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Abstract. Carbon (C) turnover time is a key factor in determining C storage capacity in
various plant and soil pools as well as terrestrial C sink in a changing climate. However, the
effects of C turnover time on ecosystem C storage have not been well explored. In this study,
we compared mean C turnover times (MTTs) of ecosystem and soil, examined their
variability to climate, and then quantified the spatial variation in ecosystem C storage over
time from changes in C turnover time and/or net primary production (NPP). Our results
showed that mean gross primary production (GPP)-based ecosystem MTT (MTTec cprp =
Cpool/GPP, 25.0+2.7 years) was shorter than soil MTT (MT Tsoil = Csoit/ NPP, 35.5 +1.2 years)
and NPP-based ecosystem MTT (MTTec_npp = Cpool/NPP, 50.8+3 years, Cpool and Csoil
referred to ecosystem or soil C storage, respectively). At the biome scale, temperature is the
best predictor for MTTec (R? = 0.77, p<0.001) and MT Tsoil (R? = 0.68, p<0.001), while the
inclusion of precipitation in the model did not improve the performance of MTTec (R? =
0.76, p<0.001). Ecosystem MTT decreased by approximately 4 years from 1901 to 2011
when only temperature was considered, resulting in a large C release from terrestrial
ecosystems. The resultant terrestrial C release caused by the decrease in MTT only accounted
for about 13.5% of that due to the change in NPP uptake (159.3 + 1.45 vs 1215.4 + 11.0Pg

C). However, the larger uncertainties in the spatial variation of MTT than temporal changes



33 would lead to a greater impact on ecosystem C storage, which deserves further studies in the
34  future.

35  Key words: ecosystem, mean turnover time, MAT, MAP, biome scale
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1 Introduction

Rising atmospheric CO, concentrations and the resultant climatic warming can substantially
impact global carbon (C) budget (IPCC, 2007), leading to a positive or negative feedback to
global climate change (Friedlingstein et al., 2006; Heimann and Reichstein, 2008).
Projections of earth system models (ESMs) show a substantial decrease in terrestrial C
storage as the world warms (Friedlingstein et al., 2006), but the decreased magnitude is
difficult to be quantified due to the complexity of terrestrial ecosystems in response to global
change (Chambers and Li, 2007; Strassmann et al., 2008). For example, experimental and
modeling studies have shown that elevated CO, would enhance NPP and terrestrial C storage
(Nemani et al., 2003; Norby et al., 2005), but warming could increase ecosystem C release,
contributing to reduced C storage, especially in the colder regions (Atkin and Tjoelker, 2003;
Karhu et al., 2014). Therefore, the response of terrestrial C storage to climate change depends
on the responses of C flux and turnover time in various C pools (i.e., plant, litter and soil)
(Parton et al., 1987; Potter et al., 1993; Luo et al., 2003; Xia et al., 2013). When simulated
soil C from CMIP5 earth system models have been evaluated, global soil C changed 5.9-folds
across models in response to a 2.6-fold variation in NPP and a 3.6-fold variation in global soil

C turnover times (Todd-Brown et al. 2013).
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In a given environmental condition, ecosystem C storage capacity refers to the amount of
C that a terrestrial ecosystem can store at the steady state, determined by C influx and
turnover time (Xia et al., 2013). External environmental factors, such as climate change and
land use change, would dynamically influence both ecosystem C influx and turnover time and
then change terrestrial C storage capacity. Thus, the changed magnitude of ecosystem C
storage can be expressed by changes in both NPP and mean C turnover time (Luo et al.,
2003). The spatial variation of NPP changes over time and the effects of climate change have
been relatively well quantified by manipulative experiments (Rustad et al., 2001; Luo et al.,
2006), satellite data (Zhao and Running, 2010), and data assimilation (Luo et al., 2003; Zhou
and Luo, 2008; Zhou et al., 2012). It has been shown that differences in NPP contributed
significantly to differences in soil C across models using a reduced complexity model with
NPP and temperature (Todd-Brown et al. 2013). In contrast, the spatial variation of C
turnover time in terrestrial ecosystems and its contribution to C storage have not been well
quantified, especially at the regional or global scale.

Ecosystem C turnover time is the average time that a C atom resides in an ecosystem from
entrance to the exit (Barrett, 2002). Several methods have been used to estimate the C

turnover time, such as C balance method by estimating ratios of C pools and fluxes (Vogt et



70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

al., 1995), C isotope tracing (Ciais et al., 1999; Randerson et al., 1999), and measurements of
radiocarbon accumulation in the undisturbed soils (Trumbore et al., 1996). However, most
methods mainly focused on various C pools (i.e., leaf, root, soil) and at small scale (i.e. C
isotope tracing, radiocarbon). Spatial pattern of ecosystem C turnover time is relatively
difficult to be estimated (Zhou and Luo, 2008), which needs to incorporate individual plant
and soil C pools and their C turnover time into ecosystem models. The inverse modeling has
been used to estimate ecosystem mean C turnover time in USA and Australia with high
spatially heterogeneous distribution (Barrett, 2002; Zhou and Luo, 2008; Zhou et al., 2012).
The ratio of C storage to flux is another common method to estimate ecosystem turnover time
at region or global scale (Gill and Jackson, 2000; Chen et al., 2013). For example, Carvalhais
et al. (2014) had estimated ecosystem C turnover time as the ratio of C storage (soil and
vegetation C) and GPP and examined their correlations to climate. However, it mainly
focused on the comparison of global C turnover time calculated by modeled results from
CIMPS5 with those from observed data. In our study, we extended litter C and vegetation C
from different datasets into ecosystem C storage to estimate C turnover time and evaluated
their uncertainty. We also examined the changes in ecosystem C storage over time from

