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Abstract 23 
 24 

Indonesia is currently one of the regions with the highest transformation rate of the land surface 25 

worldwide due to the expansion of oil palm plantations and other cash crops replacing forests 26 

on large scales. Land cover changes, which modify land surface properties, have a direct effect 27 
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on the land surface temperature (LST), a key driver for many ecological functions. Despite the 28 

large historic land transformation in Indonesia toward oil palm and other cash crops and 29 

governmental plans for future expansion, this is the first study so far to quantify the impact of 30 

land transformation in Indonesia on LST. We analyse LST from the thermal band of a Landsat 31 

image and produce a high-resolution surface temperature map (30m) for the lowlands of the 32 

Jambi province in Sumatra (Indonesia), a region which suffered large land transformation 33 

towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, 34 

Normalized Differenced Vegetation Index (NDVI), and evapotranspiration (ET) between seven 35 

different land cover types (forest, urban areas, clear cut land, young and mature oil palm 36 

plantations, acacia and rubber plantations) shows that forests have lower surface temperatures 37 

than these land cover types, indicating a local warming effect after forest conversion. LST 38 

differences were up to 10.09 ± 2.6 ºC (mean ± SD) between forest and clear-cut land. The 39 

differences in surface temperatures are explained by an evaporative cooling effect, which 40 

offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on 41 

MODIS data, shows that the average daytime surface temperature of the Jambi province 42 

increased by 1.05 ºC, which followed the trend of observed land cover changes and exceed the 43 

effects of climate warming. This study provides evidence that the expansion of oil palm 44 

plantations and other cash crops leads to changes in biophysical variables, warming the land 45 

surface and thus enhancing the increase in air temperature due to climate change. 46 

 47 

 48 
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1 Introduction 53 
 54 

Indonesia is one of the regions where the expansion of cash crop monocultures such as acacia 55 

(timber plantation), rubber, oil palm plantations and smallholder agriculture has drastically 56 

reduced the area of primary forest in the last two and a half decades (Bridhikitti and Overcamp, 57 

2012; Drescher et al., 2016; Marlier et al., 2015; Miettinen et al., 2012; Verstraeten et al., 2005). 58 

This large scale conversion of rainforest for agricultural use has been observed on the island of 59 

Sumatra, which has experienced the highest primary rainforest cover loss in all of Indonesia 60 

(Drescher et al., 2016; Margono et al., 2012; Miettinen et al., 2011). Forest cover in the 61 

Sumatran provinces of Riau, North Sumatra and Jambi, declined from 93 to 38% of provincial 62 

area between 1977 and 2009 (Miettinen et al., 2012). These large scale transformations, 63 

observed as land cover change, and land-use intensification have led to substantial losses in 64 

animal and plant diversity, and ecosystem functions and changed microclimatic conditions 65 

(Clough et al., 2016; Dislich et al., 2016; Drescher et al., 2016). Additionally, these changes 66 

directly alter vegetation cover and structure as well as land surface properties such as albedo, 67 

emissivity, and surface roughness which affect gas and energy exchange processes between the 68 

land surface and the atmosphere (Bright et al., 2015). 69 

 70 

Replacing natural vegetation with another land cover modifies the surface albedo, which affects 71 

the amount of solar radiation that is absorbed or reflected and consequently alters net radiation 72 

and local surface energy balance. A lower or higher albedo results in a smaller or greater 73 

reflection of shortwave radiation. As a result, the higher or lower amounts of net radiation 74 

absorption may increase or decrease the surface temperature and change evapotranspiration 75 

(Mahmood et al., 2014). 76 

 77 
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Changes in land cover also alter surface emissivity, i.e. the ratio of radiation emitted from a 78 

surface to the radiation emitted from an ideal black body at the same temperature following the 79 

Stefan–Boltzmann law. Emissivity of vegetated surfaces varies with plant species, density, 80 

growth stage, water content and surface roughness (Snyder et al., 1998; Weng et al., 2004). A 81 

change of emissivity affects the net radiation because it determines the emission of longwave 82 

radiation that contributes to radiative cooling (Mahmood et al., 2014).  83 

 84 

Water availability, surface type, soil humidity, local atmospheric and surface conditions affect 85 

the energy partitioning into latent (LE), sensible (H) and ground heat (G) fluxes (Mildrexler et 86 

al., 2011). Surface roughness affect the transferred sensible and latent heat by regulating vertical 87 

mixing of air in the surface layer (van Leeuwen et al., 2011) thereby regulating land surface 88 

temperature (LST). Through its association with microclimate, net radiation and energy 89 

exchange (Coll et al., 2009; Sobrino et al., 2006; Voogt and Oke, 1998; Weng, 2009; Zhou and 90 

Wang, 2011), LST is a major land surface parameter that also influences habitat quality and 91 

thus the distribution of plants and animals and biodiversity. 92 

 93 

The replacement of natural vegetation also changes evapotranspiration (ET) (Boisier et al., 94 

2014). When ET decreases, surface temperatures and fluxes of sensible heat (H) increase. On 95 

the other hand, when ET increases, the increased LE fluxes lower surface temperatures and 96 

decrease H fluxes (Mahmood et al., 2014). Vegetation structure as reflected by parameters such 97 

as the Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and vegetation 98 

height is in this respect an important determinant of the resistances or conductivities to heat, 99 

moisture, and momentum transfer between the canopy and the atmosphere (Bright et al., 2015) 100 

facilitating the amounts/ratios of sensible heat to water vapour dissipation away from the 101 

surface (Hoffmann and Jackson, 2000).  102 

 103 
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Surface albedo, surface temperature, surface emissivity, and indirectly LAI and NDVI are 104 

interconnected through the surface radiation balance. When the land surface is changed, 105 

feedback mechanisms involving these biophysical variables control the radiation balance and 106 

the surface temperature. 107 

To understand the effects of land cover changes on LST, the associated biophysical variables 108 

must be evaluated. This can be done through the surface radiation budget and energy 109 

partitioning which unites these biophysical variables directly or indirectly: albedo as direct 110 

determinant of the net solar radiation, NDVI as a vegetation parameter determining the 111 

emissivity, which in turn determines the amount of reflected and emitted longwave radiation, 112 

LST directly affecting the amount of emitted longwave radiation from the surface and ET, 113 

which affects the amount of energy that is used for surface cooling via evaporating of water. 114 

 115 

The effect of land cover change on LST is dependent on the scale, location, direction and type 116 

of the change (Longobardi et al., 2016).  Several studies showed an increase of the LST after 117 

forest conversion to built-up areas and  agricultural land (Zhou and Wang, 2011) and to crop 118 

land and pasture lands (Peng et al., 2014) in China. Similar findings were reported for South 119 

American ecosystems: low vegetation such as grasslands in Argentina were warmer than tall 120 

tree vegetation (Nosetto et al., 2005). In Brazil, the surface temperature increased after the 121 

conversion of natural Cerrado vegetation (a savanna ecosystem) into crop/pasture (Loarie et al., 122 

2011a). Similar effects were also shown for other South American biomes (Salazar et al., 2016). 123 

In a global analysis, Li et al. (2015) showed that the cooling of forests is moderate at mid 124 

latitudes and that Northern boreal forests are even warmer, an indication that the effect of land 125 

cover change on LST varies with the location of the land cover change (Longobardi et al., 126 

2016). Similar studies on the Indonesian Islands are lacking but increases in surface temperature 127 

are expected as an effect of the expansion of oil palm and cash crop land in the recent decades. 128 

 129 



6 
 

Measuring changes in LST is critical for understanding the effects of land cover changes, but 130 

challenging. LST can be monitored with LST products retrieved from thermal infrared (TIR) 131 

remote sensing data e.g. the use of the thermal bands of the Moderate Resolution Imaging 132 

