

1 Constraints on global oceanic emissions of N₂O from

2 observations and models

- 3 Buitenhuis, Erik T.^{1, 2}, Parvadha Suntharalingam¹, Corinne Le Quéré^{1, 2}.
- 4 ¹School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- 5 ²Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom
- 6 Correspondence to: Erik T Buitenhuis (E-mail: http://greenocean-data.uea.ac.uk/.feedback.html)
- 7 Running head: Ocean N₂O flux
- 8

9 Abstract. We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical 10 method based on model perturbation simulations and their fit to a database of $\Delta p N_2 O$ (n=6136). We evaluate two 11 submodels of N₂O production. The first submodel splits N₂O production into oxic and hypoxic pathways following 12 previous publications. The second submodel explicitly represents the redox transformations of N that lead to N₂O 13 production (nitrification and hypoxic denitrification) and N2O consumption (suboxic denitrification), and is 14 presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling 15 pathways (nitrification rates, NH4⁺ uptake, N₂O yields under oxic, hypoxic and suboxic conditions), and determine a 16 set of optimal model parameters by minimisation of a cost function against 4 databases of N cycle observations 17 derived from observed and model $\Delta p N_2 O$ concentrations. Our estimate of the global oceanic N₂O flux resulting from 18 this cost function minimisation is 2.4 ± 0.8 Tg N y¹, and is invariant to the choice of N₂O submodel. These estimates 19 suggest that the currently available observational data of surface ΔpN_2O constrain the global N₂O flux to a narrower 20 range relative to the large range of results presented in the latest IPCC report. 21 22 **1** Introduction 23 Nitrous oxide (N2O) is the third most important contributor to anthropogenic radiative forcing, after carbon dioxide 24 (CO₂) and methane (CH₄) (Myhre et al. 2013). It also currently estimated as the dominant contributor to stratospheric

- 25 ozone depletion (Portmann et al. 2012). Yet our quantitative understanding of the magnitude and processes
- 26 controlling natural N₂O emissions from the Earth surface to the atmosphere is very poor. A range of methods have

27	been used to constrain total oceanic N_2O emissions, including the combination of surface ocean N_2O partial pressure
28	anomalies with gas-exchange parameterizations (Nevison et al. 1995), empirically derived functional relationships
29	applied to global ocean datasets (Nevison et al. 2003, Freing et al. 2012), and ocean biogeochemistry models
30	(Suntharalingam and Sarmiento 2000, Suntharalingam et al. 2000, Jin and Gruber 2003, Martinez-Rey et al. 2015).
31	In spite of the multiple methods used, the reported oceanic emissions of N_2O is still poorly constrained, ranging from
32	1.9 to 9.4 Tg N y ⁻¹ according to the latest report of the Intergovernmental Panel on Climate Change (IPCC; Ciais et
33	al. 2013). The uncertainty in the oceanic emissions of N_2O accounts for a large part of the total uncertainty in the
34	natural N ₂ O emissions, which are approximately 11 Tg N y ⁻¹ (Ciais et al. 2013).
35	The large uncertainty in the oceanic emissions of N ₂ O stems from the complexity of its production pathways.
36	There are two main pathways of N_2O production in the ocean, nitrification and denitrification, which both stem from
37	redox reactions of nitrogen, under oxic and hypoxic conditions, respectively (Fig. 1). N ₂ O is formed as a byproduct
38	of marine nitrification of ammonium (NH_4^+) to nitrate (NO_3^-); N_2O is also an intermediate product of denitrification,
39	during the reduction of NO_3^- to nitrogen gas (N ₂) (Frame and Casciotti 2010, Loescher et al. 2012, Merbt et al.
40	2012). Denitrification can also consume N_2O , using extracellular N_2O , and reduce it to N_2 (Bange 2008). In the oxic
41	part of the ocean (i.e. most of the ocean, $97\% > 34 \ \mu mol \ O_2 \ L^{-1}$ (using O_2 data taken from Bianchi et al. 2012))
42	denitrification is suppressed, and the primary formation pathway is usually ascribed to nitrification (Cohen and
43	Gordon 1978), although there are additional pathways (Klawonn et al. 2015). Oceanic N ₂ O production in oxic
44	regions is often derived from the linear relationships observed between apparent oxygen utilization (AOU) and
45	apparent N_2O production (ΔN_2O) (e.g. Yoshinari 1976, Cohen and Gordon 1978). However, the $\Delta N_2O/AOU$ slope
46	varies in different water masses and oceanic regions (Suntharalingam and Sarmiento 2000). Previous studies have
47	suggested that differences in the $\Delta N_2 O/AOU$ slope could be driven by changing $N_2 O$ yields under varying pressure
48	and temperature (Butler et al. 1989) or varying O2 concentration (Nevison et al. 2003). Additional mechanisms not
49	yet quantified could include variations in the elemental stoichiometry of the organic matter that is being
50	remineralised, and spatial separation of organic matter remineralisation and nitrification.
51	Estimates of the contribution from suboxic regions of the ocean (about 3%) to the global N ₂ O flux vary from
52	net depletion via denitrification (Cohen and Gordon 1978), to 33% for the total N_2O production in the suboxic ocean
53	(Suntharalingam et al. 2012), and to more than 50% from denitrification alone (Yoshida et al. 1989). This ambiguity
54	remains unresolved, and stems from the variation in the $\Delta N_2 O/AOU$ slope from negative under suboxic conditions,

55 maximal under hypoxic conditions and lower under oxic conditions (e.g. 0.31 - 0.033 nmol/µmol, Law and Owens 56 1990).

- 57 Here, we estimate the global ocean N₂O flux to the atmosphere and its confidence interval. First, we estimate 58 N₂O flux from observations only (Section 2.1). This estimate has large uncertainty. We subsequently use a statistical 59 approach introduced by Buitenhuis et al. (2013a) to estimate the global oceanic emissions of N_2O and its confidence 60 interval by combining ocean N₂O model simulations with a global database of measurements of surface ΔpN_2O . This 61 approach involves minimisation of a cost function that compares a series of model simulations with a global database 62 of point measurements of surface $\Delta p N_2 O$. To achieve this, we use 4 observational databases of the N cycle (Section 63 2.2). We extend the global ocean biogeochemistry model PlankTOM10 (Le Quéré et al. 2016) with additional N 64 cycle processes, deriving the biogeochemical parameters from the observational databases (Section 2.3-2.4). Then, 65 we describe two separate submodels of different levels of complexity that represent N2O cycling pathways (Section
- 66 2.5-2.7). Finally, estimation of the global oceanic N_2O flux applying the statistical approach to the two submodels is
- 67 described in Section 3, followed by a discussion of the results (Section 4).
- 68

