

1 **Effects of carbon turnover time on terrestrial ecosystem carbon storage**

2 Yaner Yan^{1, 2}, Xuhui Zhou^{2, 3*}, Lifen Jiang⁴, Yiqi Luo^{4, 5, 6}

3 ¹Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Collaborative
4 Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin
5 Normal University, Huai'an 223300, China

6 ²Tiantong National Station for Forest Ecosystem Research, Shanghai Key Lab for Urban
7 Ecological Processes and Eco-Restoration, School of Ecological and Environmental
8 Sciences, East China Normal University, Shanghai 200062, China

9 ³Center for Global Change and Ecological forecasting, East China Normal University,
10 Shanghai 200062, China

11 ⁴Center for Ecosystem Science and Society, Northern Arizona University, Arizona, 86011
12 USA

13 ⁵Department of Microbiology and Plant Biology, University of Oklahoma, OK, USA
14 ⁶Center for Earth System Science, Tsinghua University, Beijing, China

15 Correspondence to: Xuhui Zhou (xhzhou@des.ecnu.edu.cn)

16 **Abstract.** Carbon (C) turnover time is a key factor in determining C storage capacity in
17 various plant and soil pools as well as terrestrial C sink in a changing climate. However, the
18 effects of C turnover time on ecosystem C storage have not been well explored. In this study,
19 we compared mean C turnover times (MTTs) of ecosystem and soil, examined their
20 variability to climate, and then quantified the spatial variation in ecosystem C storage over
21 time from changes in C turnover time and/or **net primary production (NPP)**. Our results
22 showed that mean **gross primary production (GPP)**-based ecosystem MTT ($MTT_{EC_GPP} =$
23 C_{pool}/GPP , 25.0 ± 2.7 years) was shorter than soil MTT ($MTT_{soil} = C_{soil}/NPP$, 35.5 ± 1.2 years)
24 and NPP-based ecosystem MTT ($MTT_{EC_NPP} = C_{pool}/NPP$, 50.8 ± 3 years, C_{pool} and C_{soil}
25 referred to ecosystem or soil C storage, respectively). At the biome scale, temperature is the
26 best predictor for MTT_{EC} ($R^2 = 0.77$, $p < 0.001$) and MTT_{soil} ($R^2 = 0.68$, $p < 0.001$), while the
27 inclusion of precipitation in the model did not improve the performance of MTT_{EC} ($R^2 =$
28 0.76 , $p < 0.001$). Ecosystem MTT decreased by approximately 4 years from 1901 to 2011
29 when only temperature was considered, resulting in a large C release from terrestrial
30 ecosystems. The resultant terrestrial C release caused by the decrease in MTT only accounted
31 for about 13.5% of that due to the change in NPP uptake (159.3 ± 1.45 vs 1215.4 ± 11.0 Pg
32 C). However, the larger uncertainties in the spatial variation of MTT than temporal changes

33 would lead to a greater impact on ecosystem C storage, which **deserves further** studies in the
34 future.

35 **Key words:** ecosystem, mean turnover time, MAT, MAP, biome scale

36 **1 Introduction**

37 Rising atmospheric CO₂ concentrations and the resultant climatic warming can substantially
38 impact global carbon (C) budget (IPCC, 2007), leading to a positive or negative feedback to
39 global climate change (Friedlingstein *et al.*, 2006; Heimann and Reichstein, 2008).
40 Projections of earth system models (ESMs) show a substantial decrease in terrestrial C
41 storage as the world warms (Friedlingstein *et al.*, 2006), but the decreased magnitude is
42 difficult to be quantified due to the complexity of terrestrial ecosystems in response to global
43 change (Chambers and Li, 2007; Strassmann *et al.*, 2008). For example, experimental and
44 modeling studies have shown that elevated CO₂ would enhance NPP and terrestrial C storage
45 (Nemani *et al.*, 2003; Norby *et al.*, 2005), but warming could increase ecosystem C release,
46 contributing to reduced C storage, especially in the colder regions (Atkin and Tjoelker, 2003;
47 Karhu *et al.*, 2014). Therefore, the response of terrestrial C storage to climate change depends
48 on the responses of C flux and turnover time in various C pools (i.e., plant, litter and soil)
49 (Parton *et al.*, 1987; Potter *et al.*, 1993; Luo *et al.*, 2003; Xia *et al.*, 2013). When simulated
50 soil C from CMIP5 earth system models have been evaluated, global soil C changed 5.9-folds
51 across models in response to a 2.6-fold variation in NPP and a 3.6-fold variation in global soil
52 C turnover times (Todd-Brown *et al.* 2013).

53 In a given environmental condition, ecosystem C storage capacity refers to the amount of
54 C that a terrestrial ecosystem can store at the steady state, determined by C influx and
55 turnover time (Xia *et al.*, 2013). External environmental factors, such as climate change and
56 land use change, would dynamically influence both ecosystem C influx and turnover time and
57 then change terrestrial C storage capacity. Thus, the changed magnitude of ecosystem C
58 storage can be expressed by changes in both NPP and mean C turnover time (Luo *et al.*,
59 2003). The spatial variation of NPP changes over time and the effects of climate change have
60 been relatively well quantified by manipulative experiments (Rustad *et al.*, 2001; Luo *et al.*,
61 2006), satellite data (Zhao and Running, 2010), and data assimilation (Luo *et al.*, 2003; Zhou
62 and Luo, 2008; Zhou *et al.*, 2012). It has been shown that differences in NPP contributed
63 significantly to differences in soil C across models using a reduced complexity model with
64 NPP and temperature (Todd-Brown *et al.* 2013). In contrast, the spatial variation of C
65 turnover time in terrestrial ecosystems and its contribution to C storage have not been well
66 quantified, especially at the regional or global scale.

67 Ecosystem C turnover time is the average time that a C atom resides in an ecosystem from
68 entrance to the exit (Barrett, 2002). Several methods have been used to estimate the C
69 turnover time, such as C balance method by estimating ratios of C pools and fluxes (Vogt *et*

70 *al.*, 1995), C isotope tracing (Ciais *et al.*, 1999; Randerson *et al.*, 1999), and measurements of
71 radiocarbon accumulation in the undisturbed soils (Trumbore *et al.*, 1996). However, most
72 methods mainly focused on various C pools (i.e., leaf, root, soil) and at small scale (i.e. C
73 isotope tracing, radiocarbon). Spatial pattern of ecosystem C turnover time is relatively
74 difficult to be estimated (Zhou and Luo, 2008), which needs to incorporate individual plant
75 and soil C pools and their C turnover time into ecosystem models. The inverse modeling has
76 been used to estimate ecosystem mean C turnover time in USA and Australia with high
77 spatially heterogeneous distribution (Barrett, 2002; Zhou and Luo, 2008; Zhou *et al.*, 2012).
78 The ratio of C storage to flux is another common method to estimate ecosystem turnover time
79 at region or global scale (Gill and Jackson, 2000; Chen *et al.*, 2013). For example, Carvalhais
80 *et al.* (2014) had estimated ecosystem C turnover time as the ratio of C storage (soil and
81 vegetation C) and GPP and examined their correlations to climate. However, it mainly
82 focused on the comparison of global C turnover time calculated by modeled results from
83 CIMP5 with those from observed data. In our study, we extended litter C and vegetation C
84 from different datasets into ecosystem C storage to estimate C turnover time and evaluated
85 their uncertainty. We also examined the changes in ecosystem C storage over time from
86 changes in C turnover time and/or NPP.

87 In past decades, two types of mean C turnover times have been suggested for terrestrial
88 ecosystems: the GPP-based or the NPP-based mean turnover time according to the terrestrial
89 C models with GPP or NPP as their C inputs, respectively (Thompson and Randerson *et al.*,
90 1999, NPP is GPP minus plant respiration). In addition, soil C turnover time are usually
91 estimated using field sampling as the global turnover time for model validation. However, the
92 differences in C turnover times among versions C pools remain unclear. Therefore, we
93 calculated the GPP-based, NPP-based ecosystem and soil turnover times through the similar
94 method to explore their difference and its variability to climate. Thus, our objectives were: 1)
95 to estimate the difference between GPP- and NPP-based ecosystem and soil mean C turnover
96 time, 2) to explore their relationships with climatic factors, and 3) to quantify ecosystem C
97 storage over time from changes in ecosystem C turnover time from 1901 to 2011.

98

99 **2 Materials and methods**

100 **2.1 Data collections**

101 Three datasets were used to calculate ecosystem and soil mean C turnover times, examine
102 their variability to climate, and investigate effects of C turnover time on ecosystem C storage,
103 including C influx (GPP and NPP), C storage in different C pools (soil, plant and litter), and

104 climate variables (temperature, precipitation and potential evapotranspiration). GPP and NPP
105 were extracted from MODIS products (MOD17) on an 8-day interval with a nominal 1-km
106 resolution since Feb. 24, 2000. The multi-annual average GPP/NPP from 2000 to 2009 with
107 the spatial resolution of $0.083^{\circ} \times 0.083^{\circ}$ were used in this study (Zhao and Running, 2010).

108 The harmonized World Soil Database (HWSD, Hiederer and Köchy, 2012) provided
109 empirical estimates of global soil C storage, a product of the Food and Agriculture
110 Organization of the United Nations and the Land Use Change and Agriculture Program of the
111 International Institute for Applied System Analysis (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012).
112 Global soil organic C (SOC) at the topsoil (0-30cm) and subsoil layers (30-100cm) has been
113 estimated using the amended HWSD with estimates derived from other global datasets for
114 these layers (Hiederer and Köchy 2012). We used the amended HWSD SOC to calculate C
115 turnover time (<http://eusoils.jrc.ec.europa.eu>). However, HWSD only provides an estimate of
116 soil C storage at the top 1 m of soil and has largely underestimated total soil C. It has been
117 indicated that global SOC storage in the top 3 m of soil was 56% more than that for the first
118 meter, which could change estimates of the turnover time (Jobbagy and Jackson 2000). We
119 discussed this caveat in the discussion section of this study. It is well known that HWSD has
120 underestimated soil C in high latitude (Carvalhais *et al.*, 2014). We thus estimated turnover

121 time in high latitudes with the Northern Circumpolar Soil Carbon Database (NCSCD), which
122 is an independent survey of soil C in this region (Tarnocai *et al.*, 2009). For biomass, Gibbs
123 (2006) has estimated the spatial distribution of the above- and below-ground C stored in
124 living plant material by updating the classic studies of Olson *et al.* (1983, 1985) with a
125 contemporary map of global vegetation distribution (Global Land Cover database,
126 Bartholomé and Belward, 2005). Each cell in the gridded data set was coded with an estimate
127 of mean and maximum C density values based on its land cover class, so this dataset mainly
128 represents plant biomass C at a biome level (Gibbs, 2006).