changes in C turnover time and/or NPP.
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In past decades, two types of mean C turnover times have been suggested for terrestrial
ecosystems: the GPP-based or the NPP-based mean turnover time according to the terrestrial
C models with GPP or NPP as their C inputs, respectively (Thompson and Randerson et al.,
1999, NPP is GPP minus plant respiration). In addition, soil C turnover time are usually
estimated using field sampling as the global turnover time for model validation. However, the
differences in C turnover times among versions C pools remain unclear. Therefore, we
calculated the GPP-based, NPP-based ecosystem and soil turnover times through the similar
method to explore their difference and its variability to climate. Thus, our objectives were: 1)
to estimate the difference between GPP- and NPP-based ecosystem and soil mean C turnover
time, 2) to explore their relationships with climatic factors, and 3) to quantify ecosystem C

storage over time from changes in ecosystem C turnover time from 1901 to 2011.

2 Materials and methods

2.1 Data collections

Three datasets were used to calculate ecosystem and soil mean C turnover times, examine
their variability to climate, and investigate effects of C turnover time on ecosystem C storage,

including C influx (GPP and NPP), C storage in different C pools (soil, plant and litter), and
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climate variables (temperature, precipitation and potential evapotranspiration). GPP and NPP
were extracted from MODIS products (MOD17) on an 8-day interval with a nominal 1-km
resolution since Feb. 24, 2000. The multi-annual average GPP/NPP from 2000 to 2009 with
the spatial resolution of 0.083° x 0.083° were used in this study (Zhao and Running, 2010).
The harmonized World Soil Database (HWSD, Hiederer and Kdchy, 2012) provided
empirical estimates of global soil C storage, a product of the Food and Agriculture
Organization of the United Nations and the Land Use Change and Agriculture Program of the
International Institute for Applied System Analysis (FAO/IIASA/ISRIC/ISSCAS/IRC, 2012).
Global soil organic C (SOC) at the topsoil (0-30cm) and subsoil layers (30-100cm) has been
estimated using the amended HWSD with estimates derived from other global datasets for
these layers (Hiederer and Koéchy 2012). We used the amended HWSD SOC to calculate C
turnover time (http://eusoils.jrc.ec.europa.eu). However, HWSD only provides an estimate of
soil C storage at the top 1 m of soil and has largely underestimated total soil C. It has been
indicated that global SOC storage in the top 3 m of soil was 56% more than that for the first
meter, which could change estimates of the turnover time (Jobbagy and Jackson 2000). We
discussed this caveat in the discussion section of this study. It is well known that HWSD has

underestimated soil C in high latitude (Carvalhais et al, 2014). We thus estimated turnover
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time in high latitudes with the Northern Circumpolar Soil Carbon Database (NCSCD), which
is an independent survey of soil C in this region (Tarnocai et al., 2009). For biomass, Gibbs
(2006) has estimated the spatial distribution of the above- and below-ground C stored in
living plant material by updating the classic studies of Olson et al. (1983, 1985) with a
contemporary map of global vegetation distribution (Global Land Cover database,
Bartholomé and Belward, 2005). Each cell in the gridded data set was coded with an estimate
of mean and maximum C density values based on its land cover class, so this dataset mainly
represents plant biomass C at a biome level (Gibbs, 2006).

The litter dataset was extracted from 650 published and unpublished documents (Holland
et al., 2005). Each record represents a site, including site description, method, litterfall, litter
mass and nutrients. We calculated the mean and median of litter mass for each biome, and
then assigned the value for each grid according to the biome types, forming the global pattern
of litter C storage using the method of Matthews (1997) in ARCGIS software (ESRI Inc.,
Redlands, CA).

Global climate databases produced by the Climate Research Unit (CRU) at the University
of East Anglia were used to analyze the climatic effect on ecosystem mean C turnover time.

We used mean 0.5° x 0.5° gridded air temperature, precipitation and potential
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evapotranspiration in CRU_TS 3.20 (Harris et al., 2013), specifically their means from 2000
to 2009.

We aggregated all datasets into a biome level for data match, so the biome map was
extracted from the GLC 2000 (Bartholomé and Belward, 2005) and regulated by MODIS. We
assigned 22 land cover class among three temperature zones (i.e., tropical, temperate and
boreal) by taking the most common land cover from the original underlying 0.083° x 0.083°
data. Eight typical biomes were zoned with ARCGIS 10 in corresponding to plant function
types (PFTs) in CABLE model as described in Xia et al (2013): evergreen needleleaf forest
(ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous
broadleaf forest (DBF), tundra, shrubland, grassland and cropland. All of the data were re-
gridded by ARCGIS 10 to a common projection (WGS 84) and 1 ° x1° spatial resolution. The
re-gridding approach for C fluxes and pools (i.e., GPP, NPP, soil C and litter C) assumed
conservation of mass that a latitudinal degree was proportional to distance for the close grid
cells (Todd-Brown et al., 2013). A nearest neighbor approach were used for land cover
classes and a bi-linear interpolation were used for climate variables (i.e., temperature,

precipitation).

