM mounted on a purpose-built plastic rack. Two parallel series of samples (vertical

resolution 2 cm) were obtained for each core; one for analysis by ICP-OES, the other for analysis of dissolved hydrogen sulfide

(H2S). Samples were collected in polyethylene syringes connected directly to the RhizonsTM,  which  were  held  open  by  a5

wooden spacer to create a vacuum. The syringes of the H2S series were pre-filled with 1 ml 10% zinc acetate solution to trap

sulfide as ZnS. All samples were transferred from the syringes to 15 ml centrifuge tubes in the laboratory within 2 h of

sampling. From the first series, a sub-sample for ICP-OES analysis was taken immediately and acidified to 1 M HNO3.  A

parallel GEMAXTM core, pre-drilled with holes of ⌀ 15 mm, was used for sampling for dissolved methane (CH4). 10 ml wet

sediment was collected through each hole using a cut-off syringe and transferred to a 65 ml glass vial filled with saturated10

NaCl solution (Egger et al., 2015a). Vials were capped with a rubber stopper, and a headspace of 10 ml N2 (quality 5.0) was

injected using a gas-tight glass syringe. Methane in pore waters was assumed to be quantitatively salted out into the headspace

during equilibration (O’Sullivan and Smith, 1970). Samples were stored upside-down until analysis such that headspace gas

was not in contact with the rubber stopper.

3.12 Pore water analysis15

Acidified pore water sub-samples from the first series of RhizonsTM were analyzed for total Fe and S, among other elements,

by ICP-OES at University of Helsinki Department of Food and Environmental Sciences. Iron is assumed to be present in pore

waters as Fe2+, while S is assumed to represent SO4
2- only,  due  to  the  loss  of  H2S during sample acidification (Jilbert and

Slomp, 2013). H2S concentrations in pore water samples from the second series of RhizonsTM were determined by

spectrophotometry (670 nm) after direct addition of an acidic solution of FeCl3 and n,n-dimethyl-p-phenylenediamine (Cline,20

1969; Reese et al., 2011) to the sample vials. This procedure dissolves the ZnS precipitate and immediately complexes S as

methylene blue for spectrophotometric analysis. H2S concentrations were calibrated against a series of standard solutions of

Na2S.3H2O, fixed in Zn acetate in the same manner as the samples. The exact concentration of S in the Na2S.3H2O stock

solution was determined by iodometric titration (Burton et al., 2008).

For analysis of dissolved CH4, 1 ml headspace gas was sampled from the 65 ml vials using a gas-tight glass syringe. An25

equivalent volume of salt solution was allowed to flow into the vial through a parallel syringe to equalize pressure in the

headspace. Gas samples were then injected into 12 mL gas-tight glass Exetainer™ vials (LabCo model 839W). An additional

20 mL N2 gas was injected into the Exetainers to generate overpressure prior to analysis. CH4 concentrations were analyzed

using an Agilent Technologies 7890B gas chromatograph (GC) at University of Helsinki Department of Environmental

Sciences, equipped with flame ionization detector (FID) at 250°C, oven temperature 60°C, 2.4 m Hayesep Q column with 1/8”30

connection, 80/100 mesh range, 1.0 mL sample loop and helium carrier gas at flow rate 21 mL min -1. Raw peak area data were
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converted to mole fraction (ppm) using a 4-point linear calibration of standard gas mixtures (certified concentrations ± 2%)

and blanks, analyzed prior to each sample series. Single standards were analyzed after every 10 samples to monitor within-

series drift, which was observed to be negligible. Concentrations in the pore water of the original 10 ml wet sediment sample

were back-calculated assuming a constant porosity of 90%.

3.13 Additional supporting data5

N/C and δ13C of DOM was measured from surface-water samples from six locations along the Mustionjoki estuary transect

(stations a–f, Fig. 1a) during three sampling campaigns (April, August and October) in the year 2011, as reported in Asmala

et al. (2014) and Asmala et al. (2016). Sampling locations are given in Table 1.

Surface sediment (0‒1 cm) total Fe and Al data was generated for six locations in the estuary of the Paimionjoki river and its

adjacent archipelago (stations L‒Q, Fig. 1a). Samples were obtained in August and September 2001 during a 94-station survey10

of Archipelago Sea sediments, as reported in the studies of Virtasalo et al. (2005) and Peltola et al. (2011). For comparability

with the present study, new subsamples of this material were digested and analyzed as outlined above. The locations and water

depths of stations L‒Q are given in Table 1.

4 Results

4.1 Hydrography of the transect15

At the time of the primary sampling campaign in June 2015, the water column in the estuary of the Mustinojoki river and the

adjacent archipelago was strongly stratified. Strong vertical temperature stratification was evident throughout the transect (Fig.

1b, top), while strong salinity stratification was also present in the inner basin of the estuary (Fig. 1b, middle). The freshwater

input from the Mustionjoki river was sufficient to generate a surface-water lens of salinity 0–2 extending across the entire

inner basin north of the First Salpausselkä, which forms the sill at Ekenäs. The halocline shallowed towards the sill, and the20

salinity isolines between stations C and G were strongly inclined. Deep waters upstream of the sill showed depleted

concentrations of dissolved oxygen relative to surface-water values (7–8 mg L-1 vs. 10–11 mg L-1).

4.2 Dissolved and particulate Fe in the water column

Dissolved Fe concentrations in the surface water at the mouth of the Mustionjoki river in June 2015 (station A, salinity 1.0)

were 1.3 µmol L-1 (Fig. 2a). Concentrations decreased offshore to values around 0.02 µmol/L in the open waters of the Gulf25

of Finland (station K). The isolines of [Fediss] in the estuarine water column were inclined similarly to those of salinity (Fig.

1b), with a relatively deep surface layer of Fe-rich waters at the river mouth shallowing towards the sill at Ekenäs. However,
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surface water salinity and [Fediss] along the transect show a strongly non-linear relationship, suggesting non-conservative

mixing between river and offshore water with respect to [Fediss], due to removal of Fediss from solution (Fig. 2b).

Particulate Fe in the water column of the estuary in June 2015 showed a contrasting distribution to that of [Fediss] (Fig. 2a).

