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Abstract. The use of dynamic global vegetation models (DGYMsestimate CQemissions from land-use and land-cover
change (LULCC) offers a new window to account foatfal and temporal details of emissions, and émsgstem processes
affected by LULCC. One drawback dafULCC emissions fromDGVMs however istheirlarge—uneertaintylack of

observation constrainHere, we propose a new method of using satellitel inventory-based biomass observations to

constrain historical cumulative LULCC emissiong,{Efrom an ensemble of nine DGVMs based on emerggiajionships
between simulated vegetation biomass ahe Ehis method is applicable at global and regiutale.The original DGVM

estimates of E._range from-Compared-to-the large range of-Ba-theoriginal-ensemble94 to 273 Pg £during 1901-
2012, After constrained byurrent biomass observationse allowus-toderive anew-best estimate of 155 + 50 €l1-

Gaussian error) Pg C. The constrained LULCC emissiare higher than prior DGVM values in tropicagjioms, but

significantly lower in North America. Ourmergent constrairgpproachindependently verifies the median model estimate

by biomass observations, giving support to the afsthis estimate in carbon budget assessments.umbertainty in the

constrained Ec_is still relatively large because of the uncetipiim the biomass observations, and thus more ateur

biomass observations in future will help improve #onstraint—ef-censtraining—ecumulative LULCC-esmas—based-on
i i i itteri udgetandThis constraint meiten also be applied

to evaluate the impact of land-based mitigationvaigs.

1 Introduction

Carbon emissions from land-use and land-cover ah&hgLCC) are part of the human perturbation to giabal carbon
cycle (Houghton et al., 2012; Le Quéré et al., 20dad started in fact before the Industrial Era mvifessil fuel CQ
emissions appeared. Since 1850, estimated cumailatil CC emissions, k., represent one-third of total cumulative
anthropogenic C@Qemissions (Boden et al., 2013; Houghton et all22Qe Quéré et al., 2015). Annual LULCC emissions
have been higher than those from fossil fuel bugnintil the 1930s (Boden et al., 2013; Houghtoalet2012; Le Quéré et
al., 2015), and today represent a smaller but gtersti perturbation in the global carbon cycle. kinliossil fuel emissions,
relative uncertainties in LULCC emissions are hidbe to the difficulty of assessing this flux frameasurements. Some
progress has been made to better quantify gropscadlodeforestation emissions by combining spdiiamass data with
satellite-derived maps delineating forest coves I@isarris et al., 2012). But such spatially resdhdata are not available
beyond the last decade and provide only gross estfaion emissions, i.e. do not track the regroeftsecondary
ecosystems or legacy soil carbon losses that aaispiong after deforestation.

Bookkeeping models (Hansis et al., 2015; Houghi®99) based on historical LULCC area data and &abdlfunctions of
carbon losses and gains are one approach to @stinti., but they do not include the effects of environtaénhanges on
carbon stocks before and after LULCC happens (GasskCiais, 2013; Pongratz et al., 2014). The keeking model of
Houghton (1999) used for the annual update of fbbad carbon budget (Le Quéré et al., 2015) is dawe regionally
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aggregated data, and does not consider spatiereliftes of LULCC fluxes within a region. Alternatiy, the estimated
LULCC fluxes by dynamic global vegetation models5dMs) account for spatial and temporal variatiohgarbon stock
densities and land-cover change, as well as fayeel (“legacy”) carbon fluxes. In DGVMs, LULCC flex are related to
environmental conditions through simulated carbgolec processes, i.e., net primary production (NBRJ respiration
resulting in changes of biomass and soil carbookst@re simulated with variable atmospheric,@@ncentration and
climate. Yet, LULCC emissions from DGVMs differ aitéy, even when these models are prescribed wélséime inputs of
land-cover change data (such as time-variable apégsasture and crops) (Pitman et al., 2009). Sviarctors are
responsible for differences of g among DGVMs, including 1) different representasiasf processes that determine the
carbon densities of vegetation and soils subjedamd-use change; 2) using dynamic vegetation esqibing a fixed
vegetation distribution; and 3) use of differenteauassigning how natural vegetation types changagticultural areas
(Peng et al., 2017; Pitman et al., 2009; ReicK.e2813).

Carbon initially stored in forest biomass contrésithe predominant portion of the LULCC emissiofteradeforestation
(Hansis et al., 2015). Thus, an accurate repres@mtaf the biomass carbon density exposed to LUL€ € ucial to reduce
uncertainties of DGVM-based; & estimates. Global biomass datasets based on ariestand satellites recently became
available. These datasets (Table 1) provide th&adigadistributed biomass carbon density at regioar global scales
(Avitabile et al., 2016; Baccini et al., 2012; Calhais et al., 2014; Liu et al., 2015; Pan et2011; Saatchi et al., 2011;
Santoro et al., 2015; Thurner et al., 2014), bffedin terms of their coverage of aboveground elotvground biomass and
whether they provide only forest biomass or bionfassll vegetation types.