69 2 Ocean N cycle

70 2.1 Calculation of global ocean N₂O production from N cycle observations

71 In this section we provide an initial estimate of global marine N₂O production based on observationally derived 72 quantities characterising marine productivity and the global ocean N cycle. This follows a similar method to Cohen 73 and Gordon (1979), who estimated ocean N₂O production using 'Redfield' type ratios. N₂O is produced either during 74 production of NO₃⁻ in NH₄⁺oxidation or during NO₃⁻ reduction in denitrification (Fig. 1). We therefore base the N₂O 75 production on total NO₃⁻ turnover, calculated from primary production times the f-ratio. Primary production (PP) was 76 estimated at 58 \pm 7 Pg C y⁻¹ (Buitenhuis et al. 2013a). We compiled a database of uptake rates of NO₃, NH₄⁺ and 77 urea, which gives an average f-ratio of 0.29 \pm 0.18 (Fig. 2, large symbols, n=34). The globally averaged $\Delta N_2O/AOU$ 78 slope is 81.5 ± 1.4 nmol/mmol (Fig. 3). Finally, since primary production is expressed in carbon terms, and N₂O 79 production was correlated with oxygen (O2) utilization, we need to include the -O2:C ratio, which was taken from 80 Anderson & Sarmiento (1994) as $170 \pm 10 / 117 \pm 14$, and the molar weights of C (12) and N in N₂O (28). Thus N₂O 81 production was calculated as PP *f-ratio*-O2:C * ΔN2O/AOU. Our best estimate of N2O production using this 82

method is $58 \times 1000 \times 0.29 \times 170/117 \times 8.15e-5 \times 28/12 = 4.6 \pm 3.1$ Tg N y⁻¹. This estimate lies in the middle of other

- 83 reported estimates (see Introduction) but the 68% confidence interval is very large. We therefore investigate the N₂O
- 84 fluxes using a model optimized with observations in the rest of the paper.
- 85 2.2 Observational databases for model development
- 86 We used four databases to tune or optimise different aspects of the N cycle in the PlankTOM10 ocean
- 87 biogeochemistry model. The number of datapoints reported for each database are after gridding to $1^{\circ} \times 1^{\circ} \times 12$
- 88 months \times 33 depths (World Ocean Atlas 2009). The databases used are (1) NH₄⁺ specific nitrification rate (n=296) as
- described in Yool et al. (2007); (2) surface NH_4^+ concentration distribution (n=2713) that combines the dataset used
- 90 in Paulot et al (2015) with data held by the British Oceanographic Data Centre in January 2014 (Johnson et al. in
- 91 prep., http://www.bodc.ac.uk); (3) depth-resolved N₂O concentration from the MEMENTO project (n=8047;
- 92 https://memento.geomar.de/; Bange et al. 2009; downloaded 4 June 2014); and (4) surface partial pressure of N₂O
- 93 (pN₂O) also from MEMENTO (n=6136; downloaded 16 Sept. 2015). pN₂O was converted to ΔpN₂O using
- 94 atmospheric pN_2O :
- 95 $pN_2O_{atm} = 0.000009471353376 \times Y^{3} 0.05214713935 \times Y^{2} + 95.6806625 \times Y 58228.4121$ (1)
- 96 (A. Freing, pers. comm., correction to Freing et al. 2009), in which Y is the decimal year.
- 97 2.3 Cost Function Formulation
- 98 To parameterise the model N cycle, we use a cost function to minimize the difference between model and
- 99 observations, following the methods of Buitenhuis et al. (2013a):
- 100 $\text{cost function} = 10^{\text{average}(|10\log(\text{model/observation})|)}$

(2)

- 101 This formulation gives equal weight to the relative correspondence between model and observations at small and
- 102 large observational values. A value of 2 means that, on average, the model deviates from the observations by a factor
- 103 2 in either direction. The cost function results for the optimised simulations are summarised in Table 1.
- 104 2.4 Nitrification
- 105 Our initial biogeochemical model configuration is PlankTOM10 (Le Quéré et al. 2016), which represents growth and
- 106 loss terms from ten Plankton Functional Types (PFTs), including N₂-fixers, picoheterotrophs (Bacteria plus
- 107 Archaea) and denitrification rate, but not denitrifier biomass. A full model description and parameter values were
- 108 provided in the supplementary material of Le Quéré et al. (2016). Here, we extend the model representation of redox
- 109 reactions in the N cycle, to create the global biogeochemical model PlankTOM10.2. We describe the new N cycle
- 110 components below.

111	In order to represent nitrification rate, the state variable for dissolved inorganic nitrogen was split into NO3-
112	and NH4 ⁺ . Respiration by all PFTs produces NH4 ⁺ . The parameterization for nitrification used in our model is based
113	on the analysis of a database of NH4 ⁺ -specific nitrification rates (Yool et al. 2007). Yool et al. (2007) found that
114	observed nitrification rates are highly variable, with no obvious relationship with either latitude or depth. They
115	therefore used a constant rate of 0.2 d ⁻¹ throughout the ocean in their model. Implementing this rate in our model
116	resulted in a cost function relative to the nitrification rate observations of 4.22 (Table 1). We tested if including
117	temperature, O ₂ or light dependence improves the ability of the model to reproduce observed nitrification rates.
118	Regarding the response of ammonia oxidizing Archaea (AOA), the main nitrifiers in the ocean (Francis et al. 2005,
119	Wuchter et al. 2006, Loescher et al. 2012), to temperature, we are only aware of the measurements of Qin et al.
120	(2014). These show a ~4-fold variation in maximum growth rate between 3 strains, which poorly constrains the
121	temperature dependence of AOA. We therefore first used a generic Q_{10} of 2 and optimised the rate at 0°C using the
122	nitrification rate observations. This led to a slightly improved representation of the observations (cost function =
123	4.18). Although the response of AOA and ammonia oxidizing Bacteria (AOB) to O2 has only been measured at 21-
124	25 °C (Frame et al. 2010, Loescher et al. 2012), which limits the range of O ₂ concentrations, there was a significant
125	logarithmic relationship between N_2O yield and O_2 (Fig. 4). Implementing this response to O_2 led to a further small
126	improvement of the model nitrification rate relative to the observations (cost=4.16). The response of AOA to light is
127	estimated to be 50% inhibited at 5 μ mol photons m ⁻² s ⁻¹ . However, this estimate is not well constrained (Merbt et al.
128	2012). Implementing this light response did not improve the model, either in combination with the O ₂ and
129	temperature responses or with the temperature response only, and was subsequently omitted. The lack of
130	improvement in nitrification rates by adding light inhibition might reflect the lower sensitivity of AOA to light found
131	by Qin et al. (2014).
132	2.5 Phytoplankton K _{1/2} for NH ₄ ⁺ uptake
133	We used the calculation of the preferential uptake of NH_4^+ over NO_3^- by phytoplankton PFTs of Vallina and Le
134	Quéré (2008). The $K_{\frac{1}{2}}$ of phytoplankton for NH_4^+ has mostly been measured based on uptake rates (syntheses by
135	Goldman and Glibert 1983, and Killberg-Thoreson et al. 2014). Aksnes and Egge (1991) have shown a theoretical
136	expectation of a linear increase of $K_{\frac{1}{2}}$ with cell radius. The observations are so variable that they neither confirm nor
137	contradict such an increase. Because the model does not include a variable N quota, we need a K _{1/2} for growth rather