Although maximum [Fepart] was also observed at the river mouth (3.9 µmol L-1 in surface waters at station A), values decreased

rapidly within a short distance offshore (station B surface water = 1.4 µmol L-1; station B, 5 m depth = 0.6 µmol L-1). Further5

away from the river mouth, [Fepart] showed higher values in a zone extending from 15 m depth at station C to the surface waters

at station G (Fig. 2a), approximately coinciding with the halocline of salinity = 2–4 (Fig. 1b). In the archipelago region of the

transect (stations G–J), [Fepart] declined gradually offshore.

4.3 Particulate organic matter in the water column

Particulate organic carbon (POC) and nitrogen (PON) concentrations in the water column of the estuary in June 2015 ranged10

from 5–75 µmol L-1 and 0.5–7 µmol L-1, respectively, and were consistently highest in surface waters (not shown). Moreover,

surface waters throughout the transect were characterized by a relative enrichment of N (N/C = 0.14–0.17, Fig. 3a). In contrast,

deeper waters had lower concentrations of particulate organic matter and a relative depletion of N (N/C = 0.08–0.13). The

region close to the river mouth displayed the most pronounced N/C enrichments anywhere on the transect.

The distribution of δ13CPOC showed a general similarity to that of N/C. Relatively depleted values were observed in surface15

waters (-29‰ – -31‰), with the most depleted values observed close to the river mouth, while deep water values were

relatively enriched (-26‰ – -28‰) (Fig. 3a, bottom). One anomalous sample of relatively enriched values (approx. -26‰)

was observed in the surface waters at site G, close to the sill at Ekenäs. When N/C and δ13CPOC values are plotted in x-y space,

surface water samples for most stations, regardless of salinity, plot close to the riverine end of the riverine‒estuarine

phytoplankton continuum. At each site, samples from deeper in the water column trend away from this region of the diagram20

towards the field corresponding to terrestrial C3 plants (Fig. 3b).

4.4 Sedimentary organic matter along the transect

Mean total organic carbon (Corg) contents of the upper 30‒50 cm of sediments sampled in September 2014 were close to 4%

dry weight at stations A‒D in the inner Mustionjoki estuary (Fig. 4b). Stations E‒G in the vicinity of the sill at Ekenäs showed

lower values (e.g. station F = 2.2%), while stations in the archipelago and offshore region (H‒G) showed the highest values25

anywhere on the transect (4%‒5%). The four samples from site A, at the mouth of the Mustionjoki river, all showed molar

N/C ratios of 0.05‒0.09 and δ13Corg of -26‰ – -29‰, hence plot close to the terrestrial C3 plants field in N/C  vs. δ13Corg space

(Fig. 4a). With increasing distance along the transect, mean N/C and δ13Corg values of sediments from successive stations trend

towards the riverine–estuarine phytoplankton continuum. Samples from station K showed molar N/C ratios of 0.12‒0.14 and

δ13Corg of -23‰ – -24‰, close to the estuarine end of the continuum. Variation of values between different depth intervals30
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within each sediment core was substantially less (N/C < 0.04, δ13Corg < 2‰) than between the mean values of station A and

station K.

The computed contributions of terrestrial plant-derived and phytoplankton-derived organic matter to sedimentary Corg vary

systematically along the transect. Based on the assumed end-member values, >70% of sedimentary Corg at station A is derived

from terrestrial plant material, whereas sedimentary Corg at station K is entirely phytoplankton-derived. The rate of change in5

%OCterr. and %OCphyt. between successive stations is greatest from stations A‒C, close to the mouth of the Mustionjoki river.

4.5 Sedimentary Fe along the transect

Surface-sediment Fe concentrations were highest at stations A‒D in the inner estuary, with a maximum recorded value of

>1600 µmol g-1 at station B (Fig. 4b). A general trend of decreasing Fe concentrations offshore from station B was observed,

to values of approx. 800 µmol g-1 at station K. Anomalously low values were observed at station F, coincident with the observed10

minimum in Corg content at this location. The Fe speciation of the surface sediments at stations A and B was dominated by

Stages 3 and 4 of the sequential extraction protocol, while Stages 1 and 2 of the protocol were most dominant at station D (Fig.

4b).

57Fe Mössbauer spectroscopy data from surface sediment samples from stations A and D (0‒1 cm, June 2015) show markedly

contrasting results (Fig. 5; Table 3). The station A spectrum contains an important contribution of an Fe (II) phase which could15

not be identified from our existing library of minerogenic Fe (II) spectra. The presence of this phase in the sample modulates

the relative heights of the major peaks in the spectrum, and generates a distinct shoulder at 1‒2 mms-1 (Fig. 5). We interpret

this phase to represent complexes of non-sulfidized Fe (II) with organic matter (henceforth organic-Fe (II) complexes), which

were recently shown to be a major component of sedimentary Fe in a nearby boreal estuary (Yu et al., 2015). The station A

spectrum also contains superparamagnetic Fe (III) (interpreted as nanoparticulate ferrihydrite), silicate-bound Fe (II) and a20

small contribution of magnetite. In contrast, the sample from station D was dominated by superparamagnetic Fe (III) and

silicate-bound Fe (II). No Fe carbonate phases (e.g. siderite, ankerite), and no further crystalline oxides (e.g., goethite, hematite

or akaganéite) were detected in either sample.

The sequential Fe extraction results for the corresponding samples showed station A to be dominated by Fe soluble in Stages

3 and 4 of the protocol (sodium dithionite and ammonium oxalate-soluble Fe, respectively), which together accounted for25

>50% of all Fe in the sample (Fig. 5). In contrast, Stages 3 and 4 yielded approximately 20% of all Fe in the samples from

station D. Conversely, the contribution of Stages 1 and 2 (sodium acetate-soluble Fe and hydroxylamine-HCl soluble Fe,

respectively) to total Fe at station D was greater than for station A.
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4.6 Vertical profiles of sedimentary Fe, Corg and S

The along-transect changes in Fe content and speciation persist in the vertical profiles of stations A, D and J (Fig. 6).