10
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2.2 Estimation of ecosystem mean C turnover time
Terrestrial ecosystem includes many C pools with largely varying turnover times from days to
millennia, but it is difficult to collect the observed datasets of C pools and flux for each
component (e.g., leaf, wood and different soil C fractions) at the global scale. It thus is
impossible to estimate individual pools’ turnover time. In this study, we estimated the whole-
ecosystem C turnover time as the ratio of C pools to flux based on the observed datasets.
Certainly, there were some limitations when the ecosystem was considered as a single pool,
which further discussed in the discussion section. For terrestrial ecosystems, the C pools
(Cpool) is composed of three parts: plant, litter and soil, and C outfluxes include all C losses
(autotrophic [Ra] and heterotrophic respiration [Rn]) as well as by fires and harvest. At the
steady state, C outflux equals to C influx, which is the C uptake through GPP, so ecosystem C
mean turnover time (MTTec) can be equivalently calculated as the ratio between C storage in
vegetation, soils and litters, and the influx into the pools, GPP:

_ Cpoot

MTTgc= GPP (1D

However, the steady-state in nature is rare, so we relax the strict steady-state assumption
and computed the ratio of Cpool to GPP as apparent whole-ecosystem turnover time and

interpret the quantity as an emergent diagnostic at the ecosystem level (Carvalhais et al.,

11
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2014). We used multi-year GPP to calculate MTT in order to reduce the effect of the non-
steady state, since it was difficult to evaluate how this assumption would affect model results.
To make better comparison, we also estimated the NPP-based ecosystem MTT (MTTec_nep =

Cpool/NPP). The similar method was used to calculate soil MTT (MT Tsoil = Csoil/NPP).

2.3 The climate effects on ecosystem mean C turnover time
To explore the combining effects of precipitation and temperature on ecosystem and soil C

turnover time, aridity index (Al) was calculated as follows:

Al= MAP )
~ PET
where PET is the potential evapotranspiration and MAP is mean annual precipitation
(Middleton and Thomas, 1997). Al is a bioclimatic index including both physical phenomena
(precipitation and potential evapotranspiration) and biological processes (plant transpiration)
related with edaphic factors.
The relationships were examined between MTT and mean annual temperature (MAT, °C),
MAP (mm), and Al at the biome level. The regression analyses (MTT = qe~bMATorMAPY

were performed in STATISTICA 10 (StatSoft Inc., 2011), where a and b are the coefficients.

The coefficient of determination (R?) was used to measure the phase correlation between

12
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MTT and climate factors. Here, we also calculated a Q1o value (i.e., Q1o, a relative increase in
mean turnover time for a 10°C increase in temperature, Q1o = €%, b, the coefficients

of MTT = aqe PMATOTMAP) \which is used in most models to simulate C decomposition.

2.4 The effects of turnover time on ecosystem C storage
Ecosystem C storage capacity at the steady state is represented by NPP x MTT (Lou et al.,
2003), so the difference of ecosystem C storage from 1901 to 2011 could be calculated as

follows:

ACpool = NPP,.,, x MTT,y,, — NPP,, x MTT,,
— ACpool = NPP,,, x MTT,,, — (NPP,,, — ANPP) x (MTT,,,, — AMRT)
— ACpool = NPP,,,, x AMTT + MTT,,, x ANPP - ANPP x AMTT

where NPP1go1(2011) and MT T1g01(2011) refer to NPP and MTT at time 1901 or 2011. ACpool
(ANPP or AMTT) is the difference between ecosystem C storage (NPP or MTT) at time 2011
and that at time 1901. The first component (NPP2011xAMTT) represents the effects of
changes in MTT on ecosystem C storage. The second component (ANPPxMTT2o11) is the
effects of changes in NPP on ecosystem C storage, and ANPPXAMTT is the interactive
effects of both changes in NPP and MTT.

To assess ecosystem C storage from the changes in MTT or NPP, ecosystem MTT in 1901

13
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and 2011 was calculated using an exponential equation between ecosystem MTT and
temperature (MTT = ae~"MAT), Here, we assumed that the spatial correlation between
temperature and MTT was identical to the temporal correlation between these variables. NPP
in 2011 was derived from products (MOD17) and NPP in 1901 was averaged from the eight
models’ simulated results (CanESM2, CCSM4, IPSL-CM5A-LR, IPSL-CM5B-LR, MIROC-
ESM, MIROC-ESM-CHEM, NorESM1-M and NorESM1-ME). Our previous study found
that the modeled NPP was near to MODIS-estimated NPP and their difference was mostly

less than 0.05 kg C m? yr (Yan et al., 2014).

