Reviewers initial comments are in dark blue
Responses to the comments are in green

Response to both reviewers

We would like to thank the reviewers for the comprehensive and constructive feedback on
the manuscript. We feel that the comments that they made have contributed to a much
better manuscript.

Some of the recommended changes were fairly large and thus the manuscript, primarily the
results and discussion, have changed significantly. As recommended by both reviewers, we
have deepened both the analyses and the discussion. In summary:

A deeper analyses of the observational estimates assesses the performance based
on the RMSE scores (and other metrics) and then assesses the difference between
the estimates.

The synthetic data experiments have been formalised. There are now two primary
experiments: 1) what is the impact of including coordinates as proxies on the
estimates; 2) what is the effect of the sampling biases in SOCAT v3. We also find that
the ensemble mean of ApCO2 scores better than the individual methods.

The discussion is structured after the results (two points above), but now goes much
more in depth.

The final figure focussing on the trends of the fluxes has been removed. This is due
to the fact that the manuscript is now much longer and the trend analysis would
distract the reader from the primary goal of the study; which is to introduce
methods and the synthetic data experiments.

These results will be published in a future publication.

The remaining comments have been addressed to each specific reviewer.

We hope that these changes make the manuscript suitable for publication.



Response to R1
Weaknesses

e Methods: The weakest bit of this paper certainly is the methods section at the
moment. Particularly the 2 approaches are explained to briefly. It is very difficult to
follow with many new terms being introduced but not explained, e.g: “ A few slack
variables () are allowed, within the limits of a slack parameter” — what are “slack
variables” and “slack parameter”? “versatile by mapping X onto a higher
dimensional feature space using an interchangeable kernel” — feature space?
interchangeable kernel? “ decision trees” —to the average BG reader a tree has
leaves or needles ... “ bagging” — the meaning is not clear “K-fold cross-validation” —
again, please explain what this means Without knowing all these terms the reader is
lost and understanding a method means trusting a method.

We have addressed this weakness by including more detail about each of the
methods. This includes the basic formulation for SVR and RFR. The terms are also now
explained more explicitly.

e Validation, comparison: It is disappointing that the authors only provide the RMSE
MAE and r2 in the manuscript for the entire period, i.e only one number. Many
statements in the text do require a more thorough analysis. E.G section 4.1: “ One of
the most marked differences is the weaker sink estimated by the SOM-FFN method
in the SAZ (Figure 4).” — Figure 4 shows that the difference between the estimates is
e.g. larger in the earlier analysis years — a error/RMSE/r2 analysis per year would be
interesting and make a stronger case. Furthermore, it would be very interesting how
the error/RMSE/r2 varies with data density, both in time and in space.

We have included three regional time series of RMSE for each of the biomes. These
include the data density. Note that the RMSE values have also increased as these
were previously reported for only the SAZ and FPZ combined. There is also now an
analysis of the RMSE in the SAZ included as additional material. This shows that the
increase in error in the SAZ is primarily due to increased number of coastal
measurements.

e The usage of space and time coordinates: Firstly, | am not surprised that additional
data result in a smaller error, as they add additional degrees of freedom. Secondly,
after reading the methods section | was puzzled why they were included? In the end,
on page 12 line 21 | found the statement: “ This implies that the available proxy
variables are not able to capture the variability of pCO2 .“ pCO2 is not affected by
time and space, but by the environmental conditions reflected in proxies such as SST
or biology. Space and time are in this case only placeholders for unknown proxies.
This needs to be better discussed up-front.

This is addressed a little better in section 2.3: Data transformation and derived

variables. The paragraph now reads:

To gain a better understanding of these methods' strengths and weaknesses we implement SVR
and RFR in a synthetic data environment. A similar approach was taken by {Friedrich2009} in the
North Atlantic, which experienced a similar data paucity to the Southern Ocean in the early
2000's. This idealised environment was also used to estimate the effect of including/excluding
certain proxy variables as well as the optimal coverage of cruise tracks to constrain the North
Atlantic ApCO, adequately. Similarly, we assess the efficacy of including coordinate variables as
proxies of ApCO; in the empirical methods. In the intercomparison study by proxies typically



include, but are not limited to sea surface temperature (SST), chlorophyll-a (Chl-a), mixed layer
depth (MLD) and sea surface salinity (SSS); however several methods in the study also include
latitude and longitude. While coordinates do not mechanistically impact ApCO,, they do help to
constrain estimates where the available remote sensing proxies cannot adequately do so. The
synthetic data is also used to test the ability of the SVR and RFR to approximate ApCO, in the
seasonally sparse Southern Ocean.

Specific and minor comments

Page 2 line 9: “were” — | suppose “where”

changed to where

Page 2 line 10: “interannual pCO2 trends” —interannual trends? | suppose you mean
interannual variability, otherwise please clarify

changed to interannual variability

Page 2 lines 16-18: This statement is right but wrong: R6denbeck et al indeed did
argue that there is a lack of independent ship-based observations in the SO which
prohibit an independent comparison — hence right. However, e.g. Landschutzer et al
2015 used for their trend analysis also an atmospheric inverse estimate which is
based on independent, namely atmospheric, observations — hence wrong. So, in
combination with the text above this statement is misleading.

Changed the paragraph completely. The intro should now read better.

Page 4 line 8: “gridded observations” — | don’t think — not even for the sake of brevity
—you can call data from an assimilation model (ECCO2) “gridded observations”
Corrected

Page 5 line 5-6: You claim that log10 normalisation of CHL and MLD leads to normal
distribution, but | doubt that — | suspect it rather comprised a fairly normal
distribution in the center with long tails.

Have changed this to “a distribution that closer resembles a normal distribution”
Page 5 lines 9-10 and following: see major comment above. A bit more discussion is
needed what these coordinates represent in terms of CO2 predictors. Page 5 line 25
and following: The methods are hard to follow. Too many unknown and specific
wording is used (see major comment above).

Details are now “fleshed out” on pages 6 and 7

Page 7 lines 14-15: why Nightingale? there are newer transfer velocity estimates
from Wanninkhof et al. (2013, 2014) using CCMP?

Now using Wanninkhof et al., (2014)

Page 8 Figure 3: It is confusing that the SOM-FFN method is called “SOM” here —
please don’t change abbreviations throughout the manuscript.

SOM-FFN is continued throughout manuscript

Page 9 Figure 4: In all the following text the difference between the lines is discussed,
but not that they are based on different datasets, i.e. SOCATv2 and SOCATV3. It is
certainly plausible that the availability of data in SOCAT also affects the difference? |
suggest to discuss this also in the main text.