129 The litter dataset was extracted from 650 published and unpublished documents (Holland
130 *et al.*, 2005). Each record represents a site, including site description, method, litterfall, litter
131 mass and nutrients. We calculated the mean and median of litter mass for each biome, and
132 then assigned the value for each grid according to the biome types, forming the global pattern
133 of litter C storage using the method of Matthews (1997) in ARCGIS software (ESRI Inc.,
134 Redlands, CA).

135 Global climate databases produced by the Climate Research Unit (CRU) at the University
136 of East Anglia were used to analyze the climatic effect on ecosystem mean C turnover time.
137 We used mean $0.5^\circ \times 0.5^\circ$ gridded air temperature, precipitation and potential

138 evapotranspiration in CRU_TS 3.20 (Harris *et al.*, 2013), specifically their means from 2000
139 to 2009.

140 We aggregated all datasets into a biome level for data match, so the biome map was
141 extracted from the GLC 2000 (Bartholomé and Belward, 2005) and regulated by MODIS. We
142 assigned 22 land cover class among three temperature zones (i.e., tropical, temperate and
143 boreal) by taking the most common land cover from the original underlying $0.083^{\circ} \times 0.083^{\circ}$
144 data. Eight typical biomes were zoned with ARCGIS 10 in corresponding to plant function
145 types (PFTs) in CABLE model as described in Xia *et al* (2013): evergreen needleleaf forest
146 (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous
147 broadleaf forest (DBF), tundra, shrubland, grassland and cropland. All of the data were re-
148 gridded by ARCGIS 10 to a common projection (WGS 84) and $1^{\circ} \times 1^{\circ}$ spatial resolution. The
149 re-gridding approach for C fluxes and pools (i.e., GPP, NPP, soil C and litter C) assumed
150 conservation of mass that a latitudinal degree was proportional to distance for the close grid
151 cells (Todd-Brown *et al.*, 2013). A nearest neighbor approach were used for land cover
152 classes and a bi-linear interpolation were used for climate variables (i.e., temperature,
153 precipitation).

154

155 2.2 Estimation of ecosystem mean C turnover time

156 Terrestrial ecosystem includes many C pools with largely varying turnover times from days to

157 millennia, but it is difficult to collect the observed datasets of C pools and flux for each

158 component (e.g., leaf, wood and different soil C fractions) at the global scale. It thus is

159 impossible to estimate individual pools' turnover time. In this study, we estimated the whole-

160 ecosystem C turnover time as the ratio of C pools to flux based on the observed datasets.

161 Certainly, there were some limitations when the ecosystem was considered as a single pool,

162 which further discussed in the discussion section. For terrestrial ecosystems, the C pools

163 (C_{pool}) is composed of three parts: plant, litter and soil, and C outfluxes include all C losses

164 (autotrophic [R_a] and heterotrophic respiration [R_h]) as well as by fires and harvest. At the

165 steady state, C outflux equals to C influx, which is the C uptake through GPP, so ecosystem C

166 mean turnover time (MTT_{EC}) can be equivalently calculated as the ratio between C storage in

167 vegetation, soils and litters, and the influx into the pools, GPP:

$$168 MTT_{EC} = \frac{C_{pool}}{GPP} \quad (1)$$

169 However, the steady-state in nature is rare, so we relax the strict steady-state assumption

170 and computed the ratio of C_{pool} to GPP as apparent whole-ecosystem turnover time and

171 interpret the quantity as an emergent diagnostic at the ecosystem level (Carvalhais *et al.*,

172 2014). We used multi-year GPP to calculate MTT in order to reduce the effect of the non-
173 steady state, since it was difficult to evaluate how this assumption would affect model results.
174 To make better comparison, we also estimated the NPP-based ecosystem MTT ($MTT_{EC_NPP} =$
175 C_{pool}/NPP). The similar method was used to calculate soil MTT ($MTT_{soil} = C_{soil}/NPP$).

176

177 2.3 The climate effects on ecosystem mean C turnover time
178 To explore the combining effects of precipitation and temperature on ecosystem and soil C
179 turnover time, aridity index (AI) was calculated as follows:

180
$$AI = \frac{MAP}{PET} \quad (2)$$

181 where PET is the potential evapotranspiration and MAP is mean annual precipitation
182 (Middleton and Thomas, 1997). AI is a bioclimatic index including both physical phenomena
183 (precipitation and potential evapotranspiration) and biological processes (plant transpiration)
184 related with edaphic factors.

185 The relationships were examined between MTT and mean annual temperature (MAT, °C),
186 MAP (mm), and AI at the biome level. The regression analyses ($MTT = ae^{-bMAT \text{ or } MAP}$)
187 were performed in STATISTICA 10 (StatSoft Inc., 2011), where a and b are the coefficients.
188 The coefficient of determination (R^2) was used to measure the phase correlation between

189 MTT and climate factors. Here, we also calculated a Q_{10} value (i.e., Q_{10} , a relative increase in
190 mean turnover time for a 10°C increase in temperature, $Q_{10} = e^{10b}$, b, the coefficients
191 of $MTT = ae^{-bMAT \text{ or } MAP}$), which is used in most models to simulate C decomposition.

192

193 2.4 The effects of turnover time on ecosystem C storage

194 Ecosystem C storage capacity at the steady state is represented by $NPP \times MTT$ (Lou *et al.*,
195 2003), so the difference of ecosystem C storage from 1901 to 2011 could be calculated as
196 follows:

$$\begin{aligned}\Delta C_{\text{pool}} &= NPP_{2011} \times MTT_{2011} - NPP_{1901} \times MTT_{1901} \\ 197 \Rightarrow \Delta C_{\text{pool}} &= NPP_{2011} \times MTT_{2011} - (NPP_{2011} - \Delta NPP) \times (MTT_{2011} - \Delta MTT) \\ \Rightarrow \Delta C_{\text{pool}} &= NPP_{2011} \times \Delta MTT + MTT_{2011} \times \Delta NPP - \Delta NPP \times \Delta MTT\end{aligned}\quad (3)$$

198 where $NPP_{1901(2011)}$ and $MTT_{1901(2011)}$ refer to NPP and MTT at time 1901 or 2011. ΔC_{pool}
199 (ΔNPP or ΔMTT) is the difference between ecosystem C storage (NPP or MTT) at time 2011
200 and that at time 1901. The first component ($NPP_{2011} \times \Delta MTT$) represents the effects of
201 changes in MTT on ecosystem C storage. The second component ($\Delta NPP \times MTT_{2011}$) is the
202 effects of changes in NPP on ecosystem C storage, and $\Delta NPP \times \Delta MTT$ is the interactive
203 effects of both changes in NPP and MTT.

204 To assess ecosystem C storage from the changes in MTT or NPP, ecosystem MTT in 1901

205 and 2011 was calculated using an exponential equation between ecosystem MTT and
206 temperature ($MTT = ae^{-bMAT}$). Here, we assumed that the spatial correlation between
207 temperature and MTT was identical to the temporal correlation between these variables. NPP
208 in 2011 was derived from products (MOD17) and NPP in 1901 was averaged from the eight
209 models' simulated results (CanESM2, CCSM4, IPSL-CM5A-LR, IPSL-CM5B-LR, MIROC-
210 ESM, MIROC-ESM-CHEM, NorESM1-M and NorESM1-ME). Our previous study found
211 that the modeled NPP was near to MODIS-estimated NPP and their difference was mostly
212 less than $0.05 \text{ kg C m}^{-2} \text{ yr}^{-1}$ (Yan *et al.*, 2014).

213

214 2.5 Uncertainty analysis and sensitivity Analysis

215 Limitation of the above datasets is that the uncertainties are poorly quantified. The global
216 mean of C fluxes (GPP and NPP) and pools (soil, litter, and plant) were calculated by 1000
217 simulations, respectively, through Markov chain Monte Carlo (MCMC) sampling from a
218 gamma distribution ([CRAN: MCMCpack, Martin, *et al.*, 2011](#)). For each variable, the
219 confidence interval (CI) was estimated as the 2.5 and 97.5 percentile of mean values of the
220 1000 simulations. It was also applied to estimate the confidence interval of ecosystem C
221 storage and ecosystem mean C turnover time.

222

223 **3 Results**

224 **3.1 Ecosystem C storage**

225 On average, terrestrial C storage (plant biomass + soil + litter) was 22.0 kg C m^{-2} (with a 95%
226 CI of $21.85\text{--}22.50 \text{ kg C m}^{-2}$) at the global scale, which largely varied with vegetation and soil
227 types (Fig. 1). Among the forest biomes, ecosystem C storage was the highest in boreal
228 evergreen needleleaf forest (ENF) and the lowest in deciduous broadleaf forest (DBF). Soil C
229 was the largest C pool in terrestrial ecosystems, accounting for more than 60% of ecosystem
230 C storage, while C storages in litter and plant biomass only represented less than 10% and
231 30%, respectively (Fig. 1b). Among eight typical biomes associated with plant functional
232 types (PFTs, Table 1), the order of ecosystem C storage followed as: ENF ($34.84\pm0.02 \text{ kg C}$
233 m^{-2}) $>$ deciduous needleleaf forest (DNF, $25.30\pm0.03 \text{ kg C m}^{-2}$) $>$ evergreen broadleaf forest
234 (EBF, $22.70\pm0.01 \text{ kg C m}^{-2}$) $>$ shrubland ($18.29\pm0.02 \text{ kg C m}^{-2}$) $>$ DBF ($16.51\pm0.02 \text{ kg C m}^{-2}$)
235 $>$ tundra ($14.16\pm0.02 \text{ kg C m}^{-2}$) $>$ cropland ($14.58\pm0.01 \text{ kg C m}^{-2}$) $>$ grassland (10.80 ± 0.01
236 kg C m^{-2}).