2.5 Uncertainty analysis and sensitivity Analysis

Limitation of the above datasets is that the uncertainties are poorly quantified. The global
mean of C fluxes (GPP and NPP) and pools (soil, litter, and plant) were calculated by 1000
simulations, respectively, through Markov chain Monte Carlo (MCMC) sampling from a
gamma distribution (CRAN: MCMCpack, Martin, et al., 2011). For each variable, the
confidence interval (CI) was estimated as the 2.5 and 97.5 percentile of mean values of the
1000 simulations. It was also applied to estimate the confidence interval of ecosystem C

storage and ecosystem mean C turnover time.
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3  Results

3.1 Ecosystem C storage

On average, terrestrial C storage (plant biomass + soil + litter) was 22.0 kg C m (with a 95%
Cl of 21.85- 22.50 kg C m™) at the global scale, which largely varied with vegetation and soil
types (Fig. 1). Among the forest biomes, ecosystem C storage was the highest in boreal
evergreen needleaf forest (ENF) and the lowest in deciduous broadleaf forest (DBF). Soil C
was the largest C pool in terrestrial ecosystems, accounting for more than 60% of ecosystem
C storage, while C storages in litter and plant biomass only represented less than 10% and
30%, respectively (Fig. 1b). Among eight typical biomes associated with plant functional
types (PFTs, Table 1), the order of ecosystem C storage followed as: ENF (34.84+0.02 kg C
m2) > deciduous needleleaf forest (DNF, 25.30+0.03 kg C m)> evergreen broadleaf forest
(EBF, 22.700.01 kg C m?)> shrubland (18.29+0.02 kg C m?) > DBF (16.51+0.02 kg C m’
2) > tundra (14.16 +0.02 kg C m)/cropland (14.58 +0.01kg C m) > grassland (10.80+0.01

kg C m?).

3.2 Mean C turnover time

15
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Ecosystem mean C turnover time (MTT) was 25.0 years (with a 95% CI of 23.3-27.7 years)
based on GPP data and 50.8 years (with a 95% CI of 47.8-53.8 years) on NPP data (Table 1),
while soil MTT was shorter than NPP-based MTT with the value of 35.5 years (with a 95%
Cl of 34.9-36.7 years). MTT varied among biomes due to the different climate forcing (Table
1 and Fig 2). The longest MTT occurred in high latitude while the shortest one was in tropical
zone. Among the forest biomes, DNF had the longest MTT with the lowest mean temperature
(-7.9 °C), while the shortest MTT was in EBF with the highest temperature (24.5°C) and
precipitation (2143 mm). Although ecosystem C storage was low in tundra (14.16 kg C m™),
it had the longest MTT. Therefore, the order of GPP-based ecosystem MTT among biomes
differed for ecosystem C storage, with tundra (99.704 £ 6.14 years) > DNF (45.27+
2.43years) or ENF (42.23+2.01 years) > shrubland (27.77+2.25 years) > grassland
(26.00£1.41 years) > cropland (14.91+0.40years) or DBF (13.29+ 0.68years) > EBF
(9.67+0.21 years). Soil MTT had the similar order to ecosystem MTT with the different
values (Table 1). In the high latitudes, ecosystem MTT could increase up to 145 years if soil
C storage was calculated from NCSCD dataset (500 vs. 290 Pg C from HWSD, Fig. 3) due to
higher soil C storage, while the global average of soil MTT could increase up to 40.8 years

when NCSCD dataset was considered.
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3.3 Effects of climate on ecosystem mean turnover time (MTT)

Ecosystem MTT significantly decreased with mean annual temperature (MAT) and mean
annual precipitation (MAP) as described by an exponential equation: MTT = 57.06e~0-07MAT
(R?=0.77, P<0.001) and MTT = 103.07¢~%001MAP (R2=( 34, P<0.001, Fig 4). There was
no correlation between ecosystem MTT and aridity index (Al, Fig. 4c). The similar
relationships occurred between soil MTT and MAT/ MAP (MTT,,;, = 58.40e~-08MAT
R?=0.68, P<0.001) and MTT,; = 109.98¢~0-002MAP 'R2=0 48 P<0.001, Fig. 5). There was
the different temperature sensitivity of mean turnover time (Q1o) for ecosystem MTT
(Q10=1.95) and soil MTT (Q10=2.23) at the biome scale. When MAP was incorporated into a
multivariate regression function of ecosystem MTT with MAT, the relationships could not be
significantly improved. MAP improved the explanation of variance of soil MTT (R? from
0.68 to 0.76), although there was the significant covariance of MAP and MAT (R?=0.60).
However, the relationship between MTT and Al was not clear due to the scale limit. When we
separated ecosystem MTT into two categories according to aridity index (i.e., Al >1 and Al<
1), the relationships between ecosystem MTT and MAT did not significantly change (Figs.

4e, h) compared with that with all data (Fig. 4b). The relationship of ecosystem MTT with
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MAP significantly increased when Al > 1, but decreased when Al <1. However, the same
regression function of soil MTT with MAT largely improved the explanation of the variance
when AI>1 (Fig. 5e, MTT = 58.67¢~%98MAT R2=0 76, P<0.001). The relationships between

soil MTT and MAP were both improved when Al>1 and Al<1 (Fig. 5e, h).