We address this issue in two ways: estimates are compared with SOCAT v2 and v3;
models trained with SOCAT v2 and v3 are compared — this is presented only in the
appendix.

Page 11 lines 5-12: This is very vague. Firstly, the authors have not properly
calculated uncertainties for each region and timestep. Secondly — as mentioned
above, the discussion is missing the difference between SOCATv2 and SOCATv3. How



many new data are included in SOCATv3 and where? Could this add to the
difference? Thirdly, the statement about the influence of the tropics is vague.

Table 2 has been changed to a figure showing the spatial and temporal variability of
RMSE for each of the methods. Moreover, there is also a table detailing the average
regional RMSE, MAE, bias, r2 and n.

There are also two new figures in the additional materials that address the issue of
SOCAT v2 vs v3. We show that the relative majority of points gained in the SAZ in
SOCAT v3 are in the Argentine sea — a region of high complexity. The tropics point has
been changed to a discussion around “remote knowledge transfer” and this should
now be much clearer.

Page 12 lines 15-16: | suppose discontinuity at a cluster, or biome border is a sign of
bad model quality as well. In 2 adjacent biomes, that are well sampled, | would
expect no hard border, whereas in more poorly reconstructed biomes this border
effect is more prominent. However, continuity is no sign of quality, but rather
comprises a “prettier picture”.

Removed the statement about the discontinuity of clusters as Reviewer 2 pointed that
this is a trivial issue to solve.



Response to R2
Evaluation

Deepen analysis: While the manuscript is relatively thorough in the description of the
two methods (with exceptions - see minor comments below), | find that the
evaluation part has quite some room for an extension and some deepening. In
particular, | am missing a thorough analysis of the residuals in time and space.

The analyses have been extended significantly. The analysis around the RMSE
estimates have been extended and the differences between the methods are now
investigated in full.

Extend scientific discussion of method: The paper would benefit substantially from an
extension of the scientific discussion of the pros and cons of the method. Many
issues are currently mentioned and investigated, but few of them are really discussed
to the necessary level of detail and finality. Examples include the inclusion of the
spatial variables in the regression, which is tested, but then only partially further
investigated. Another good example is the more limited predictability of the RFR
relative to the SVR. Finally, with this new method needing to compete with a range of
already existing methods, the authors needs to demonstrate more clearly why it is
better. | understand that these are difficult issues to discuss, and that it is likely not
possible to give a definite answer. But it would behove the authors well to push the
manuscript as far as possible in this direction.

The results and discussion have been extended significantly. The synthetic data
experiments have been formalised and are now discussed fully.

Deepen scientific analyses and discussion of results: As it stands, the paper focuses
nearly entirely on the method, and leaves only very little room for the scientific
findings. This is a shame, in my opinion. | think that there is enough room in the
manuscript to add a few more scientific analyses to the paper and to discuss them
thoroughly. One example is the seasonal cycle, which differs quite substantially
between the different estimates and is hugely important for determining the annual
CO2 sink.

As stated above, the scientific analyses have been deepened and we feel that the
manuscript is now more complete.

Language/Grammar: There are several places where the writing can be improved and
be made more concise and precise. Further, the manuscript contains a number of
grammatical/typographic errors that should be eliminated before the resubmission.
Changed as recommended in the specific comments below

Specific and minor comments

Abstract, p1, line 5: | suggest to add the source of the data already here, i.e., to write
"The methods are used to estimate DpCO2 in the Southern Ocean based on SOCAT
V3...".

SOCAT added to the abstract

Abstract, p1, line 6: Typo. Change "The RFR as able" to "The RFR is able"

corrected as to is

Abstract, p1, lines 6-7 and elsewhere: | don’t think that there is a statistically
significant difference in the RMSE between 12.26 and 12.97 patm. Please rephrase.



phrase removed — also note that these estimates have changed. The previous
estimates were for the SAZ and PFZ biomes only.

Abstract, p1, line 8: "modelled environment". The commonly used expression here is
"synthetic data".

synthetic data now used throughout the manuscript

Abstract, p1, line 9: "achieved". Not sure that this is the best expression, since one
commonly tries to achieve something that is desirable. | am not sure that having a
higher error is a desired outcome. Perhaps simply write "have".

this has been changed throughout the manuscript

Abstract, p1, line 11: Add "a" to ratio, i.e., to read "with a lower ratio".

added “a”

Abstract, p1, general: Following up on my major comments (ii) and (iii), | think that
also the abstract could benefit from a reshuffling with a bit more text devoted to the
discussion of the methods and how they compare to others, and a bit more text
about the results.

A large portion of the abstract has been rewritten to accommodate the reviewer’s
suggestions

Introduction, p1-3: general: The introduction reads well and contains the most
important pieces, but | would love to see a bit more material with regard to the
particular strengths and weaknesses of the existing methods. As it stands, it does not
become clear to the average reader why we need yet another set of methods to
interpolate the sparse data. This also helps to set up the later discussion on how this
new set of methods stacks up against the existing ones.

The introduction has been reformatted to include a motivation for each of the
methods as well as the description of the different methods and why these were
chosen.

Data and methods: p4, line 1-4: It would be much cleaner if you used the same
biomes for the synthetic data as for the real data. Of course are the model
boundaries some- what different if one used the same criteria as used by Fay and
McKinley, but this really should not matter much. Much more relevant is that you use
the same approach when using the synthetic and the real data, so that you can really
draw conclusions from one approach to the other. | strongly suggest to reconsider
this choice.

The northern boundary of the synthetic data has been changed from 30°S to the
boundaries defined by Fay and McKinley (2014).

Model data: p5, line 2: "resampled to ... monthly averaged resolution" This likely adds
guite some smoothing to the data, something that does not really exist in the
observations. Although the latter have been binned to 1x1 dg and month of the year,
but many grid cells contain only a few observations, and therefore do not really
represent a monthly average. Why not spot sampling the model following the
sampling scheme of the observational programs?

Change has been implemented to the data, and the text now reads: The synthetic
observations are sampled at the model resolution (5-day x 0.5°) to resemble the
SOCAT dataset. Hereafter all data is resampled to 1.0° spatial resolution and monthly
temporal resolution data to match observations.

Data transformation: p5, line 5 (and elsewhere). "There are several transformations
that are applied..." This is awkward and can be simplified (and improved) to "The



input data are transformed..."