138 than for uptake. The available uptake rate data do not include the supporting data to allow conversion to the $K_{\frac{1}{2}}$ for

- 139 growth. We are only aware of measurements of the K_{1/2} for growth by Stawiarski (2014). Based on the latter values of
- $140 \qquad 0.09 \pm 0.15 \ \mu \text{mol/L} \ \text{for picoeukaryotes, the } K_{\frac{1}{2}} \ \text{of phytoplankton for } NH_4^+ \ \text{was set to } 0.1 \ \text{to } 5 \ \mu\text{M}, \ \text{increasing linearly}$
- 141 with nominal size (Buitenhuis et al. 2013b). The resulting model simulation of surface NH₄⁺ concentration increases
- 142 with latitude, consistent with the observations (Fig. 5). However, due to the highly dynamic nature of NH_4^+ turnover,
- 143 the ability of the model to reproduce the observed NH₄⁺ concentrations at the same times and places was relatively
- 144 low (cost function=3.3).
- 145 2.6 N₂O production
- 146 N₂O production is implemented as two distinct submodels that follow a diagnostic and a prognostic approach,
- 147 respectively. The diagnostic submodel is based on observed $\Delta N_2 O/AOU$ slopes and has previously been published
- 148 (Suntharalingam et al. 2000, 2012). In oxic waters it uses one slope to estimate the open ocean source of N₂O
- 149 production. In hypoxic waters it uses a higher slope to represent the increased yield of N₂O from both nitrification
- 150 and denitrification in oxygen minimum zones. The hypoxic N_2O yield is maximal at 1 µmol O_2 L⁻¹, and decreases
- 151 with an e-folding concentration of 10 μ mol O₂ L⁻¹ (Suntharalingam et al. 2000, 2012).
- 152 The prognostic submodel presented here is mechanistic in nature and explicitly represents the primary N₂O
- 153 formation and consumption pathways associated with the marine nitrogen cycle (Fig. 1). It includes the production of
- 154 N₂O during oxic nitrification (blue arrows in Fig. 1) and during hypoxic denitrification (red arrow in Fig. 1); and a
- 155 consumption term during denitrification at even lower (suboxic) O₂ concentrations (yellow arrow in Fig. 1). The
- 156 slopes of the three processes are globally invariant. The slopes of both submodels were optimized using the
- 157 databases of observed N_2O concentration and ΔpN_2O (see Sections 3.1 and 3.2).
- 158 2.7 N₂O flux and simulation setup
- 159 N₂O is transported like other tracers. The solubility of N₂O is calculated using the formulation from Weiss
- 160 and Price (1980). N₂O flux (=air-sea gas exchange) is calculated with the piston velocity from Sweeney et al. (2007),
- $161 \qquad \text{which is optimised for use with the NCEP reanalysis data used here. The Schmidt number for N_2O was taken from \\$
- 162 Wanninkhof et al. (1992).
- The PlankTOM10.2 biogeochemical model coupled with the two N₂O submodels is incorporated into the
 ocean general circulation model NEMO v3.1 (Madec 2008). The model resolution is 2° in longitude, on average 1.1°
- 165 in latitude and has 30 vertical layers, from 10 m in the top 100 m to 500 m at 5000 m. The model simulations were
- 166 initialised in 1965 from observations (Le Quéré et al. 2016), with NH4⁺ initialised as 0, and N2O initialised from a

- 167 horizontal interpolation of the MEMENTO observations (see Section 2.2). Simulations were run to 2014, forced with
- 168 daily atmospheric conditions from the NCEP reanalysis (Kalnay et al. 1996), (for details see Buitenhuis et al. 2013a).
- 169 Results are reported averaged over the last 5 years.

170 2.8 Estimation of global N₂O flux from point measurements of ΔpN₂O

- 171 To estimate the global air-sea flux of N_2O that best fits the ΔpN_2O data, and its ±1-sigma (68%) confidence interval,
- 172 we use the formula described in Buitenhuis et al. (2013a):

173
$$RSS/RSS_{min} = 0.468 \times n/(n-2) \times \sqrt{(2(2n-2)/(n(n-4))) + n/(n-2)}$$
(3)

174 in which RSS is the residual sum of squares between each model simulation and the observations, RSS_{min} is the RSS

175 of the model simulation that is closest to the observations, and n is the number of observations.

To estimate the influence that inequality of model means and the observational mean have on the validity of

- using equation 3, we use equation 2.1 from Donaldson (1968), with the observational database taken as the "parent"
- 178 or "true" distribution:

179
$$\varphi = \sqrt{(n^2 \times (\overline{\text{observations}} - \overline{\text{model}})^2/\text{RSS})}$$
(4)

- 180
- 181 3 Results

182 3.1 N₂O production at low O₂

183	The global N_2O production rate in oxygen minimum zones (OMZs) was optimized using the depth-resolved N_2O
184	data of the MEMENTO database. As noted in previous model studies of ocean O2, global models do not well
185	represent the extent and intensity of OMZ regions (Bopp et al. 2013, Cocco et al. 2013, Andrews et al. 2016). The
186	modeled OMZs in PlankTOM10 occur at greater depths than observed, resulting in unrealistic vertical distributions
187	of N ₂ O (results not shown). Therefore, following Suntharalingam et al. (2012), the model was run using fixed
188	observed O2 concentrations (Bianchi et al. 2012), which corrected, in part, the vertical distribution of N2O production
189	from the two submodels, though it still occurred at too great depths (Fig. 6). In the equatorial regions and in the
190	Pacific ocean the N_2O concentrations are underestimated between ~200 and ~1500 m. depth, and overestimated
191	below that. This shortcoming is not significantly improved in the prognostic model (Fig. 6), even though the
192	prognostic model represents the process of N_2O consumption at low O_2 concentrations. The depth of maximum N_2O
193	in the model is generally deeper than observed, suggesting that organic matter remineralisation may be too low at
194	shallow depths. This is confirmed by the depth profile of NO_3^- , which is underestimated relative to the WOA2009