Background total Fe contents decrease in the order A‒D‒J (1.0%, 0.8%, 0.5%, respectively), while station A shows a

persistently high contribution of dithionite- and oxalate-soluble Fe relative to the other stations. Furthermore the 10‒40 cm

depth layer in the sediments at station A displays a large enrichment of Fe, peaking at 3% close to the 1970 depth horizon.5

The Corg profile of station A also differs markedly from those of stations D and J. The station A profile shows generally constant

values of ~3% with a small enrichment in the surface sediments, while the station D and J profiles show systematically

decreasing Corg contents from the surface sediments towards the base of the core. Meanwhile, the S profiles of all three stations

show a distinct broad peak in the post-1970 sediments (Fig. 6).

4.7 Vertical profiles of pore water CH4, SO4
2-, H2S and Fe2+10

At sites A, D and J, a broadly similar vertical zonation can be observed in the pore water chemical profiles, indicating a similar

set of diagenetic processes at each site (Fig. 7). CH4 produced by methanogenesis in the deeper sediments diffuses upwards

and reacts with SO4
2- diffusing downwards from the bottom water at the so-called sulfate-methane transition zone (SMTZ)

(e.g., Egger et al., 2015a). The reaction

ସ(௔௤)ܪܥ + 	ܵ ସܱ	(௔௤)	
ଶି ܪ	→ (ܵ௔௤)

ି + (௔௤)	ଷܱܥܪ
ି + ଶܪ (ܱ௟) (5)15

produces H2S,  which  accumulates  in  a  distinct  peak  in  the  SMTZ.  Pore  water  Fe2+, produced by the reduction of Fe

(oxyhydr)oxides in various diagenetic reactions, accumulates above and below the SMTZ. Within the SMTZ itself, the reaction

between Fe2+ and H2S

	(௔௤)	݁ܨ
ଶା ଶܪ+ (ܵ௔௤) ݁ܨ	→ (ܵ௦) + (௔௤)	ܪ2

ା (6)

efficiently removes Fe2+ from the pore waters, and FeS is subsequently converted to pyrite (FeS2).20

However, the profiles from each station differ in terms of the depth, thickness and intensity of the SMTZ. At station A, where

bottom water [SO4
2-]  is  only  1.3  mM,  the  SMTZ  is  relatively  shallow  and  narrow.  No  detectable  accumulation  of  H2S is

observed, while pore water Fe2+ shows only a narrow minimum centered on 7 cm depth.  At stations D and J, H2S accumulations

in excess of 150 µm L-1 are observed in the SMTZ, while Fe concentrations are close to zero between 5 cm and 20 cm depth.

Station J, where bottom water [SO4
2-] is 4.8 mM, shows the deepest SMTZ of the three stations as defined by the H2S peak25

(centered on 12 cm).
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5 Discussion

5.1 Evidence for DOM flocculation in the estuarine water column and its impact on Fediss.

A recent field and experimental study demonstrated that salinity-mediated flocculation – the aggregation of small particles of

organic matter into larger ones under conditions of increasing electrolyte strength – is the dominant process responsible for

the loss of DOM along salinity gradients in Finnish estuaries (Asmala et al., 2014). Alternative mechanisms, such as microbial5

degradation and photolytic mineralization of DOM in the estuarine environment (Dalzell et al., 2009; Moran et al., 2000;

Asmala et al., 2013) are considered of lesser importance. Flocculation decreases the fraction of organic matter in the water

column which passes through regular filters, and hence decreases the fraction that classifies as DOM. Consequently, negative

deviation from conservative mixing is observed when a straight line is drawn between freshwater and offshore end-member

values in salinity vs. DOM space (Officer, 1976). However, it should be noted that the conservative mixing approach is10

sensitive to variations in the end-member values, and quantification of the deviation requires knowledge about the magnitude

of this variation (Asmala et al., 2016).

Due to the close association of Fe with DOM in boreal riverine systems, flocculation also strongly influences Fe cycling. The

rapid loss of Fediss observed offshore from the river mouth along the Mustionjoki transect (Fig. 2a) confirms that flocculation

removes Fe from solution in this system. The degree of deviation from conservative mixing of Fediss vs. salinity in Finnish15

estuaries was shown experimentally to be greater than for DOC (Asmala et al., 2014), suggesting that Fe is preferentially

removed relative to bulk DOM. This could indicate a preferred association of Fe with higher molecular weight compounds,

which are more sensitive to flocculation (Asmala et al., 2014) or a mechanistic enhancement of flocculation by the presence

of Fe (Forsgren et al., 1996).

5.2 The signal of flocculation in suspended POM and Fepart.20

At the time of sampling in June 2015, POM in surface waters throughout the Mustionjoki estuary and adjacent archipelago

was dominated by phytoplankton material, as evidenced by the relatively high N content of POM (circles with letters in Fig.

3a). This strong signal of autochthonous organic material apparently obscures any evidence for POM derived from flocculation

of DOM in surface waters at the time of sampling. However, in deeper waters throughout the transect, POM is characterized

by lower N contents and more isotopically enriched C. Consequently, deep water POM samples in N/C vs. δ13C space trend25

away from the riverine–estuarine phytoplankton continuum and towards the field corresponding to terrestrial C3 plants (Fig.

3b). This suggests that a second fraction of POM contributes to the net N/C and δ13C values of the deep water samples, and

that  this  fraction  has  N/C  and  δ13C characteristics similar to plant material. We note that this material is unlikely to be

resuspended sediment, since its δ13C values have a much narrower range than those of sedimentary material throughout the

transect (Fig. 4a).30
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Notably, DOM data from the Mustionjoki estuary cluster close to the terrestrial C3 plants field in N/C vs. δ13C space (Fig. 3b).