Changed as recommended

Data transformation: p5, lines 9-10: "This then raises the question..." | found this
some- what confusing. | suggest that you simply describe what you did in the method
section, i.e., that your standard model includes the spatial coordinates, but that you
also tested a version without them, and then have a more thorough discussion in the
discussion section.

This has been introduced briefly in the methods — only the methodology is presented
Data transformation: p5, lines 16-20: | suggest to add here somewhere the time
period that these data cover.

This was added at the end of the first paragraph in section 2.1 Gridded Data
Empirical methods: p5, line 21, Data are plural. Thus "The data are split..." SVR:
changed as recommended

p5, line 26: "The formulation of the SVR is such..." Awkward writing. | suggest to
simplify this to "The cost function of the SVR minimizes ..."

This section has changed — more detail for each method added at the request of
Reviewer 1

SVR: p6, lines 1-7: | suggest to add a bit more text here to better explain the SVR, and
in particular, to better explain the particular parameter choices.

More detail has been added. The cost function has been included.

RFR: p7, lines 1-6: As above, | also suggest here to better explain the method and the
parameter choices.

More detail has been added about the RFR, specifically, the theoretical model for a
decision tree.

RFR: p7, line 9 "The out-of-bag error is used to select the hyper-parameters..." This is
extraordinary cryptic. Please explain better.

This should be clearer with the additional information provided.

CO2 fluxes: p7, lines 14-16. "calculated". This expression is used three times in a row
in a very repetitive manner. This makes it boring and hard to read. Please
reformulate.

Restructured as suggested

Results, p8, lines 3-6: This connects to my first major comment. In my opinion, this
section needs to be substantially extended and strengthened. A comparison of
correlation coefficients and RMSE is insufficient in my opinion. | would like to see an
analysis of the pattern and structure of the residuals in time and space. | also would
like to see the biases and perhaps a few other metrics.

The results and discussion have been updated with a much more in depth look at the
RMSE values for the observational estimates

Results, p8, line 5: "slightly better...". | don’t think that this statement holds up to
further scrutiny. With a measurement error of about 1 patm and data that are
distributed in time and space anything but random, | don’t think that this difference
is significant. To me, all one can say is that the two results are comparable in
performance.

This has been changed

Results, p8, Figure 3: | would love to see also the annual mean figure and its
discussion added to the results section.

The image has been changed and now includes the mean state.



Results, p9, line 9: "Estimates are higher..." but also elsewhere This is a result that is
picked up here, but it is not really discussed later on. This is just one example of a few
such mismatches between results and the later discussion section.

These issues have hopefully been ironed out. The results and discussion have been
rewritten to a large extent.

Results, p10, lines 15-16 "Out-of-bag error" and "Out-of-sample error". These terms
are uncommon and thus need to be carefully defined and later repeated in order for
the average reader to be able to follow the arguments.

We define the in and out of sample errors adequately and are now used frequently
enough for the reader to keep track. The out of bag errors are only referred to briefly
Results, p11, "These results suggest that estimates would benefit from the inclusion
of coordinates". This statement is problematic for various reasons. First, such a
conclusion should not really be part of the results section. Second, | don’t really buy
the argument, since almost by definition, the inclusion of additional independent
variables tends to improve the fit, i.e., it increases the degrees of freedom of the
problem at hand. This does not imply an increase in predictability or a true increase
in "knowledge", as tested, for example through an analysis of the Akaike information
criterion (AIC). Personally, | also oppose the inclusion of such variables, as they do not
include any process information, and, in fact, suppress the establishment of
knowledge transfer between regions of similar dynamics, but distant in time/space. |
suggest to reconsider this choice and conclusion.

The reviewer makes a valid point. However, the whole point of the synthetic data
experiment is to test this. We feel that the new synthetic data experiments should
better show the pros and cons of coordinates as proxies. We still find that, in the case
of RFR and SVR as implemented in this study, should be included as the current
available proxies are likely not fully capturing the variability of ApCO2.

Discussion, p11, line 6: "weaker sink". This is not really obvious from Figure 4. |
suggest to add a figure showing the annual mean DpCO?2 including the differences
between the different estimates. With such a figure, the whole paragraph becomes
much easier to follow.

This region has now been highlighted with a red oval. This is primarily to avoid too
many figures in the manuscript. The differences of summer ApCO2 have been added
to the additional materials

Discussion, p11, line 19: "sparse winter data". This is certainly a valid hypothesis, but
couldn’t the authors use the synthetic data to test this hypothesis?

The manuscript now follows a format of two primary synthetic data experiments,
where the first asks what the impact of coordinates as proxies is and the second
addresses the issue of sampling bias in the SOCAT dataset

Discussion, p12, line 1: "Ensemble estimate". This is not an unreasonable assumption,
but it is again one that could be easily tested with the synthetic data.

We now show, with the synthetic data that the ensemble estimate of RFR and SVR is
in fact a better fit to the out-of-sample estimate than the standalone methods.



Discussion, p12, line 15: "additional complexity of dealing with DpCO2
discontinuities" It turns out that this is a very small issue. You can test this by
comparing the smoothed with the raw version in the pCO2 data sets provided by
Landschitzer et al. See
http://cdiac.ornl.gov/oceans/SPCO2_1982 2011 _ETH_SOM_FFN.html.

This has been removed from the discussion

Discussion, p12, lines 17-30: The conclusion stated on page 11 about the inclusion of
a spatial variable should come, at the earliest here.

This topic has been moved to the discussion

Discussion, p12, in general: There are many other things that need to be discussed
here (see also my second major comment above).

The discussion should now be more comprehensive

Discussion, p13, line 2, "Tuning the algorithm..." This sentence needs to be
embedded better in order for it to make sense to the average reader.

The discussion has changed — this sentence no longer exists.

Discussion, p13, section 4.4. "Trends of ensemble estimates". This section and related
ones needs to be substantially strengthened. As it stands, this small section is not
much more than a teaser. This should not be.

We removed the section on the trends as it may in fact distract the reader from the
already dense material. This will be published in the near future.

Conclusion, p13, line 32, "from satellite proxies..." This is not quite correct, since SSS,
MLD, and atm. CO, stem from other sources. Please reformulate.

Sentence now reads: The SOCAT v3 dataset was co-located with assimilative model
output and satellite measurable proxy variables to create a training dataset.
Conclusions, p14, lines 4-10: Some of these conclusions are not really that evident
from the results provided earlier. This has a lot to do with the results section not
having made the point well enough.