237

238 **3.2 Mean C turnover time**

239 Ecosystem mean C turnover time (MTT) was 25.0 years (with a 95% CI of 23.3-27.7 years)
240 based on GPP data and 50.8 years (with a 95% CI of 47.8-53.8 years) on NPP data (Table 1),
241 while soil MTT was shorter than NPP-based MTT with the value of 35.5 years (with a 95%
242 CI of 34.9-36.7 years). MTT varied among biomes due to the different climate forcing (Table
243 1 and Fig 2). The **longest** MTT occurred in high latitude while the **shortest** one was in tropical
244 zone. Among the forest biomes, DNF had the longest MTT with the lowest mean temperature
245 (-7.9 °C), while the shortest MTT was in EBF with the highest temperature (24.5 °C) and
246 precipitation (2143 mm). Although ecosystem C storage was low in tundra (14.16 kg C m⁻²),
247 it had the longest MTT. Therefore, the order of GPP-based ecosystem MTT among biomes
248 differed for ecosystem C storage, with tundra (99.704±6.14 years) > DNF (45.27±
249 2.43 years) or ENF (42.23±2.01 years) > shrubland (27.77±2.25 years) > grassland
250 (26.00±1.41 years) > cropland (14.91±0.40 years) or DBF (13.29± 0.68 years) > EBF
251 (9.67±0.21 years). Soil MTT had the similar order to ecosystem MTT with the different
252 values (Table 1). In the high latitudes, ecosystem MTT could increase up to 145 years if soil
253 C storage was calculated from NCSCD dataset (500 vs. 290 Pg C from HWSD, Fig. 3) due to
254 higher soil C storage, while the global average of soil MTT could increase up to 40.8 years
255 when NCSCD dataset was considered.

256

257 3.3 Effects of climate on ecosystem mean turnover time (MTT)

258 Ecosystem MTT significantly decreased with mean annual temperature (MAT) and mean

259 annual precipitation (MAP) as described by an exponential equation: $MTT = 57.06e^{-0.07MAT}$

260 ($R^2=0.77$, $P<0.001$) and $MTT = 103.07e^{-0.001MAP}$ ($R^2=0.34$, $P<0.001$, Fig 4). There was

261 no correlation between ecosystem MTT and aridity index (AI, Fig. 4c). The similar

262 relationships occurred between soil MTT and MAT/ MAP ($MTT_{soil} = 58.40e^{-0.08MAT}$,

263 $R^2=0.68$, $P<0.001$) and $MTT_{soil} = 109.98e^{-0.002MAP}$, $R^2=0.48$, $P<0.001$, Fig. 5). There was

264 the different temperature sensitivity of mean turnover time (Q_{10}) for ecosystem MTT

265 ($Q_{10}=1.95$) and soil MTT ($Q_{10}=2.23$) at the biome scale. When MAP was incorporated into a

266 multivariate regression function of ecosystem MTT with MAT, the relationships could not be

267 significantly improved. MAP improved the explanation of variance of soil MTT (R^2 from

268 0.68 to 0.76), although there was the significant covariance of MAP and MAT ($R^2=0.60$).

269 However, the relationship between MTT and AI was not clear due to the scale limit. When we

270 separated ecosystem MTT into two categories according to aridity index (i.e., $AI > 1$ and $AI <$

271 1), the relationships between ecosystem MTT and MAT did not significantly change (Figs.

272 4e, h) compared with that with all data (Fig. 4b). The relationship of ecosystem MTT with

273 MAP significantly increased when AI > 1, but decreased when AI < 1. However, the same
274 regression function of soil MTT with MAT largely improved the explanation of the variance
275 when AI>1 (Fig. 5e, $MTT = 58.67e^{-0.08MAT}$, $R^2=0.76$, $P<0.001$). The relationships between
276 soil MTT and MAP were both improved when AI>1 and AI<1 (Fig. 5e, h).

277

278 3.4 Temporal variations of ecosystem mean turnover time and C storage
279 The average increase in global air temperature was around 1°C from 1901 to 2011 based on
280 the Climate Research Unit (CRU) datasets, ranging from -2.5 to 5.9 °C (Fig. 6c). When the
281 regression function between ecosystem MTT and MAT was used to estimate ecosystem MTT
282 in 1901 and 2011 (Fig. 4), the ecosystem MTT decreased by approximately 4 years on
283 average (Fig.6a). The largest change in ecosystem MTT occurred in the cold zones. In tundra,
284 ecosystem MTT decreased by more than 10 years due to the larger increase in temperature
285 (~2°C) than other regions. The average NPP increased by approximately 0.3 ± 0.003 Kg C m^{-2}
286 yr^{-1} over 110 years with most range of $0\sim0.6$ $\text{Kg C m}^{-2} \text{ yr}^{-1}$ (Fig. 6b).

287 The changes in ecosystem MTT and NPP across 110 years would cause decrease or
288 increase in terrestrial C storage. Ecosystem C storage decreased by 159.3 ± 1.45 Pg C from
289 1901 to 2011 ($\Delta\text{MTT} \times \text{NPP}$) from the decrease in MTT, with the largest decrease in tundra

290 and boreal forest (more than 12 g C m⁻²) and little decrease in tropical zones (Fig. 7a & e).
291 The interactive changes of both NPP and MTT caused a decrease of 129.4±1.31 Pg C
292 (ΔMTT × ΔNPP) with the similar spatial pattern (Fig. 7c). However, the increase in NPP
293 directly raised ecosystem C storage up to 1215.4 ± 11.0 Pg C from 1901 to 2011 with a range
294 of 30-150 g C m⁻² in most areas (MTT × ΔNPP, Fig. 7b). The MTT-induced changes in
295 ecosystem C storage only accounted for about 13.5% of that driven by NPP due to the
296 different weights (ΔMTT × NPP vs. MTT × ΔNPP). The spatial pattern of the NPP-driven
297 changes mostly represented the spatial pattern of the changes in ecosystem C storage (Fig.
298 7e).

299

300 **4 Discussion**

301 **4.1 Global pattern of mean turnover time**

302 In this study, we used the ratio of C storage to C flux to calculate the GPP-based, the NPP-
303 based and soil MTT and compared their differences. The global average of ecosystem MTT
304 was 25.0 years for GPP-based estimation and 50.8 years for NPP-based one, and soil MTT
305 was 35.5 years, which were within the global mean turnover times (26-60 years) estimated by
306 various experimental and modeling approaches (Randerson *et al.*, 1999; Thompson and

307 Randerson, 1999). In our study, the mean GPP-based MTT was slightly longer than that from
308 23 years, which has been previously reported using the same method (Carvalhais *et al.*,
309 2014). The difference may result from two aspects. Firstly, ecosystem C storage in this study
310 was the sum of soil, vegetation, and litter C pools, whereas Carvalhais *et al.* (2014) only
311 considered soil and vegetation C pools. Secondly, the data source of global vegetation C
312 storage was different with our study from Gibbs (2006), while Carvalhais *et al.* (2014) from a
313 collection of estimates for pan-tropical regions and radar remote-sensing retrievals for
314 northern and temperate forests. The differences between GPP-based and NPP-based MTT
315 were determined by the ratio of GPP and NPP, which was largely influenced by the
316 assumptions of the MODIS NPP algorithm. The ratio of GPP-based and NPP-based MTT
317 (0.49) was smaller than that estimated by Thompson and Randerson (1999, 0.58, 15 year vs.
318 26 year, respectively), largely resulting from different model assumptions for GPP-based
319 (higher normalized storage response function for low turnover time) and NPP-based MTT
320 (for high turnover time) in Thompson and Randerson (1999). Our NPP-based MTTs for the
321 conterminous USA (37.2 years) and Australia (33.4 years) were shorter than the estimates by
322 the inverse models (46 to 78 years) (Barrett, 2002; Zhou and Luo, 2008; Zhou *et al.*, 2012).
323 The NPP-based MTT was shorter than the estimated results from Xia *et al.* (2013) using the

324 CABLE model, although the order of ecosystem MTT across forest biomes was similar. This
325 is because that C turnover time using inverse analysis or CABLE model may be associated
326 with separating ecosystems into several plant and soil C pools with their distinct C turnover
327 time, whereas in our study we assumed an ecosystem as one pool.

328 The spatial patterns of ecosystem and soil MTTs were similar. The magnitude of the
329 difference between NPP-based ecosystem and soil MTTs was determined by the turnover
330 time of vegetation and litter, which was related to plant functional types (PFTs). For instance,
331 the difference between NPP-based and soil MTTs in Australia was smaller (33.4 and 29.8
332 years, respectively) compared with that in other regions, because one of the PFTs accounting
333 for a large areas of Australia was spare grass with short turnover time (3.5 years on average).
334 Additionally, different ecosystems with a specific PFT may have diverse turnover time due to
335 climatic effects. For example, boreal and tropical needleleaf evergreen forest have similar
336 ecosystem C storage (~34 vs. 40 kg C m⁻²) and vegetation C storage (~3.5 kg C m⁻²).
337 However, NPP-based and soil MTTs for boreal needleleaf evergreen forest were about 116
338 years and 98 years, respectively, whereas that for tropical one were about 12 years and 8
339 years. High temperature and humidity in tropical zones, which promote decomposition
340 processes, may largely contribute to the short turnover time compared to those in boreal zone

341 (Sanderman *et al.*, 2003).

342 In our study, we only used soil C in the top 1 m to estimate ecosystem MTT, which would
343 be underestimated for the large amounts of C stored between 1 m and 3 m depth (Jobbagy
344 and Jackson, 2000). According to the SOC estimation of Jobbagy and Jackson (2000), the
345 MTT in the top 3 m could increase to 34.63 years for GPP-based, 70.68 years for NPP-based
346 and 55.38 years for soil. Therefore, the C storage in deep soil layers (>1m) should be
347 considered to estimate ecosystem MTT and the accurate estimate of the deep soil C storage,
348 which deserves to be further explored in the future.