In this study, we propose a new method to combioent satellite- and inventory-based biomass datéaseonstrain &
simulated by DGVMs (Figure 1). We analyzed the atgpfrom nine DGVMs (Table 2) of the Trends in Netnd-
Atmosphere Exchange (TRENDY-v2) project (Sitch let 2015) (http://dgvm.ceh.ac.uk/node/9) and depetbglobal and
regional regressions between initial biomass in1180d present-day biomass (average of 2000-20h2),regressions
between E. during 1901-2012 and initial biomass across the/BIG. The former set of regressions is used to pxiete
present-day observation-based biomass (Table ibjti@l biomass in the year 1901. The latter setegfressions is applied
to provide an emerging constraint ofyEas a function of initial biomass (Figure 1). Usitigg Gaussian uncertainties
associated with the observation-based biomassedatasd the uncertainties in the two regressiGmasissian errors offk

can be derived after applying the biomass-condtraircertainties-of 5.-can-be reduced-by providing-Gaussian-errors after

onlving-the biom on nt_compared-to-theral larae rance fro | models.
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2 Materials and Methods
2.1 LULCC emissions and biomass from the DGVMs

The DGVMs in TRENDY v2 conducted two simulationabi¢led S2 and S3) between 1860 (except JSBACH 11850,
Table 2) and 2012, with outputs quantifying LULC@issions over the period 1901-2012 (Sitch et &015). Both
simulations are performed with changing climate &@ concentration, but one (called S3) has variabld CO maps
based on Land Use Harmonization (LUH) dataset (Hairal., 2011) (with an extension until 2012), dhd other (called
S2) has a time-invariant land-cover map represgritia state in 1860. The difference of net bionwpction (NBP, the net
carbon exchange between the biosphere and the @ltered between these two simulations (S3 and S)edemodeled
LULCC emissions. Thislefinition-calculationof LULCC emissionsby DGVMs includes the “lost sink capacity” (called
“altered sink capacity” in (Gasser and Ciais, 2048} “the loss of additional sink capacity” in (Boatz et al., 2014)),
because simulated NBP in the S2 simulation withdlit CC represents ia net sink over areas affected by LULCC in S3.

For example, forests have larger carbon storageskamer turnover time than croplands and thus apeeted to be carbon

products produced by LULCC, as far as the latteriacluded in the TRENDY v2 models (Table 2). Th@é\IMs used in
this study are CLM4.5 (Oleson et al., 2013), JSBA@®ick et al., 2013), JULES3.2 (Best et al., 20Qthrk et al., 2011),
LPJ (Sitch et al., 2003), LPJ-GUESS (Smith et 2001), LPX-Bern (Stocker et al., 2014), ORCHIDEFifKer et al.,
2005), VISIT (Ito and Inatomi, 2012; Kato et alQ13), and OCN (Zaehle and Friend, 2010). Each DG¥Mescribed
briefly in Table 2.

LULCC can either reduce or increase the biomassuamaver time depending on the LULCC types. Fomeple, forest

clearing turns forest biomass into atmospherig @@entually, while secondary forest regrowth casréase biomass. The
overall effects of LULCC on biomass during the digtal period is a net loss of carbitoughton, 1999¥3lue to converting
natural vegetation into cultivated lands by hun(ilein Goldewijk et al., 2011)ldentifying the LULCC-affected grid cells

in each model ishuscritical, because only biomass in these grid cg@isuld be used to constrain LULCC emissions. Grid
cells affected by LULCC differ among models. Altigbuall models share the same pasture and cropltaad &rom LUH
dataset (Hurtt et al., 2011), the models have miffe numbers of PFT, use different PFT definitiamsl have different
allocation rules for translating the shared agtigal data into the new vegetation cover (Pend.e2817; Pitman et al.,
2009; Reick et al., 2013). As a result, there isunified map to determine the LULCC-affected graisin all models. For
the same reasons, the forest areas and the LUL®SS tyre also different among models.

In this study, we adopted the “deforestation gelst in their corresponding PFT maps as a critetimlocate the LULCC-
affected grid cells from DGVM outputs. Thus we usieel PFT maps from each model to first calculagetémporal change
of forest area (total area of all forest PFTs) nigir1 901-2012 and then select the grid cells thaeeenced deforestation by

4
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comparing the forest area maps between year 198lyear 2012 (net deforestation). This proceduredyces a good
approximation, given the continuously decreasimmdr of forest area in LULCC hotspot regions likeuthoand Central
America (Figure 2). We also tested an alternativthod to determine the LULCC-affected grid cellSTRENDY model
outputs, i.e., PFT maps were compared year-by-gesing 1901-2012, and grid cells with deforestativere selected
(gross deforestation). This method tends to gigeemter number of LULCC-affected grid cells, redigcthe goodness of
fitting in the regression between the biomass id118nd &, during 1901-2012 (Figure S1 and Figure S2). Theeefthe
method of gross deforestation is not used for &rrtinalyses.

We verified that deforestation grid cells are resgble for most of the total net LULCC flux. In fatche average of the
different model simulations of LULCC emissions frateforestation grid cells between 1901 and 20Xbmoximate 90%
of the total LULCC emissions from all grid cellsgbre S1). The LULCC emissions in this study atesttaken to equal the
sum of LULCC emissions from the selected deforastairid cells using our criterion. It should betethat, although only
deforestation is used as a single criterion tongefjrid cells affected by LULCC in DGVMs, modeletd LCC emissions
also include other types of land-use transitionslving pairs of non-forest PFTs in the selected gells.

In each model, only biomass in deforestation gefsds considered. Biomass in the year 1901 isethedefined agitial
biomass, and biomass averaged during 2000-201€fiised agpresent biomass. An ordinary least squares linear regoassi
is performed with the outputs of all models betwastial biomass and . from 1901 to 2012, and between the initial and
the present biomass at both global and regiondésc@®ur division of nine regions in the world (&ig 2) for estimating
LULCC fluxes is the same as Houghton et al. (1999).