The samples in the figure were taken in three separate seasons (April, August, October 2011) and hence approximate the mean

composition of DOM in the estuarine system. Assuming negligible fractionation of N/C and δ13C during flocculation, these

results  suggest  that  flocculation  of  DOM  to  POM  in  the  estuarine  environment  may  provide  the  second  fraction  of  POM5

detected in the N/CPOM and δ13CPOM data. The relative abundance of sinking phytoplankton material and flocculation-derived

POM then determines the net N/C and δ13C values measured at any given location in the estuarine water column. Deep water

samples display values closer to the flocculation-derived component, likely due to both rapid remineralization of fresh

phytoplankton material during settling, and the typically higher salinity of deep waters, which favors the accumulation of

flocculated material.10

The  2015  Fepart and Fediss data show clear evidence for the transfer of Fe from the dissolved to the particulate phase as a

consequence of flocculation in the Mustionjoki estuary (Fig 2b). When data from all stations and depths are plotted together,

Fepart. shows an overall negative deviation from conservative mixing along the salinity gradient. This likely reflects settling of

suspended minerogenic matter due to energy dissipation as river water enters the estuarine environment (Syvitski and Murray,

1981), as indicated by a similar trend in suspended particulate aluminum (Al) (not shown). However, samples in the salinity15

range 2–4 show a clear positive deviation, suggesting an input of Fepart through flocculation of Fediss. In contrast, Fediss shows

a simple logarithmic non-conservative mixing trend with R2 = 0.92. The concentration of Fepart in the salinity range 2–4 (~1.0

μmol L-1) is similar to that of Fediss close to the river mouth, suggestive of quantitative transfer of Fe from the dissolved to

particulate phase with increasing salinity. The 2D cross-section of Fepart along the transect confirms that a pronounced zone of

higher values is observed close to the halocline of the inner estuary, which encompasses the salinity range 2–4 (Fig. 2a).20

Further offshore, Fepart concentrations decline to a background value of ~0.5 µmol L-1, implying partial settling of the

flocculated material to the sediments.

5.3 The impact of flocculation on sedimentary OM and Fe in the upper estuary

The transfer of terrestrially-derived OM and Fe from the dissolved to the particulate phase in the estuarine water column

promotes the accumulation of both components in the sediments. Our data show a clear trend of decreasing terrestrial OM and25

total Fe contents in sediments along the Mustionjoki transect (Fig. 4b). Maximum values are observed at sites A and B, within

2 km due S of the river mouth, implying maximum accumulation of flocculated material in this zone. At first glance this result

appears surprising, since the flocculation maximum in the June 2015 data is observed in the halocline of salinity 2‒4, located

further offshore (Figs. 1, 2). However, the mean annual position of the halocline is likely further upstream (i.e. closer to the

river mouth) than recorded during our sampling in June, when discharge in the Gulf of Finland catchment is at its annual30

maximum (Voipio, 1981). Assuming the suspended particulate maximum and associated gravitational settling to follow the
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lateral migration of the halocline through time (Geyer, 1993; Sanford et al., 2001), the focal point of sedimentation for

flocculated material may thus be closer to the river mouth than implied by the June 2015 data. Notably, maximum sedimentary

Fe concentrations were observed at station B (Fig. 4b), which likely falls close to the intersection of the halocline with the

sediment-water interface during mean flow conditions (see Fig. 1). On the other hand, the maximum contribution of terrestrial

material to sedimentary OM is recorded at station A. This discrepancy could indicate that settling of riverine suspended5

microparticulate POM, along with flocculated DOM, contributes to the total sedimentary OM pool at this site. Indeed, organic

detritus, including terrestrial plant material, was readily visible in sediment cores from station A.

The speciation of sedimentary Fe at stations A and B contrasts strongly with that at stations further offshore. Stations A and B

are characterized by relatively high contributions of dithionite- and oxalate- soluble Fe (Fig. 4b). According to the protocol of

Poulton and Canfield (2005), which was originally developed for river sediments, these fractions should represent crystalline10

Fe oxides such as goethite, akaganéite and hematite (in the dithionite-soluble component) and magnetite (in the oxalate-soluble

component). However, of these phases only magnetite is identified in the 57Fe Mössbauer spectrum of the surface sediment

from station A (Fig. 5). Moreover, the same spectrum indicates a large contribution of organic-Fe (II) complexes (Fig. 5, Table

3). The behavior of such material in the Poulton and Canfield (2005) protocol has not been previously described, but the large

fraction of dithionite- and oxalate- soluble Fe in these samples, coupled to the lack of mineralogical evidence for crystalline15

oxides, suggest that Stages 3 and 4 of the sequential extraction may be interpreted as primarily indicating organic-Fe (II)

complexes in this environment.

The high contents of dithionite- and oxalate- soluble Fe in the sediments of the upper estuary (Fig. 4) thus suggest direct

transfer of flocculated Fe-OM aggregates to the sediments, and confirm the suggested role of OM flocculation as a mechanism

for trapping Fe in estuaries (Lisistyn, 1995). Flocculated material in the oxic estuarine water column is likely present as Fe20

(III) partitioned between organic-Fe (III) complexes and ferrihydrite (Neubauer et al., 2013). Reduction of organic-Fe (III)

complexes after sedimentation may generate the organic-Fe (II) complexes detected in our sedimentary mineralogical data.

Specifically, iron (III) complexed to carboxylate and phenolate functional groups within humic material in the water column

may be reduced in situ in sediments, retaining its association with these functional groups as demonstrated by X-Ray

Absorption Spectroscopy (XAS) (Yu et al., 2015). It is noteworthy that this mechanism for Fe-OM association in sediments25

differs slightly from that proposed by Lalonde et al. (2012), in which complexes of Fe (III) and relatively labile OM are formed

during remineralization of OM in the sediment column and preserved during burial.

Considering the presence of ferrihydrite in flocculated material, flocculation likely also acts as a vector of ferrihydrite to the

sediments. Our Mössbauer data detect a large component of superparamagnetic Fe (III), interpreted as nanoparticulate

ferrihydrite, in the surface sediments at both stations A and D (Fig. 5, Table 3). Although ferrihydrite is generally thought to30

be extracted exclusively in Stage 2 of the Poulton and Canfield (2005) protocol (Table 2), the abundance of superparamagnetic

Fe (III) in the Mössbauer data, and the absence of carbonate minerals, lead us to conclude that Stages 1 and 2 (Na acetate and
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hydroxylamine-HCl) both extract ferrihydrite or similar poorly crystalline Fe (oxyhyr)oxides from the sediments in this setting.

Accordingly, the net contribution of Stages 1 and 2 to total extracted Fe in surface sediments generally decreases offshore (Fig.

4a), consistent with a declining input from flocculation.