349

350 4.2 The sensitivity of turnover time to climate

351 In our study, the estimated MTT was shortest in tropical zones and increased toward high-
352 latitude zones (Fig. 2), which were often affected by the spatial patterns of temperature and
353 moisture. Our results were consistent with previous studies based on SOC (Schimel *et al.*,
354 1994; Sanderman *et al.*, 2003; Frank *et al.*, 2012; Chen *et al.*, 2013) and root C pools (Gill
355 and Jackson, 2000). Ecosystem MTT had negative exponential relationships with MAT (Fig
356 4), similar to those with soil MTT, due to temperature dependence of respiration rates (Lloyd
357 and Taylor, 1994; Wen *et al.*, 2006). Our results showed that the temperature sensitivity of

358 ecosystem MTT was lower than that of soil C pool (Q_{10} : 1.95 vs. 2.23, Figs. 4 &5), which has
359 also been previously reported (Sanderman *et al.*, 2003), because wood would decompose at
360 much lower rates than SOM (Zhou *et al.*, 2012). Ecosystem MTT had no significant
361 differences between very humid zone ($AI>1.0$) and other zones ($AI<1.0$, Fig 4). However, the
362 better relationships between MTT and MAP occurred in very humid zone ($AI>1.0$) than other
363 zones, which was similar to soil pool, but soil MTT have the higher sensitivity to
364 precipitation than ecosystem MTT under $AI>1$. SOM decomposition often increases with
365 added moisture in aerobic soils (Trumbore, 1997; Bai *et al.*, 2017), because the metabolic
366 loss of various C pools increases under warmer and wetter climates (Frank *et al.*, 2012),
367 resulting in high sensitivity of MTT to MAP. Thus, the fitting regression combining MAT and
368 MAP clearly improved soil MTT ($R^2=0.76$, $p<0.001$). In arid or semi-humid regions, the
369 increase in C influx with MAP was more rapid than that in decomposition (Austin and Sala,
370 2002). In addition, water limitation could suppress the effective ecosystem-level response of
371 respiration to temperature (Reichstein *et al.*, 2007). At an annual scale, temperature is still the
372 best predictor of MTT (Chen *et al.*, 2013), which explained up to 77% of variation of MTT
373 (Fig 4). Other ecosystem properties (e.g., ecosystems types, soil nitrogen) could explain the
374 rest of the variation for the MTT estimation.

375

376 4.3 Effects of the changes in mean turnover time on ecosystem C storage

377 Terrestrial ecosystems play an important role in regulating C balance to combat global

378 change. Current studies suggest that the terrestrial biosphere is currently a net C sink (Lund *et*

379 *al.*, 2010), but it is difficult to assess the sustainability of ecosystem C storage due to the

380 complexity of terrestrial ecosystem in response to global change (Luo, 2007; Zhou *et al.*,

381 In this study, we quantified the changes in ecosystem C storage from 1901 to 2011 and

382 partitioned it into three parts from the changes in NPP, in ecosystem MTT, and in both NPP

383 and MTT (seeing equation 3). Our results showed that the decrease in MTT increased

384 ecosystem C loss over time due to the increase in C decomposition rates. However, increased

385 NPP enhanced ecosystem C uptake due to the decreased CO₂ inputs to atmosphere and

386 increased vegetation C stocks.

387 Current datasets have showed an increase in NPP (e.g., Hicke *et al.*, 2002; Potter *et al.*,

388 2012), leading to increased terrestrial C uptake. Our results also showed that the NPP

389 increased by approximately 0.3 kg C m⁻² yr⁻¹ from 1901 to 2011 and the resultant terrestrial C

390 uptake was 1215.4 Pg C (with average year of 11.0 Pg C yr⁻¹). The ecosystem C storage in

391 conterminous USA increased 0.4 Pg C yr⁻¹, which was larger than that from inverse models

392 (Zhou and Luo, 2008; Zhou *et al.*, 2012) and was comparable to C sink from atmospheric
393 inversion (0.30-0.58 Pg C yr⁻¹, Pacala *et al.*, 2001). The shortened MTT caused C losses from
394 ecosystems from 1901 to 2011 (about 1.45 Pg C yr⁻¹), indicating that ecosystem C storage
395 decreased with climate warming (Fig. 7e). However, ecosystem C losses from the decrease in
396 MTT only accounted for 13.5% of that driven by changes in NPP, so terrestrial ecosystem
397 was still a net sink. The largest changes of MTT occurred in high latitude regions (Fig. 6a),
398 resulting in the largest loss of terrestrial C (Fig. 7e), where it is more vulnerable to climate
399 change (Zimov *et al.*, 2006). However, the direct release of CO₂ in high latitude through
400 thawing would be another large source of decreasing ecosystem C storage under climate
401 warming (Grosse *et al.*, 2011), which cannot be assessed by MTT or NPP. Interestingly, our
402 results suggested that the substantial changes in terrestrial C storage occurred in forest and
403 shrubland (50% of total) due to the relatively longer MTT, leading to the larger terrestrial C
404 uptake driven by NPP increase compared with others. In addition, the C uptake in cropland
405 and grassland could be underestimated probably due to the ignorance of the effects of land
406 management.

407

408 4.4 Limitation in estimating mean turnover time and its effects to climate

409 Estimated MTT in this study were based on C influxes (GPP or NPP) and C pools in plants,
410 litter and soil at the grid scale and can be used to quantify global, regional or biome-specific
411 MTT, which was very important to evaluate terrestrial C storage. However, the balance
412 method and data limitation could cause biases to some degree in estimated ecosystem MTT.
413 First, we assumed that ecosystem was at the steady state to estimate MTT. It is difficult to
414 define the steady state, especially for soil C dynamics (Luo and Weng, 2011). In reality,
415 maintaining a steady state is rare for a long time and ecosystems could be only close to reach
416 the steady state in the short time. For example, permafrost is thawing both gradually and
417 perhaps catastrophically (Schuur *et al.*, 2008). Second, MTT was estimated on the basis of C
418 pool and flux measurements. The quality of the current datasets would determine the
419 accuracy of ecosystem MTT estimates. For example, the amendments of typological data
420 (derived from the global ISRIC-WISE datasets) and soil bulk density had largely improved
421 the estimates of the SOC storage from HWSD (1417 PgC) (Hiederer and Köchy, 2012). Soil
422 C storage calculated from NCSCD dataset would improve the ecosystem MTT in high
423 latitudes (Fig. 3), compared with that from HWSD datasets. The MTT in the top 1 m soil
424 increased to 30.3 years for GPP-based, 66.9 years for NPP-based and 45.7 years for soil when
425 SoilGrids was used compared with HWSD dataset (Hengl *et al.*, 2014). However, it is

426 difficult to quantify the uncertainty in MTT caused by uncertainties of the current datasets
427 due to lack of quantitative uncertainty in these datasets. In addition, disturbance and forest
428 age structure will influence large-scale accumulation biomass, the partitioning of C into pools
429 with different turnover times and thereby the estimates of long-term C storage and turnover
430 time (Zaehle et al., 2006), which cannot be reflected in the current algorithms. Probably, the
431 inverse modeling can be a feasible method to evaluate the effect of the disturbance and forest
432 age on the estimates of C turnover time (Zhou *et al.*, 2012).

433 Third, the uncertainties in the relationships of ecosystem MTT with MAT and MAP would
434 influence the estimates of ecosystem MTT, causing additional uncertainty in ecosystem C
435 storage. To simplify the calculation, we aggregated all datasets into a biome level, leading to
436 fixed parameters across biomes. However, the response magnitude in soil respiration to
437 warming varied over time and across sites (Rustad *et al.*, 2001; Davidson and Janssens,
438 2006), resulting in multiple temperature response function. Changes in MTT for 1901 and
439 2011 were estimated using the exponential function between MTT and temperature, resulting
440 in underestimation or overestimation of MTT and the resultant changes on ecosystem C
441 storage. For example, when the relationship between soil MTT and temperature was used
442 ($MTT_{soil} = 58.40e^{-0.08MAT}$), the soil C storage due to MTT changes ($NPP \times \Delta MTT$) could

443 decrease 161.42 Pg C and that due to NPP changes ($\Delta\text{NPP} \times \text{MTT}$) could increase 1125.6 Pg
444 C, which had the similar spatial pattern to the ecosystem. In addition, we assumed that the
445 current-day spatial correlation between temperature and MTT was identical to temporal
446 correlation between these variables. Such assumptions cannot further reflect some processes
447 like acclimation of microbial respiration to warming or shifts in plant species over time.

448

449 4.5 Implication for land surface models

450 Our results provided insights as to how MTT and ecosystem C storage varied with climate
451 and over time. Our study could thus offer several suggestions for future experimental and
452 modeling research with the goals to improve estimates of ecosystem C storage. First, the
453 substantial changes in terrestrial C storage occurred in forest and shrubland covering large
454 area with the relatively long turnover time, because MTT dominated the uncertainty in the
455 estimates of terrestrial C storage. Therefore, further work should focus on the accurate
456 estimation of C turnover time with numerous observational data at regional or global scale
457 and the evaluation of uncertainty from datasets and the assumption (e.g., the steady-state).

458 Second, there are inconsistent responses of ecosystem C turnover time to climate variables
459 in the current global vegetation models (Friend *et al.*, 2013). Our results showed that the

460 temperature sensitivity of ecosystem C turnover time was lower than that of soil C pool (Q_{10} :
461 1.95 vs. 2.23), while the relationship between ecosystem C turnover time and precipitation
462 under low aridity conditions ($AI>1$) was much stronger than those for all or $AI<1$ conditions.
463 Although global C models have currently considered moisture stress on vegetation, the
464 incorporation of moisture or precipitation stress into soil decomposition should be
465 strengthened, especially in high-latitude zones with greater warming and increased
466 precipitation.

467

468 **Data availability**

469 All of the original data (MOD 17, HWSD, NCSCD, vegetation C production of Gibbs *et al.*
470 (2006), litter dataset from Holland *et al.* (2005), climate variables from the Climate Research
471 Unit (CRU_TS 3.20)) used in this study are open and shared. We provided full citations for
472 data sources in MS and the download links in the supplemental information.