2.2 Observation-based biomass datasets

Several biomass datasets (Avitabile et al., 201&cBi et al., 2012; Carvalhais et al., 2014; Liuak, 2015; Pan et al.,
2011; Saatchi et al., 2011; Santoro et al., 20Xwrifer et al., 2014) based on inventories and rersehsing can be
potentially used to constraini through the set of regressions from DGVMs. Howgevkeese biomass datasets cover
different parts of biomass (aboveground, belowgdoantotal) and different regions (tropics, Northétemisphere or the
globe) at different spatial resolutions (Table We choose the global grid-based biomass dataset @arvalhais et al.
(2014) to derive an observational constraint witidhgs a best estimate of E This map merges the Northern Hemisphere
biomass dataset from Thurner et al. (2014) andrtgcal biomass dataset from Saatchi et al. (20Ad)advantage of this
map is its consistency in biomass terms with thgputs of TRENDY models, because it documents aboweg +
belowground, and forest + herbaceous biomass (Fdhle). Three other biomass maps are used asalter datasets for
sensitivity tests: 1) the global biomass map fram GEOCARBON project, a merged product of the besrdatasets in the
Northern Hemisphere (Santoro et al., 2015) anddsoff\vitabile et al., 2016); 2) regional biomass$imates from Pan et al.
(2011) based on forest inventory data; and 3) the&ss map from Liu et al. (2015) derived from Hit¢evegetation optical
depth. The GEOCARBON (Avitabile et al., 2016; Saaotet al., 2015) and Liu et al. (2015) datasets tmy provide

5
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aboveground biomass were extended to total forieshdss using the conversion factors for the nirggores (Liu et al.,
2015). The global biomass maps from GEOCARBON (@hiie et al., 2016; Santoro et al., 2015) and Ral. €2011) are
only for forest (Table 1), and we do not add thebheeous biomass to these two datasets becauggotied herbaceous
biomass only accounts for about 3% of the globtl thiomass (Carvalhais et al., 2014). Note thatuhcertainties in the
corresponding constrained results using these thlteenative datasets do not incluilethe uncertainties of converting
aboveground biomass to the total of aboveground teidwground biomass for datasets from Liu et 2016) and
GEOCARBON (Avitabile et al., 2016; Santoro et &015) and2) the uncertainties of ignoring non-woody biomass in
datasets from GEOCARBON (Avitabile et al., 2016nt®a0 et al., 2015) and Pan et al. (2011). The bEsnmaps of
Carvalhais et al. (2014), GEOCARBON (Avitabile & 2016; Santoro et al., 2015) and Liu et al .1&0with different

spatial resolutions were aggregated 11 resolution before selecting the deforestation geits.

2.3 Methods to identify grid cells subject to pastieforestation in biomass datasets

It is not practical to use PFT maps from DGVMs #dide deforestation grid cells in the observatiasédd biomass datasets
because PFT maps and forest area change sincalif@Iacross DGVMs. Instead, we diagnosed defatist grid cells in
the biomass maps using three harmonized methodh¢bllé\, Method-B and Method-C). All the methods hesed on the
reconstructed historical agricultural area from tHistory Database of the Global Environment (HYDB.ly (Klein
Goldewijk et al., 2011) but with different hypotlessregarding how agricultural expansion has afteéteests. These
harmonized methods are representative of the differules of assigning LULCC data to natural vetjgtatypes in
DGVMs. Method-A assumes that the increase of crapkarea in a grid cell between 1901 and 2012 isrtdkom forest;
Method-B assumes that the increase of croplandpastlre is taken proportionally from all naturagetion types; and
Method-C (like the “BM3” scenario in (Peng et &Q17)) assumes that the increase of cropland astdingais first taken
from forest and then from natural grassland if marerforest area is available, and that the regiforakt area change is set
to match the historical forest reconstruction fréoughton, 2003). Because the biomass distributidpan et al. (2011) is
given as regional mean values and not resolvedridncgll basis, it is impossible to select defoa@isn grid cells directly
from this dataset using the above methods. Thexefor each region, we calculated the ratios ofrtaiss in deforestation
grid cells according to Method-A, Method-B and M&kC to the total biomass in all grid cells in eaftthe other three
biomass datasets (Carvalhais et al. (2014), GEOGAIRBAvitabile et al., 2016; Santoro et al., 2016)id.iu et al. (2015)).
For each method (Method-A, -B, and -C), the theg@s corresponding to the three biomass datasats further averaged
in each region. The total biomass amount from Rah €2011) in each region was multiplied by thverage ratio to derive
the biomass equivalent to using Method-A, Methodr8 Method-C for the dataset from Pan et al. (2011)

These three methods applied to the above-listethdss datasets are also applied as sensitivity testelect the
deforestation grid cells since 1901 in the TRENDYd®l outputs. Identically, regressions are perfatrasing initial

biomass amount andg from these selected grid cells. Due to the insirscies between the three methods and the

6



10

15

20

25

historical PFT maps of each DGVM, the biomass arhaurl901 in the selected grid cells using theseglmethods is
higher than using PFT maps, but tHg.EBre lower, reflecting a lower representativendsbe deforestation grid cells using
these three methods for DGVM outputs (Figure SX.aAconsequence, a weaker goodness of regressiaadifound

between k. and initial biomass (Figure S2).