3.4 Temporal variations of ecosystem mean turnover time and C storage
The average increase in global air temperature was around 1°C from 1901 to 2011 based on
the Climate Research Unit (CRU) datasets, ranging from -2.5 to 5.9 °C (Fig. 6¢). When the
regression function between ecosystem MTT and MAT was used to estimate ecosystem MTT
in 1901 and 2011 (Fig. 4), the ecosystem MTT decreased by approximately 4 years on
average (Fig.6a). The largest change in ecosystem MTT occurred in the cold zones. In tundra,
ecosystem MTT decreased by more than 10 years due to the larger increase in temperature
(~2°C) than other regions. The average NPP increased by approximately 0.3+0.003 Kg C m
yr! over 110 years with most range of 0~0.6 Kg C m2 yr'! (Fig. 6b).

The changes in ecosystem MTT and NPP across 110 years would cause decrease or
increase in terrestrial C storage. Ecosystem C storage decreased by 159.3 + 1.45 Pg C from

1901 to 2011 (AMTT x NPP) from the decrease in MTT, with the largest decrease in tundra
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and boreal forest (more than 12 g C m) and little decrease in tropical zones (Fig. 7a & ).
The interactive changes of both NPP and MTT caused a decrease of 129.4+1.31 Pg C
(AMTT x ANPP) with the similar spatial pattern (Fig. 7c). However, the increase in NPP
directly raised ecosystem C storage up to 1215.4 + 11.0 Pg C from 1901 to 2011 with a range
of 30-150 g C m in most areas (MTT x ANPP, Fig. 7b). The MTT-induced changes in
ecosystem C storage only accounted for about 13.5% of that driven by NPP due to the
different weights (AMTT X NPP vs. MTT x ANPP ). The spatial pattern of the NPP-driven
changes mostly represented the spatial pattern of the changes in ecosystem C storage (Fig.

7e).

4 Discussion

4.1 Global pattern of mean turnover time

In this study, we used the ratio of C storage to C flux to calculate the GPP-based, the NPP-
based and soil MTT and compared their differences. The global average of ecosystem MTT
was 25.0 years for GPP-based estimation and 50.8 years for NPP-based one, and soil MTT
was 35.5 years, which were within the global mean turnover times (26-60 years) estimated by

various experimental and modeling approaches (Randerson et al., 1999; Thompson and
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Randerson, 1999). In our study, the mean GPP-based MTT was slightly longer than that from
23 years, which has been previously reported using the same method (Carvalhais et al.,
2014). The difference may result from two aspects. Firstly, ecosystem C storage in this study
was the sum of soil, vegetation, and litter C pools, whereas Carvalhais et al. (2014) only
considered soil and vegetation C pools. Secondly, the data source of global vegetation C
storage was different with our study from Gibbs (2006), while Carvalhais et al. (2014) from a
collection of estimates for pan-tropical regions and radar remote-sensing retrievals for
northern and temperate forests. The differences between GPP-based and NPP-based MTT
were determined by the ratio of GPP and NPP, which was largely influenced by the
assumptions of the MODIS NPP algorithm. The ratio of GPP-based and NPP-based MTT
(0.49) was smaller than that estimated by Thompson and Randerson (1999, 0.58, 15 year vs.
26 year, respectively), largely resulting from different model assumptions for GPP-based
(higher normalized storage response function for low turnover time) and NPP-based MTT
(for high turnover time) in Thompson and Randerson (1999). Our NPP-based MTTs for the
conterminous USA (37.2 years) and Australia (33.4 years) were shorter than the estimates by
the inverse models (46 to 78 years) (Barrett, 2002; Zhou and Luo, 2008; Zhou et al., 2012).

The NPP-based MTT was shorter than the estimated results from Xia et al. (2013) using the
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CABLE model, although the order of ecosystem MTT across forest biomes was similar. This
is because that C turnover time using inverse analysis or CABLE model may be associated
with separating ecosystems into several plant and soil C pools with their distinct C turnover
time, whereas in our study we assumed an ecosystem as one pool.

The spatial patterns of ecosystem and soil MTTs were similar. The magnitude of the
difference between NPP-based ecosystem and soil MTTs was determined by the turnover
time of vegetation and litter, which was related to plant functional types (PFTs). For instance,
the difference between NPP-based and soil MTTs in Australia was smaller (33.4 and 29.8
years, respectively) compared with that in other regions, because one of the PFTs accounting
for a large areas of Australia was spare grass with short turnover time (3.5 years on average).
Additionally, different ecosystems with a specific PFT may have diverse turnover time due to
climatic effects. For example, boreal and tropical needleleaf evergreen forest have similar
ecosystem C storage (~34 vs. 40 kg C m™) and vegetation C storage (~3.5 kg C m™).
However, NPP-based and soil MTTs for boreal neadleaf evergreen forest were about 116
years and 98 years, respectively, whereas that for tropical one were about 12 years and 8
years. High temperature and humidity in tropical zones, which promote decomposition

processes, may largely contribute to the short turnover time compared to those in boreal zone
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(Sanderman et al., 2003).

In our study, we only used soil C in the top 1 m to estimate ecosystem MTT, which would
be underestimated for the large amounts of C stored between 1 m and 3 m depth (Jobbagy
and Jackson, 2000). According to the SOC estimation of Jobbagy and Jackson (2000), the
MTT in the top 3 m could increase to 34.63 years for GPP-based, 70.68 years for NPP-based
and 55.38 years for soil. Therefore, the C storage in deep soil layers (>1m) should be
considered to estimate ecosystem MTT and the accurate estimate of the deep soil C storage,

which deserves to be further explored in the future.