- $195 \qquad \text{observations between 100 and 1500 m., and overestimated at greater depths (Fig. 7). In both submodels, the N_2O$
- $196 \qquad \text{concentrations in the deep sea are also too high, but since only 5\% of N_2O production occurs below 1600 m this does}$
- 197 not have a big impact on the global N₂O fluxes. The addition of N₂O consumption in the prognostic N₂O model does
- 198 result in improvement of the N_2O depth profiles in the Indian Ocean.
- 199 In order to find the optimal N_2O production that minimizes the RSS (Eq. 3), we ran a range of simulations in
- 200 which the low O₂ N₂O production was varied in the diagnostic model (Fig. 8A), and a range of simulations in which
- 201 both the hypoxic N₂O production and the suboxic N₂O consumption were varied in the prognostic model (Fig. 8B).
- 202 The optimum solution for the prognostic model was found at a gross production of 0.33 Tg N y⁻¹. The optimised N₂O
- 203 production in low O_2 regions and its confidence interval were 0.16 ± 0.13 Tg N y⁻¹ for the diagnostic model, and 0.12
- ± 0.07 Tg N y⁻¹ for the prognostic model. In the optimized diagnostic model the hypoxic N₂O slope is 0.0017 mol
- 205 N₂O/mol O₂. In the optimized prognostic model the maximum N₂O consumption slope is 0.015 mol N₂O (mol NO₃⁻)⁻
- 206 ¹, decreasing to 0 above 28 µmol O₂ L⁻¹. The maximum N₂O production slope is 0.0154 mol N₂O (mol NO₃⁻⁾⁻¹
- 207 decreasing to 0 above 34 µmol O₂ L⁻¹. This leads to net production that is always positive and has a maximal slope of
- $208 \qquad 183 \ \mu mol \ N_2O \ (mol \ NO_3)^{-1} \ at \ 10 \ \mu mol \ O_2 \ L^{-1}.$
- 209 3.2 N₂O flux
- 210 We used the surface ΔpN_2O distribution to constrain the total global N₂O flux. ΔpN_2O provided a better 211 constraint than the N₂O concentration distribution, since more N₂O production mostly leads to more N₂O outgassing 212 to the atmosphere rather than a significant increase in shallow N₂O concentrations (data not shown). The zonal 213 average surface $\Delta p N_2 O$ distribution was well simulated by both submodels (Fig. 9D), and the model ensemble 214 covered a wide range of global N₂O fluxes (Fig. 10). The total N₂O flux that best reproduced the ΔpN_2O distribution 215 was 2.40 ± 0.29 Tg N y⁻¹ for the diagnostic sub-model and 2.44 ± 0.29 Tg N y⁻¹ for the prognostic sub-model (Fig. 216 10). In the diagnostic model, the optimized oxic $\Delta N_2 O/AOU$ slope was 12.7 µmol N₂O (mol O₂)⁻¹. In the prognostic 217 model, the optimized nitrification slope was 145 µmol N₂O (mol NH₄⁺)⁻¹. 218 In addition to the uncertainty that arises from the model-observations mismatch, uncertainty is contributed 219 by the uncertainties in the N₂O solubility and the piston velocity, the two quantities that connect the measured 220 ΔpN₂O to the estimated air-sea flux. The uncertainty in the solubility has been estimated as 3% (Cohen and Gordon
- 221 1978). The uncertainty in the piston velocity has been estimated at 32% (Sweeney et al. 2007). Uncertainties in the
- 222 solubility and piston velocity are proportional to uncertainty in the optimized N₂O air-sea exchange because the

223

224 ΔpN_2O . Through error propagation, this gives a total uncertainty of 2.4 ± 0.8 Tg N y⁻¹ for both sub-models. 225 226 **4** Discussion 227 Cohen and Gordon (1979) estimated global N₂O production directly from N-cycle observations. However, 228 they did not have information on the f-ratio, so their estimate was based on total N assimilation in primary 229 production. Suntharalingam et al. (2012) note that N₂O production is proportional to export production. However, 230 this is dependent on the model formulation, which was based on earlier studies that suggested nitrification in the 231 ocean surface layer was light-inhibited (e.g., Horrigan, 1981). More recent analyses of nitrification, e.g., the 232 database of Yool et al. (2007) find widespread nitrification in the upper mixed layer. In light of this, we decided to 233 recalculate the N cycle based N₂O production based on currently available data. We find that we can estimate all the 234 relevant steps in the N cycle with observational data, including their uncertainty (Section 2.1). At present this 235 uncertainty is still fairly large, at 4.6 ± 3.1 Tg N yr⁻¹. The biggest contributor to this uncertainty is the f-ratio, 236 especially in the tropics, which constitute 44% of the ocean surface area. The f-ratio data is only based on uptake of 237 NO_3^- , NH_4^+ and urea, whereas phytoplankton can also take up NO_2^- and organic N (other than urea). One of the 238 major sources of uncertainty in using the $\Delta N_2 O/AOU$ ratio is that it is conceptually based on the $N_2 O$ production 239 during nitrification, which uses O₂. N₂O production during denitrification is spatially separated from the associated 240 O_2 use that is needed to nitrify the NO₃, the electron donor in denitrification. This NO₃ is produced by nitrification, 241 so in terms of mass balance our calculation is still valid, but this N2O production would show up as a vertical 242 increase in N₂O without associated increase in AOU at low O₂ concentrations (high AOU) in Figure 3. This estimate 243 of global marine N₂O production derived from analyzing the N cycle currently has a much larger error than the N₂O 244 flux derived from ΔpN_2O observations, but further observational constraints could further our understanding of the 245 whole N cycle, including the option of evaluating their model representation against observations, and not just the 246 part that N₂O plays in them. Such further constraints are also likely to provide the most productive way to reduce 247 unexplained variability that is found in the observations but not in the present models. 248 Models of the global marine C cycle have been in use for decades, and a lot of the available information has 249 been synthesized, cross-correlated and interpreted in detail. While actual measurements of N utilisation and

optimized N₂O production needs to change proportionally with solubility and piston velocity to achieve the same

transformation have also been made in abundance, the synthesis and global modelling of these data is less advanced.