2.4. Uncertainties of constrained LULCC emissions

The biomass from Method-A, Method-B and Method-@aoted from each dataset is extrapolated into bésnfier the year
1901 using the regression between initial biomamk @esent biomass modeled by the DGVMs. This bgsma 1901 is
then applied in the regression between modefgd &d modeled initial biomass among different DGVidscalculate
constrained Ec. In this emerging constraint approach (Figurettig, uncertainties of constrainef,Eare a function of the
uncertainties of the observed biomass datasethedinear regression goodness of fit for the tegressions (regressions
between E. and the initial biomass, and between the initiad aresent biomass), and of the slopes of the seigmes. The

uncertainty of constrained LULCC emissions is clled as (Stegehuis et al., 2013):

— 252 2
OLuLece = \/Ol Oinitial_biomass + Ores_ LULCC (1)

— 252 2
Jinitial_biomass - Jﬁ Gpresent_biomass + Jres_biomass (2)

whereo yicc, Ginitial_biomass@Nd0present_biomas@l€ the uncertainties of constraingg.Rhe uncertainty of initial biomass and the
uncertainty of present biomass. andoes LuLcc represent the slope and the standard deviatidgheofesiduals from the
linear regression fit between £ and initial biomassB and cres niomasstepresent the slope and standard deviation of the

residuals from the linear regression between ifti@mass and present biomass.

" { Formatted: Heading 2

2.5. Two supplementary methods to constrain &._using biomass observations

We also tested two supplementary methods to cindffa: Method-S1, using the regression betwegp &nd present-day

biomass from TRENDY models rather than extrapotpfinesent biomass to biomass in 1901 first, anchttbS2, using

AB (biomass difference between present biomass @&ndass in 1901 derived from the model simulationsiead of a

regression between biomass in 1901 and presenbidayass to extrapolate the observation-based b®rimd901. In

Method-S1, the uncertainties in the biomass obsiensiand in the regression betweeih.End present biomass from

models are used to calculate the uncertaintiehénconstrained .. In Method-S2, the uncertainties in the biomass

observations and the standard deviationBfamong models are used.
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3. Results
3.1. Forest area change and cumulative LULCC emissis in DGVMs

As expected, a general decrease of forest areauiglfbetween 1901 and 2012, especially in regiobgest to extensive
deforestation over the last decades, namely SogtlCantral America, south and southeast Asia, mopical Africa (Figure
2), which is in support of our methods of definiteforestation grid cells, although the forest anesaome regions differs
substantially across DGVMs. Differences in forestaaare large in tropical Africa, North America ahé former Soviet
Union while they are smaller in South and Centradefica, and south and southeast Asia (Figure 2¢reTlre several
reasons for these differences of forest area: Jetschave different initial distribution of PFT$¢t TRENDY v2 protocol
only prescribed the same initial area of naturgietation, but did not specify the PFTs that compteral vegetation); 2)
some models consider only net LULCC, but otherstgress LULCC including some sub-grid transitiohakie 2, e.g., see
a comparison using the JSBACH model (Wilkenskjeldale 2014)); 3) models have different treatmefois changing
pasture areas (either proportional from naturaktegipn or preferential from natural grasslands)Nbrth America, China
region and western Europe, the forest area deatéagke first half of the 2Dcentury and then increased in recent decades.
Yet, the magnitude of the increase is smaller thahof the previous decrease in these regionsthendlobal average is net
forest loss between 1901 and 2012 (ranging fronMk®? to 16.8 Mknf across the nine models).

Eluc from the nine DGVMs between 1901 and 2012 ranges fL.7 (-0.6 to 6.0) Pg C (median and range, &ipesiumber
indicating a net cumulative flux to the atmosphéneforth Africa and Middle East to 42.6 (33.5 th4) Pg C in South and
Central America, resulting in a global total of 18 to 273) Pg C (Table 3). Tropical Africa anditoand southeast Asia
have the second largef g of 21.8 (15.8 to 57.8) and 21.8 (9.6 to 46.6) Pgré&pectively. Although afforestation /
reforestation occurred in North America after ambd960, and in China after 2000 (Figure 2). Bf these two regions are

positive since 1901, with median values of 19.9 80d Pg C, respectively (Table 3).

3.2. Relationship between cumulative LULCC emissiaand initial biomass

We found a positive linear relationship betweén. Bnd initial biomass in deforestation grid cellseafch model, both at
global scale and in the regions considered (Figir&@he coefficients of determinatiorf)(are 0.61, 0.58 and 0.76 in South
and Central America, south and southeast Asia iapictl Africa, respectively. Due to stable or hiig increasing forest
area (Figure 2), the correlation between initi@nbass and [ is small in western Europe (Figure 3). The slopkthe
relationships between; and initial biomass shown in Figure 3 range frat30Pg C/Pg C in western Europe to 0.63 Pg
C/Pg C in north Africa and Middle-East. In tropicabions with intensive LULCC, the slope is simitstween south and
southeast Asia (0.36 Pg C/Pg C) and tropical Af(lz87 Pg C/Pg C), but lower in South and Centnalefica (0.21 Pg
C/Pg C). These slopes reflect the sensitivity ahglative carbon loss to initial biomass carbon Istdthey are mainly

influenced by the fraction of deforested area netato the initial forest area in each region, Wwhiexplains 46% of the

8



10

15

20

25

30

variations of the slopes across regions (Figure Bi#fferences in biomass density across regionsimride use of gross or

net transitions among DGVMs (Table 2) also contelto variations of slopes.

3.3. Cumulative LULCC emissions constrained by premnt-day biomass observations

There is also a strong positive relationship betwiagial biomass in 1901 and present-day biomasyid cells experienced
deforestation (Figure 4). Thé of this regression is higher than 0.92 in mostaes except in North America and China
region (0.89 and 0.76, respectively). The regressietween present-day and initial biomass was e@pb extrapolate
current observation-based biomass back to thej@@t. The extrapolated biomass in 1901 is highen that in the present
day, mainly due to a larger forest area — althoitigh difficult to discriminate other effects suels CQ fertilization that
might have increased biomass between 1901 and 2012.