473

474 **Acknowledgements**

475 This research was financially supported by the National Natural Science Foundation of China
476 (Grant No. 31770559, 31370489), 2012 Shanghai Pujiang Program (12PJ1401400), and

477 "Thousand Young Talents" Program in China (31370489).

478

479 **References**

480 Atkin, O. K. and Tjoelker, M. G. 2003. Thermal acclimation and the dynamic response of plant respiration
481 to temperature. *Trends in Plant Science* **8**, 343-351.

482 Austin, A. T. and Sala, O. E. 2002. Carbon and nitrogen dynamics across a natural precipitation gradient in
483 Patagonia, Argentina. *Journal of Vegetation Science* **13**, 351-360.

484 Bai S. H, Dempsey R, Reverchon F, Blumfield T.J, Ryan S, Cernusak L. 2017. Effects of forest thinning on
485 soil-plant carbon and nitrogen dynamics. *Plant and Soil* **411**, 437–449.

486 Barrett, D. J. 2002. Steady state turnover time of carbon in the Australian terrestrial biosphere. *Global
487 Biogeochemical Cycles* **16**.

488 Bartholomé, E. and Belward, A. 2005. GLC2000: A new approach to global land cover mapping from
489 Earth observation data. *International Journal of Remote Sensing* **26**, 1959-1977.

490 Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M. and co-authors 2014. Global covariation of
491 carbon turnover times with climate in terrestrial ecosystems. *Nature* **514**, 213-217.

492 Chambers, C. R. S. and Li, T. 2007. Simulation of formation of a near-equatorial typhoon Vamei (2001).
493 *Meteorology and Atmospheric Physics* **98**, 67-80.

494 Chen, S., Huang, Y., Zou, J. and Shi, Y. 2013. Mean residence time of global topsoil organic carbon
495 depends on temperature, precipitation and soil nitrogen. *Global and Planetary Change* **100**, 99-
496 108.

497 Ciais, P., Friedlingstein, P., Schimel, D. S. and Tans, P. P. 1999. A global calculation of the delta C-13 of
498 soil respired carbon: Implications for the biospheric uptake of anthropogenic CO₂. *Global
499 Biogeochemical Cycles* **13**, 519-530.

500 Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C. and co-authors 2004. Amazonian forest
501 dieback under climate-carbon cycle projections for the 21st century. *Theoretical and Applied
502 Climatology* **78**, 137-156.

503 Davidson, E.A., and Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and
504 feedbacks to climate change. *Nature* **440**, 165-173.

505 FAO/IIASA/ISRIC/ISSCAS/JRC 2012. Harmonized World Soil Database (version 1.10). *FAO, Rome, Italy*
506 and *IIASA, Laxenburg, Austria*.

507 Frank, D. A., Pontes, A. W. and McFarlane, K. J. 2012. Controls on soil organic carbon stocks and turnover
508 among North American ecosystems. *Ecosystems* **15**, 604-615.

509 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W. and co-authors 2006. Climate-carbon cycle
510 feedback analysis: Results from the C⁴MIP model intercomparison. *Journal of Climate* **19**, 3337-

511 3353.

512 Gibbs, H. K. 2006. Olson's major world ecosystem complexes ranked by carbon in live vegetation: An
513 updated database using the GLC2000 land cover product. *NDP-017b* doi:
514 10.3334/CDIAC/lue.ndp3017.2006 Available at
515 [<http://cdiac.ornl.gov/epubs/ndp/ndp3017/ndp3017b.html>].

516 Gill, R. A. and Jackson, R. B. 2000. Global patterns of root turnover for terrestrial ecosystems. *New
517 Phytologist* **147**, 13-31.

518 Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P., and co-authors 2011. Vulnerability of
519 high-latitude soil organic carbon in North America to disturbance. *Journal of Geophysical
520 Research: Biogeosciences* **116**, G00K06

521 Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H. 2013. Updated high-resolution grids of monthly
522 climate observations. *International Journal of Climatology* Doi: 10.1002/joc.3711.

523 Heimann, M. and Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks.
524 *Nature* **451**, 289-292.

525 Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., Samuel-Rosa,
526 A., Kempen, B., Leenaars, J.G.B., Walsh, M.G., & Gonzalez, M.R. (2014). SoilGrids1km —
527 Global Soil Information Based on Automated Mapping. *Plos One*, **9**, e105992

528 Hicke, J.A., Asner, G.P., Randerson, J.T., Tucker, C., Los, S., Birdsey, R., Jenkins, J.C., & Field, C. 2002.

529 Trends in North American net primary productivity derived from satellite observations, 1982–

530 1998. *Global Biogeochemical Cycles* **16**, 1018

531 Hiederer, R. and Köchy, M. 2012. Global soil organic carbon estimates and the Harmonized World Soil

532 Database. *EUR Scientific and Technical Research series.*, ISSN 1831-9424 (online), ISSN 1018-

533 5593 (print), ISBN 1978-1892-1879-23108-23107, doi:23110.22788/13267.

534 Holland, E. A., Post, W. M., Matthews, E. G., Sulzman, J., Staufer, R. and co-authors 2005. Global patterns

535 of litterfall and litter pool carbon and nutrients. *Data set. Available on-line* [<http://daac.ornl.gov/>]

536 *from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee,*

537 *U.S.A.*

538 IPCC 2007. Climate change 2007: The physical science basis (ed. S. Solomon, D. Q., M. Manning, Z.

539 Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller), Cambridge, UK and New York, NY,

540 USA.

541 Jobbagy, E. G. and Jackson, R. B. 2000. The vertical distribution of soil organic carbon and its relation to

542 climate and vegetation. *Ecological Applications* **10**, 423-436.

543 Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I. and co-authors 2014.

544 Temperature sensitivity of soil respiration rates enhanced by microbial community response.

545 *Nature* **513**, 81-84.

546 Lloyd, J. and Taylor, J. 1994. On the temperature dependence of soil respiration. *Functional ecology*, 315-

547 323.

548 Lund, M., Lafleur, P.M., Roulet, N.T., Lindroth, A., Christensen, T.R., and co-authors 2010. Variability in

549 exchange of CO₂ across 12 northern peatland and tundra sites. *Global Change Biology* **16**, 2436-

550 2448

551 Luo, Y., Hui, D. and Zhang, D. 2006. Elevated CO₂ stimulates net accumulations of carbon and nitrogen

552 in land ecosystems: A meta-analysis. *Ecology* **87**, 53-63.

553 Luo, Y. and Weng, E. 2011. Dynamic disequilibrium of the terrestrial carbon cycle under global change.

554 *Trends in ecology & evolution* **26**, 96-104.

555 Luo, Y. Q., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S. and co-authors 2003.

556 Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion

557 approach. *Global Biogeochemical Cycles* **17**.

558 Martin, A.D., Kevin, M. Q., and Jong, H.P. 2011. MCMCpack: Markov chain monte carlo in R. *J. Stat.*

559 *Softw.* **42**.

560 Matthews, E. 1997. Global litter production, pools, and turnover times: Estimates from measurement data

561 and regression models. *Journal of Geophysical Research* **102**, 18771.

562 Middleton, N., and Thomas, D. 1997. World atlas of desertification. Arnold, Hodder Headline, PLC.

563 Nemaní, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C. and co-authors 2003. Climate-
564 driven increases in global terrestrial net primary production from 1982 to 1999. *Science* **300**,
565 1560-1563.

566 Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P. and co-authors 2005. Forest
567 response to elevated CO₂ is conserved across a broad range of productivity. *Proceedings of the
568 National Academy of Sciences of the United States of America* **102**, 18052-18056.

569 Olson, J. S., Watts, J. A. and Allison, L. J. 1983. Carbon in live vegetation of major world ecosystems. Oak
570 Ridge National Lab., TN (USA).

571 Olson, J. S., Watts, J. A. and Allison, L. J. 1985. Major world ecosystem complexes ranked by carbon in
572 live vegetation: A database, NDP-017. *Oak Ridge Lab., Oak Ridge, Tenn.*

573 Pacala, S.W., Hurtt, G.C., Baker, D., Peylin, P., Houghton, R.A., and co-authors 2001. Consistent Land-
574 and Atmosphere-Based U.S. Carbon Sink Estimates. *Science* **292**, 2316-2320

575 Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. 1987. Analysis of factors controlling soil
576 organic matter levels in Great Plains grasslands. *Soil Sci. Soc. Am. J.* **51**, 1173-1179.

577 Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M. and co-authors 1993. Terrestrial
578 ecosystem production - a process model-based on global satellite and surface data. *Global*

579 *Biogeochemical Cycles* **7**, 811-841.

580 Potter, C., Klooster, S., and Genovese, V. 2012. Net primary production of terrestrial ecosystems from
581 2000 to 2009. *Climatic Change* **115**, 365-378

582 Randerson, J. T., Thompson, M. V. and Field, C. B. 1999. Linking C-13-based estimates of land and ocean
583 sinks with predictions of carbon storage from CO₂ fertilization of plant growth. *Tellus Series B-
584 Chemical and Physical Meteorology* **51**, 668-678.

585 Reichstein, M., Papale, D., Valentini, R., Aubinet, M., Bernhofer, C. and co-authors 2007. Determinants of
586 terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites.
587 *Geophysical Research Letters* **34**.

588 Rustad, L., Campbell, J., G, M., R, N., M, M. and co-authors 2001. A meta-analysis of the response of soil
589 respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem
590 warming. *Oecologia* **126**, 543-562.

591 Sanderman, J., Amundson, R. G. and Baldocchi, D. D. 2003. Application of eddy covariance
592 measurements to the temperature dependence of soil organic matter mean residence time. *Global
593 Biogeochemical Cycles* **17**.

594 Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S. and co-authors 1994. Climatic,
595 edaphic, and biotic controls over storage and turnover of carbon in soils. *Global Biogeochemical*

596 *Cycles* **8**, 279-293.

597 Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B. and co-authors 2008.

598 Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle.

599 *Bioscience* **58**, 701-714.