This has been changed substantially and should no longer contain any surprise results.
Data availability, p14: | think it would be much better if the data were hosted by an
international database such as CDIAC (in the future NCEI) or Pangaea.

This will be hosted by FigShare which has DOI
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Abstract. The Southern Ocean accounts for 40% of oceanic CO- uptake, but the estimates are bound by large uncertainties due
to a paucity in observations. Gap filling empirical methods have been used to good effect to approximate pCO, from satellite
observable variables in other parts of the ocean, but many of these methods are not in agreement in the Southern Ocean. In
this study we propose two additional methods that perform well in the Southern Ocean: Support Vector Regression (SVR) and
Random Forest Regression (RFR). The methods are used to estimate ApCOs in the Southern Ocean based on SOCAT v3,
achieving similar results-trends to the SOM-FFN method by Landschiitzer et al. (2014). The-RFR-as-able-to-achieve-better
RMSE-(1226-patm)-compared-the-SVRA(16:04-patm)-and-Results show that the SOM-FFN (42:97-approach outperforms the
WMW@MM
mmwwme RFR methodeﬁﬁpeffefmeé%he—S%#R—by%subseaﬂﬂahﬂafgm—Hewevef
- Analyses of the estimates shows that
the SVR and RER’s respective sensitivity and robustness to outliers define the outcome significantly. Further analyses on the
methods were performed by using a synthetic dataset to assess: which method (RER or SVR) has the best performance?; what

the effect of using time, latitude and longitude as proxy variables is on ApCQO,?; and what is the impact of the sampling bias
in the SOCAT v3 dataset s+ i i

tirk-on the estimates? We find that while

RFR is indeed better than SVR, the ensemble of the two methods outperforms either one, due to complementary strengths and
weaknesses of the methods. Results also show that for the RER and SVR implementations, it is better two include coordinates
as proxy variables as RMSE scores are lowered and the phasing of the seasonal cycle is more accurate. Lastly we show that
there is only a weak bias due to undersampling. The synthetic data provides a useful framework to test methods in regions of
sparse data coverage and showing potential as a useful tool to evaluate methods in future studies.
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1 Introduction

The global oceans have played an important role in mitigating the effects of climate change by taking up 25% of anthropogenic
CO, emissions annually (Khatiwala et al., 2013; Le Quéré et al., 2016). The Southern Ocean has played a disproportionate role
in this uptake, accounting for 40% of the oceanic anthropogenic CO- uptake (Khatiwala et al., 2013; Frolicher et al., 2015).
Yet, despite the region’s importance, first order CO5 flux estimates are bound by large uncertainties due to sparse observations
in the Southern Ocean (Lenton et al., 2006; Monteiro, 2010; Lenton et al., 2012; Takahashi et al., 2012; Bakker et al., 2016).
These uncertainties limit our capacity to resolve variability and trends of COs.

Viable alternative methods to estimate net CO flux are atmospheric CO5 inversions, ocean biogeochemical process models
and empirical models (Rodenbeck et al., 2015). As shown by Le Quéré et al. (2007), atmospheric CO- inversions are useful
tools to estimate the net CO, fluxes, but fail to offer further understanding with spatially integrated air-sea flux estimates (Fay
and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanistic understanding, but fail
to represent seasonality of CO5 fluxes in the Southern Ocean (Lenton et al., 2013; Mongwe et al., 2016). Empirical modelling
offers an opportunity to bridge the gap between sparse data in the Southern Ocean and correct parameterisation of future earth
systems models.

Empirical models maximise the utility of existing surface ocean CO2 observations (pCO,) by interpolating these with satel-
lite proxy data. Access to in-situ pCO4 data, via platforms such as SOCAT (Surface Ocean CO, Atlas), has been crucial to
the success of empirical methods (Rddenbeck et al., 2015; Bakker et al., 2016). This, in conjunction with the increasing use
of machine learning, has seen a proliferation in the number and diversity of methods in the literature. Rodenbeck et al. (2015)
compared a suite of fourteen methods using a regional framework provided by Fay and McKinley (2014). The majority of these
methods are variants of multiple linear regression (MLR) or artificial neural networks (ANN), with regression being applied in

regional windows or clusters based on climatologies of satellite measurable variables. The authors found that methods agreed

in regions were-where data coverage was adequate, but for data sparse regions, such as the Southern Ocean, interannual CO,

trends-variability of various empirical methods were not coherent.

methods-Only_two of the methods in Rodenbeck et al. (2015) were able to adequately represent interannual variability of
ApCOy, namely: the SOM-FEN (self-organizing map — feed forward neural network) from Landschiitzer et al. (2014), and
show that Southern Ocean CO» uptake strengthened after 2000. However, these methods often showed large interannual
differences in flux estimates despite agreeing on the overall decadal trend. This shows that there is lack of coherence even

amongst the methods that perform well, meaning that different methods may lead to different interpretation of the tack—of
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ariables fores drivers of ApC

reason for the varied results is thought to be the way in which the algorithms deal with sparse data in the Southern Ocean
Rodenbeck et al., 2015). This alludes to the importance of testing multiple approaches, as different methods may be able to
better represent the CO9 estimates in the data sparse Southern Ocean.

In this study swe-introduce-and-compare-two-empirical-we introduce two methods new to this ecean-CO--applicationapplication,
namely: Support Vector Regression (SVR) and Random Forest Regression (RFR). SVR is a method based on the theory of sta-

tistical learning, making the method robust to over-fitting by statistically determining the complexity of a problem rather than a
heuristic approach as required in setting up an ANNs hidden layer structure (Vapnik;+999:-2)-(Vapnik, 1999; Smola et al., 2004).
In a review on the use of Support Vector Machines (the broad category for regression and classification variants) in remote
This makes SVR an appealing consideration for the sparsely sampled Southern Ocean. RFR uses an ensemble of decision trees

to create robust estimates, often without requiring data pre-processing making it an effective “off the shelf” method (Louppe,

2014).

As with SVM, Random Forests (both classification and regression variants) have also been used in remote sensing applications,
though it does not seem to be as widely used in earth systems sciences despite proving to be a powerful, yet easy to implement
learning algorithm (Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009). We use SVR and RFR to estimate CO fluxes in

the Southern Ocean to try to better resolve the seasonal cycle from 1998 to 2014. These methods are trained with SOCAT
v3 data collocated with satellite proxies. We compare these results with those of Landschiitzer et al. (2014). fa-the-next-part

we-aim-to-better-However, the lack of data in the Southern Ocean, particularly in winter, makes it difficult to understand the
limitations of these methods within the frameweork-ofthe SOCATv3-data—context of SOCAT data.