Using the chain of emerging constraints betweeseeday and initial biomass (Figure 4), and betwEg. and initial
biomass (Figure 3), with all uncertainties beinggaigated (Egs. (1) and (2)), we were able to caimst,. during 1901-
2012 by biomass observations (Figure 3, S4, S5,Tade 3). B, constrained by the biomass dataset of Carvalhias e
(2014) is 155 +50 (mean andslGaussian error) Pg C and this estimate is rolmshée choice of the methods to define
deforestation grid cells in biomass datasets (caims&d E . = 152 +49, 154 +50 and 159 +51 Pg C for Methodvkethod-

B and Method-C, respectivelyThe difference between the global constrainéd Bnd the median value of originaf,E
(148 Pg C) from TRENDY DGVMs is not significant,ggesting that the median model estimate is indepthdverified

by biomass observations. Still, some models thatraronsistent with the observations can be ideudtifFigure 3).

The uncertainties reported in our constrained eg#nof Ec include uncertainties in the biomass observatians, in the
scatter of the two regressions (Figure 3, 4) usetbhstruct the emerging constraifhe uncertainties in the constrained E
tuc_are still relatively large, resulting from the dar uncertainties in the biomass observatiens—Gesdpm-the—eriginal
eraLte&al—%C R et Pg C)-inDGVMs -the constrainstihmte has-a-smaller uncertainty-and-a-largeranedi

valde- However; tishould be noted that we summed the biomass wiasrtin each deforestation grid cell to give the

regional biomass uncertainty, which gives a maximumertainty with a potential assumption that theautainties in all
grid cells are fully correlated. In reality, thegrenal biomass uncertainty should be lower, thumdileg to a lower
uncertainty of constrained] . Hewever Butit is difficult to estimate the error correlation$ observation-based biomass
between different grid cells at this stage.

Although the constrained globaj Evalue is only 7 Pg C higher than the median ofdtiginal DGVM ensemble (Table 3),
larger differences can be found at regional sdailgufe 5). Constrained;& estimates are higher than the original modeled
values in south and southeast Asia, tropical Afaod South and Central America (Table 3). For exanpe constrained E
tuc is 37.2 £14.4 Pg C in south and southeast Asiapened to the original TRENDY median value of 2R@C (range of
9.6 to 46.6 Pg C) for that region. The constraiesissions are also higher in China region and tuifie developed region

compared to the prior median value (see Table 3igAificantly large reduction in/& through the emerging constraint is
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found in North America because of the lower biomas®unt from observation-based datasets than fr@vNds. The
original median Ec of that region is 19.9 Pg C (range of 8.6 to 49g8C) while the constrained result is 10.8 +7.1Pg
Constrained Ec are also lower than original estimates in westeunope, and north Africa & Middle East, althougleith
contributions to the global total emissions are/v@nall (Table 3).

Alternative estimates of & constrained by three other biomass datasets (Lall €2015), GEOCARBON (Avitabile et al.,
2016; Santoro et al., 2015), and Pan et al. (204r®)provided in Figure 6 and Table 3. In gen¢halconstrained Ec using
biomass maps from Liu et al. (2015) and GEOCARB®@Nitabile et al., 2016; Santoro et al., 2015) exther consistent
with slightly-higher(7-Pg-C-en-average)-than (amerage only 4.5% higher thathose from Carvalhais et al. (2014)
implying the robustness of our estimatdhe biomass dataset from Pan et al. (2011) lémadswer LULCC emission

estimates at global scale, mainly due to a lowéimese in south and southeast Asia (Table 3) coetpao the other
products. In the Pacific developed region, GEOCARBI@ased estimates (Avitabile et al., 2016; Santirel., 2015) are
much higher than those from Carvalhais et al. (20ddcause the latter has a gap in their biomagsimtéhe southern part

of Australia (Carvalhais et al., 2014). Figure 6, we show the originafg from TRENDY DGVMs as quantiles because

we don’t know whether they follow a normal distritm, and to be comparable, the interquantileshefdonstrained &

are also shown. The interquantile range of cons#hi . is larger than that of the originaf,E (Figure 6). This, however,

doesn’t mean that our emerging constraint methasbisffective, but that the relatively large urnaaty of the constrained

Efuc_is propagated from the biomass observation urinéytavhich is about one-third of the mean biomasglobal level
(Carvalhais et al., 2014).

The global constrainediz using the two supplementary methods is almostticknwvith that using our original method+in- - {Formatted= Space Before: 2.5 pt

Figure 1 (see an example in Figure S6). The diffezeof E,. between supplementary and original methods aglbieal
level is <1% for all biomass observation datas€tryalhais et al. (2014), Liu et al. (2015), GEO@®N (Avitabile et al.,
2016; Santoro et al., 2015) and Pan et al. (20d414d) all methods to select LULCC grid cells (Methdd-B and -C). This

suggests that our constrained results are verystoliilne change in the uncertainty in global comsédh E,. is also very

small (<2%), because most of the uncertaintiesfiame the biomass observations (see Discussion) thadregression

between & and biomass (seé in Figure 3), rather than converting present-deymiass to biomass in 1901 (s€dir