Spectrometer (MODIS) onboard the Terra and Aqua satellite (Sobrino et al., 2008), the thermal 133 

band of the Thematic Mapper (TM) onboard the LANDSAT-5 platform (Sobrino et al., 2004, 134 

2008) or Enhanced Thematic Mapper (ETM+) onboard the LANDSAT-7 platform. The 135 

advantage of MODIS data is the availability of readily processed products at high temporal 136 

resolution (daily) at medium (250 – 500 m) to coarse spatial resolution (1000 – 5000 m) scale; 137 

MODIS LST product (MOD11A1/MYD11A1) for example is provided at a daily temporal 138 

resolution with a spatial resolution of 1 km. Landsat data are provided at a higher spatial 139 

resolution (30 m), but its temporal resolution is however limited to 16 days and the retrieval of 140 

LST requires the correction of the satellite observed radiances for atmospheric absorption and 141 

emission (Coll et al., 2009). Besides LST, the connected biophysical variables of the energy 142 

and radiation budget can be derived from the visible and near-infrared (VIS-NIR) bands of 143 

either MODIS or Landsat, making integrated monitoring of the biophysical variables related to 144 

changing land surface possible. In Indonesia, a large proportion of the land use changes is 145 

driven by smallholders (Dislich et al. 2016), thus a combination of Landsat (for a fine spatial 146 

resolution) and MODIS (for temporal developments) seems desirable. 147 

 148 

The modification of the physical properties of the land surface influences climate/local 149 

microclimatic conditions via biogeochemical and biophysical processes. Therefore, given 150 

Indonesia’s history of large scale agricultural land conversion and governmental plans to 151 

substantially expand the oil palm production, it is important to study the effect of the expansion 152 

of cash crop areas on the biophysical environment, especially on LST as a key land surface 153 

parameter. These effects have been poorly studied in this region and according to our 154 

knowledge this is the first study to quantify the effects of land use change on LST in Indonesia 155 
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We focus on the province of Jambi / Sumatra as it experienced large land transformation 156 

towards oil palm and other cash crops such as rubber plantations in the past and it may serve as 157 

an example of future changes in other regions. 158 

 159 

Our main objective is to quantify the differences in LST across different land cover types and 160 

to assess the impact of cash crop expansion on the surface temperature of Jambi province (on 161 

Sumatra / Indonesia) in the past decades. With this study we aim to (1) evaluate the use of 162 

Landsat and MODIS satellite data as sources for a reliable estimation of the surface temperature 163 

in a tropical region with limited satellite data coverage by comparing the surface temperatures 164 

retrieved from both satellite sources to each other and against ground observations, (2) to 165 

quantify the LST variability across different land cover types  and (3) to assess the long term 166 

effects of land transformation on the surface temperature against the background of climatic 167 

changes and (4) to identify the mechanisms that explain changes of the surface temperature 168 

through changes in other biophysical variables. In this study we compare the surface 169 

temperatures of different land cover types that replace forests (i.e. oil palm, rubber and acacia 170 

plantations, clear cut land and urban areas) using high resolution Landsat and medium 171 

resolution MODIS satellite data and discuss the differences by taking into account other 172 

biophysical variables such as the albedo, NDVI and evapotranspiration (ET). 173 

 174 

2 Materials and methods 175 

 176 

2.1 Study area 177 

 178 

The study was carried out in the lowlands (approx. 25 000 km2) of the Jambi province (total 179 

area 50 160 km2) on Sumatra, Indonesia, between latitudes 0°30´S and 2°30´S and longitudes 180 

101°E and 104°30´E (Fig. 1). This region has undergone large land transformation towards oil 181 
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palm and rubber plantation over the past decades and thus may serve as an example of expected 182 

changes in other regions of Indonesia (Drescher et al. 2016). The area has a humid tropical 183 

climate with a mean annual temperature of 26.7 ± 0.2 °C (1991 – 2011, annual mean ± SD of 184 

the annual mean), with little intra-annual variation. Mean annual precipitation was 2235 ± 381 185 

mm and a dry season with less than 120 mm monthly precipitation usually occurred between 186 

June and September (Drescher et al., 2016). Previously logged rainforests in the Jambi province 187 

have been converted to intensively managed agro-industrial production zones as well as into 188 

smallholder farms to grow cash crops tree of rubber (Hevea brasiliensis) and oil palm (Elaeis 189 

guineensis) or fast-growing tree species such as Acacia mangium for pulp production (Drescher 190 

et al., 2016). The area cultivated with oil palm grew faster than the area cultivated with rubber 191 

plantations between 1990 and 2011 (Clough et al. 2016). 192 

 193 

For this study, we used two data sets of different plot sizes. For the first data set, we delineated 194 

28 large plots (ranging from 4 to 84 km2) of 7 different land cover types (Forest (FO), Rubber 195 

(RU), Acacia Plantation Forest (PF), Young oil palm plantation (YOP), Mature Oil Palm 196 

Plantation (MOP), Urban area (UB) and Clear-Cut areas (CLC)) (Fig. 1). The delineation was 197 

based on visual interpretation in combination with information from field work, which was 198 

carried out between October – December 2013. The large size of the plots was necessary to 199 

make a comparison between MODIS and Landsat images (see section satellite data). For the 200 

second data set, we selected 49 smaller plots within and outside these 28 large plots (between 201 

50 × 50 m and 1000 × 1000 m) (Fig. 1) which allowed us to increase the number of plots to use 202 

when analysing Landsat images. These small plots were used to extract surface temperature 203 

(LST), Normalized Difference Vegetation Index (NDVI), albedo (α) and evapotranspiration 204 

(ET) from a high resolution Landsat satellite image (see section satellite data) for the 7 different 205 

land cover types of interest. 206 
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 207 
Fig. 1 Geographic location of the study area. Jambi province on the Sumatran Island of 208 

Indonesia (Figs. 1a and 1b). The background of the map (Fig. 1c) is a digital elevation model, 209 

showing that the plots are located in the lowlands of the Jambi province. The large rectangles 210 

are the 28 different land cover types (Forest, Young and Mature Oil palm, Rubber, Urban area, 211 

Acacia Plantation Forest and Clear-Cut land), the small squares are the locations of the 49 small 212 

plots of the 7 different land cover types. Abbreviations: CLC = Clear-cut land, UB = Urban 213 

area, YOP = Young oil palm plantation, MOP = Mature Oil Palm plantation, PF = Acacia 214 

plantation forest, RU = Rubber plantation, FO = Forest. 215 

 216 

2.2 Meteorological data 217 
 218 

Air temperature and relative air humidity were measured at four reference meteorological 219 

stations located in open areas within the area of study (Drescher et al., 2016), with 220 

thermohygrometers (type 1.1025.55.000, Thies Clima, Göttingen, Germany) placed at 2m 221 

height. Measurements were taken every 15 s and then averaged and stored in a DL16 Pro data 222 
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logger (Thies Clima, Göttingen, Germany) as 10 min mean, from February 2013 to December 223 

2015. We used the air temperature from the meteorological stations to compare to MODIS air 224 

temperatures (MOD07_L2). The relative air humidity was used as an input parameter for 225 

NASA’s online atmospheric correction (ATCOR) parameter tool to derive parameters to correct 226 

Landsat thermal band for atmospheric effects (see Satellite data). We also used air temperature 227 

and relative humidity from two eddy covariance flux towers located in the study area (Meijide 228 

et al., 2017) one in a young oil palm plantation (two years old, S 01°50.127', E 103°17.737'), 229 

and the other one in a mature oil palm plantation (twelve years old, S 01°41.584', E 230 

103°23.484'). At these flux towers, air temperature and relative humidity were measured above 231 

the canopy respectively with the same instruments as in the reference meteorological stations 232 

(see (Meijide et al., 2017), for description of methodology). In the flux tower located in the 233 

mature oil palm plantation, we also measured surface canopy temperature between August 2014 234 

and December 2015, which was compared to MODIS LST estimates from the same period. 235 