251	In addition, N occurs in many different oxidation states in the marine environment (e.g. organic matter and $\mathrm{NH_{4^+}}$ as -
252	3, N_2 as 0, N_2O as 0 and +2, NO_2^- as +3, and NO_3^- as +5). Therefore, redox reactions complicate the representation of
253	the N cycle a good deal. This lack of data synthesis and of identification of the most important controls in a complex
254	system is reflected in a relatively low ability of the model to model observed nitrification rates and NH_4^+
255	concentrations (Table 1).
256	This lack of knowledge also means that partitioning the global marine N2O production over the nitrification
257	and denitrification pathways is poorly constrained. Both the diagnostic and the prognostic models assign a small
258	percentage of the total N_2O production to the denitrification pathway, 6 and 4% respectively. However, because of
259	the large bias between the observed and modeled N_2O concentration depth profiles (Fig. 6) these may be
260	underestimates. Possibly because of the model bias (Fig. 6, 7), the addition of N_2O consumption in the prognostic
261	submodel does not lead to a significantly better distribution of N_2O across depth or between different basins (Fig. 7).
262	As a result, the ΔpN_2O distributions are also quite similar (Fig. 9, 12) and the optimized N_2O flux and confidence
263	intervals of the two submodels are also quite similar (Fig. 10). It should also be noted, however, that the optimization
264	using surface $\Delta p N_2 O$ agrees with the optimization using $N_2 O$ concentration that the contribution of the low $O_2 \ N_2 O$
265	production needs to be low (Fig. 10), and the error contribution from the model vs. observed $\Delta p N_2 O$ comparison is
266	also low with confidence intervals of 0.29 Tg N y ⁻¹ for both submodels, confirming the visual impression that $\Delta p N_2 O$
267	is equally well modelled above the low O_2 regions as in the rest of the ocean (Fig. 9, 12). Two complementary
268	approaches could provide better constraints: a better representation of the vertical distribution of export and
269	$remineralisation \ would \ allow \ the \ optimization \ against \ N_2O \ concentration \ observations \ to \ achieve \ better \ results. \ But$
270	conversely, with better constraints on the physiology of nitrifiers and denitrifiers the N_2O concentration database
271	could provide constraints on the representation of remineralisation.
272	Despite these shortcomings, the global marine N_2O flux is well constrained to 2.4 ± 0.8 Tg N y $^{-1}$ by both
273	submodels (Fig. 10). This reflects the fact that the integrated effect of the different physical and biogeochemical
274	processes determines the surface ΔpN_2O distribution (Fig. 9). The N ₂ O flux is at the lower end of previous estimates,
275	and with a similar confidence interval to other recent estimates (Fig. 11). The confidence interval is dominated by
276	uncertainty in the piston velocity (32%) rather than model-observation mismatches (12%).
277	Modeled ΔpN_2O values from the optimized simulations of the diagnostic and prognostic submodels have a
278	small negative bias relative to the observations of -2.4 ppb for the diagnostic submodel and -2.7 ppb for the

279	prognostic submodel (Fig. 12). This gives a degree of inequality (ϕ , Eq. 4) between the means of the observations
280	and the diagnostic submodel of 0.41 and the prognostic submodel of 0.46. This is well within the range where even
281	much smaller sample sizes lead to negligible Type I errors and conservative Type II errors (Donaldson 1968).
282	We also tested how much influence sampling biases of very high supersaturation values might have on the
283	estimated air-sea exchange. If the 40 ΔpN_2O measurements in the gridded database that are higher than 100 ppb (Fig.
284	12) are doubled, the optimized N_2O air-sea exchange becomes 2.9 \pm 1.0 Tg N y^-1 for the diagnostic model and 3.0 \pm
285	1.1 Tg N y^{-1} for the prognostic model. If the 27 ΔpN_2O measurements in the gridded database that are higher than
286	140 pm are excluded, to decrease the frequency of the highly oversaturated observations down to what the diagnostic
287	model simulates (Fig. 12), the optimized N ₂ O flux becomes 2.2 \pm 0.7 Tg N y ⁻¹ for both submodels. These results still
288	fall within the confidence intervals of the results using the complete database.
289	Possible biases in ocean physical transport could in theory affect N2O production in low O2 regions.
290	However the model results do not suggest strong biases in N_2O production as a result. On the one hand, if the model
291	had too much ventilation in the OMZs, shallow N_2O concentrations would be underestimated, as they are in the
292	model (Fig. 6), but this would also lead to $\Delta p N_2 O$ overestimation in the surface areas above the OMZs, which is not
293	the case; the high $\Delta p N_2 O$ are generally lower but spread over a larger area than in the observations (Fig. 9), with a
294	good frequency distribution of high $\Delta p N_2 O$ (Fig. 12). On the other hand, if the model had too little ventilation in the
295	OMZs, the optimization would reduce N_2O production in the OMZs in compensation, but the optimization to $\Delta p N_2O$
296	would then estimate a higher OMZ N_2O production than the optimization to the N_2O depth profiles to compensate
297	for the low transport, and this is also not the case. Therefore we conclude that potential biases in ocean physical
298	transport do not appear to have large direct impact on low N2O production. The indirect impact of ocean physics on
299	low N_2O production through its impact on the distribution of O_2 , which Zamora and Oschlies (2014) have shown to
300	be substantial, is not quantified here because we used observed O2 (Bianchi et al. 2012) instead of modeled O2.
301	Global oceanic N_2O emissions estimated using atmospheric inversion methods based on atmospheric N_2O
302	concentrations tend to be higher than our results (Fig. 11). However, N2O emissions from inversions are low in the
303	Southern Ocean (Hirsch et al. 2006, Huang et al. 2008, Thompson et al. 2014, Saikawa et al. 2014), consistent with
304	our results. South of 30°S, 88% of the Earth surface is ocean, resulting in a clear attribution of the atmospheric N_2O
305	anomalies to ocean fluxes. We suggest that the higher emissions estimates from inversions could be due to a
306	combination of overestimated priors of ocean fluxes in combination with insufficient observational constraints at

- 307 latitudes North of 30°S to allow correct partitioning between land and ocean fluxes. Results presented here are for
- 308 the open and coastal ocean and do not include estuaries; fluxes from these could be as large as 2.3 3.6 Tg N y⁻¹
- 309 according to one estimate (Bange et al. 1996), and could be another contributing factor to the difference between our
- 310 results and those of atmospheric inversions.
- 311

312 Acknowledgements

- 313 This research was supported by the European Commission's Horizon 2020 programme through the
- 314 CRESCENDO and EMBRACE projects (projects 641816 and 282672). We thank Martin Johnson for the database of
- 315 NH₄⁺, and Andrew Yool for the database of nitrification rates. The MEMENTO database is administered by the Kiel
- 316 Data Management Team at GEOMAR Helmholtz Centre for Ocean Research and supported by the German BMBF
- 317 project SOPRAN (Surface Ocean Processes in the Anthropocene, http://sopran.pangaea.de). The four databases
- 318 presented in this manuscript are available as NetCDF files from https://www.uea.ac.uk/green-ocean/data.
- 319