Figure 4). The difference in regionat,Ebetween different constraint methods is relativatger (12% on average), but the

difference remains very small in tropical regiord%). However, we note that the results from the supplementary

methods (Method-S1 and —S2) should be cautiousitad. First, because,Eis related to the biomass that have been

affected since the start of the land use pertuwhatinly biomass in 1901 (rather than that left @fuland use in the 2000s)

in LULCC-affected grid cells is logically related historical E.. Thus, converting present-day biomass to biomad901

(the original method, Figure 1) is a more direali @nocess-justified approach compared to regregsiesent-day biomass

versus B, (Method-S1) which is not justified by a logical ahanism. Second, usindB in Method-S2 is not a perfect

solution to extrapolate biomass in 1901 from preseyy biomass, because the change in biomass sotely impacted by
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land use change. The interactions between bionmasslanate conditions, disturbances and nutrignitéition are also very

important in DGVMs. For example, historical LULCCagnreduce biomass over LULCC-affected regions, leygeplacing

forests with croplands. On the contrary, the,@ébtilization effects may increase biomass ovel. 0T and non-LULCC

regions. Therefore)B reflects a mixed effect of different factors, @mosole response to LULCC. In addition, asABehas

a higher relative uncertainty between models (~58%he global level), using the regressichXr0.92 in seven regions,

Figure 4) to calculate biomass in 1901 could inelvelatively less noisy information than usihg.

4. Discussion

Our approach to constraining,Efrom an ensemble of DGVMs provides a best estinttadé is between those from two
bookkeeping models (~130 Pg C from Houghton €Ral12) and 212 Pg C for the default dataset fromditaet al. (2015)).
Although the bookkeeping model from Hansis et a016) was driven by the same agricultural land megs as the
TRENDY models (the model of Houghton et al. (20a8¢s FRA/FAO data), i from Hansis et al. (2015) is different from
that constrained from the DGVMs. Differences ofreates between DGVMs and bookkeeping models hage h#ributed
to different definitions of LULCC emissions (Pongrat al., 2014; Stocker and Joos, 2015). Indeed,GC emissions from
DGVM simulations in TRENDY include the “missed sinépacity in the deforested area” (Gasser and (J8i3; Pongratz
et al., 2014), and so, all else being equal, sheinfdilate higher emissions than bookkeeping moghkish do not include
this term. However, bookkeeping models take fodegradation into account, while this process iotigd in DGVMs.
Bookkeeping models also represent shifting culivafresulting in larger sub-grid scale gross l&adisitions as opposed to
net transitions) and wood harvest; processes wdrielaccounted for in only a subset of the TRENDai® (see Table 2).
In addition to different driving LULCC area datafferences between the two bookkeeping models wiseussed by
Hansis et al. (2015); for example, Houghton e{2012) assumed a preferential allocation of pastorenatural grasslands,
while Hansis et al. (2015) assumed a proportioliatation of both cropland and pasture on all alzg natural vegetation
types.

We are aware that our truncated diagnostic of afsdeforestation grid cells, instead of grid celffected by all LULCC
types, is an under-estimate of the total area stitje LULCC, because we ignore grid cells that eipeed land-use
transitions between non-forest vegetation only.(erdy conversions from grasslands to cropland Bapy in a grid cell).
However, the conversion of forest to croplands pasture dominates the total net LULCC flux (Hought®003, 2010),
while the contribution of transitions between nonekt vegetation and agriculture th,&s comparatively small (Figure
S1). In fact, the annual LULCC emission from deftation was estimated to be 2.2 Pg € guring 1990s, and the total
emissions from other activities (e.g., afforestatieforestation, non-forest transitions) is neagwtral (Houghton, 2003).
The lack of direct biomass observations at thdaingtate forces us to hindcast biomass in 190kdas present-day

observations; an extrapolation that also comes wittertainties. Some of the observed biomass datasly cover forests,
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and satellite measurements usually quantify ab@tegt biomass carbon stocks and not total biomasks{Table 1). In
addition, the regression of modeled biomass betvi®&i and 2000-2012 (average) to extrapolate thedss amount in
1901 is only a statistical approach. This regressi@nnot be mechanistically explained becausddfesand intercept are
impacted by multiple factors in the models likedasiearing, secondary vegetation regrovitie.CO, fertilization, climate,
disturbances, and the nutrient limitation on biosn@espite these uncertainties, the high coefficd¢metermination in the

regression increases our confidence in the bioreasspolation to 1901For a given biomass dataset, the choice of a

method for defining deforestation grid cells (Medb®d, Method-B and Method-C) has very small influeran our results
(Table 3).-M

LULCC carbon emissions are influenced not only bgr@ges in biomass, but also by how these are fiveddn the model

to influence posterior changes in detrital and sodanic carbon pools. However, LULCC emissions dominated by

changes in biomass. For example, LULCC resultsrietacarbon loss of 110 Pg C in biomass during 1880, accounting

for 89% of the total &. (Houghton, 1999)The soil carbon changes after LULCC is also ictly impacted by initial

biomass, since the dead roots and remaining abowedrdebris turn into soil organic carbon afterdlaearing, which

takes longer time to return into the atmosphereaddition, it is not necessary to account for atltérs when applying an

emergent constraint approach (e@ox et al., 2013; Kwiatkowski et al., 2017; Wenethl., 2016) The regression between

through biomass observations.