Notably however, the maximum input of ferrihydrite to sediments occurs at station D, located 7.5 km due S from the river

mouth, at the deepest point of the inner estuarine basin. This suggests that focusing of ferrihydrite occurs in the upper estuary,5

due to redox shuttling effects under seasonally oxygen depleted conditions (e.g., Raiswell and Anderson, 2005; Lenz et al.,

2015). Indeed, the Mustionjoki estuary is known to display deep water hypoxia (oxygen concentrations < 2 mg L-1) in the

autumn months (Niemi, 1977) and displayed moderate oxygen depletion during our sampling in June 2015 (Fig. 1b). Redox

shuttling, and physical reworking of sediments in shallow areas, are known to influence the distribution of both reactive Fe

and organic material in the coastal archipelagos of the Baltic Sea, favoring higher concentrations of both components in deeper10

areas (Virtasalo et al., 2005). Accordingly, the only section of the transect where surface-sediment Corg and Fe contents are

substantially lower than the whole-transect mean values of 3.5% (Corg) and 970 µmol g-1 (Fe) are stations F and G, located

close to the sill of the First Salpausselkä (Fig. 1b).

5.4 The broader impact of flocculation on sediment biogeochemistry

The enhanced inputs of Fe-OM complexes and ferrihydrite to the sediments in the upper estuary influence diagenetic processes15

in the sediments, as indicated by the contrasting sediment and pore water chemistry at stations A, D and J (Figs 6, 7). Most

importantly, the dominance of terrestrial plant-derived OM at station A lowers the net degradability of OM in the sediments.

Humic substances in the flocculated material are derived from complex polymers in vascular plants, such as cellulose, lignin,

cutin and cutan (de Leeuw and Largeau, 1993), which are relatively resistant to degradation by the sediment microbial

community (e.g. Hedges et al., 2000). The comparatively constant Corg content throughout the upper 40 cm at station A (Fig.20

6) is consistent with a low range of k-values for net organic matter degradation at this site (see Arndt et al., 2013). In contrast,

stations D and J show decreasing Corg contents with depth, implying more efficient net degradation of OM (hence a higher

range of k-values) due to the proportionally greater input of phytoplankton material at these sites (Fig. 4). Phytoplankton-

derived OM contains high concentrations of degradable compounds such as proteins, nucleic acids and simple carbohydrates,

and in the shallow estuarine system may be expected to experience relatively little pre-ageing before deposition in the25

sediments. The abundance of such fresh material thus likely causes the higher net degradability of OM in the sediments at

stations D and J (see Arndt et al., 2013). Comparatively low rates of organic matter remineralization in the upper estuary are

also reflected in the concentration of primary metabolites in the pore waters. In the sub-SMTZ sediments, maximum

concentrations of both methane (Fig. 5) and ammonium (not shown) are significantly lower at station A with respect to the

other stations, indicative of lower rates of production of these compounds during organic matter remineralization (e.g., Berg30

et al., 1998).
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Beyond the impact on sedimentary OM degradability, flocculation also influences the concentration of Fe in the sediment,

with potentially important consequences for diagenetic processes. However, the influence of Fe must be considered in the

context of changes in bottom water [SO4
2-], due to the close coupling of Fe and S cycling in sediments (Berner, 1970; Berner

and Raiswell, 1984). Due to the salinity gradient of the Mustionjoki transect (Fig. 1b), the three sites A‒D‒J encompass5

opposing gradients of total sedimentary Fe content and bottom water [SO4
2-] (Figs. 6, 7). At station A, the relative concentration

of Fe with respect to SO4
2- is thus at a maximum. Low bottom-water [SO4

2-] leads to a shallow SMTZ (5‒10 cm) and despite

the production of H2S during sulfate-mediated AOM (equation 5), no accumulation of H2S is observed in the pore waters due

to the subsequent reaction with Fe2+ (equation 6). Conversely, at stations D and J the relative availability of Fe compared to

SO4
2- declines, the SMTZ is located progressively deeper, and H2S accumulates to progressively higher concentrations in the10

pore waters (Fig. 7). A similar conclusion was predicted for a hypothetical bottom water [SO4
2-] gradient in a recent modeling

study focused on the Bothnian Sea (Rooze et al., 2016).

The organic-Fe (II) complexes which dominate sedimentary Fe at station A likely do not participate significantly in the

diagenetic reactions determining the pore water chemistry shown in Figure 7. Assuming these complexes to be formed by in

situ reduction of Fe (III) from Fe (III)-organic complexes after sedimentation (Yu et al., 2015), Fe is retained in the particulate15

organic phase and not released into the pore waters. Instead, the Fe2+ observed in the pore water profiles is likely produced

during the reduction of Fe (oxyhydr)oxides, including ferrihydrite, either during dissimilatory reduction coupled to organic

matter oxidation (e.g., Canfield et al., 2005):

ଶܪܥ (ܱ௦) + ଷ(௦)(ܪܱ)݁ܨ4 + ଶ(௔௤)ܱܥ7 → (௔௤)	ଷܱܥܪ8
ି + ଶܪ3 (ܱ௟) + (௔௤)݁ܨ4

ଶା (7)

or, as recently suggested by various studies (Sivan et al., 2011; Slomp et al., 2013; Egger et al., 2015a), during Fe-mediated20

anaerobic oxidation of methane (Fe-AOM):

ସ(௔௤)ܪܥ + ଷ(௦)(ܪܱ)݁ܨ8 + (௔௤)ܪ15
ା → (௔௤)	ଷܱܥܪ

ି + ଶܪ21 (ܱ௟) + (௔௤)݁ܨ8
ଶା

The higher accumulations of Fe2+ in the pore waters of the sub-SMTZ depth interval at stations A and D with respect to station

J (Fig. 7) thus indicate higher background rates of Fe (oxyhydr)oxide reduction, consistent with higher net inputs of ferrihydrite

to the sediments in the upper estuary (Fig. 4b).25

5.5 Temporal stability of flocculation impacts on sedimentation

The coastal zone of the Baltic Sea has been impacted severely by anthropogenic activities during the last century. First of all,

enhanced nutrient inputs have altered coastal ecosystems and triggered hypoxia in many areas (Conley et al., 2011). Also land
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use changes such as ditching and forest clearance have influenced the inputs of particulate material to the coastal zone (Yu et

al., 2015). Moreover, the transport of riverine Fe and DOM into the Baltic has increased in recent decades as a consequence

of brownification (Kritzberg et al., 2014), related primarily to the recovery of boreal freshwater systems from industrial

acidification in the mid-20th century (Monteith et al., 2007). These changes may be expected to influence both the sediment

composition and diagenetic processes in the sediments at our study sites through time. The most pronounced effect of recent5

coastal eutrophication on sediment chemistry has been to increase the flux of autochthonous organic matter to the sediments.