320 References

- Aksnes, D. L., J. K. Egge (1991) A theoretical model for nutrient uptake in phytoplankton. Marine Ecol. Progr. Ser.
 70:65-72
- Anderson, L. A., J. L. Sarmiento (1994) Redfield ratios of remineralization determined by nutrient data analysis.
 Global Biogeochemical Cycles 8: 65-80
- Bange, H. W., S. Rapsomanikis, and M. O. Andreae (1996) Nitrous oxide in coastal waters, Global Biogeochem.
 Cycles 10: 197–207, doi:10.1029/95GB03834.
- Bange, H. (2008) Gaseous nitrogen compounds (NO, N₂O, N₂, NH₃) in the ocean. *In*: Nitrogen in the marine
 environment (eds D. G. Capone, D. A. Bronk, M. R. Mulholland, E. J. Carpenter), p. 51–94, New York, NY:
 Elsevier.
- Bange, H. W., Bell, T. G., Cornejo, M., Freing, A., Uher, G., Upstill-Goddard, R. C., and Zhang, G. L. (2009)
 MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements,
 Environmental Chemistry 6: 195-197, doi:10.1071/en09033.
- Bianchi, D., J. P. Dunne, J. L. Sarmiento, E. D. Galbraith (2012) Data-based estimates of suboxia, denitrification,
 and N2O production in the ocean and their sensitivity to dissolved O2, Glob. Biogeochem. Cycles 26, GB2009,
 doi:10.1029/2011GB004209.
- Buitenhuis, E. T., Hashioka, T., Le Quéré, C. (2013a) Combined constraints on global ocean primary production
 using observations and models. Global Biogeochemical Cycles 27: 847-858
- Buitenhuis, E. T., M. Vogt, R. Moriarty, N. Bednaršek, S. Doney, K. Leblanc, C. Le Quéré, Y.-W. Luo, C. O'Brien,
 T. O'Brien, J. Peloquin, R. Scheibel (2013b) MAREDAT : towards a World Ocean Atlas of marine ecosystem
 data. Earth System Science Data 5: 227-239, doi:10.5194/essd-5-227-2013.
- Butler, J. H., J. W. Elkins, T. M. Thompson, K. B. Egan (1989) Tropospheric and dissolved N2O of the West Pacific
 and East Indian Oceans during the El Niño Southern Oscillation event of 1987, J. Geophys. Res. 94: 14865 14877.
- Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann,
 C. Jones, C. Le Quéré, R. B. Myneni, S. Piao and P. Thornton (2013) Carbon and Other Biogeochemical Cycles.
 In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
- Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K.

- Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
 Cambridge, United Kingdom and New York, NY, USA, pp. 465-570, doi:10.1017/CBO9781107415324.015.
- Cohen, Y., L. I. Gordon (1978) Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence
 for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Res. 25: 509 524.
- Cohen, Y., and L. I. Gordon (1979) Nitrous oxide production in the ocean. J. Geophys. Res. 84: 347-353
- Donaldson, T. S. (1968) Robustness of the F-test to errors of both kinds and the correlation between the numerator
 and the denominator of the F-ratio. J. Amer. Statist. Assoc. 63: 660-676.
- Frame, C. H., K. L. Casciotti (2010) Biogeochemical controls and isotopic signatures of nitrous oxide production by
 a marine ammonia-oxidizing bacterium. Biogeosciences 7: 2695-2709, .
- Francis, C. A., K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley (2005) Ubiquity and diversity of
 ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102: 14683-14688, doi:
 10.1073/pnas.0506625102,
- Freing, A. D. W. R. Wallace, T. Tanhua, S. Walter, H. W. Bange (2009) North Atlantic production of nitrous oxide
 in the context of changing atmospheric levels. Global Biogeochemical Cycles 23, GB4015,
 doi:10.1029/2009GB003472,
- Freing, A. D. W. R. Wallace, H. W. Bange (2012) Global oceanic production of nitrous oxide. Phil. Trans. R. Soc.
 367: 1245-1255, doi: 10.1098/rstb.2011.0360,
- Gandhi, N., R. Nameesh, R. Srivastava, M. S. Sheshshayee, R. M. Dwivedi, M. Raman (2010) Nitrogen uptake rates
 during spring in the NE Arabian Sea. International Journal of Oceanography 2010: 127493, doi:
 10.1155/2010/127493,
- Gandhi, N., R. Nameesh, A. H. Laskar, M. S. Sheshshayee, S. Shetye, N. Anilkumar, S. M. Patil, R. Mohan (2012)
 Zoanal variability in primary production and nitrogen uptake rates in the southwestern Indian Ocean and the
 Southern Ocean. Deep Sea Res I 67: 32-43, doi:10.1016/j.dsr.2012.05.003,
- Goldman, J. C., P. M. Glibert (1983) Kinetics of inorganic nitrogen uptake by phytoplankton. *In*: Nitrogen in the
 marine environment, Carpenter, E. J. and D. G. Capone (eds.) Elsevier,
- Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, S. W. Watson (1980) Production of NO2and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Env. Microbiol. 40: 526-532,
- Hirsch, A. I., A. M. Michalak, L. M. Bruhwiler, W. Peters, E. J. Dlugokencky, and P. P. Tans (2006) Inverse
 modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochem. Cycles 20,
 GB1008, doi:10.1029/2004GB002443,
- Horrigan, S. G., A. F. Carlucci, P. M. Williams (1981) Light inhibition of nitrification in sea-surface films. J. Mar.
 Res. 39: 557-565,
- Huang, J., A. Golombek, R. Prinn, R. Weiss, P. Fraser, P. Simmonds, E. J. Dlugokencky, B. Hall, J. Elkins, P. Steele,
 R. Langenfelds, P. Krummel, G. Dutton, and L. Porter (2008) Estimation of regional emissions of nitrous oxide
 from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method, J.
 Geophys. Res. 113, D17313, doi:10.1029/2007JD009381,
- Jin, X., N. Gruber (2003) Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions.
 Geophysical Research Letters 30, 2249, doi:10.1029/2003GL018458,
- Joubert, W. R., S. J. Thomalla, H. N. Waldron, M. I Lucas, M. Boye, F. A. C. Le Moigne, F. Planchon, S. Speich
 (2011) Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral
 summer. Biogeosciences 8:2947-2959, doi:10.5194/bg-8-2947-2011,
- Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen,
 Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R.
 Reynolds, R. Jenne, and D. Joseph (1996) The NCEP/NCAR 40-year reanalysis project. *Bull. Am. Meteorol. Soc.*77(3), 437-471,
- Killberg-Thoreson, L., M. R. Mulholland, C. A. Heil, M. P. Sanserson, J. M. O'Neil, D. A. Bronk (2014) Nitrogen
 uptake kinetics in field populations and cultured strains of *Karenia brevis*. Harmful Algae 38: 73-85,
 doi:10.1016/j.hal.2014.04.008,
- Law, C.S., and N. J. P. Owens (1990) Significant flux of atmospheric nitrous-oxide from the Northwest Indian
 Ocean. Nature, 346: 826-828, doi:10.1038/346826a0,
- Le Quéré, C., E. T. Buitenhuis, R. Moriarty, S. Alvain, O. Aumont, L. Bopp, S. Chollet, C. Enright, D. J. Franklin,
 R. J. Geider, S. P. Harrison, A. Hirst, S. Larsen, L. Legendre, T. Platt, I. C. Prentice, R. B. Rivkin, S. Sailley, S.
- 401 Sathyendranath, N. Stephens, M. Vogt, and S. M. Vallina (2016) Role of zooplankton dynamics for Southern
- 402 Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13: 4111-4133,
- 403 doi:10.5194/bg-13-4111-2016, .