To gain a better understanding of these methods’ strengths and weaknesses we implement SVR and RFR are-implemented-in

us-to-testthe-tmpactofincladingvariousin a synthetic data environment. A similar approach was taken by Friedrich and Oschlies (2009) in

the North Atlantic, which experienced a similar data paucity to the Southern Ocean in the early 2000’s. This idealised

environment was also used to estimate the effect of including/excluding certain proxy variables as done-byFriedrich-and-Osehlies(2009)-

hods-are-applied-to-observational-data-for-actual-estimates-of-pwell as the optimal coverage of cruise tracks to
constrain the North Atlantic ApCO5 adequately. Similarly, we assess the efficacy of including coordinate variables as proxies
of ApCQOs in the empirical methods. In the intercomparison study by Rodenbeck et al. (2015) proxies typically include, but are
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Table 1. Information on data products used in this study. The temporal and spatial resolutions are for the raw data (before gridding). Dashes
show that times are either not applicable or that the dataset is continually updated. Note that the start and end year show full years only. Links

to download the data are given in the additional materials. The asterisk (*) indicates that variables are the output of a data assimilative model.

Group / Product Variables Date Range Resolution Reference
Start End  Time Space
SOCAT v3 €02sea-[CO5°" 1970 2014 1mon 1° (Bakker et al., 2016)
CDIAC x€02atmrCO25"™ 1970 2014 - - D-(Masarie et al., 2014)
Globcolour Chlorophyll 1998 - lday 0.25° (Maritorena and Siegel, 2005)
GHRSST Sea Surface Temperature 1981 — lday 0.25° (Reynolds et al., 2007)
*Mixed Layer Depth 1992 2015 1day 0.25° (Menemenlis et al., 2008)

ECCO2 (cube2)
alinity

not limited to sea surface temperature (SST), chlorophyll-a (Chl-a), mixed layer depth (MLD) and sea surface salinity (SSS);

however several methods in the study also include latitude and longitude. While coordinates do not mechanistically impact
ApCO», they do help to constrain estimates where the available remote sensing proxies cannot adequately do so. The synthetic
data is also used to test the ability of the SVR and RFR to approximate ApCQOs in the seasonally sparse Southern Ocean.

2 Data and Methods

This study is presented in two parts. The first applies SVR and RFR to the SOCAT v3 dataset and compares these outputs with
those of the SOM-FFN by Landschiitzer et al. (2014). These estimates will be referred to as the observational estimates. Here
the domain is limited to the three Southern Ocean (SO) domains of Fay and McKinley (2014) that are shown in Figure 1. These
biomes are used to assess the performance of each of the methods, as done in Rédenbeck et al. (2015). Fay and McKinley
(2014) use a different nomenclature, which roughly corresponds to frontal zones. We rename the Sub-Tropical Seasonally
Stratified biome (STSS) as the Sub-Antarctic Zone (SAZ); the Sub-Polar Seasonally Stratified biome (SPSS) becomes the
Polar Frontal Zone (PFZ) and the ice biome (ICE) is the Antarctic Zone (AZ) (Mongwe et al., 2016).

The second part aims to better understand the limitations of these methods with the given dataset by implementing the meth-

ods to ocean biogeochemical model output.

is-south-ef 34°S—the-biomesFay-and Mekinley-(2014)-The domain of this synthetic data experiments is defined by the three
southern biomes of Fay and McKinley (2014). These are defined by observed oceanographic and biological parametersand

would-thus-be-differentin-, but are used for the sake of consistency despite potential differences between observations and the
model.



Sub-Antarctic Polar Frontal Antarctic
Zone (SAZ) Zone (PFZ) Zone (AZ)
[STSS] [SPSS] [ICE]

Figure 1. The three Southern Ocean biomes as defined by Fay and McKinley (2014). The common names for the biomes are shown in the
key, with the abbreviations shown in the round brackets. The abbreviation in the square brackets show the abbreviations as given by Fay and
McKinley (2014).

2.1 Gridded Data

The data sources are shown in Table 1. These gridded data refer primarily to remotely sensed data, with the exception of MLD

and SSS. These-The latter variables are output from ECCOg, an assimilative modelspecifie-to-the-Southern-Oecean—For-the

A 13 : 2

o e e e e e e e e e e o e e sk s e The temporal range ol the
5 data (1998 through 2014) is limited by the availability of Globcolour (Chl-q starting in 1998) and SOCAT v3 (fCO, ending in
2014).

All data are gridded to monthly x 1° using iris and xarray packages in Python (2 Hoyer and Hamman, 2017; Met Office).
Gridded pCO5 (SOCAT v3) is used to train the algorithms (Bakker et al., 2016). Surface station measurements (flask and tower)

of atmospheric x€OxzCO- are interpolated to a regular grid using support vector regression (Masarie et al., 2014). Mean sea

10 level pressure (NCEP2) is used in the conversion from x€0xCQO; to pCO, (Kanamitsu et al., 2002).



Cloud coverage and low light at high latitudes during winter result in missing Chl-a data. Cloud gaps are filled with the
climatology of Chl-a (from 1998 to 2014) and missing low light data are filled with a value of 0.1 = 0.03 mg m~? (uniformly

distributed random noise).
2.2 Model Data

The is-output from a regional NEMO-PISCES config-
uration --(BIOPERIANTO05-GAA95b—This-model-) is used as the synthetic dataset. The configuration is an updated version
of PERIANTOS5 used by Dufour et al. (2012), where BIOPERIANT(05-GAA95b includes biogeochemistry with PISCES-v2.

The model has a peri-Antarctic domain with an open northern boundary at 30°S. The horizontal resolution of the configuration
is 0.5° cos(latitude) with 46 vertical levels. The northern boundary is forced by a global 0.5° model, ORCAOQS5 as presented
in Biastoch et al. (2008). Output was-is saved as five-day averages. The simulation was run from +992-1998 to 2009. The

synthetic observations are sampled at the model resolution (5-day x 0.5°) to resemble the SOCAT dataset. Hereafter all data

is resampled to 1.0° spatial resolution and monthly temporal resolution data to match observations. Finally, for the simulation

experiment we define the Southern Ocean using the three southernmost biomes defined in Fay and McKinley (2014) as done

for the observational estimates.

2.3 Data transformation and derived variables

asBoth gridded data and

synthetic input data are transformed in preparation for the empirical algorithms. The log;( transformations of MLD and filled
chlorophyll (Chl-a.;,,) are taken to return a distribution that closer represents a normal distribution.