Measurements of canopy temperature were performed with two infrared sensors (IR100) 236 

connected to a data logger, (CR3000) both from Campbell Scientific Inc. (Logan, USA). For a 237 

regional coverage we used ERA Interim daily air temperature grids 238 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/; (Dee et al., 2011) from 239 

2000 – 2015 at 0.125 degrees resolution to study the annual air temperature trend in this period. 240 

 241 

2.3 Satellite data 242 

 243 

A Landsat 7 ETM+ VIS/TIR 30 m resolution surface reflectance image with low cloud cover, 244 

acquired at 10:13 hours (local time) on 19 June 2013 covering the lowland area of the Jambi 245 

province (path 125, row 61) was used in this study. Like all Landsat 7 ETM+ images acquired 246 

after 31 May 2003, the image we used was affected by a scan line error causing a data loss of 247 

about 22% (http://landsat.usgs.gov/products_slcoffbackground.php). Most selected plots were 248 



11 
 

located in the center of the image and thus not affected by the data loss, e.g. the forest plots 249 

located at the edges of the scan line error zone faced minimal data loss because they were large 250 

enough.  251 

We also downloaded the tile h28v09 of the MODIS Terra (MOD) and Aqua (MYD) daily 1km 252 

Land Surface Temperature and Emissivity products (MOD11A1 and MYD11A1 Collection-5) 253 

and MODIS 16-days 500 m Vegetation Indices NDVI/EVI product (MOD13A1 Collection-5) 254 

from 05 March 2000 till 31 December 2015 for Terra data and from 8 July 2002 till 31 255 

December 2015 for Aqua data. We downloaded other supporting satellite data such as the 256 

MODIS Atmospheric Profile product (MOD07_L2) and the MODIS Geolocation product 257 

(MOD03). All MODIS data were reprojected to WGS84, UTM zone 48 South using the MODIS 258 

Reprojection Tool (MRT). The quality of the MODIS data was checked using the provided 259 

quality flags and only pixels with the highest quality flag were used in the analysis. 260 

 261 

2.4 Retrieval of biophysical variables from Landsat 7 ETM+ VIS/TIR images 262 

 263 

 264 

 NDVI 265 

 266 

NDVI was derived using the reflectances corrected for atmospheric effects in the red (ρRED, 267 

band 3 Landsat 7 ETM+) and near infrared (ρNIR, band 4 Landsat 7 ETM+) bands, with:  268 

    269 

 270 

NDVI = 
஡୒୍ୖି ஡ୖ୉ୈ

஡୒୍ୖା ஡ୖ୉ୈ
           (1) 271 

 272 
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 Surface albedo 273 

 274 

The surface albedo (α) was computed using the equation of Liang (2000) for estimating 275 

broadband albedo from Landsat surface reflectance bands, with: 276 

 277 

α = 0.3141 ρ1 + 0.1607 ρ3 + 0.369 ρ4 + 0.1160 ρ5 + 0.0456 ρ7 – 0.0057   (2) 278 

 279 

where ρ1, ρ3, ρ4, ρ5 and ρ7 are the Landsat 7 ETM+ surface reflectance bands (corrected for 280 

atmospheric effects). 281 

 282 

 Surface temperature (LST) 283 

 284 

LST was derived following the method proposed by Bastiaanssen (2000), Bastiaanssen et al. 285 

(1998a), Coll et al. (2010) and Wukelic et al. (1989) for computing the surface temperature 286 

from the thermal infrared band (TIR, band 6) of Landsat (Supporting information, S1). The 287 

thermal infrared band (TIR, band 6) was first converted to thermal radiance (L6, W/m2/sr/µm) 288 

and then to atmospherically corrected thermal radiance (Rc, W/m2/sr/µm) following the method 289 

described by Wukelic et al. (1989) and Coll et al. (2010), and using the atmospheric parameters 290 

obtained on NASA’s online Atmospheric Correction Calculator (Barsi et al., 2003, 2005) 291 

(supporting information, S2). The surface temperature (LST, K) was computed through the 292 

following equation similar to the Planck equation, as in Coll et al. (2010) and Wukelic et al. 293 

(1989): 294 

 295 
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LST =  
୩ଶ

୪୬ቀ
಍ొా∙ౡభ

౎ౙ
ାଵቁ

           (3) 296 

 297 

where εNB is the emissivity of the surface obtained from the NDVI (Supporting information, 298 

Table S1), k1 (= 666.09 mW/cm2/sr/μm) and k2 (= 1282.71 K) are sensor constants for 299 

converting the thermal radiance obtained from band 6 of Landsat 7 to surface temperature. 300 

The surface temperature derived from Landsat thermal band was compared with a MODIS LST 301 

product that was acquired on the same day at 10:30 am local time. For this, the Landsat LST 302 

image was resampled to MODIS resolution to enable a pixel to pixel comparison, followed by 303 

extracting the average LST of 7 land cover types using the data set containing the large 304 

delineated plots (Fig. 1). 305 

 306 

 Evapotranspiration (ET) 307 

 308 

Based on the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, 2000; 309 

Bastiaanssen et al., 1998a, 1998b) we estimated ET (mm/hr) from latent heat fluxes (LE, W/m2) 310 

which were computed as the residual from sensible (H, W/m2) and ground (G, W/m2) heat 311 

fluxes subtracted from net radiation (Rn, W/m2) as: 312 

 313 

LE = Rn – G – H            (4) 314 

 315 

We calculated Rn as the sum of incoming shortwave and longwave radiation, minus the 316 

reflected shortwave and longwave radiation and the emitted longwave radiation (equation 5). 317 

The surface albedo, surface emissivity and surface temperature determine the amounts of 318 

incoming and reflected radiation: 319 

 320 
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Rn = (1 – α) Sd↓ + εaσTa
4 – (1 – ε0)εaσTa

4 – ε0σLST4      (5) 321 

 322 

Where Sd↓ is the incoming shortwave solar radiation (W/m2) at the surface; α is the surface 323 

albedo (equation 2); ε0 is the surface emissivity (-); εa is the atmospheric emissivity (-); σ is the 324 

Stephan-Boltzmann constant (5.67 × 10-8 W/m2/K4); LST is the surface temperature (K, 325 

equation 3); Ta is the near surface air temperature (K). The surface emissivity (ε0) is derived 326 

from the NDVI and is described in the supporting information (Table S1). The average 327 

atmospheric emissivity (εa) is estimated with the model of Idso and Jackson (1969): 328 

 329 

εa = 1 – 0.26 · exp {(-7.77 × 10-4) · (273.15 – Ta)2}       (6) 330 

 331 

Ground heat fluxes (G, W/m2) were derived as a fraction of Rn from an empirical relationship 332 

between LST, α, and NDVI (Bastiaanssen, 2000) as: 333 

 334 

G = Rn ·
୐ୗ୘ ି ଶ଻ଷ.ଵହ

஑
 · (0.0038α + 0.0074αଶ) · (1 − 0.98NDVIସ)      (7) 335 

 336 

In SEBAL Sensible heat flux (H, W/m2) was calculated as: 337 

 338 

H =  ρCp
௱୘

୰౗౞
  =  ρCp

௔ ௅ௌ் ା ௕

୰౗౞
         (8) 339 

 340 

Where ρ is the air density (1.16 kg/m3); Cp is the specific heat of air at constant pressure (1004 341 

J/kg/K); rah is the aerodynamic resistance to heat transport (s m-1); a and b are regression 342 

coefficients which are determined by a hot extreme pixel (where LE = 0 and H is maximum) 343 

and a cold extreme pixel (where H = 0 and LE is maximum). The aerodynamic resistance to 344 

heat transport, rah, is calculated through an iterative process with air temperature measured at 2 345 
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m as input. SEBAL is described in Bastiaanssen (2000) and Bastiaanssen et al. (1998a, 1998b). 346 