Biogeosciences

- 404 Lipschultz, F. O. C. Zafiriou, S. C. Wofsy, et al. (1981) Production of NO and N₂O by soil nitrifying bacteria. Nature 294: 641-643, .
- Loescher, C. R., A. Kock, M. Koenneke, J. LaRoche, H. W. Bange, R. A. Schmitz (2012) Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9: 2419-2429, .
- 408 Madec, G. (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France,
 409 No 27 ISSN No 1288-1619. <u>http://www.nemo-</u>
- 410 <u>ocean.eu/content/download/21612/97924/file/NEMO_book_3_4.pdf</u>,
- 411 Merbt, S. N., D. A. Stahl, E. O. Casamayor, et al. (2012) Differential photoinhibition of bacterial and archaeal
 412 ammonia oxidation. FEMS microbiology letters 327: 41-46, .
- 413 Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B.
 414 Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang (2013) Anthropogenic and Natural
 415 Radiative Forcing. *In*: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
 416 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
- 417 Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
 418 University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659-740,
- 419 doi:10.1017/CBO9781107415324.018, .
- 420 Nevison, C. D., R. F. Weiss, D. J Erickson III (1995) Global oceanic emissions of nitrous oxide. J. Geophys. Res.
 421 100: 15809-15820, .
- 422 Nevison, C., J. H. Butler, J. W. Elkins (2003) Global distribution of N2O and the ΔN2O-AOU yield in the
 423 subsurface ocean. Glob. Biogeochem. Cycles 17: 1119, doi:10.1029/2003GB002068,
- Paulot, F., D.J. Jacob, M. T. Johnson, T.G. Bell, A. R. Baker, W. C. Keene, I. D. Lima, S. C. Doney, and C. A. Stock
 (2015) Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations. Glob.
 Biogeochem. Cycles, 29: 1165–1178, doi:10.1002/2015GB005106,
- Portmann, R. W., J. S. Daniel, and A. R. Ravishankara (2012) Stratospheric ozone depletion due to nitrous oxide:
 influences of other gases. Phil. Trans. R. Soc. B, 367: 1256–1264, doi:10.1098/rstb.2011.0377,
- Prakash, S., R. Ramesh, M. S. Sheshshayee, R. M. Dwivedi, M. Raman (2008) Quantification of new production during a winter *Noctiluca scintillans* bloom in the Arabian Sea. Geophys. Res. Letters 35, L08604, doi:10.1029/2008GL033819,
- Prakash, S., R. Ramesh, M. S. Sheshshayee, R. Mohan, M. Sudhakar (2015) Nitrogen uptake rates and f-ratios in the
 Equatorial and Southern Indian Ocean. Current Science 108: 239-245,
- 434 Saikawa, E., R. G. Prinn, E. Dlugokencky, K. Ishijima, G. S. Dutton, B. D. Hall, R.Langenfelds, Y. Tohjima, T.
 435 Machida, M. Manizza, M. Rigby, S. O'Doherty, P. K. Patra, C. M. Harth, R. F. Weiss, P. B. Krummel, M. van
 436 der Schoot, P. J. Fraser, L. P. Steele, S. Aoki, T. Nakazawa, and J. W. Elkins (2014) Global and regional
 437 emissions estimates for N2O, Atmos. Chem. Phys. 14: 4617-4641, doi:10.5194/acp-14-4617-2014,
- 438 Simpson, K. G., J.-E. Tremblay, S. Brugel, N. M. Price (2013) Nutrient dynamics in the western Canadian Arctic.
 439 Mar. Ecol. Progr. Ser. 484:47-62, doi:10.3354/meps10298,
- 440 Stawiarski, B. (2014) The physiological response of picophytoplankton to light, temperature and nutrients, including
 441 climate change model simulations. PhD thesis, University of East Anglia,
 442 <u>https://ueaeprints.uea.ac.uk/53423/1/2014StawiarskiBPhD.pdf</u>,
- Suntharalingam, P., J. L. Sarmiento (2000) Factors governing the oceanic nitrous oxide distribution: Simulations
 with an ocean general circulation model. Global Biogeochemical Cycles 14: 429-454,
- Suntharalingam, P., J. L. Sarmiento, and J. R. Toggweiler (2000) Global significance of nitrous-oxide production and transport from oceanic low-oxygen zones: A modeling study, Global Biogeochem. Cycles, 14: 1353–1370, doi:10.1029/1999GB900100,
- Suntharalingam, P., Buitenhuis, E., Le Quere, C., Dentener, F., Nevison, C., Butler, J., Bange, H., Forster, G. (2012)
 Quantifying the Impact of Anthropogenic Nitrogen Deposition on Oceanic Nitrous Oxide in Geophysical
 Research Letters 39, L07605, doi:10.1029/2011GL050778,
- Thomalla, S. J., H. N. Waldron, M. I. Lucas, J. F. Read, I. J. Ansorge, E. Pakhomov (2011) Phytoplankton
 distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters. Ocean
 Sci. 7: 113-127, doi:10.5194/os-7-113-2011,
- Thompson, R. L., F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima,
 T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki (2014) Nitrous
 oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys. 14: 1801-1817,
 doi:10.5194/acp-14-1801-2014,
- 458 Vallina, S. M., C. Le Quere (2008) Preferential uptake of NH_4^+ over NO_3^- in marine ecosystem models: A simple and 459 more consistent parameterization. Ecol. Model. 218: 393-397,