4.2 The sensitivity of turnover time to climate

In our study, the estimated MTT was shortest in tropical zones and increased toward high-
latitude zones (Fig. 2), which were often affected by the spatial patterns of temperature and
moisture. Our results were consistent with previous studies based on SOC (Schimel et al.,
1994; Sanderman et al., 2003; Frank et al., 2012; Chen et al., 2013) and root C pools (Gill
and Jackson, 2000). Ecosystem MTT had negative exponential relationships with MAT (Fig
4), similar to those with soil MTT, due to temperature dependence of respiration rates (Lloyd

and Taylor, 1994; Wen et al., 2006). Our results showed that the temperature sensitivity of
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ecosystem MTT was lower than that of soil C pool (Q1o0: 1.95 vs. 2.23, Figs. 4 &5), which has
also been previously reported (Sanderman et al., 2003), because wood would decompose at
much lower rates than SOM (Zhou et al., 2012). Ecosystem MTT had no significant
differences between very humid zone (Al1>1.0) and other zones (Al<1.0, Fig 4). However, the
better relationships between MTT and MAP occurred in very humid zone (A1>1.0) than other
zones, which was similar to soil pool, but soil MTT have the higher sensitivity to
precipitation than ecosystem MTT under Al>1. SOM decomposition often increases with
added moisture in aerobic soils (Trumbore, 1997; Bai et al., 2017), because the metabolic
loss of various C pools increases under warmer and wetter climates (Frank et al., 2012),
resulting in high sensitivity of MTT to MAP. Thus, the fitting regression combining MAT and
MAP clearly improved soil MTT (R?=0.76, p<0.001). In arid or semi-humid regions, the
increase in C influx with MAP was more rapid than that in decomposition (Austin and Sala,
2002). In addition, water limitation could suppress the effective ecosystem-level response of
respiration to temperature (Reichstein et al., 2007). At an annual scale, temperature is still the
best predictor of MTT (Chen et al., 2013), which explained up to 77% of variation of MTT
(Fig 4). Other ecosystem properties (e.g., ecosystems types, soil nitrogen) could explain the

rest of the variation for the MTT estimation.
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4.3 Effects of the changes in mean turnover time on ecosystem C storage

Terrestrial ecosystems play an important role in regulating C balance to combat global
change. Current studies suggest that the terrestrial biosphere is currently a net C sink (Lund et
al., 2010), but it is difficult to assess the sustainability of ecosystem C storage due to the
complexity of terrestrial ecosystem in response to global change (Luo, 2007; Zhou et al.,
2016). In this study, we quantified the changes in ecosystem C storage from 1901 to 2011 and
partitioned it into three parts from the changes in NPP, in ecosystem MTT, and in both NPP
and MTT (seeing equation 3). Our results showed that the decrease in MTT increased
ecosystem C loss over time due to the increase in C decomposition rates. However, increased
NPP enhanced ecosystem C uptake due to the decreased CO; inputs to atmosphere and
increased vegetation C stocks.

Current datasets have showed an increase in NPP (e.g., Hicke et al., 2002; Potter et al.,
2012), leading to increased terrestrial C uptake. Our results also showed that the NPP
increased by approximately 0.3 kg C m yr? from 1901 to 2011 and the resultant terrestrial C
uptake was 1215.4 Pg C (with average year of 11.0 Pg C yr'). The ecosystem C storage in

conterminous USA increased 0.4 Pg C yr, which was larger than that from inverse models
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392 (Zhou and Luo, 2008; Zhou et al., 2012) and was comparable to C sink from atmospheric
393 inversion (0.30-0.58 Pg C yr!, Pacala et al., 2001). The shortened MTT caused C losses from
394 ecosystems from 1901 to 2011 (about 1.45 Pg C yr?), indicating that ecosystem C storage
395  decreased with climate warming (Fig. 7e). However, ecosystem C losses from the decrease in
396  MTT only accounted for 13.5% of that driven by changes in NPP, so terrestrial ecosystem
397  was still a net sink. The largest changes of MTT occurred in high latitude regions (Fig. 6a),
398  resulting in the largest loss of terrestrial C (Fig. 7e), where it is more vulnerable to climate
399  change (Zimov et al., 2006). However, the direct release of CO- in high latitude through

400 thawing would be another large source of decreasing ecosystem C storage under climate

401  warming (Grosse et al., 2011), which cannot be assessed by MTT or NPP. Interestingly, our
402  results suggested that the substantial changes in terrestrial C storage occurred in forest and
403  shrubland (50% of total) due to the relatively longer MTT, leading to the larger terrestrial C
404  uptake driven by NPP increase compared with others. In addition, the C uptake in cropland
405  and grassland could be underestimated probably due to the ignorance of the effects of land
406  management.