The application of SEBAL in this research is briefly described in the supporting information 347 

(S3: ET from satellite images). 348 

 349 

2.5 Local short term differences between different land cover types 350 

 351 

From the created LST, NDVI, Albedo and ET images we extracted the average values of the 352 

different land cover classes. For this we used the dataset containing the small 49 delineated 353 

plots covering 7 different land cover types (Fig. 1). The average effect of land transformation, 354 

i.e. the change from forest to another non-forest land cover type, on the surface temperature 355 

was evaluated as (cf. Li et al. (2015)) :  356 

 357 

∆LST = LSTnon-forest – LSTforest         (9) 358 

 359 

A negative ∆LST indicates a cooling effect and positive ∆LST indicates a warming effect of 360 

the non-forest vegetation compared to forest. The same procedure was applied in evaluating the 361 

effect of land transformation on the NDVI, albedo and ET.  362 

 363 

2.6 Effects of land cover change on the provincial surface temperature in the past decades 364 

 365 

To analyse the long-term effects on the provincial scale we used the MODIS daily LST time 366 

series (MOD11A1 and MYD11A1) from 2000 – 2015. MOD11A1 provides LST for two times 367 

of the day: 10:30 am and 10:30 pm and we used the times series between 2000 and 2015. 368 

MYD11A1 provides LST for 1:30 am and 1:30 pm and is available from 8 July 2002; we used 369 

complete years in our analysis and therefore used the MYD11A1 time series from 2003 – 2015. 370 

We calculated the mean annual LST at four different times of the day (10:30 am, 1:30 pm, 371 
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10:30 pm and 1:30 am) between 2000 and 2015 for the lowland of the Jambi from the MODIS 372 

daily LST time series (MOD11A1 and MYD11A1). To do so (1) we calculated for each pixel 373 

the average LST pixel value using only the best quality pixels for every year; (2) from these 374 

pixels we made a composite image (n = 16, one for each year) for the province and (3) from 375 

each composite image we calculated the mean annual lowland provincial temperature as the 376 

average of all the pixels that are enclosed by a zone delineating the lowland of the Jambi 377 

province. We performed the same analysis with the MODIS 16-day NDVI product (2000 – 378 

2015) and the ERA daily temperature grid (2000 – 2015) to compare the annual trends of LST, 379 

NDVI and air temperature of the province. The average provincial LST and NDVI were 380 

compared to the mean LST and NDVI of a selected forest that remained undisturbed forest 381 

during the 2000 – 2015 period. 382 

 383 

2.7 Statistical analysis 384 

 385 

For comparison of the Landsat derived LST and the MODIS LST we analyzed the statistical 386 

relationships with the coefficient of determination (R2), the root mean square error (RMSE), 387 

the mean absolute error (MAE) and the bias (Bias):  388 

RMSE = ට
∑ (ா೔ିை೔)మಿ

೔సభ

ே
          (10) 389 

 390 

Bias = 
∑ (ா೔ିை೔)ಿ

೔సభ

ே
          (11) 391 

 392 

MAE = 
∑ |ா೔ିை೔|ಿ

೔సభ

ே
          (12) 393 

 394 
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Where Oi is MODIS LST, Ei is the Landsat surface temperature, and N is the number of pixels 395 

compared. Model type 2 linear regression was applied for fitting the relation between MODIS 396 

LST and Landsat LST. 397 

We tested the relation between the biophysical variables LST (or L6 and Rc, both as pre- or 398 

intermediate products before obtaining LST), albedo (α), NDVI and ET with correlation 399 

analysis and a multiple linear regression was applied to analyse the effects of the biophysical 400 

variables on the LST. We used the model: LST (or Rc or L6) ~ α + NDVI + ET, and used  R2 401 

and standardized β-coefficients to evaluate the strength of the biophysical variables in 402 

predicting the LST. 403 

 404 

3 Results 405 

 406 

3.1 Landsat LST compared to MODIS LST 407 

 408 

Landsat and MODIS images showed similar spatial patterns of LST (Fig. 2). In both images the 409 

hot areas (red) correspond to the known clear cut areas, urban areas or other sparsely vegetated 410 

areas, the cooler areas (blue) correspond to vegetated areas such as forest, plantation forests and 411 

mature oil palm plantations. The coarse resolution scale of MODIS (1000 m for LST) allows a 412 

large regional coverage of the study area but does not allow to retrieve detailed information on 413 

small patches (smaller than 1 km2). On the other hand, Landsat 7 image allows a detailed study 414 

of patches that are small enough (as small as 30 x 30 m2), but is affected by the scan line error 415 

causing data loss at the edges of the image. In both MODIS and Landsat images clouds and 416 

cloud shadows were removed and therefore lead to data gaps in the images. 417 

 418 

 419 

 420 
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 421 
            422 

  423 
Fig. 2 MODIS LST image (top) compared with Landsat LST image (bottom). Cloud cover and 424 

cloud shadow cover resulted in data gaps (No data). The difference in acquisition time between 425 

the images is 15 minutes. The square in the MODIS image is the area that is covered by the 426 

Landsat tile (path 125, row 61). Both satellite images were acquired on 19 June 2013. 427 

 428 

Landsat derived LST correlated well with MODIS LST (R2 = 0.82; p < 0.001; Fig. 3) with a 429 

RMSE of 1.83 ºC. The 7 land cover types had distinctive LSTs and the observed differences 430 
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between these land cover types were consistent in both images. The non-vegetated surfaces 431 

(Clear cut land (CLC) and Urban areas (UB)) had higher surface temperatures than the 432 

vegetated surface types (FO, YOP, MOP, PF and RU). Clear cut land had the highest surface 433 

temperature of all compared land cover types, followed by urban areas whereas the vegetated 434 

land cover types had lower surface temperatures: LSTCLC (39.71 ± 2.01 °C ) > LSTUB (35.79 ± 435 

1.26 °C) > LSTYOP (30.95 ± 0.72 °C) > LSTPF (30.25 ± 0.67 °C) > LSTMOP (28.98 ± 0.75 °C) 436 

> LSTRU (27.78 ± 0.89 °C) > LSTFO (27.57 ± 1.41 °C) (Landsat LST, Fig. 3). The same trend 437 

was derived from the MODIS image but with higher surface temperatures, except for CLC: 438 

LSTCLC (37.67 ± 1.75 ºC) > LSTUB (36.33 ± 1.57 °C) > LSTYOP (31.73 ± 0.85 ºC) > LSTMOP 439 

(30.67 ± 0.88 ºC) > LSTPF (29.92 ± 0.93 ºC) > LSTRU (29.60 ± 0.36 ºC) > LSTFO (29.21 ± 0.40 440 

ºC) (MODIS LST, Fig. 3). 441 
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 442 

Fig. 3 Average surface temperature (LST) and standard deviation (SD) of 7 land cover types 443 

derived from Landsat thermal image compared with the mean and SD of MODIS LST.  444 

CLC = Clear cut land, UB = Urban areas, YOP = young oil palm plantation, PF = Acacia 445 

Plantation Forest, MOP = Mature Oil palm plantation, FO = Forest, RU = Rubber plantation. 446 

The dashed line is the theoretical 1:1 line, the solid lines are the Linear Model type 2 regression 447 

line (black) and the confidence limits of the regression line (red). Landsat and MODIS images 448 

were acquired on 19 June 2013, Landsat at 10:13 am local time, MODIS at 10:30 am local time. 449 

Landsat pixels (30 m) were resampled to MODIS pixel resolution (926 m) to make a pixel to 450 
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pixel comparison between the two sources possible. RMSE is the root mean squared error, MAE 451 

is the mean absolute error. 452 

 453 

3.2 Local short term differences between different land cover types 454 

 455 

The ∆LST between RU, MOP, PF, YOP, UB and CLC land cover types and FO were all 456 

positive, meaning that all other land cover types were warmer than forests (Fig. 4a & Supporting 457 