The required model outputs for carbon stocks amxef in the TRENDY project are not PFT-specifictyahe mean PFT-
mixed variables in each grid cell are required.Saic aggregation prevents a rigorous separatitaoafass between forest
and other biomes in each grid cell. It was thusdssible for us to calculate individual contribusoof different LULCC
types to the overall LULCC emissions, which inducegertainties when matching model results witheolesd forest
biomass distributions (e.g. only forest biomasdatasets from GEOCARBON (Avitabile et al., 2016nts#o0 et al., 2015)
and Pan et al. (2011)). Therefore, we suggestttigahext generation of DGVM comparisons reports Bpécific carbon
stock and fluxes, and other model inter-comparisrercises should follow suit. The approach of usmgtiple biomass
observation datasets to constrain the LULCC emisstuld also be applied in other modeling projesteh as Coupled
Model Intercomparison Project Phase 5 (CMIP5) aNiR®.

Currently, the uncertainties in the satellite-badéaimass datasets are relatively larfgeg. 38% on average in tropics
(Saatchi et al.,, 2011)at the pixel level (< 1 km)}hat-mayThisintroduce uncertaintiessf-in the constrained cumulative
LULCC emissions, depending on the forest types lsinthass range. For example, on the average atlthalgscale, the
uncertainty at thenedeling resolution of DGVMyrid cells (0.5° x 0.5°) is about one-third of tinean biomass (Carvalhais
et al., 2014) anthe relative uncertainty istysmaller for high biomass areas in tropics (Avialgt al., 2016; Saatchi et al.,
2011).
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The main sources of uncertainties in satellite-ddsemass datasets depend on the specific prospatial resolution of the
datasets, and the methodology used to validatddte For instance, in the case of radar rematsirsg used for biomass
mapping in Northern Hemisphere boreal and tempédoagsts, the uncertainty is largely due to thes##&vity of the signal
to other properties than vegetation structure faajsture), the influence of non-forest vegetatiorthe signal (especially in
fragmented landscapes; (Santoro et al., 2015)),usmcértainties in additional datasets (allometataases, land cover)
used for conversion of satellite measurementsitonéiss estimates (Thurner et al., 2014). At tixeldevel and modeling
grid cells, uncertainties may also be strongljuieiced by the quality and size of inventory datedufor validation and the
significant mismatch between pixel area and theé géta, and the difference of between the datesatllite and ground
observations (Saatchi et al., 2015, 2011; Thuehet., 2014).

Moreover, the satellite-derived biomass datasetsl urs this study represent different dates. Tbpital biomass products
represent circa 2000 status of forests, whereabdheal and temperate biomass maps are based oebspae radar data
from the year 2010. These differences in the dawbservations introduce additional uncertaintytia biomass estimates
due to changes of forest cover from disturbancerandvery and land use activities (Hurtt et al.JPOoccurring annually
and regionally.

However, in boreal/temperate as well as in tropieglons, the estimated relative uncertainties i@sest in high biomass
areas (Avitabile et al., 2016; Thurner et al., 20Which dominates the contribution to our resulidoreover, the relatively
high accuracy of biomass datasets when aggregateddeling grid cells from higher resolution magsl(km) (Saatchi et
al., 2011; Thurner et al., 2014) suggest that brsrdatasets implemented in our study provide dstieatepresentation of

carbon stocks to constrain the historical cumuéatiyLCC emissions from vegetation.

5. Conclusions

Uncertainties in LULCC carbon emissions are reddyiarge, compared to other terms in the globaba@a budget. The

wide spread is partly due to the differences in ehatfucture but also because of the difficultycanstraining models by

observations of LULCC, particularly emissions résgl from deforestation/e-use-satellite-and-inventory-based-biomass

getation

biomass-and-cumulative LULCC-emissions-in-nine-D&/We propose an observationally constrained globalutative
LULCC emission of 155 +50 Pg C during 1901 and 2@4&hough the constrained cumulative LULCC emissians close

to the unconstrained ones from models, our stutBrofain evaluation of the modeling results usirgy dbservation-based

biomass. More importantly, we combine the unceti@snin the regressions from state-of-the-art modeth uncertainties

in multiple observation-based biomass datasetsyamda constrained i with a 16 Gaussian uncertainty. The idea of an

emergent constraint approach is to give a morerateestimate and / or a reduced uncertainty omn&nown variable by

combining a heuristic relationship between two niedevariables (an observable and an unknown on&) actual
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observations of the observable variable. Thus, study shows 1) that there is a heuristic relationdietween initial

biomass and {5 _among different models, 2) that available biomaisservation data confirm independently the median o

modeled emission estimates, and 3) that more dechi@mass data in the future would allow to fglsibme of the modeled

estimates of emissionAlthough the uncertainties in current observatiasdrl biomass datasets are relatively high, as more

accessible and accurate observation data beconiabd@amany data-driven opportunities are beirgated to improve the
accuracy of DGVM predictions.
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Table 1. The different biomass datasets based on obsergatiime information of biomass from TRENDY v2 prdjés also listed for

comparison.

dataset coverage resolution biome type abovegrbhatbwground note

Thurner et al. (Thurner eBO’N~80°N 0.01 degree forest aboveground + belowground Grpwiack volume from Santoro

al., 2014) et al. (Santoro et al., 2015)

Saatchi et al. (Saatchi et30°N — 40S 1 km forest aboveground

al., 2011)

Carvalhais et al. global (without 0.5 degree forest + aboveground + belowground a merged map of Thurnak e

(Carvalhais et al., 2014) South Australia) herbaceous (Thurner et al., 2014) and Saatchi et
al. (Saatchi et al., 2011)

Baccini et al. (Baccini et 23N — 23S 500 m forest aboveground

al., 2012)

Liu et al. (Liu et al., 2015ylobal 0.25 degree all aboveground calibration h@aseSaatchi et al.
(Saatchi et al., 2011)