Due to the consumption of electron acceptors in organic matter remineralization, carbon loading has led to a vertical migration

of the redox zones of the sediments, including the SMTZ (Slomp et al., 2013; Egger et al., 2015a). Evidence for an upwards

shift of the SMTZ can be seen in the total sulfur (S) contents of the sediments at stations A, D and J (Fig. 6), each of which

show a distinct peak in the post-1970 sediments, close to the current position of the SMTZ. This is consistent with the time-10

dependent modeling simulations of Rooze at al. (2016), in which rates of FeS and FeS2 precipitation in the SMTZ were shown

to increase in response to carbon loading in the late 20th century.

A distinct interval of elevated sedimentary Fe contents can be seen at station A, centered on the early 1970s (Fig. 6). Total Fe

contents in this layer are up to 3 times higher than at the present day (3% vs. 1%), indicating a dramatically increased input of

Fe. No corresponding peak is observed in Corg, suggesting that the Fe profile cannot be explained by a simple increase in DOM15

input to the estuary at this time, leading to enhanced rates of flocculation and sedimentation. Nevertheless, the Fe in this

interval is predominantly in the form of organic-Fe (II) complexes (Fig. 6), indicating flocculation as the likely mechanism for

sedimentation of Fe. This implies that the Fe/C ratio of the riverine DOM was elevated at this time due to a secular increase

in the input of Fe to the river water from an anthropogenic source, possibly the nearby blast furnace at Åminnefors (Fig. 1a),

which was active from the late 19th century until 1977.20

Despite these anthropogenic impacts, the role of flocculation in determining sedimentary Fe chemistry along the Mustionjoki

transect has remained largely unchanged throughout the last century. Evidence of enhanced Fe input centered on the early

1970s is restricted to station A. In contrast, stations D and J record relatively constant Fe contents throughout the sediment

column (Fig. 6), implying relatively static net Fe inputs. This suggests that any recent changes in riverine Fe inputs due to

brownification (Sarkkola et al., 2013; Kritzberg and Ekström, 2012) have not strongly influenced sedimentary Fe in this25

system. Moreover, the offshore decline in sedimentary Fe contents observed in the modern surface sediments (Fig. 4b) is

reproduced in the systematic decrease in Fe contents from station A–D–J observed at all depths in the sediment column (Fig.

6).  Hence, on the scale of the entire transect, it can be concluded that the role of flocculation in determining the Fe distribution

in these estuarine sediments has not been significantly influenced by human activities over the last century.

30

Biogeosciences Discuss., doi:10.5194/bg-2017-181, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 19 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



20

5.6 The spatial extent of the flocculation signal in sediment Fe chemistry

Our data confirm that estuarine sediments may trap large amounts of the Fe transported to the boreal coastal zone via rivers.

When the additional surface sediment data from the Paimionjoki transect are plotted together with those from the Mustionjoki

transect, sedimentary Fe/Al ratios show an apparent logarithmic decline with distance offshore. Fe/Al provides a simple

indication of the reactive Fe content of sediments (Lyons and Severmann, 2006), and in this case describes the net enrichments5

of both organic-Fe (II) complexes and ferrihydrite, introduced to sediments as a consequence of flocculation. The absence of

extreme Fe enrichments in the Paimionjoki transect is likely due to the absence of stations close to the river mouth, where

organic-Fe (II) complexes are expected to accumulate, and the lack of a pronounced bathymetric sill, which limits the redox

shuttling effects on ferrihydrite observed in the Mustionjoki estuary. However, Fe/Al along the Paimionjoki transect alone

shows a steady decline from Fe/Al = 0.93 to Fe/Al = 0.73 over >80 km S from the river mouth (Fig. 8). Furthermore, typical10

Fe/Al values for oxic shelf areas of the northern Baltic Proper – several hundred km offshore – are ~0.5–0.6 (e.g., Lenz et al.,

2015), implying an ongoing decline in Fe/Al offshore from station Q, our most distal sampling point. Taken together, these

results suggest that the spatial signal of flocculation in sedimentary Fe chemistry in the brackish Baltic Sea is detectable over

a large distance (>100 km) from the coastline. This conclusion is supported by our suspended Fepart data,  which  shows  a

background of ~0.5 μmol L-1 Fepart in the water column of station K in the open Gulf of Finland (Fig. 2). Hence, although15

flocculation itself likely occurs further upstream at the contact between fresh and brackish water masses, a fraction of the

suspended Fepart apparently evades settling in the estuarine environment and is transported offshore before sedimentation.

Considering the boreal coastal zone more broadly, the spatial impact of flocculation on sedimentary Fe chemistry is likely

determined by the steepness of the offshore salinity gradient and the magnitude of the riverine Fe input. The Baltic Sea is

characterized by a nearly 2000 km-long N–S surface-water salinity gradient of ~2‒15, from the Bothnian Bay to the Danish20

Straits (Leppäranta and Myrberg, 2009). In the lowest-salinity regions in the Bothnian Bay and Bothnian Sea, the potential

zone of estuarine flocculation extends further offshore and the trapping of Fe in estuarine sediments may be expected to be

less efficient. At the same time, riverine Fe inputs in this region are higher than elsewhere in the Baltic Sea (Asmala et al.,

2014), due to the significant release of Fe from peatlands in the catchment areas (Kortelainen et al., 2006) and the potential

release of Fe from acid-sulfate soils Boman et al., 2010). Due to this combination of factors, flocculated Fepart. is likely25

dispersed over a much larger area in the Bothnian Bay and Bothnian Sea with respect to the Baltic Proper, which could explain

the consistently high sedimentary Fe contents in the offshore areas of the Bothnian Sea (Slomp et al., 2013). At the other end

of the spectrum, in boreal estuaries draining into fully marine systems such as in the Arctic (e.g., Dai and Martin, 1995), steeper

salinity gradients likely limit the dispersion of flocculated material to a relatively narrow zone close to the river mouths.
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6 Conclusions

In boreal estuaries, salinity-mediated flocculation of DOM and associated Fe strongly influences the chemistry of the

sediments. We can draw the following main conclusions from the study:

· Flocculation is reflected in non-conservative mixing of Fediss. along the estuarine salinity gradient. Fediss. is

preferentially removed from solution with increasing salinity.5

· The POM generated by flocculation of DOM can be detected in suspended particulate matter using δ13C and N/C of

DOM as end-member reference values. Due to the presence of phytoplankton material in surface waters, flocculated

OM is primarily detected in deeper waters.