Information S4 and S5). RU and MOP were 0.4 ± 1.5 °C and 0.8 ± 1.2 °C warmer than forest, 458 

respectively. PF and YOP were much warmer than forests (∆LSTPF – FO = 2.3 ± 1.1 °C, ∆LSTYOP 459 

– FO = 6.0 ± 1.9 °C). The largest ∆LSTs were between forest and the non-vegetated land cover 460 

types, i.e. UB (∆LST = 8.5 ± 2.1 °C) and CLC (∆LST = 10.9 ± 2.6 °C). The LST differences 461 

were significant (p < 0.05, post-hoc Tukey’s HSD test), except between RU and FO (p = 0.78, 462 

post-hoc Tukey’s HSD test (Supporting Information S6, Table S6.1 & table S6.2). 463 

 464 

Similar differences were found for the ∆NDVI between forest and other land covers (Fig. 4b). 465 

The negative ∆NDVI indicates that the non-forest land cover types had lower NDVI than forest. 466 

∆NDVI between FO and RU, MOP, PF and YOP were small (between – 0.01 ± 0.02 467 

(∆NDVIMOP – FO) and – 0.12 ± 0.06 (∆NDVIYOP - FO). The largest ∆NDVIs were between forest 468 

and the non-vegetated land cover types, i.e. UB and CLC (∆NDVI = – 0.42 ± 0.11 and – 0.41 469 

± 0.08, respectively). All ΔNDVIs were significant (p < 0.05, post-hoc Tukey’s HSD test). 470 

 471 

The difference in albedo (∆Albedo) between forest and the other land covers was very small 472 

(Fig. 4c), with ∆Albedo values between – 0.03 ± 0.01 (∆AlbedoPF - FO) and 0.03 ± 0.02 473 

(∆AlbedoYOP - FO). These differences were significant (p < 0.05, post-hoc Tukey’s HSD test). 474 

PF had a lower albedo than forest (∆AlbedoPF - FO = – 0.03 ± 0.01), while the other land cover 475 

types had a higher albedo than forest.  476 
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 477 

All land covers had lower ET than forest. RU, MOP and PF had slightly lower ET than FO 478 

(∆ETRU-FO = – 0.03 ± 0.04, ∆ETMOP-FO = – 0.03 ± 0.03 mm/hr, ∆ETPF-FO = – 0.04 ± 0.03 mm/hr) 479 

(Fig. 4d). YOP, UB and CLC had much lower ET values than forests: ∆ETYOP-FO = – 0.18 ± 480 

0.04 mm/hr, ∆ETUB-FO = – 0.23 ± 0.04 mm/hr, ∆ETCLC-FO = – 0.26 ± 0.06 mm/hr). The ΔETs 481 

were significant (p < 0.05, post-hoc Tukey’s HSD test). The SEBAL based LE estimates were 482 

within the variability range of LE measurements from eddy covariance measurements under 483 

similar meteorological conditions (see SI 3). 484 

 485 
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 486 

Fig. 4 Differences (mean ± SD) in surface temperature (∆LST), normalized difference 487 

vegetation index (∆NDVI), Albedo (∆Albedo) and Evapotranspiration (∆ET) between other 488 

land covers (RU, MOP, PF, YOP, UB and CLC) and forest (FO) in the Jambi province, derived 489 

from the Landsat LST image acquired on 19 June 2013 at 10:13 am local time. 490 

 491 

Albedo had a weaker influence on the LST (ρ = 0.25, p < 0.05) (Table 2) than NDVI and ET. 492 

As the thermal radiance band (L6) and the atmospherically corrected thermal band (Rc) were 493 

the basis for the LST calculation, the high correlation between L6 and NDVI (ρ = – 0.87, p < 494 
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0.05) and between L6 and ET (ρ = – 0.98, p < 0.05) resulted in a high correlation between LST 495 

and NDVI (ρ = – 0.88) and between LST and ET (ρ = – 0.98). The analysis showed that albedo, 496 

NDVI and ET were all significant predictors of LST (F(3, 41586) = 1 × 106, p < 0.05). ET was the 497 

strongest predictor of LST (stand. β = – 1.11, p < 0.05). Albedo (stand. β = – 0.19, p < 0.05, 498 

resp.) and NDVI (stand. β = – 0.19, p < 0.05) were weaker predictors of LST.  499 

 500 

Table 2 Statistical analysis between biophysical variables (albedo (α), NDVI and ET) and 501 

Spectral Radiance band (L6), corrected thermal band (Rc) and Landsat surface temperature 502 

(LST). 503 

Model   ρ R2 β Stand. β Model fit (R2) F-statistics 

 
L6 ~ α + NDVI + ET 
  

α  0.26  0.05 -2.94 -0.19  F (3, 41586) =  

NDVI -0.87  0.10  0.23  0.11 0.99 1.10×106, *** 

ET -0.98  1.13  -4.00 -1.16     

 
Rc ~ α + NDVI + ET 
  

α 0.25  0.05 -4.88 -0.20  F (3, 41586) =  

NDVI -0.88 0.04 0.16 0.05 0.99 1.79×106 , *** 

ET -0.98 1.00 -6.21 -1.10     

 
LST ~ α + NDVI + ET  
  

α  0.25  0.05 -34.01 -0.19  F(3, 41586) = 

NDVI -0.88  0.05  1.30  0.05 0.99  2.3×106, *** 

ET -0.98  1.00 -43.53 -1.11     
***: p = 2×10-16 504 

LM: Multiple linear regression analysis between LST (or L6 or Rc) and 3 biophysical variables: 505 

Albedo (α), NDVI and ET. ρ = correlation coefficient; R2: R-squared of the components; β = 506 

regression coefficient of the component; stand. β = standardized β; Model fit (R2): overall model 507 

fit of the multiple linear regression. The values in brackets are for the analysis between the 508 

biophysical variables and the corrected thermal band (Rc). 509 

 510 

A separate analysis (Table S6.3, Supporting information S6) showed that ET was a strong 511 

predictor of LST for each land cover type in this study and that NDVI and albedo were minor 512 

predictors of LST.  513 

 514 
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3.3 Effects of land-use change on the provincial surface temperature in the past decades 515 

 516 

The average annual LST of the province was characterized by a fluctuating but increasing trend 517 

during daytimes (Fig. 5a and 5b) between 2000 and 2015. The average morning LST (10:30 518 

am) increased by 0.07 ºC per year (R2 = 0.59; p < 0.001), the midday afternoon LST (13:30 519 

local time) increased by 0.13 °C per year (R2 = 0.35; p = 0.02) between 2003 and 2015. While 520 

the daytime LST showed a clear increase, the night and evening LST (10:30 pm and 1:30 am, 521 

Fig. 5c and 5d) trends were small showing a decrease of – 0.02 °C (R2 = 0.29; p = 0.02) and – 522 

0.01 °C (R2 = 0.05; p = 0.51) per year, respectively. The observed LST trends resulted in a total 523 

LST increase of 1.05 °C and 1.56 °C in the morning (10:30 am) and afternoon (1:30 pm) 524 

respectively and a total decrease of the province LST of 0.3 °C (10:30 pm) and 0.12 °C (1:30 525 

am) at night over the period from 2000 to 2015. 526 

 527 

In order to separate the effect of land use change from global climate warming, we used a site 528 

constantly covered by forest over that period (from the forest sites we used in this study) as a 529 

reference not directly affected by land cover changes. That site showed less changes in LST 530 

than the entire province: only the mean morning LST (10:30 am) had a significant but small 531 

trend with an increase by 0.03 °C per year (R2 = 0.21, p < 0.05) resulting in a total LST increase 532 

of the province of 0.45 °C between 2000 and 2015 (Fig. 5a). This LST warming is much smaller 533 

than the overall warming at provincial level of 1.05 °C. The LST time series at other times 534 

showed no significant trends: the mean afternoon LST (1:30 pm) with -0.05 °C per year (R2 = 535 