Several of the studies in Rodenbeck et al. (2015) included latitude, longitude and/or time as proxies of ApCO,. Hewever;

tor-It is important to note that coordinates do not
drive mechanistic changes in ApCOy. Rather, the inclusion of coordinates in the empirical methods account for unknown or
regionally varying proxies that cannot be measured remotely. Many methods in the intercomparison by Rodenbeck et al. (2015) did
not include coordinates, but account for unaccountable spatial variability by clustering or subsetting data regionally. In this

variables (time, latitude and longitude).

The coordinates are transformed to preserve the continuity of the data as is shown below. Seasonality of the data is preserved
by transforming the day of the year (j) and is included in both SVR and RFR analyses:

‘o cos(j~32%) 0

sin(j - 327”5)
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Transformed coordinate vectors were passed to enty-SVR-both SVR and RFR using n-vector transformations of latitude ()
and longitude (1) (Gade, 2010; Sasse et al., 2013), with n containing:
sin (A)
A,B,C = sin () - cos (\) (2)
—cos(u) - cos(A)

Co-located fCO2 (y) and proxy data (X) were-are used to create training arrays (x). The final input for SVR svere-the
fotowingproxies-and RFR are (with 12 columns): log; 0(Chl-aciim ), SST, fCOx(qtm), ADT, logio(MLD), ICE, SSS, cos(j),
sin(j) and n-vectors [A, B, C]. SVR requires each column of the proxies to be z-scored; i.e. normalized to the mean (1) and

standard deviation (o) of each column (*>£).
2.4 Empirical methods and implementation

Pata-is- Data are split randomly into a training and independent test dataset with a ratio 0.7 : 0.3. The independent dataset
is used to give a test error of the trained algorithm. The statistical learning package, Scikit-Learn, in Python is used for all
regression and cross-validation methods (Pedregosa et al., 2011). The details on each cross-validation method are outlined in

the subsections below.

2.4.1 Support vector regression

The basic formulation of SVR is sueh-that-similar to that of linear regression as described by Smola et al. (2004):
f(:zf) (w,x)+b with b€ R 3)

where b is an intercept, denotes the dot product of the ees%faﬂeﬁeﬂﬁtﬂfmﬁe&fh&ﬂumbeﬁe#pemweﬂfﬁée%he

—whiel%ﬁ—%e&by%he—&%er—jﬁhewel hts (w) and x, the training data. The weights and intercept are found by solving the cost

function:

1 yi —(w,x;) —b <e
minimise__ 5 [[w][* subject to s )

(wyz;) +b—y; <e

In this form, w is minimised according to the target values (y;) to a precision of € — i.e. there is no room for error greater
than e. However, with the majority of problems, meeting these constraints is not possible if data are noisy or € is set small. The
inclusion of slack variables (&;, &) relaxes the constraints and the problem is now formulated as:

yi — (w,z) —b <e+§;
minimise__ o ||w|[*+C) (& +¢) subjectto § (w,x;) +b—y; <e+&f )
=
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Here (' is a parameter that adjusts for the amount of error that the minimisation allows. The slack variable |£] is only counted
towards the cost if the point lies outside the margin (|§| > €). The points on or outside these-margins-are-the-the margins are
called support vectors and are used to construct the hypothesis function, h(z). This elegant-approach-is-made-versatile-by
mapping X is shown in Figure 2a where a linear SVR is fitted to noisy data produced from a cubic spline. The optimisation

the dual formulation allows for efficient kernelisation of SVR.

Kernelisation describes the process that maps the proxy variables (x) onto a higher dimensional feature spaceusing-an
interchangeablekernel. In this study we used a Gaussian kernel (or radial basis function — RBF), which allows for potentially

infinite complexity ;-determined by the number of support vectors (Vapnik, 1999). The assignment-of-the number-of-support

veetors-is—analogous-to-definingthe-architeeture-of-an-ANN—The-RBF kernel introduces an additional hyper-parameter ()
that defines the width of the Gaussian. Selection of the SVR hyper-parameters (e, C, ) is done using a two-stage eoarse—fine

exhaustive grid search approach using-with cross validation. We use K-fold cross validationwith-, where the data is divided

into eight equal “folds” (k = 8-). Seven of the folds are used to train the model, while the remaining fold is used for validation.
This is done iteratively until each excluded fold has been used to test the results.

2.4.2 Random Forest Regression

A-randem-forest Decision trees form the basic building block of a Random Forest (RF)is-an-ensemble-of decision-treeswhich
means-thatthe-average-estimate-of n-trees-is-taken—, with the average of n decision tress is taken as the ensemble estimate
(Breiman, 2001) (Figure 2b). The basic idea of a decision tree is to iteratively partition data into boxes using simple rules
that minimize the error at each split (referred to as a node) — these boxes would become hypercubes in higher dimensional
problems. This is described by the basic formulation as described in Loh (2011):

1. Start at the root node

2. For each X, find the set S that minimizes the sum of the node impurities in the two child nodes and choose the split X € S

that gives the minimum overall X and S.

3. If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child node in turn.

Decision trees have high variance due to their discrete nature. Random forests reduce the-high-variance-of-deeision-trees-by
bagging tbootstrap-aggregating)in-which-the-this high variance by bootstrapping with aggregation (called bagging): a subset
of the available training dataset is sampled with replacement resulting-infor each decision tree in the RF. The sampling with
replacement means that each training observation has a ~ 63% chance of being chosen at least once for a particular tree
(Louppe, 2014). A-This subsampling provides estimates that are robust to outliers as these have a chance of being omitted in
training. This means that a random forest typically performs better when number of decision trees (%) is large, but increasing
the number of trees has diminishing returns in terms of performance vs. computation. Additional robustness is given to RFs

by randomizing and/or limiting the number of proxy variables (m) given to the nodes in each tree when splitting the data



Figure 2. A simple example demonstrating the principle of (a) support vector regression and (b) random forest regression. The dashed grey
line is the true function f(z) = 0.42> with the blue dots representing a random sample taken from this function f(x)-+o, where o is normally
distributed noise. The black line in each figure, h(x), show the estimate of the true function. The orange dots in (a) show the samples from
the random subset chosen as support vectors from which i (x) is estimated. The orange lines in (b) show 200 decision tree estimates, g; (),

which are averaged to create the ensemble, h(z).