600 Strassmann, K. M., Joos, F. and Fischer, G. 2008. Simulating effects of land use changes on carbon fluxes:

601 Past contributions to atmospheric CO₂ increases and future commitments due to losses of

602 terrestrial sink capacity. *Tellus Series B-Chemical and Physical Meteorology* **60**, 583-603.

603 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G. and co-authors 2009. Soil organic

604 carbon pools in the northern circumpolar permafrost region. *Global Biogeochemical Cycles* **23**.

605 Thompson, M.V., and Randerson, J.T. 1999. Impulse response functions of terrestrial carbon cycle models:

606 method and application. *Global Change Biology* **5**, 371-394

607 Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C. and co-authors 2013.

608 Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison

609 with observations. *Biogeosciences* **10**, 1717-1736.

610 Trumbore, S.E., 1997. Potential responses of soil organic carbon to global environmental change.

611 *Proceedings of the National Academy of Sciences of the United States of America* **94**, 8284–8291

612 Trumbore, S. E., Torn, M. S. and Chadwick, O. A. 1996. Recent ams measurements of C-14 in soil organic

613 matter: Understanding controls of carbon storage and turnover in soils. *Abstracts of Papers of the*
614 *American Chemical Society* **211**, 17-Geoc.

615 Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O'Hara, J. and co-authors 1995. Review of root
616 dynamics in forest ecosystems grouped by climate, climatic forest type and species. *Plant and soil*
617 **187**, 159-219.

618 Wen, X. F., Yu, G. R., Sun, X.M., Li, Q. K., Liu, Y. F. and co-authors 2006. Soil moisture effect on the
619 temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern
620 China. *Agricultural and Forest Meteorology* **137**, 166-175.

621 Xia, J., Luo, Y., Wang, Y. P. and Hararuk, O. 2013. Traceable components of terrestrial carbon storage
622 capacity in biogeochemical models. *Global Change Biology*.

623 Yan, Y., Luo, Y., Zhou, X., & Chen, J. 2014. Sources of variation in simulated ecosystem carbon storage
624 capacity from the 5th Climate Model Intercomparison Project (CMIP5). *Tellus Series B-Chemical*
625 *and Physical Meteorology* **66**, 22568

626 Zaehle, S., Sitch, S., Prentice, I. C. et.al., . (2006). The importance of age-related decline in forest NPP for
627 modeling regional carbon balances. *Ecological Applications*, 16(4), 1555-1574.

628 Zhao, M. and Running, S. W. 2010. Drought-induced reduction in global terrestrial net primary production
629 from 2000 through 2009. *Science* **329**, 940-943.

630 Zhou L. Zhou X. Shao J. Nie Y. He Y. Wu Z. Bai S. H. 2016. Interactive effects of global change factors on
631 soil respiration and its components: a meta-analysis. *Global Change Biology*. **22**, 3157–3169

632 Zhou, T. and Luo, Y. Q. 2008. Spatial patterns of ecosystem carbon residence time and NPP-driven carbon
633 uptake in the conterminous United States. *Global Biogeochemical Cycles* **22**.

634 Zhou, X., Zhou, T. and Luo, Y. 2012. Uncertainties in carbon residence time and NPP-driven carbon
635 uptake in terrestrial ecosystems of the conterminous USA: A Bayesian approach. *Tellus Series B-
636 Chemical and Physical Meteorology* **64**, 17223

637 Zimov, S., Davydov, S., Zimova, G., Davydova, A., Schuur, E. and co-authors 2006. Permafrost carbon:
638 Stock and decomposability of a globally significant carbon pool. *Geophysical Research Letters* **33**,

639 L20502

640 **Table 1.** The density of ecosystem C storage (kg C m^{-2}), mean turnover time (MTT, years),
 641 mean annual temperature (MAT), and precipitation (MAP) for the eight biomes. Ecosystem
 642 MTT were calculated based on GPP and NPP, respectively.

Biome	C storage (kg C m^{-2})	Ecosystem MTT (years)		Soil MTT (years)	MAT ($^{\circ}\text{C}$)	MAP (mm)
		MTT _{GPP}	MTT _{NPP}			
ENF	34.8 \pm 0.02	42.23 \pm 2.01	58.54 \pm 2.16	39.62 \pm 1.22	3.5	760.5
EBF	22.7 \pm 0.01	9.67 \pm 0.21	18.43 \pm 0.43	8.96 \pm 0.21	24.5	2143.5
DNF	25.3 \pm 0.03	45.27 \pm 2.43	75.80 \pm 2.71	53.50 \pm 1.71	-7.9	401.4
DBF	16.5 \pm 0.02	13.29 \pm 0.68	22.02 \pm 1.00	12.08 \pm 0.69	16.1	988.4
tundra	14.2 \pm 0.02	99.74 \pm 6.14	132.86 \pm 4.40	122.88 \pm 5.54	-11.1	291.1
Shrubland	18.3 \pm 0.02	27.77 \pm 2.25	43.41 \pm 2.37	36.22 \pm 2.01	9.3	643.6
Grassland	10.8 \pm 0.01	26.00 \pm 1.41	39.51 \pm 2.11	34.37 \pm 2.20	9.4	605.5
Cropland	14.6 \pm 0.01	14.91 \pm 0.40	23.06 \pm 0.84	17.72 \pm 0.58	15.4	885.7

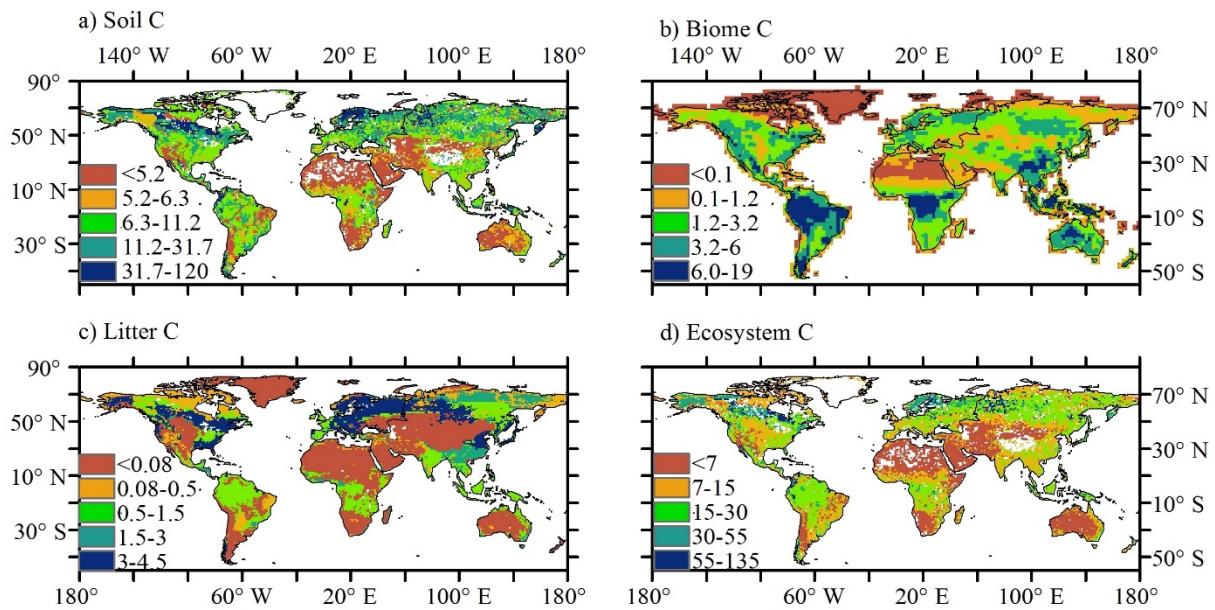
643 *ENF: Evergreen Needleleaf forest; EBF: Evergreen Broadleaf forest; DNF: Deciduous Needleleaf forest; DBF: Deciduous
 644 Broadleaf forest.

645 **Figure Caption List**

646 **Figure 1.** Spatial pattern of soil C (a), biome C (b), litter C (c), and ecosystem C storage (d)
647 at the grid scale ($1^\circ \times 1^\circ$). Unit: kg C m^{-2} . Ecosystem C storage was calculated from plant
648 biomass, soil, and litter C pools.

649 **Figure 2.** Spatial pattern of mean turnover time (MTT, years) based on biome types and GPP
650 (a) or NPP (b) and soil C (c) using the C balance methods.

651 **Figure 3.** Spatial pattern of mean turnover time (years) in high latitude based on soil C
652 storage from HWSD data (a) and NCSCD data (b).

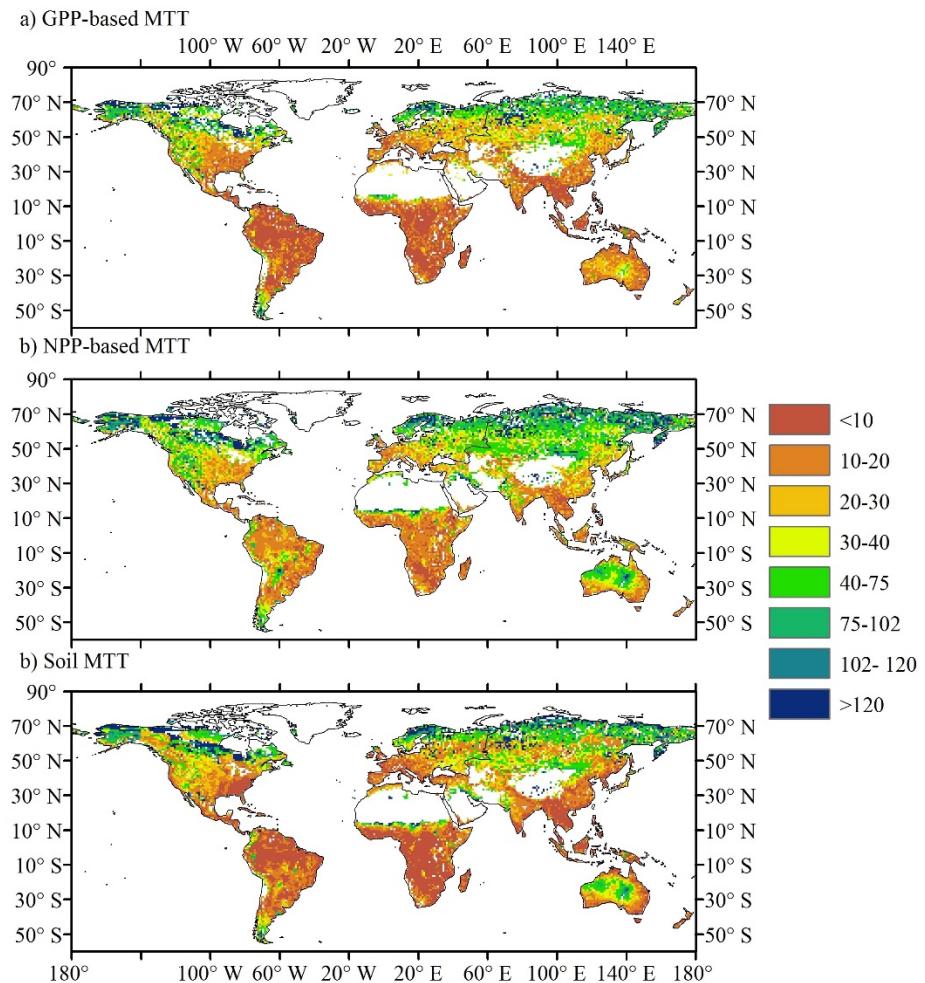

653 **Figure 4.** Relationships between ecosystem mean turnover time (MTT) and multi-annual
654 temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (AI, c). Each data
655 point stands for average values of each biome. Biomes were assigned into 62 types according
656 to land cover and three temperature zones.