407

408 4.4 Limitation in estimating mean turnover time and its effects to climate
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Estimated MTT in this study were based on C influxes (GPP or NPP) and C pools in plants,
litter and soil at the grid scale and can be used to quantify global, regional or biome-specific
MTT, which was very important to evaluate terrestrial C storage. However, the balance
method and data limitation could cause biases to some degree in estimated ecosystem MTT.
First, we assumed that ecosystem was at the steady state to estimate MTT. It is difficult to
define the steady state, especially for soil C dynamics (Luo and Weng, 2011). In reality,
maintaining a steady state is rare for a long time and ecosystems could be only close to reach
the steady state in the short time. For example, permafrost is thawing both gradually and
perhaps catastrophically (Schuur et al., 2008). Second, MTT was estimated on the basis of C
pool and flux measurements. The quality of the current datasets would determine the
accuracy of ecosystem MTT estimates. For example, the amendments of typological data
(derived from the global ISRIC-WISE datasets) and soil bulk density had largely improved
the estimates of the SOC storage from HWSD (1417 PgC) (Hiederer and Kochy, 2012). Soil
C storage calculated from NCSCD dataset would improve the ecosystem MTT in high
latitudes (Fig. 3), compared with that from HWSD datasets. The MTT in the top 1 m soil
increased to 30.3 years for GPP-based, 66.9 years for NPP-based and 45.7 years for soil when

SoilGrids was used compared with HWSD dataset (Hengl et al., 2014). However, it is
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difficult to quantify the uncertainty in MTT caused by uncertainties of the current datasets
due to lack of quantitative uncertainty in these datasets. In addition, disturbance and forest
age structure will influence large-scale accumulation biomass, the partitioning of C into pools
with different turnover times and thereby the estimates of long-term C storage and turnover
time (Zaehle et al., 2006), which cannot be reflected in the current algorithms. Probably, the
inverse modeling can be a feasible method to evaluate the effect of the disturbance and forest
age on the estimates of C turnover time (Zhou et al., 2012).

Third, the uncertainties in the relationships of ecosystem MTT with MAT and MAP would
influence the estimates of ecosystem MTT, causing additional uncertainty in ecosystem C
storage. To simplify the calculation, we aggregated all datasets into a biome level, leading to
fixed parameters across biomes. However, the response magnitude in soil respiration to
warming varied over time and across sites (Rustad et al., 2001; Davidson and Janssens,
2006), resulting in multiple temperature response function. Changes in MTT for 1901 and
2011 were estimated using the exponential function between MTT and temperature, resulting
in underestimation or overestimation of MTT and the resultant changes on ecosystem C
storage. For example, when the relationship between soil MTT and temperature was used

(MTT,;; = 58.40e~%98MAT) "the soil C storage due to MTT changes (NPPXAMTT) could
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decrease 161.42 Pg C and that due to NPP changes (ANPPxMTT) could increase 1125.6 Pg
C, which had the similar spatial pattern to the ecosystem. In addition, we assumed that the
current-day spatial correlation between temperature and MTT was identical to temporal
correlation between these variables. Such assumptions cannot further reflect some processes

like acclimation of microbial respiration to warming or shifts in plant species over time.

4.5 Implication for land surface models
Our results provided insights as to how MTT and ecosystem C storage varied with climate
and over time. Our study could thus offer several suggestions for future experimental and
modeling research with the goals to improve estimates of ecosystem C storage. First, the
substantial changes in terrestrial C storage occurred in forest and shrubland covering large
area with the relatively long turnover time, because MTT dominated the uncertainty in the
estimates of terrestrial C storage. Therefore, further work should focus on the accurate
estimation of C turnover time with numerous observational data at regional or global scale
and the evaluation of uncertainty from datasets and the assumption (e.g., the steady-state).
Second, there are inconsistent responses of ecosystem C turnover time to climate variables

in the current global vegetation models (Friend et al., 2013). Our results showed that the
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temperature sensitivity of ecosystem C turnover time was lower than that of soil C pool (Q1o:
1.95 vs. 2.23), while the relationship between ecosystem C turnover time and precipitation
under low aridity conditions (Al>1) was much stronger than those for all or Al<1 conditions.
Although global C models have currently considered moisture stress on vegetation, the
incorporation of moisture or precipitation stress into soil decomposition should be
strengthened, especially in high-latitude zones with greater warming and increased

precipitation.

Data availability
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Unit (CRU_TS 3.20)) used in this study are open and shared. We provided full citations for

data sources in MS and the download links in the supplemental information.
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640  Table 1. The density of ecosystem C storage (kg C m), mean turnover time (MTT, years),
641  mean annual temperature (MAT), and precipitation (MAP) for the eight biomes. Ecosystem

642  MTT were calculated based on GPP and NPP, respectively.

Ecosystem Ecosystem MTT (years)

Soil MAT MAP

Biome C storage
MTTepr MTTnep MTT(years) (°C)  (mm)

(kg C m?)
ENF 34.840.02 42.23+2.01 58.54+2.16  39.62+1.22 3.5 760.5
EBF 22.74£0.01 9.67+0.21 18.43+0.43 8.96+0.21 245 21435
DNF 25.3+0.03 45.27+2.43 75.80+2.71  53.50+1.71 -79 4014
DBF 16.5+0.02 13.2940.68 22.02+£1.00  12.08+0.69 16.1 988.4
tundra 14.2+0.02 99.74+6.14  132.86+4.40 122.88+5.54 -11.1 291.1
Shrubland  18.3+0.02 27.77+2.25 43.41+2.37  36.22+2.01 9.3 6436
Grassland  10.8+0.01 26.00+1.41 39.51+2.11  34.37+2.20 9.4 605.5
Cropland  14.6+0.01 14.91+0.40 23.06+0.84  17.72+0.58 154  885.7

643 *ENF: Evergreen Needleleaf forest; EBF: Evergreen Broadleaf forest; DNF: Deciduous Needleleaf forest; DBF: Deciduous

644 Broadleaf forest.
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Figure Caption List

Figure 1. Spatial pattern of soil C (a), biome C (b), litter C (c), and ecosystem C storage (d)
at the grid scale (1°x1°). Unit: kg C m™. Ecosystem C storage was calculated from plant
biomass, soil, and litter C pools.