· The true zone of flocculation can be identified using parallel measurements of Fediss and Fepart, and occurs at low

salinities, close to the primary contact between fresh and saline water masses. In the Mustionjoki estuary, this zone10

corresponds to the halocline of the stratified inner basin, which is laterally mobile during the seasonal cycle.

· The impacts of flocculation on sediment chemistry are most pronounced in the upper estuarine zone, where the

halocline intersects the sediment-water interface. However, flocculated material accumulates in progressively lower

concentrations up to tens or hundreds of kilometers offshore. The spatial scale of the flocculation signal in sediment

chemistry is likely dependent on the steepness of the salinity gradient, with greater dispersal in low-salinity15

systems.

· Flocculation transfers POM of terrestrial origin, likely humic materials, from the water column to the sediments.

The contribution of this material to sedimentary OM declines offshore as indicated by δ13C and N/C of sedimentary

OM.

· Flocculation transfers Fe to the sediments in two principal forms: organic-Fe (III) complexes and ferrihydrite. In20

sediments, Fe in organic-Fe (III)-complexes is reduced in situ, producing organic-Fe (II) complexes which are

preserved during burial. In contrast, ferrihydrite takes part in sedimentary diagenetic reactions, influencing the pore

water and sediment chemistry.

· Organic-Fe (II)-complexes in sediments are strongly concentrated close to river mouths. Ferrihydrite in sediments is

also more concentrated in upper estuarine regions, but due to redox shuttling effects may be redistributed from the25

original site of sedimentation.

· The impact of flocculation on sediment chemistry is modulated by the gradient of bottom water sulfate

concentrations along the estuarine salinity gradient. Opposing gradients of Fe and sulfate availability for diagenetic

reactions are observed with increasing distance offshore. These impact on the vertical zonation of sediment

biogeochemistry, most markedly in determining the depth of the SMTZ and the accumulation of hydrogen sulfide30

and Fe2+ in pore waters.
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· Although Fe and DOM inputs to boreal estuaries have been shown to be increasing over recent decades due to

brownification, Fe inputs to sediments in our principal study transect remained largely constant over the same

interval. However, coastal eutrophication has had a strong impact on sediment chemistry through increased carbon

inputs, leading to a shoaling of the SMTZ and increased rates of the associated sedimentary reactions.
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Tables

Campaign and
Station code

Co-ordinates
(degree-decimal)
°N °E

Water depth
(m, sediment
stations only)

Water sampling Sediment sampling

Mustionjoki
transect
September 2014;
June 2015
A 60.091617 23.554630 7 Full profile (2015) 4 samples (2014)

Full profile (2015)
B 60.079833 23.531167 11 Full profile (2015) 5 samples (2014)
C 60.054300 23.509517 22 Full profile (2015) 5 samples (2014)
D 60.022650 23.474600 39 Full profile (2015) 5 samples (2014)

Full profile (2015)
E 60.014033 23.467950 21 Full profile (2015) 5 samples (2014)
F 59.994750 23.452300 8 Full profile (2015) 5 samples (2014)
G 59.961383 23.396730 6 Full profile (2015) 5 samples (2014)
H 59.920117 23.332650 17 Full profile (2015) 5 samples (2014)
I 59.907367 23.326200 21 Full profile (2015) 5 samples (2014)
J 59.855286 23.261780 33 Full profile (2015) 5 samples (2014)

Full profile (2015)
K 59.789867 23.335430 47 Full profile (2015) 5 samples (2014)

Paimionjoki
transect August-
September 2001
L 60.354667 22.563000 18 Surface (0–2 cm)
M 60.313333 22.509833 46 Surface (0–2 cm)
N 60.140970 22.410722 27 Surface (0–2 cm)
O 60.057288 22.355018 46 Surface (0–2 cm)
P 59.913438 21.753072 35 Surface (0–2 cm)
Q 59.764387 21.706720 107 Surface (0–2 cm)
Mustionjoki
transect April-
August-October
2011
a 60.095467 23.590867 Surface only
b 60.036650 23.484183 Surface only
c 59.977800 23.421300 Surface only
d 59.917300 23.324433 Surface only
e 59.855567 23.261967 Surface only
f 59.816317 23.271450 Surface only

Table 1. Sampling campaigns and stations (see also Fig. 1).
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Extraction stage Reagent Nominal target phases
(original protocol)

Interpreted phases (this study)

1 Na acetate, pH 4.5,
24 h

Fe-carbonates
(siderite, ankerite)

Ferrihydrite

2 Hydroxylamine-HCl,
48 h

Poorly crystalline Fe oxides
(ferrihydrite, lepidocrocite)

Ferrihydrite

3 Na dithionite, 2 h Crystalline Fe oxides (goethite,
akaganéite,
hematite)

Organic Fe (II) complexes

4 Ammonium oxalate,
6 h

Magnetite Organic Fe (II) complexes,
magnetite

5 HCl, 12 M, boiling Reactive sheet-silicate Fe Reactive sheet-silicate Fe

6 (sulfide-Fe) Total digestion +
ICP-OES analysis
for S

Pyrite

Total Fe Total digestion +
ICP-OES analysis
for Fe

All Fe phases in sample

7 Residual Fe Calculated (Total Fe
– Σ[1-6])

Unreactive silicate Fe Unreactive silicate Fe

5

Table 2. Stages of the sequential extraction for Fe used in this study, based on the protocol of Poulton and Canfield

(2005).
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Mineral Phase δa

(mm/s)
ΔEQ

b

(mm/s)
Bhf

c

(T)
Aread

(%)

Station A

Magnetite Fe2.5+ [0.67]e [0.00] [46.5] 9

Magnetite Fe3+ [0.30] [0.03] [49.8] 5
Silicate Fe2+ 1.08 2.61 - 18
Undocumented Fe2+

(“organic-Fe (II)”) 0.78 0.83 - 42

Superparamagn. FeOx Fe3+

(“ferrihydrite”) 0.32 0.67 - 26

Station D

Silicate Fe2+ 1.19 2.48 - 49

Superparamagn. FeOx Fe3+

(“ferrihydrite”) 0.25 0.86 - 51

aIsomer or center shift.
bQuadrupole splitting.
cInternal magnetic field.5
dSuspectral area ratio, to first order proportional to relative amount of total Fe contained in mineral phase. A general uncertainty
of ±2% absolute is applied.
eValues in square brackets were fixed to values from library spectra during the fitting process.