657 **Figure 5.** Relationships between soil mean turnover time (MTT_{soil}) and multi-annual
658 temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (AI, c). Each data
659 point stands for average values of each biome. Biomes were assigned into 62 types according
660 to land cover and three temperature zones.

661 **Figure 6.** Changes in mean ecosystem mean turnover time (MTT, unit: year) driven by
662 temperature change (a), changes in NPP (unit: $\text{kg C m}^{-2}\text{yr}^{-1}$, b), and changes in temperature
663 ($^{\circ}\text{C}$, c) from 1901 to 2011. Changes in MTT from 1901 and 2011 were calculated by the
664 temperature-dependence function showing in Fig. 4. Changes in NPP from 1901 and 2011
665 were derived from models' average and MODIS.

666 **Figure 7.** Altered ecosystem carbon storage due to changes in mean turnover time (MTT),
667 $\text{NPP}_{2011} \times \Delta\text{MTT}$, a), net primary production (NPP, $\text{MTT}_{2011} \times \Delta\text{NPP}$, b), and interaction of
668 NPP and MTT ($\Delta\text{MTT} \times \Delta\text{NPP}$, c). Panels d and e are total altered ecosystem C storage
669 changes due to changes in MTT, NPP, and $\text{MTT} \times \text{NPP}$ and their latitudinal gradients from
670 panels a-d, respectively. Unit: $\text{g C m}^{-2} \text{yr}^{-1}$ ($\Delta\text{C}_{pool} = \text{NPP}_{2011} \times \Delta\text{MTT} + \text{MTT}_{2011} \times$
671 $\Delta\text{NPP} - \Delta\text{NPP} \times \Delta\text{MTT}$).

672


673

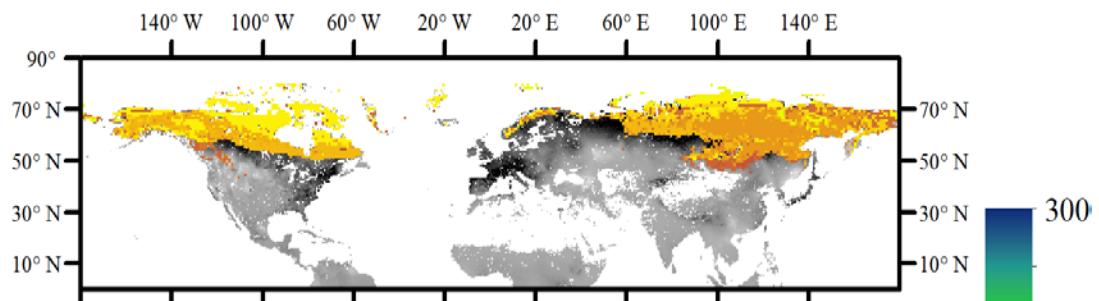
674 **Figure 1.** Spatial pattern of soil C (a), biome C (b), litter C (c), and ecosystem C storage

675 (d) at the grid scale (1°×1°). Unit: kg C m⁻². Ecosystem C storage was calculated from plant

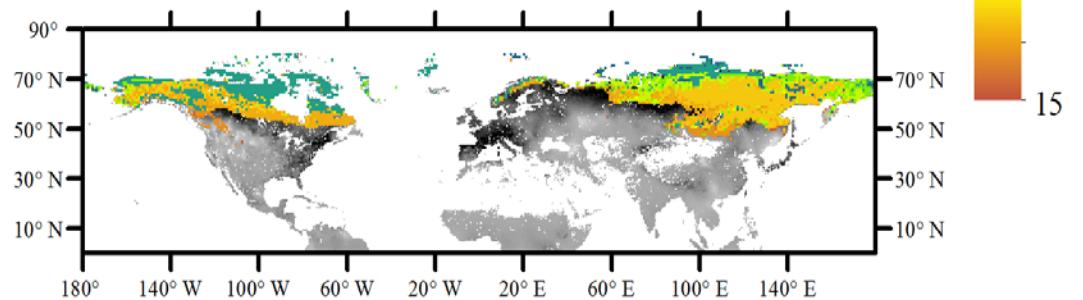
676 biomass, soil, and litter C pools.

677

678


679 **Figure 2.** Spatial pattern of mean turnover time (MTT, years) based on biome types and
 680 GPP (a) or NPP (b) and soil C (c) using the C balance methods.