Avitabile et al. (Avitabile 30°N — 40S 1 km forest aboveground a fusion of Saatchi gtSalatchi et

et al., 2016) al., 2011) and Baccini et al. (Baccini
etal., 2012)

Santoro et al. (Santoro eBO°N+ 0.01 degree forest aboveground sharing growindgstolume with

al., 2015) Thurner et al. (Thurner et al., 2014)

Panetal. (Panetal.,, global regional forest aboveground + belowground sebaon FAO data

2011)

TRENDY v2 global 1 degree all aboveground + belowgrbu
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Table 2. Description of TRENDY model set-ups used in thigigt

model PFT allocation rules of changes in agricultuspatial ~ dynamic wood  shifting  explicit  start of transient reference - {Formatted Table
numberrea resolution vegetatiorharvest agriculturegross simulation
activated LULCC
transitions

CLM4.5 17 pasture; crop model exists but not use@.8f x1.25N0 yes no no 1860 (Oleson et al., 2013)
these simulations

JSBACH 12 proportional allocation of cropland;  T63 no yes yes yes 1850 (Reick et al., 2013)
preferential allocation of pasture on
natural grassland

JULES3.2 5 crop and pasture added together to créé@é” yes yes no no 1860 (Clark et al., 2011);
a single agricultural mask, where trees (Best et al., 2011)
and shrubs are excluded from growing.
There is no assumption for which PFTs
the agriculture replaces

LPJ 9 crop and pasture were added together@®b° x 0.5°yes no no no 1860 (Sitch et al., 2003)
create a single managed lands fraction

LPJ-GUESS 11 proportional allocation of cropland and0.5° x 0.5°yes no no no 1860 (Smith et al., 2001)
pastur

LPX-Bern 9 proportional allocation of cropland and1.0° x 1.0 yes no no no 1860 (Stocker et al.,
pasture 2014)

ORCHIDEE 13 proportional allocation of cropland and2° x 2°  no no no no ?? (Krinner et al.,
pasture 2005)

VISIT 16 no specific rule applied because only 10.5° x 0.5°no yes yes yes 1860 (Kato et al., 2013);
natural PFT exists for primary and (Ito and Inatomi,
secondary land in a grid cell 2012)

OCN 12 proportional allocation of cropland and2.5° x no no no no 1860 (Zaehle and Friend,

pasture 3.75°

2010)

#T63 grid has an approximate resolution of 1.9°9¢.1.

N6 resolution is equivalent to 1.25° latitude x7B8longitude.
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Table 3. The global and regional cumulative land-use andiHaover change (LULCC) emissions (Pg C) during 12012 from original

TRENDY models and from the estimates constrainediffgrent biomass datasets with different methimddefine deforestation grid cellShe

interguantile ranges are shown in Table S1.

TRENDY Carvalhais et al. (Carvalhais étiu et al. (Liu et al., 2015) GEOCARBO{vitabile et al.Pan et al. (Pan et al., 2011)
al., 2014) 2016; Santoro et al., 2015)

mediammin max  Method-AMethod-BMethod-CMethod-AMethod-BMethod-CMethod-AMethod-BMethod-CMethod-AMethod-BMethod-C
Chinaregion 10.7 6.0 19.1 13.844.0 16.0+4.3 16.3+40.5+3.1 11.1+3.1 11.1+3.1 10.0+4.0 10.5+4.55306 7.3+2.9 7.6+2.9 7.7+2.9
North Americi 19.9 8.6 40.8 10.8+7.1 9.6x7.0 7.846.7 14.7+6.9.6488 9.3%6.6 17.848.3 15.4+7.7 13.0+7.6 9.5+6.4.5+8.4 6.716.4
South and 426 335 814 44.4+1746.4+18.146.8+18.248.3+17.050.1+17.050.6+17.044.5+16.646.4+16.746.8+16.843.1+17.044.8+17.145.1+17.2
Central America
western Europe 3.8 1.2 5.3 3.6+0.8 3.2+0.8 3.0+081+0.8 3.4+0.8 3.2#0.8 5.0+1.2 3.8+0.9 3.4+0.8 #B8.8 3.2+0.8 3.0+0.8
tropical Africa 21.8 15.8 57.8 24.6+102B.2+11.428.6+11.531.4+8.8 36.3+9.4 36.9+9.4 22.7+128.2+14.626.4+16.123.8+10.327.5+11.427.8+11.5
the former 105 7.2 33.0 10.9+6.7 10.7#6.7 11.3+6.8 14.2+65.3#6.5 14.9+6.5 14.746.6 13.0+6.5 13.5+6.5 10.2+3.846.2 10.2+6.2
Soviet Union
south and 21.8 9.6 46.6 37.2+1433.6+£13.338.5+14.827.848.5 24.1+7.9 27.948.3 32.9+1(R9.0+9.6 33.6+10.45.1+9.5 13.3+8.9 15.54+9.6
southeast Asia
Pacific 3.6 -6.0 186 6.0+4.4 54+4.2 6.0+4.3 7.1+35 6.80+35.6+3.3 18.0+3.1 16.4+2.9 14.3+3.0 -1.7+2.6 *2.8 -2.0+2.6
developed
region
north Africa anc1.7 -06 6.0 1.1+0.6 0.6+0.6 0.8+0.6 4.3+1.1 3.8+0.3.5+0.9 4.5+45 3.0+3.0 3.1+3.7 -0.1+0.5 -0.2+0:8.1+0.5
Middle East
globe 148 94 273  152+49 1544#50 159451 161+40 162+3%3+39 165+46 160+45 161+47 119437 121+38 122438
5
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