(hence random) (Louppe, 2014). In this study, the maximum number of proxy variables (m = 11) was given to the RFR. The

complexity of a RF can be adjusted by limiting the minimum number of leaves at a terminal branch (), where a fully-grown

A useful feature of bagging is that it intrinsically provides a cross-validation dataset (a.k.a. out-of-bag samples) that is not
part of the training procedure (for a specific set of trees). The out-of-bag samples are those that are not selected during bagging.
The advantage of this approach over K-fold cross-validation is that the full dataset can be used in the training procedure, as
opposed to splitting the dataset for cross-validation. The out-of-bag error is used to cross-validate the model and select the

hyper-parameters (¢, m, [) for the RF.
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Figure 3. The spatial distribution of sampling locations in the synthetic dataset (BIOPERIANTO0S5). The top panel (a) shows the samplin

strategy using SOCAT v3 locations; and the bottom panel (b) shows the uniform random sampling distribution used in the second experiment.

2.5 CO; fluxes

Air-sea CO; fluxes are ealeulated-fromquantified with:
FCO2 = Ky - kyy - ApCOq - (1 — [ice]) (6)

The gas transfer velocity (k) is calculated using a quadratic dependency of wind speed with the coefficients of 2—Wind-speed
is-ealettated-from-the-tand-vWanninkhof (2014). The v and v vectors of CCMP v2 are used to compute the wind speed (Atlas
etal., 2011). Coefficients from Weiss (1974) are used to-ealentate J0-for Ky and ApCO, is estimated by the empirical models.
The effect of sea-ice cover on CO;, fluxes is treated linearly; the fraction of sea ice cover ([ice]) is converted to fraction of open
water by subtracting one as shown in Equation (6).

These results are analyzed regionally with the three Southern Ocean biomes defined by Fay and McKinley (2014) (Figure 1).
We compare our estimates of COz fluxes with those of Landschiitzer et al. (2014) who used a two-step neural network method

abbreviated to SOM-FFN (self-organizing map — feed forward neural network). Note that the SOM-FFN method was trained
using SOCAT v2 compared to the methods in this study that used SOCAT v3.

2.6 Synthetic data experiments

Two experiments are run with the synthetic data. The first experiment aims to identify the efficacy of including or omitting
coordinates as proxy variables on each method’s ability to estimate ApCO, using SOCAT v3 locations. This is achieved by
implementing the model with the transformed coordinate variables as proxies and then without. Note that the training procedure
for the models remains the same as for the observational estimates of ApCOs..

10
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The second experiment assesses the impact that the seasonally sparse SOCAT v3 has on the ability of the methods to estimate

ApCO». This is done by comparing the results of ApCO» estimates when trained according to: 1) SOCAT v3 locations trained

with synthetic data (Figure 3a); 2) uniformly random sampling locations (random in space and time) with a sample size the

same as SOCAT v3 (Figure 3b). Once again this the training procedure remains the same (as stated above).

3 Results

3.1 Observational CO- data results
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Figure 4. The seores-RMSE (top row, a—c) for each of the i i i three Southern Ocean biomes for

RER (blue), SVR (green) and SOM-FEN (red). The domain-grey fill in the top row (a—c) shows the number of observations for these-seeres

is-each of the biomes for each year. The maps in the bottom row (d—f) show the spatial distribution of residuals in the Southern Ocean for

SVR (d), SOM-FEN (e) and RFR (out-of-bag errors) (f). The thin black lines define the three Southern Ocean biomes as defined by Fay and

McKinley (2014). Note that RFR and SR are trained and tested with SOCAT v3 while SOM-FEN is trained and tested with SOCAT v2.
MEFTHOD-

We use the root mean squared error (RMSE) as the primary metric of the methods’ performance as shown in Figure 4a—c.

Note that the RFR RMSE is calculated from the out-of-bag error (effectively an independent error). SOM-FEN has the best

RMSE score of 14.84 yatm (using SOCAT v2), which is better than the RMSE of RFR (16.45 patm) and SVR (24.404 pyatm)

which are trained with SOCAT v3. The biases of the different methods are similar in magnitude for each of the biomes (-0.40

-0.03 and -0.75 watm for the SOM-FFN, RFR and SVR respectively). The mean absolute errors (MAE) for the respective
methods are 9.78, 9.85 and 15.27 patm respectively.
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Table 2. Various performance metrics for empirical estimates of ApCOs in the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and

Antarctic Zone (AZ) (as defined by Fay and McKinley 2014). Results tested according to SOCAT v2 and SOCAT v3 are shown for the SVR
and RER methods.

Method RMSE MAE 12 Bias

SVR- SVR(3). 16:04-18.14 16551128 048 061
SVR(2) 1522 10:36 049 020

SAZ RER (v3) 1367 8.16 Q70 014
RER (v2) 12.06 78 068 029

SOMFEN 1007 04 076, L3

SVR(3). 1445 10.06 048 031

SVR(v2) 1429 10.01 044 001

PFZ RER (v3). 10.71 67 Q71 021
RER (v2) 10.56 671 069 034

SOMFEN 11.01 7.68 06 026

RFR-height 1226 SVR (v3)  74336.14 6772519 056 -322
SVR(v2). 3569 01 039 288

AZ RER(3), 238 1581 08 027

RER (v2) 2349 1563 081 062

SOM-FFN 12972132 8561491 07082 077

The difference between the mean absolute error (MAE) and the RMSE informs on the ability of methods to fit outliers or

extreme points, as the RMSE scores larger errors much more severely than MAE. The SOM-FEN approach has the smallest
difference between these two metrics (5.06, 6.60 and 9.13 uatm for the SOM-FFN, RFR and SVR respectively). This superior

performance may be due to two factors. Firstly, the SOM-FFN method may be better at fitting the extreme points (those that
are in the outer percentiles of the distribution). Second, it may allude to the fact that the SOCAT v2 dataset is less variable.
Testing the SVR and RFR implementations against SOCAT v2 yields similar results, with the exception of in the SAZ, where
both RMSE and MAE improve (results shown in Table 2).

are Jeast variable between methods. While there is a substantial increase in the number of observations from 2004 there is no

appreciable change in the RMSE. The Antarctic Zone (AZ) is the primary contributor to these errors with much larger average
RMSE values than for the SAZ and PFZ (36.14, 23.80 and 21.32 patm for SVR, RFR and SOM-FFN respectively). This

increase in the RMSE is likely driven by the larger variability of ApCO, observations in the AZ, where standard deviations of
observations are 25.05, 20.01 and 54.65 uatm for the SAZ, PFZ and AZ respectively. RER-achieves-the-bestseores—with-an

12
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Figure 5. Seasonal averages for ApCO- from 1998 to 2014 for SVR, SOM-FEN and FRF. The annual mean is shown in the top row (a, b, ¢);

the mean summer (DJF) ApCO- is shown in the middle row (d, e, f); and the mean winter (JJA) ApCOs is shown in the middle row (g, h,

i). The thin black lines denote the SAZ, PFZ and AZ from outside inward. Note that the ApCOs has been normalized to sea ice cover where

. The red oval in (e) highlights the difference in SOM-FFN estimates of ApCQO» during summer in the

Atlantic compared to SVR and RFR.