- Varela, M. M., A. Bode, E. Fernandez, N. Gonzalez, V. Kitidis, M. Varela, E. M. S. Woodward (2005) Nitrogen
 uptake and dissolved organic nitrogen release in planktonic communities characterised by phytoplankton sizestructure in the Central Atlantic Ocean. Deep Sea Res. I 52: 1637-1661 doi:10.1016/j.dsr.2005.03.005,
- Varela, D. E., D. W. Crawford, I. A. Wrohan, S. N. Wyatt, E. C. Carmack (2013) Pelagic primary productivity and upper ocean nutrient dynamics across Subarctic and Arctic Seas. J. Geophys. Res. 118: 7132-7152, doi:10.1002/2013JC009211,
- Wafar, M., S. L'Helguen, V. Raikar, J-F. Maguer, P. Le Corre (2004) Nitrogen uptake by size-fractionated plankton in permanently well-mixed temperate coastal waters. J. Plankton Res. 26:1207-1218, doi:10.1093/plankt/fbh110,
- Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res.
 97:7373-7382, .
- 470 Weiss, R. F., B. A. Price (1980) Nitrous oxide solubility in water and seawater. Mar. Chem. 8: 347-359, .
- Wuchter, C., B. Abbas, M. J. L. Coolen, L. Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl,
 J. J. Middelburg, S. Schouten, and J. S. Sinninghe Damsté (2006) Archaeal nitrification in the ocean. PNAS 103: 12317-12322, doi: 10.1073/pnas.0600756103,
- 474 Yool, A., A. P. Martin, C. Fernandez, et al. () The significance of nitrification for oceanic new production. Nature
 475 447: 999-1002, 2007.
- 476 Yoshinari, T. () Nitrous oxide in the sea. Marine Chemistry 4: 189-202, 1976.

478 **Table, Figures and captions**

- 479 Table 1: Cost function (Equation 2) for the optimisation simulations of sections 2.2-2.4, relative to the respective
- 480 observational databases. The nitrification rate in bold was used in this study.

Database	Model change	Cost function
Nitrification rate	0.2 d ⁻¹	4.22
	$0.1 d^{-1} * 2^{(T/10)}$	4.18
	$0.79 \text{ d}^{-1} * 2^{(T/10)*}(1-0.159*\ln(O_2))$	4.16
	$0.58 \text{ d}^{-1} * 2^{(T/10)} e^{(-0.14*I)}$	7.15
	$4.7 \text{ d}^{-1} * 2^{(T/10)*}(1-0.159*\ln(O_2)) * e^{(-0.14*I)}$	6.87
Surface NH ₄ ⁺ concentration	K _{1/2} estimated from observations	3.3

482

483 Figure 1: Primary biological pathways of the oceanic nitrogen cycle represented in the model simulations, along with

 $484 \qquad \text{redox states of N. Nitrification occurs in the oxic ocean (blue arrow). Denitrification yields net N_2O \ production in$

 $485 \qquad \text{hypoxic conditions (red arrow) and net N_2O consumption in suboxic conditions (yellow arrow). Only organic}$

486 nitrogen (N_{org}), NH_4^+ , NO_3^- and N_2O are represented as model state variables.

 $488 \qquad \mbox{Figure 2: f-ratio } (\rho_{NO_3} - (\rho_{NO_3} + \rho_{NH_4} + \rho_{urea})) \mbox{ as a function of latitude, from ^{15}N uptake experiments. Small dots were}$

489 estimated without measuring NH₄⁺ or urea concentrations (Prakesh et al. 2008, 2015; Gandhi et al. 2010, 2012).

490 Large dots did not give a significant linear relationship with absolute value of latitude, and were therefore averaged

491 at 0.29 ± 0.18 (Wafar et al. 2004, Varela et al. 2005, 2013 Joubert et al. 2011, Thomalla et al. 2011, Simpson et al.

492 2013).

494 Figure 3: Apparent N₂O production (ΔN_2 O nmol L⁻¹) as a function of apparent oxygen utilization (AOU µmol L⁻¹).

495 Calculated from the MEMENTO database (Bange et al. 2009).

497 Figure 4: N₂O yield of nitrification (N atom:atom) as a function of O₂ concentration, filled triangles: AOA (Loescher

- 498 et al. 2012), open circles: AOB at low to medium cell numbers (Frame et al. 2010, Loescher et al. 2012), crosses:
- 499 marine AOB at high cell numbers (Goreau 1980, Frame et al. 2010), plusses: soil AOB at high cell numbers
- 500 (Lipschultz 1981). Black line: logarithmic fit to AOA and low to medium cell number AOB (yield = 79.1-
- 501 12.6 $\cdot \ln(O_2)$ nmol N in N₂O (µmol NH₄⁺)⁻¹).

- 504 there are observations, and annual averages everywhere else. C) zonal average, black) observations, red) model
- 505 results. Model results are for the same months and longitudes as the observations.

507 Figure 6: Depth profiles of N₂O concentration (nmol L⁻¹) for different basins. Black lines: observations, Green lines:

508 optimised diagnostic model, Red lines: optimised prognostic model.

510 Figure 7: Depth (m.) profile of average NO_3^- concentration (µmol L⁻¹). Black line) WOA2009 synthesis of

511 observations, not interpolated. Red line) Model results sampled at the places where there are observations.

512 513

514 Figure 8: RSS^{0.5} for the two N₂O submodels compared to the N₂O concentration database as a function N₂O

515 production in the low O₂ regions. A) diagnostic submodel, B) net production in the prognostic submodel at different

516 gross production rates, "no c" is with no N_2O consumption i.e. net production = gross production.

518 Figure 9: Surface ΔpN_2O [ppb]. A) observations, B) optimised diagnostic model, C) optimised prognostic model.

519 Model results are for the same months where there are observations, and annual averages everywhere else. D) zonal

520 average, Black line: observations, Green dashed: diagnostic model, Red dotted: prognostic model. Model results are

521 for the same months and longitudes as the observations.

522

524 Figure 10: RSS^{0.5} for the two N₂O submodels compared to the ΔpN_2O database as a function of global N₂O flux at

525 different N₂O production rates in the low O₂ regions. A) diagnostic submodel, B) prognostic submodel.

527

529 observational datasets shown as boxes when ranges are given and whiskers if error estimates are given (ocean

530 observations: Nevison et al. 1995, Nevison et al. 2003, Freing et al. 2012 (plotted in 2011), Bianchi et al. 2012, this

531 study; atmospheric inversions: Hirsch et al. 2006, Huang et al. 2008, Thompson et al. 2014 (plotted in 2013),

532 Saikawa et al. 2014), model estimates shown as crosses (Suntharalingam and Sarmiento 2000, Jin and Gruber 2003,

533 Suntharalingam et al. 2012, Martinez-Rey et al. 2015).

534

535 Figure 12: Frequency distribution of $\Delta p N_2 O$ in the observations (solid black), and the optimised simulations of the

536 diagnostic submodel (green squares) and the prognostic submodel (red lines).