Figure 2. Spatial pattern of mean turnover time (MTT, years) based on biome types and GPP
(@) or NPP (b) and soil C (c) using the C balance methods.

Figure 3. Spatial pattern of mean turnover time (years) in high latitude based on soil C
storage from HWSD data (a) and NCSCD data (b).

Figure 4. Relationships between ecosystem mean turnover time (MTT) and multi-annual
temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (Al, c). Each data
point stands for average values of each biome. Biomes were assigned into 62 types according
to land cover and three temperature zones.

Figure 5. Relationships between soil mean turnover time (MTTsoii) and multi-annual
temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (Al, c). Each data
point stands for average values of each biome. Biomes were assigned into 62 types according

to land cover and three temperature zones.
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Figure 6. Changes in mean ecosystem mean turnover time (MTT, unit: year) driven by
temperature change (a), changes in NPP (unit: kg C m2yr?, b), and changes in temperature
(°C, c¢) from 1901 to 2011. Changes in MTT from 1901 and 2011 were calculated by the
temperature-dependence function showing in Fig. 4. Changes in NPP from 1901 and 2011
were derived from models’ average and MODIS.

Figure 7. Altered ecosystem carbon storage due to changes in mean turnover time (MTT,
NPP2011xAMTT, a), net primary production (NPP, MTT2011xANPP, b), and interaction of
NPP and MTT (AMTTxANPP, c). Panels d and e are total altered ecosystem C storage
changes due to changes in MTT, NPP, and MTTxNPP and their latitudinal gradients from
panels a-d, respectively. Unit: g C m? yr* (ACpo0; = NPPg1q X AMTT 4 MTT,414 X

ANPP — ANPP x AMTT).
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673
674 Figure 1. Spatial pattern of soil C (a), biome C (b), litter C (c), and ecosystem C storage
675  (d) at the grid scale (1°x1°). Unit: kg C m. Ecosystem C storage was calculated from plant

676  biomass, soil, and litter C pools.
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a) GPP-based MTT
100°W 60°W 20°W 20°E 60°E 100°E 140°E
900 1 1 1 1 1 1 1 1

70° N s
50°NA ~
30° N
10° NA
10° 84 .
30° $4
50° S+
b) NPP-based MTT
90°
70° N
50°Nq
30° NA
10° N
10°84 .
30° S
507 S % .
b) Soil MTT I - 102- 120
90°
70° N
50° N4
30° N
10° N-
10° S84 .
30° 8-
50° 8-
' T . T y : T .
180° 100° W 60° W 20°W 20°E 60°E 100°E 140°E 180°

678

679 Figure 2. Spatial pattern of mean turnover time (MTT, years) based on biome types and
680  GPP (a) or NPP (b) and soil C (c) using the C balance methods.

681
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a) MTT based on HWSD soil C
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684 Figure 3. Spatial pattern of mean turnover time (years) in high latitude based on soil C

685  storage from HWSD data (a) and NCSCD data (b).
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688 Figure 4. Relationships between ecosystem mean turnover time (MTT) and multi-annual

689  temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (Al, c). Each data
690  point stands for average values of each biome. Biomes were assigned into 62 types according

691  to land cover and three temperature zones.
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692
693 Figure 5. Relationships between soil mean turnover time (MT Tsoit) and multi-annual

694  temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (Al, c). Each data
695  point stands for average values of each biome. Biomes were assigned into 62 types according

696  to land cover and three temperature zones.
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a) Changes in MTT from 1901 to 2011
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698 Figure 6. Altered mean ecosystem mean turnover time (MTT, unit: year) driven by
699  temperature change (a), changes in NPP (unit: Kg C m2yr?, b), and changes in temperature

700  (°C, c) from 1901 to 2011. Changes in MTT for 1901 and 2011 were calculated by the
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701  temperature-dependence function showing in Fig. 4. Changes in NPP in 1901 and 2011 were

702  derived from models’ average and MODIS.
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a) Altered ecosystem C storage due to changes in MTT b) Altered ecosystem C storage due to changes in NPP
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703

704 Figure 7. Altered ecosystem carbon storage due to changes in mean turnover time (MTT,
705  NPP2011xAMTT, a), net primary production (NPP, MTT2011xANPP, b), and interaction of
706 NPP and MTT (AMTTxANPP, c). Panels d and e are total altered ecosystem C storage

707  changes due to changes in MTT, NPP, and MTTxNPP and their latitudinal gradients from
708 panels a-d, respectively. Unit: g C m? yr* (AC,p0; = NPPyg11 X AMTT + MTTp015 X

709  ANPP — ANPP x AMTT).
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