681


682

683

a) MTT based on HWSD soil C

b) MTT based on NCSCD soil C

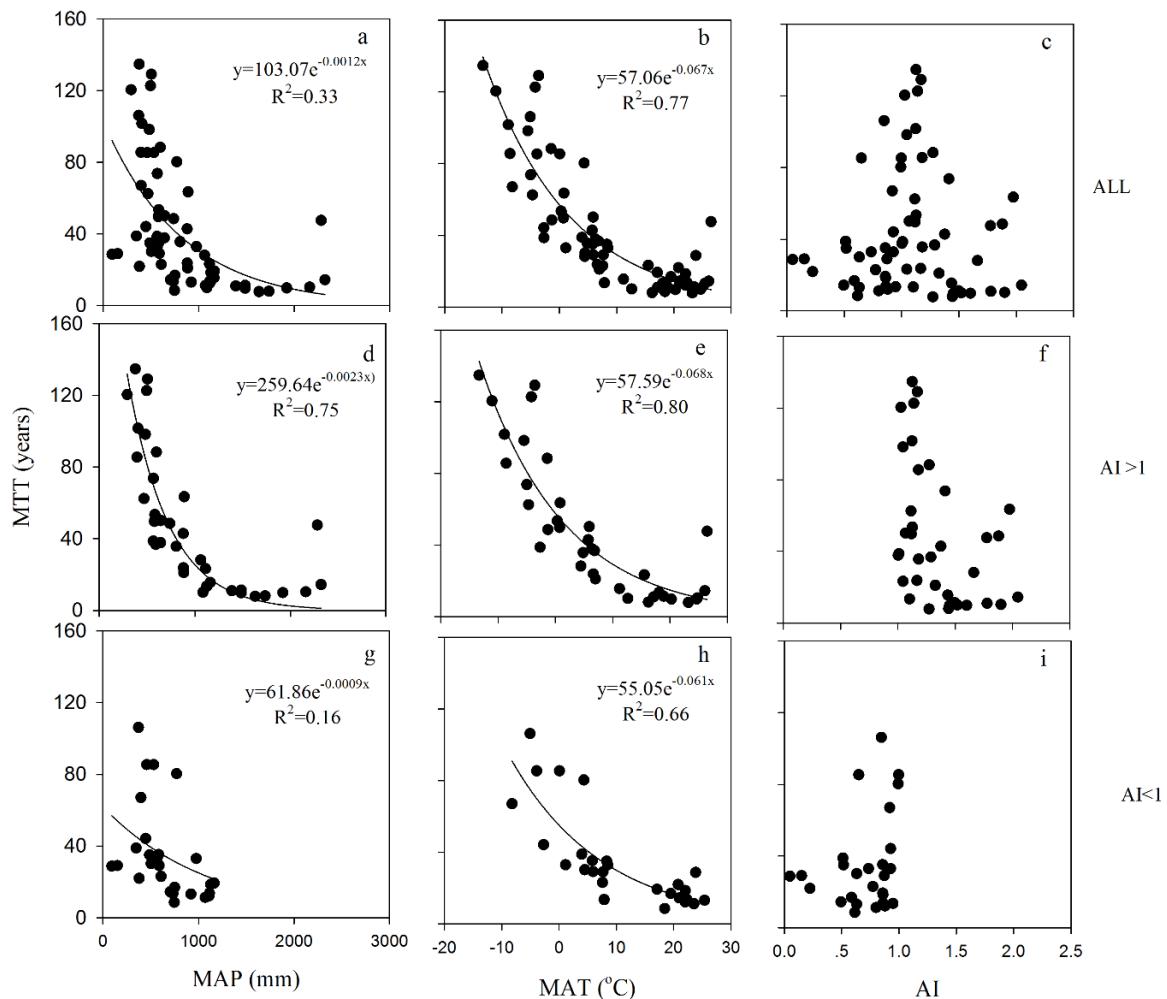
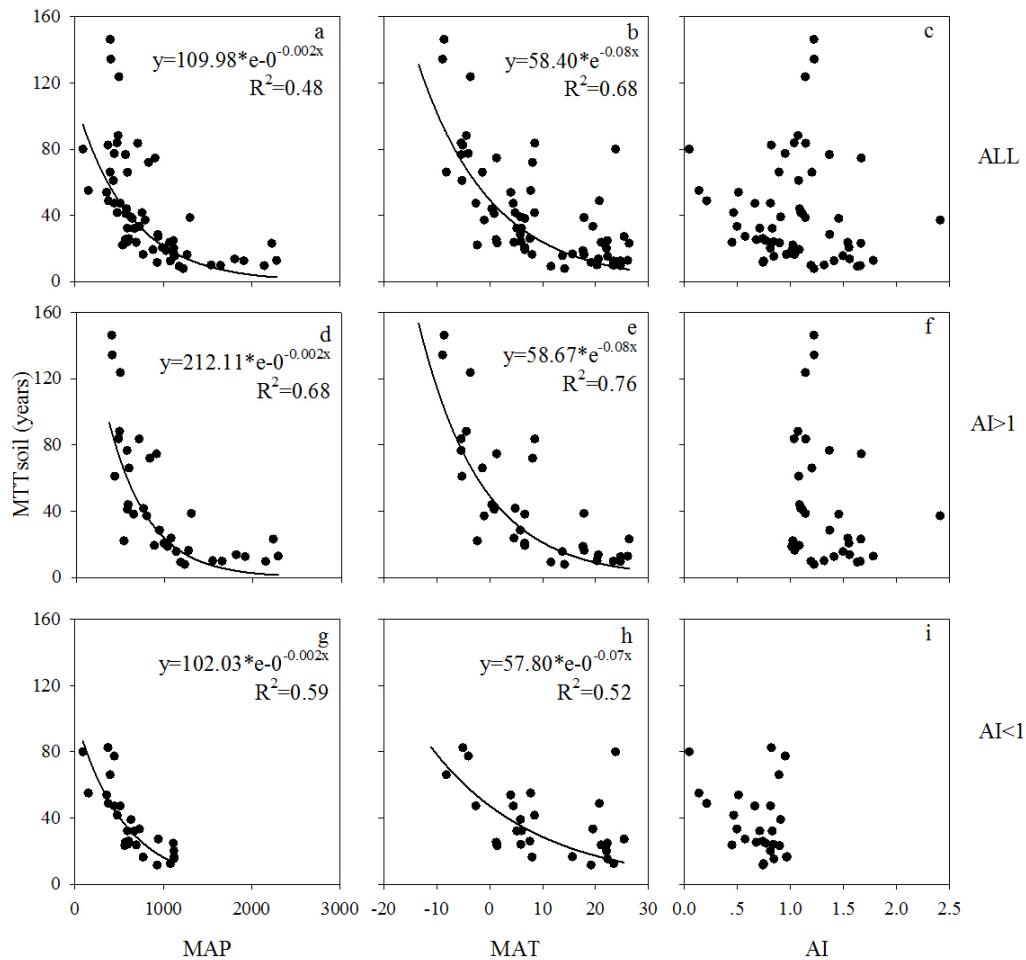
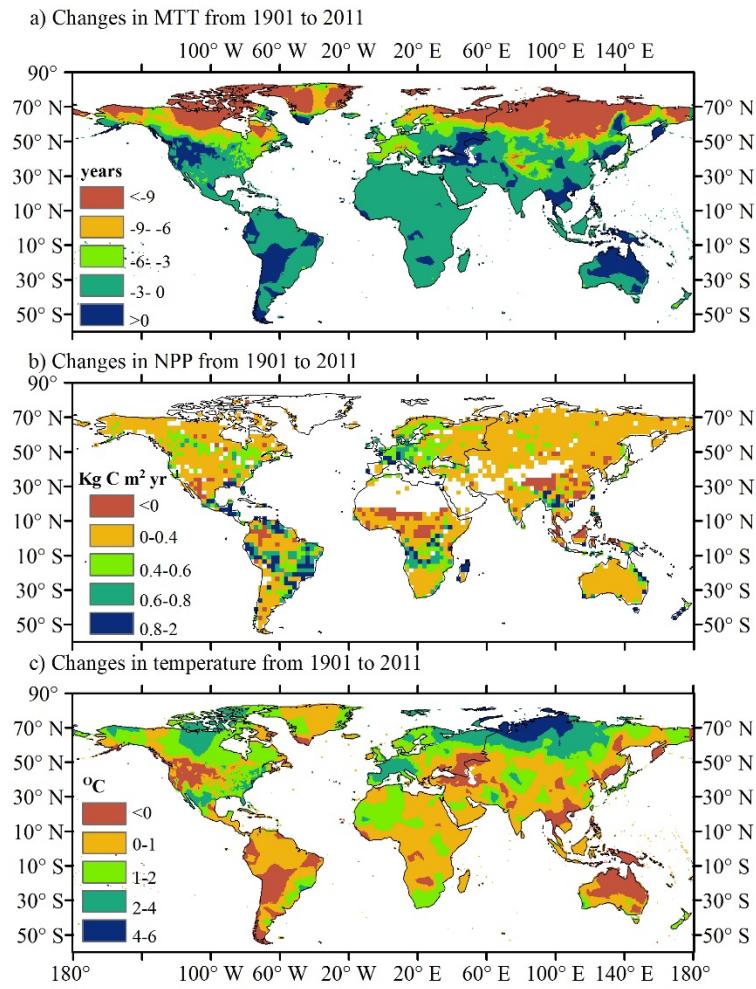

684

Figure 3. Spatial pattern of mean turnover time (years) in high latitude based on soil C

685

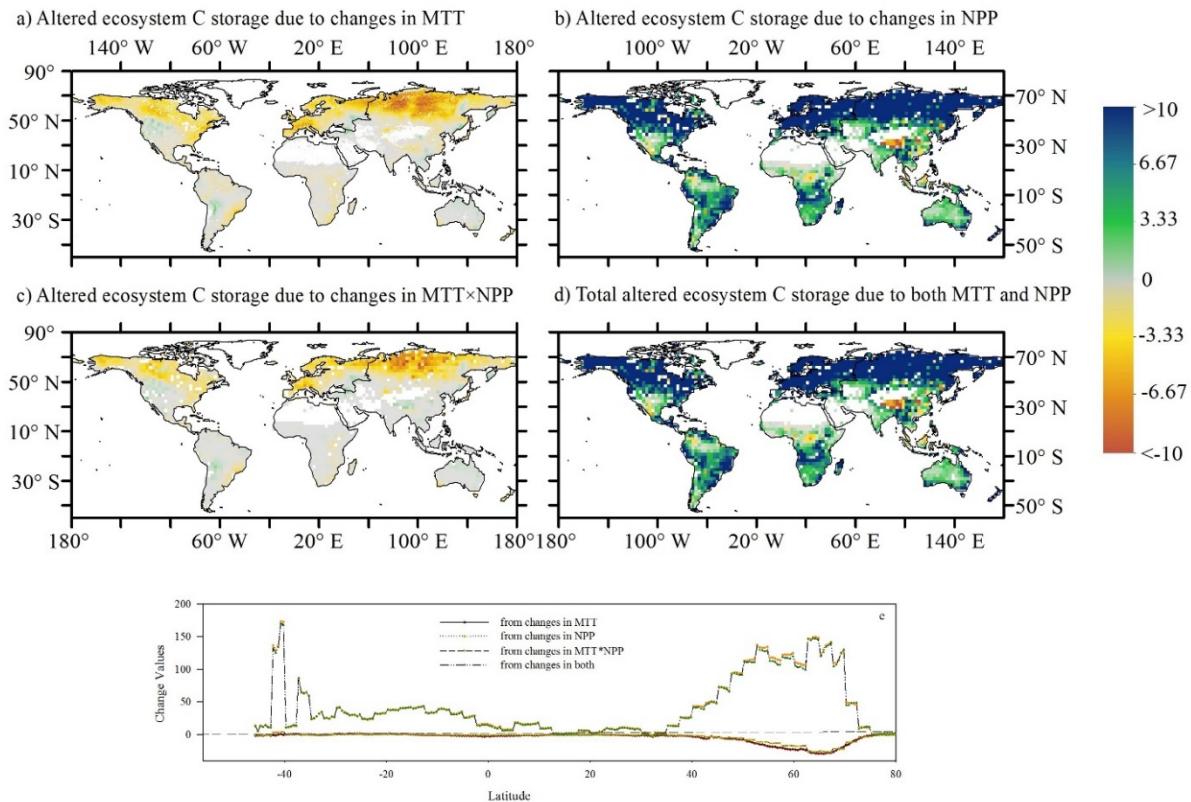

storage from HWSD data (a) and NCSCD data (b).

686


687

688 **Figure 4.** Relationships between ecosystem mean turnover time (MTT) and multi-annual
 689 temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (AI, c). Each data
 690 point stands for average values of each biome. Biomes were assigned into 62 types according
 691 to land cover and three temperature zones.

692


693 **Figure 5.** Relationships between soil mean turnover time (MTT_{soil}) and multi-annual
 694 temperature (MAT, a) or precipitation (MAP, b) at different aridity indexes (AI, c). Each data
 695 point stands for average values of each biome. Biomes were assigned into 62 types according
 696 to land cover and three temperature zones.

697

698 **Figure 6.** Altered mean ecosystem mean turnover time (MTT, unit: year) driven by
 699 temperature change (a), changes in NPP (unit: $\text{Kg C m}^{-2}\text{yr}^{-1}$, b), and changes in temperature
 700 ($^{\circ}\text{C}$, c) from 1901 to 2011. Changes in MTT for 1901 and 2011 were calculated by the

701 temperature-dependence function showing in Fig. 4. Changes in NPP in 1901 and 2011 were
702 derived from models' average and MODIS.

703

704 **Figure 7.** Altered ecosystem carbon storage due to changes in mean turnover time (MTT,
 705 NPP₂₀₁₁ × ΔMTT, a), net primary production (NPP, MTT₂₀₁₁ × ΔNPP, b), and interaction of
 706 NPP and MTT (ΔMTT × ΔNPP, c). Panels d and e are total altered ecosystem C storage
 707 changes due to changes in MTT, NPP, and MTT × NPP and their latitudinal gradients from
 708 panels a-d, respectively. Unit: g C m⁻² yr⁻¹ ($\Delta C_{pool} = NPP_{2011} \times \Delta MTT + MTT_{2011} \times$
 709 $\Delta NPP - \Delta NPP \times \Delta MTT$).