0.01, p = 0.31) (Fig. 5b), the night and evening LST with 0.01°C per year (Fig. 5c and 5d, p = 536 

0.19 and p = 0.65, respectively). 537 

 538 

The mean annual NDVI of the province decreased by 0.002 per year, which resulted in a total 539 

NDVI decrease of 0.03 (R2 = 0.34; p = 0.01; Fig. 5e). The NDVI of the forest showed a small 540 
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but not significant increase of 0.001 per year (R2 = 0.04, p = 0.23) (Fig. 5e) fluctuating around 541 

an NDVI of 0.84. 542 

 543 

The mean annual midday air temperature (at 1:00 pm, local time, Fig. 5f) and the mean annual 544 

night air temperature (at 1:00 am, local time) increased every year by 0.05 °C and 0.03 °C, 545 

respectively resulting in a total air temperature increase of 0.75 °C (R2 = 0.66, p < 0.001) and 546 

0.45 °C (R2 = 0.32, p = 0.014) between 2000 and 2015 (Fig. 5f). 547 

 548 

Fig 5. Mean annual LST (a – d), mean annual NDVI (e) and mean annual air temperature trends 549 

(f) in the Jambi province between 2000 and 2015 derived from MODIS LST (5a. 10:30 am, 5b. 550 

1:30 pm, 5c. 10:30 pm and 5d. 1:30 am, local time), MODIS NDVI and ERA Interim Daily air 551 
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temperature (1:00 am and 1:00 pm, local time) data sets respectively. Grey-shaded areas are the 552 

confidence intervals of the means, blue-shaded areas are the confidence intervals of the 553 

regression lines. MODIS LST time series for 1:30 pm and 1:30 am were available from the mid 554 

of 2002; for this reason we used the complete years from 2003 till 2015. 555 

 556 

4 Discussion 557 

 558 

4.1 Landsat LST compared to MODIS LST 559 

 560 

In our study we retrieved the surface temperature from a Landsat image and compared this with 561 

MODIS LST. Our results showed a good agreement between both LSTs (Fig. 3), which is 562 

comparable to other studies and thus gives confidence in our analysis. Bindhu et al. (2013) 563 

found also a close relationship between MODIS LST and Landsat LST using the same 564 

aggregation resampling technique as our method and found a R2 of 0.90, a slope of 0.90, and 565 

an intercept of 25.8 °C for LST, compared to our R2 of 0.8, slope of 1.35 and intercept of –566 

11.58 °C (Fig. 3). Zhang and He (2013) validated Landsat LST with MODIS LST and also 567 

found good agreements (RMSD 0.71 – 1.87 ºC) between the two sensors, where we found a 568 

RMSE of 1.71 ºC. Nevertheless, there still are differences and slope versatility between the two 569 

satellite sources. These differences are typically caused by differences between MODIS and 570 

Landsat sensors in terms of (a) different sensor properties e.g. spatial and radiometric resolution 571 

and sensor calibration; (b) geo-referencing and differences in atmospheric corrections (Li et al., 572 

2004); and (c) emissivity corrections i.e. the use of approximate equations to derive the 573 

emissivity from the NDVI from Landsat’s Red and NIR bands. Li et al. (2004) and Vlassova et 574 

al. (2014) identified these same factors in their comparison of ASTER LST with MODIS LST 575 

and Landsat LST with MODIS LST, respectively. Vlassova et al. (2014) found good 576 

agreements between MODIS and Landsat LST, obtaining higher LST with MODIS than with 577 
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Landsat, which they attributed to the delay of 15 minutes in acquisition time between MODIS 578 

and Landsat. MODIS LST is measured 15 minutes later and our results showed that MODIS 579 

LSTs were indeed higher than Landsat LST. A comparison of MODIS LST with locally 580 

measured canopy surface temperatures during the overpass time of MODIS also showed 581 

agreement (Supporting information S7, Figure S7.1). The slope was possibly due to differences 582 

in instrumentation and emissivity corrections and to scale issues, still this comparison could 583 

corroborate the quality check of MODIS LST. 584 

As the MODIS LST product is proven to be accurate within 1 ºC  (Silvério et al., 2015; Wan et 585 

al., 2004) and has been intensively validated, the use of MODIS LST was a proper way to assess 586 

the quality of our Landsat LST. 587 

 588 

The errors from the different sources (such as atmospheric correction, emissivity correction, 589 

resampling Landsat to MODIS resolution) are difficult to quantify. When we tested the impact 590 

of atmospheric correction and emissivity errors on the LST from Landsat retrieval we found 591 

that: (a) the overall patterns across different land use types did not change, (b) emissivity was 592 

the most important factor, but the effects on LST retrieval were small and (c) errors due to 593 

atmospheric correction parameters were small because there were minor differences between 594 

default Atmospheric correction (ATCOR) parameters and ATCOR parameters derived with 595 

actual local conditions (relative humidity (RH), air pressure and air temperature). Following 596 

the method of Coll et al. (2009) and Jiang et al. (2015) we show that the use of the online 597 

atmospheric correction parameter calculator is a good option provided that RH, air temperature 598 

and air pressure measurements are available. We additionally compared locally measured air 599 

temperatures with MODIS air temperature and found a good agreement (Supporting 600 

information S8, Figure S8.1), which served as a verification that we used a correct air 601 

temperature for the atmospheric correction parameter calculator. 602 
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Overall, our comparison of LST from Landsat against LST from MODIS and against ground 603 

observations suggests that we are able to retrieve meaningful spatial and temporal patterns of 604 

LST in the Jambi province. 605 

 606 

4.2 LST patterns across different land use and land cover (LULC) types 607 

 608 

The land cover types in our study covered a range of land surface types that develop after forest 609 

conversion. This is the first study in this region that includes oil palm and rubber as land use 610 

types that develop after forest conversion. The coolest temperatures were at the vegetated land 611 

cover types while the warmest surface temperatures were on the non-vegetated surface types 612 

like urban areas and bare land. Interestingly, the oil palm and rubber plantations were only 613 

slightly warmer than the forests whereas the young oil palm plantations had clearly higher LST 614 

than the other vegetated surfaces. For other parts of the world, Lim et al. (2005, 2008), Fall et 615 

al. (2010) and Weng et al. (2004) also observed cooler temperatures for forests and the highest 616 

surface temperatures for barren and urban areas.  617 

In Indonesia, land transformation is often not instantaneous from forest to oil palm or rubber 618 

plantation, but can be associated with several years of bare or abandoned land in-between (Sheil 619 

et al., 2009). Oil palm plantations typically have a rotation cycle of 25 years, resulting in 620 

repeating patterns with young plantations (Dislich et al., 2016). Given the large differences in 621 

LST between forests and bare soils or young oil palm plantations that we observed, a substantial 622 

warming effect of land transformation at regional scale is expected.  623 

 624 

4.3 Drivers of local differences between different land cover types 625 

 626 

All land cover types (except Acacia Plantation Forests) had a higher albedo than forest, 627 

indicating that these land cover types absorbed less incoming solar radiation than forests. 628 
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Nevertheless, these land cover types were warmer than forests, suggesting that the albedo was 629 

not the dominant variable explaining LST. Indeed, the statistical analysis showed that ET ~ 630 

LST had a higher correlation than albedo ~ LST. The ΔETs were significant, underlying that 631 

despite their higher albedo, all land cover types had higher LSTs than forests due to lower ET 632 

rates than forests. Vice versa, forests that absorb more solar radiation due to the lower albedo, 633 

have lower LST due to the higher ET they exhibit, hereby identifying evaporative cooling as 634 

the main determinant of regulating the surface temperature of all vegetation cover types (Li et 635 

al., 2015). 636 

 637 

Both observational and modeling studies carried out in other geographic regions and with other 638 

trajectories support our observations. Observational studies in the Amazonia by Lawrence and 639 