Table 3. Mössbauer parameters corresponding to spectra in Fig. 5.

10
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20
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Figures

Figure 1. (a) Location of the Mustionjoki estuary transect (top) and the Paimionjoki estuary transect (bottom). In both

systems, point-source river inputs discharge into a channel-like estuary, which in turn connects into the archipelago5

coastline of the Gulf of Finland, northern Baltic Sea. Sediment and water column sampling locations are indicated A‒

Q. Dissolved organic matter (DOM) sampling locations (Asmala et al 2014, 2016) are indicated a-f. The location of the

Åminnefors blast furnace is indicated by the black square. The First Salpausselkä ice-marginal formation is indicated

in yellow. (b) Water column characteristics of the Mustionjoki transect during sampling in June 2015. 2D contour plots

were generated by extrapolation between the measured profiles at stations A‒K using SigmaplotTM software. Distances10

along transect are reported as distance directly due S from Station A at the Mustionjoki river mouth.
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5

Figure 2. (a) 2D contour plots of dissolved (top) and particulate (bottom) Fe in the water column along the Mustionjoki

transect (Stations A‒K), operationally defined by filtration at 0.45 µm, June 2015. White circles represent sampling

positions (vertical depth resolution = 5m). (b) Data from a plotted against salinity, including trendlines for Fepart.

(polynomial) and Fediss. (logarithmic). Linear Conservative Mixing Lines (CML) are drawn between the high- and low-

salinity end-member samples for Fepart and Fediss. The inferred dominant processes controlling Fepart along the salinity10

transect are indicated by the grey bars.
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Figure 3. (a) 2D contour plots of molar N/C (top) and δ13C (bottom) of particulate organic matter (POM) along the

Mustionjoki transect, operationally defined by filtration at 0.45 µm, June 2015. White circles represent sampling

positions (vertical depth resolution = 5m). (b) Cross plot of molar N/C vs. δ13C of POM in June 2015 (circles, each5

representing a single sample from the 2D plot in a) and of published data for dissolved organic matter (DOM) from the

same transect (squares, surface water only, 6 samples each from campaigns in April, August and October 2011). In-

situ salinity at the time and location of sampling is indicated by the color scale. Samples marked with letters indicate

surface water samples. Organic matter source fields are taken from Goñi et al. (2003).

10
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Figure 4. (a) Cross plot of molar N/C vs. δ13C of sedimentary organic matter along the Mustionjoki transect. Stations

are indicated by the symbols. No isotope data was available for station J. Four or five samples are plotted for each

station, representing evenly spaced 2 cm thick slices throughout a GEMAXTM core of 30‒60 cm length (e.g. Station K:5

0‒2 cm; 8.5‒10.5 cm, 17‒19 cm, 25.5‒27.5 cm, 34‒36 cm). (b) Organic matter fractions of the same sediment samples,

derived from molar N/C ratios, assuming end-member values of N/C = 0.04 (terrestrial-derived) and 0.13

(phytoplankton-derived). Mean values are reported of the 4 or 5 samples from each core; Operational Fe speciation of

surface-sediment samples (0‒2 cm), derived from sequential extraction by the method of Poulton and Canfield (2005)

and an additional extraction for sulfide-bound Fe. No extraction data was available for station C.10
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Figure 5. (left) Mössbauer spectra of powdered surface sediments (0‒1 cm) from Stations A and D, sampled in 2015

(0.0 and 7.5 km respectively from the river mouth of the Mustionjoki transect). Sub-spectra of Fe-bearing sedimentary5

components (colored lines) were combined using a linear combination fitting (LCF) routine to generate a sum spectrum

(black line) with the closest fit to the raw data (circles). Concentrations of each component, and Fe2+/FeT ratios, were

estimated from the LCF model. Mössbauer fitting parameters are listed in Table 3. (right) Sequential extraction results

from the same samples, showing the complete speciation of Fe according to the method of Poulton and Canfield (2005)

and an additional extraction for sulfide-bound Fe. The interpreted dominant Fe phases in each stage of the sequential10

extraction are given in the right column.
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Figure 6. (left) Down-core operational Fe speciation for Stations A, D, and J (0.0, 7.5 and 25.7 km respectively from the

river mouth of the Mustionjoki transect), derived from sequential extraction by the method of Poulton and Canfield5

(2005) and an additional extraction for sulfide-bound Fe. Thickness of bars corresponds to thickness of sampled

interval (i.e. 1 or 2 cm). Note that not all depth intervals were sampled. (right) Down-core bulk chemical profiles from

the same cores. Total Fe and S were determined by ICP-OES analysis of powdered sediments digested by

HF+HClO4+HNO3,  while  Corg was determined by thermal combustion of powdered sediments (see text for further

details). The depth interval corresponding to 1970 is estimated from the peak in concentrations of total lead (Pbtot) as10

determined by ICP-OES (see Supplementary information).
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Figure 7.  Pore water chemical profiles from Stations A, D and J (0.0, 7.5 and 25.7 km respectively from the river mouth

of the Mustionjoki transect). See text for methodological details. SMTZ = Sulfate-Methane Transition Zone.5
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Figure 8.  Fe/Al weight ratios for surface sediment samples along the Mustionjoki (0‒2 cm; Stations A‒K) and

Paimionjoki (0‒1 cm; Stations L‒Q) transects. Linear regression lines are shown for each transect. Typical values for

surface sediments of the Baltic Sea shelves (Fe/Al =0.5-0.6, Eastern Gotland basin, Lenz et al., 2015) are shown for5

comparison.
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