Vandecar (2015) on the conversion of natural vegetation to crop or pasture land showed a 640 

surface warming effect. Salazar et al. (2015) provided additional evidence that conversion of 641 

forest to other types of land use in the Amazonia caused significant reductions in precipitation 642 

and increases in surface temperatures.  643 

Alkama and Cescatti (2016) and earlier studies by Loarie et al. (2011a, 2011b) showed that 644 

tropical deforestation may increase LST. Croplands in the Amazonian regions were also 645 

warmer than forests through the reduction of ET (Ban-Weiss et al., 2011; Feddema et al., 2005) 646 

and that the climatic response strongly depends on changes in energy fluxes rather than on 647 

albedo changes (Loarie et al., 2011a, 2011b). A study by Silvério et al. (2015) indeed found 648 

that tropical deforestation changes the surface energy balance and water cycle and that the 649 

magnitude of the change strongly depends on the land uses that follow deforestation. They 650 

found that the LST was 6.4 ºC higher over croplands and 4.3 ºC higher over pasture lands 651 

compared to the forest they replaced, as a consequence of energy balance shifts. Ban-Weiss et 652 

al. (2011) and Davin and de Noblet-Ducoudré (2010) added that in addition to the reduction of 653 

ET, the reduction of surface roughness most likely enhanced the substantial local warming. 654 



31 
 

 655 

Also for non-Amazonian regions, the replacement of forests by crops caused changes 656 

comparable with our observations. In temperate Argentina, Houspanossian et al. (2013) found 657 

that the replacement of dry forests by crops resulted in an increase of albedo and still forests 658 

exhibited cooler canopies than croplands. The cooler canopies were a result of a higher 659 

aerodynamic conductance that enhanced the capacity of tree canopies to dissipate heat into the 660 

atmosphere, and to both latent and sensible heat fluxes operating simultaneously to cool forest 661 

canopies. 662 

 663 

In a global analysis Li et al. (2015) showed that tropical forests generally have a low albedo, 664 

but still the net energy gain caused by solar energy absorption is offset by a greater latent heat 665 

loss via higher ET  and that in the tropical forests the high ET cooling completely offsets the 666 

albedo warming. For China, this cooling effect was also shown by Peng et al. (2014) who 667 

compared LST, albedo and ET of plantation forests, grassland and cropland with forests.  668 

 669 

For the USA,  Weng et al. (2004) and for China, Yue et al. (2007), using NDVI as an indicator 670 

of vegetation abundance, also found that areas with a high mean NDVI had a lower LST than 671 

areas with a low mean NDVI, therefore suggesting that vegetation abundance is an important 672 

factor in controlling the LST through higher ET rates. Our result support their assumptions by 673 

showing the high correlation between NDVI – LST and ET – LST.  674 

 675 

Our findings are also supported by modelling studies. Beltrán-Przekurat et al. (2012) found for 676 

the Southern Amazon that conversion of wooded vegetation to soy bean plantations caused an 677 

increase of the LST due to decreased latent heat and increased sensible heat fluxes. Climate 678 

models also show the same warming trends and land surface modelling also projects an increase 679 

in surface temperatures following deforestation in the Brazilian Cerrado (Beltrán-Przekurat et 680 
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al., 2012; Loarie et al., 2011b). In a global analysis, Pongratz et al. (2006) showed a LST 681 

increase of forest to cropland or pasture transitions, which was driven by a reduced roughness 682 

length and an increased aerodynamic resistance, and that the temperature response is intensified 683 

in forest to clear/bare land transitions (1.2 – 1.7 ºC increase). Similar to observational studies, 684 

the modelling results of Bathiany et al. (2010) show that ET is the main driver of temperature 685 

changes in tropical land areas.  686 

 687 

In order to understand the effects of deforestation on biophysical variables in Indonesia, our 688 

study identifies the following mechanisms: (a) reduction of ET decreases surface cooling, (b) 689 

reduced surface roughness reduces air mixing in the surface layer and thus vertical heat fluxes, 690 

(c) changes in albedo change the net radiation, (d) changes in energy partitioning in sensible 691 

and latent heat and heat storage. The effect is an increase of the mean temperatures leading to 692 

warming effects in all tropical climatic zones (Alkama and Cescatti, 2016). We point here that 693 

our study (1) included a ground heat flux, but did not take into account the storage of heat in 694 

the soil and the release of stored heat out of the soil during the daily cycle and (2) that the 695 

Landsat satellite image was obtained under cloud free conditions with high shortwave radiation 696 

input and low fraction of diffuse radiation. Therefore, the LST retrieved on cloud free days 697 

might be overestimated compared to cloudy days, as the differences in LST between land uses 698 

are supposed to be lower when diffuse radiation increases. 699 

 700 
Our study is the first to include the oil palm and rubber expansion in Indonesia. In Indonesia, 701 

smallholders take 40% of the land under oil palm cultivation for their account (Dislich et al., 702 

2016). Since the landscape in the Jambi province is characterized by small-scale smallholder-703 

dominated mosaic including rubber and oil palm monocultures (Clough et al., 2016), studies 704 

using medium to coarse resolution data are not able to capture the small scale changes and 705 

processes at the small-scale level. By using high resolution Landsat data we were able to also 706 
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include the effects of land use change on biophysical variables and the underlying processes of 707 

the small scale holder agriculture. 708 

 709 

4.4 Effects of land use change on the provincial surface temperature in the past decades 710 

 711 

The increases in mean surface temperature of the Jambi province were stronger during the 712 

morning (10:30 am) and afternoon (1:30 pm) than during the evening (10:30 pm) and night 713 

(1:30 am).  Given that our results show a decrease of the NDVI in the same period, this suggests 714 

that the observed increased trend of the day time province LST can be attributed to the land 715 

cover changes that occurred. Our assumption that the observed decreasing NDVI trend is caused 716 

by land conversions is supported by two different studies which reported that in the Jambi 717 

province, between 2000 and 2011 (Drescher et al., 2016) and between 2000 and 2013 (Clough 718 

et al., 2016), the forest area decreased and that the largest increases were for rubber, oil palm, 719 

and agricultural and tree crop areas. The class ‘other land use types’, which includes urban 720 

areas, showed a minor increase (around 1%), suggesting that the decrease in NDVI was most 721 

likely caused by forest cover loss and not by urban expansion (see Supporting information, 722 

Table S9). The same observations on LULC change in Indonesia were also supported by Lee 723 

et al. (2011), Margono et al. (2012, 2014) and (Luskin et al., 2014). Luskin et al. (2014) showed 724 

that in the Jambi province, during the period 2000 – 2010, forests decreased by 17% while oil 725 

palm and rubber area increased by 85% and 19%, respectively. 726 

 727 

Given these trends in LULC changes, the observed LST trends were most likely caused by 728 

gradual decrease of forest cover loss at the expense of agriculture and croplands. Our 729 

assumptions are supported by findings of Silvério et al. (2015), Costa et al. (2007), Oliveira et 730 

al. (2013), Spracklen et al. (2012) and Salazar et al. (2015) which indicate that land use 731 

transitions in deforested areas likely have a strong influence on regional climate. Alkama and 732 
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Cescatti's (2016) analysis show that biophysical effects of changes in forest cover can 733 

substantially affect the local climate by altering the average temperature, which is consistent 734 

with our observations and can be related to the observed land use change in the Jambi province. 735 

As Indonesia has undergone high rates of forest cover loss from 2000 to 2012 (Margono et al., 736 

2014), these findings support our assumptions that the observed LST increase in the Jambi 737 

province was most likely caused by the observed land use changes. 738 

 739 

To separate the effect of global warming from land-use change induced warming, we 740 

considered areas with permanent and large enough forests as reference where changes are 741 

mainly due to global warming. We find that LST of forests show either no significant trends (at 742 

1:30 pm, 10:30 pm, 1:30 am) or just a clearly smaller increase of 0.03 °C per year at 10:30 am. 743 

The difference between the LST trend of the province and of the forest at 10:30 am was 0.04 744 

°C per year, resulting in a ΔLST of 0.6 °C between the province and forest in the period 2000 745 

and 2015. We point out that our MODIS analysis has a larger proportion of data from the dry 746 

season compared from the wet season, as there were more cloud free conditions during the dry 747 

season. Thus, our reported warming effect reflects cloud free conditions. During cloudy 748 

conditions, particularly in the wet season, the warming effect is expected to be lower. A 749 

seasonality analysis showed that the relationships in the dry season are stronger than for the wet 750 

season (see Supporting information S10, fig. S10.1) which suggests that the warming is more 751 

pronounced during the dry season compared to the wet season, which is reasonable as we have 752 

more incoming radiation during the dry season. 753 

 754 

Using the warming effects we found between forest and other land cover types (ΔLST, Fig. 4a) 755 

and the observed land cover changes by Clough et al. (2016) and Drescher et al. (2016) 756 

(Supporting Information S9, table S9.1 and S9.2) we estimated the contribution of all land cover 757 

types (except forest) to the ΔLST of the province between 2000 and 2015 to be 0.51°C out of 758 
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0.6°C observed above, which also supports our assumption that the increase of the province 759 

LST was by 85% driven  by land cover changes (see Supporting Information 9, Table S9.1 & 760 

S9.2: Land use change analysis), with clear cut areas having a large contribution as they have 761 

the largest warming effect. 762 

 763 

The observed small, but significant increase in LST of forests of 0.03 °C per year at 10:30 am 764 

reflects a LST change independent to land cover changes, as the forest remained unchanged 765 

over that time period. A potential driver of that LST increase is the general global air 766 

temperature trend due to changes in radiative forcing or border effects (advection from warmer 767 

land uses), which is  similar to the 1994 - 2014 time series analysis of Kayet et al. (2016),  who 768 

showed  a LST increase for all land cover types ranging from wasted land, agriculture land, 769 

open forest, dense forest, water bodies and built up areas.  770 

 771 

The observed trends of province air temperature (Fig. 5f) were significant, suggesting that a 772 

general warming due to global and regional effects contributes to the observed warming at 773 

province level during day and night time, but that it is smaller than the land cover change 774 

induced effects (Supporting Information S9, Table S9.1 & S9.2) at provincial level (Fig. 5a and 775 

5b).  776 

 777 

In our long-term analysis on the regional effects of land use change we observed an increase in 778 

the mean LST and mean air temperature in the 2000 - 2015 period, concurrent with a decrease 779 

of the NDVI. The warming observed from MODIS LST data and from the air temperature 780 

obtained from the independent ERA Interim Reanalysis in the Jambi province are most likely 781 

caused by the observed decrease of the forest area and an increase oil palm, rubber and other 782 

cash crop areas in the same period, with other effects such as radiative forcing changes and 783 

additional natural effects playing a smaller role. Given the plan of the Indonesian government 784 
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to substantially expand oil palm production with a projected additional demand of 1 to 28 Mha 785 

in 2020 (Wicke et al., 2011), the strong warming effect we show for Jambi province may serve 786 

as an indication of future changes in LST for other regions of Indonesia that will undergo land 787 

transformations towards oil palm plantations.  788 

A recent study by Tölle et al. (2017) showed that for Southeast Asia, land use change at large 789 

scale may increase not only surface temperature but also impact other aspects of local and 790 

regional weather and climate occurring also in regions remote from the original landscape 791 

disturbance. Their results also indicate that land clearings can amplify the response to climatic 792 

extreme events such as El Niño Southern Oscillation (ENSO). The observed effects of land use 793 

change on the biophysical variables may have implications for ecosystem services in the Jambi 794 

province beyond a pure warming effect. The high precipitation in this region in combination 795 

with the reduced vegetation cover of bare land and young oil palm plantations impose risks of 796 

soil erosion caused by surface run off. Less water infiltrates in the soil, thereby decreasing the 797 

soil water storage that may lead to low water availability in the dry season (Dislich et al., 2016; 798 

Merten et al., 2016). High surface temperatures in combination with low water availability may 799 

make the vegetation and the surroundings more vulnerable to fires.   800 

 801 

5 Conclusion 802 

 803 

In summary, we showed the importance of forests in regulating the local and regional climate. 804 

We derived biophysical variables from satellite data, analyzed the biophysical impacts of 805 

deforestation and on a local scale we found a general warming effect after forests are 806 

transformed to cash or tree croplands (oil palm, rubber, acacia) in the Jambi province of 807 

Sumatra. The warming effect after forest conversion results from the reduced evaporative 808 

cooling, which was identified as the main determinant of regulating the surface temperature. 809 

On a regional scale, we saw that the effects of land cover changes are reflected back in changes 810 
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of the LST, NDVI and air temperature of the Jambi province. The warming effect induced by 811 

land cover change clearly exceeded the global warming effect. Understanding the effects of 812 

land cover change on the biophysical variables may support policies regarding conservation of 813 

the existing forests, planning and expansion of the oil palm plantations and possible 814 

afforestation measures. 815 

 816 

  817 
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Supporting Information 818 
 819 
Supporting information to this article is arranged as follows: 820 
 821 
S1. Surface temperature retrieval from Landsat thermal images 822 
Table S1.1. Steps in the retrieval of the surface temperature from Landsat TIR band 823 
Table S1.2. LMIN and LMAX values for Landsat 7 ETM+  824 
Table S1.3. Mean solar exo-atmospheric irradiance (ESUNλ) for Landsat 7 ETM+  825 
 826 
S2. Atmospheric correction of the thermal band 827 
Table S2.1. Input and output parameters for/from NASA´s online atmospheric correction 828 
parameter calculator 829 
 830 
S3. ET from satellite images with SEBAL 831 
Fig. S3.1 Analysis of the steps involved in deriving the input for deriving ET from Landsat 832 
images with SEBAL 833 
Fig. S3.2 Comparison of ET derived from upper anchor and lower anchor pixels. 834 
Table S3.1. u*, rah, LE and H measured at a young and mature oil palm plantation 835 
 836 
S4. Mean LST, NDVI, Albedo and NDVI extracted for 7 land cover types 837 
Fig. S4.1 Mean LST, NDVI, Albedo and NDVI extracted from Landsat LST images for 7 838 
land cover types 839 
 840 
S5. Difference in LST, NDVI, albedo and ET between Forest (FO) and 6 other land cover 841 
types 842 
Fig. S5.1 Differences in LST (∆LST), NDVI (∆NDVI), Albedo (∆Albedo) and 843 
Evapotranspiration (∆ET) between other land covers (RU, MOP, PF, YOP, UB and CLC) and 844 
forest (FO) in the Jambi province 845 
 846 
S6. Statistical analysis 847 
Table S6.1 ANOVA statistics 848 
Table S6.2 Post-hoc Tukey HSD test statistics  849 
Table S6.3 The relation LST-Albedo-NDVI-ET separated by land cover type 850 
 851 
S7. Comparison of MODIS LST to in situ measured canopy LST 852 
Fig. S7.1 MODIS LST compared to in situ measured canopy surface temperature. 853 
 854 
S8. Comparison of MODIS Air temperature with locally measured air temperature 855 
Fig. S8.1 MODIS Air temperature compared with in situ measured air temperatures 856 
 857 
S9. Land use change analysis for the Jambi province for 2000 – 2010 858 
Table S9.1 Land use change (1990) – 2000 – 2010 859 
Table S9.2 Contribution of land cover change to total LST increase 860 
 861 

S10. Seasonality analysis 862 
Fig S10.1 Mean annual LST in the Jambi province between 2000 and 2015 derived from 863 
MODIS LST during the wet and dry season. 864 
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