RMSE-of1226-atm—This is

RMSE-of16:04-atm-reflected in the highest 75 scores in the AZ for the respective methods (Table 2).
The-

The annual and seasonal averages (winter = JJA, summer = DJF) for ApCO; estimated by SVR;-SOM-FEN-and-RFERforthe
5 entire-Southern-Oeeanregion-RFR, SVR and SOM-FFEN for the Southern Ocean are shown in Figure 5. These-show-that-there
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TFhe-estimates-of- ApCO-have-thus-Note that the estimates have been scaled to sea ice concentration (ApCOg x (1 — [ice])) as
alse-done for fluxes in Equation 6 —

Fo-the-north-of-the Polar Front—in-the SAZthe-ocean—is—a— this mutes winter estimates in the AZ. There is, in general

ood agreement in the spatial distribution between the methods with the SAZ being a net sink of CO4 (Figure-5)—The-surface
Apand the region south of the Polar Front (PFZ and AZ) a source of CO, is-merezonally-symmetrie-in-winter-when-compared
to-summer—The-to the atmosphere as found by Metzl et al. (2006).

More specifically, there is stronger zonal asymmetry in summer compared to winter. This is driven, in part, by a strong
reduction of AppCO, driven-by biological production the-Seuthern-Oeean-(Metzl et al., 2006; Lenton et al., 2012). There

are three regions in the SAZ where ApCO, reduction is strongest and consistent between methods (Figure 5): east of South

America (Malvinas Confluence), seutheastsouth east of Africa (Agulhas retroflection) and between Australia and New Zealand
(Tasman Sea). The reduction of ApCOs in the PFZ is strongest in the Atlantic sector downstream of the South Sandwich and

South Georgia Islands and in the Indian sector downstream of the Kerguelen Plateau (Figure 5d-f). In both cases, SAZ and

PFZ, these regions are consistent with regions of high biomass (Thomalla et al., 2011; Carranza and Gille, 2015).
TFhere-are-clear-

e-magnitudes and distributions of these
atterns. The RFR underestimates winter outgassing south of the Polar Front (Figure Sg) compared to the SOM-EEN-and

RFER-approaches-other methods resulting in a weaker annual source. Conversely, the SVR has strong winter outgassing (Figure
Sa-ey-h) in the PFZ compared to other methods. In summer, the largest difference occurs in the eastern Atlantic sector of

the SAZ where the SOM-FEN estimates-higher-ApCO, estimates (highlighted in Figure 5f) are larger compared to SVR and
RFRFigure-Sd-f)—. Other differences in the spatial output are more subtle.

?h&fﬂﬂ&%ﬂ%&%&—%@%%f—&p@@rfeﬁThe agreements and differences between methods are also observed in the

time series for each of the

he-biomes (Figure 6). Importantly there is coherence
in the strengthening sink (2002 to 2012) and tlmlng of the seasonal cycle &né%h&s&eﬂgfhemﬁgﬁnkeveﬁme—peﬂed—z@%
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Figure 6. Time-series of ApCQO, estimates for the three Southern Ocean biomes as defined by Fay and McKinley (2014): SAZ, PFZ and
MIZ. The y-axis gridlines represent the same scale for figures (a) through (c). The SOM-FEN estimates are only available until 2011 as it is

trained with SOCAT v2, while the SVR and RFR are trained with SOCAT v3. ApCO- normalised to sea ice cover is shown by dashed lines
in the AZ.

winter outgassing in the PFZ and AZ (Figure 6b,c) are also apparent, with the SVR overestimating ApCO; compared to other
methods and the RER with conservative outgassing estimates.
Hﬁ%&wfgﬁ%fﬁwibwwcﬂhﬂwm between the SOM-FFN and the othertwo-methods:

estwo other methods in summer,

articularly from 1998 through 2006. Figure 5f shows that this could be driven by the difference in the eastern sector of the
Atlantic (circled with red). Estimates of winter ApCO» agfeew t, with the exceptlon of the last four years when

SVR winter estimates increase relative to RFR. The ove

butfor-the-majority-of the-time-series—The-SAZ and PFZ also show variability in the magnitude of a seasonal shoulder in late

summer, where increasing ApCOs is briefly delayed by a short sharp decrease resulting in a saw-tooth pattern. This effect is
the strongest for the SVR and weakest for the RFR. The-seasonal-amplitudes-
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Table 3. Fhe performance metries-of Root mean squared error (RMSE - patm) for the three synthetic data experiments for RFR (left), SVR
(middle) and RFR-in-estimating-ApCO--in-a-medel-simulation-the ensemble mean (BIOPERIANTOSENS) using-SOCATv3-eruise-tracks
as—sampling”toeationsof the two methods. Both the-in- and out-of-sample errors are shownreported (E[in] and E[out] respectively). Fhis
SOCAT experiments are those where the location of synthetic training data is dene-the same as SOCAT v3. This was run with (W coords)
and without mmmwmmwm

variables are included as proxies.

MODEL Experiment INPUERFR  RMSESVR ~ MAE+2ENS
SOCAT (W/O coords) ~ Ne-eoordsg.05 82747 59808 —
Efin] SOCAT (W coords) Coords5.12 626510 475092—
ERROR Random Sampling No-eoords7.23 627783 3780 —
Coords4:7 2:72 0:95 height SOCAT (W/Q coords) ~ Ne-eoords7.46 87746 65H6:677.08
Efout] SOCAT (W coords) Coords5.76 7:89-6.19 599672536
Random Sampling No-eoords4 88 F8F4U S8
Coords6:33 4.5 0:82 height
The results-also-show-that including time

The seasonal amplitude of ApCO in the AZ are-is far larger than fer-beth-in the SAZ and PFZ (Figure 6¢) resulting in large
methodological differences. However, this large differential may-not-be-realized-as-an-outgassing-is not realized in calculated
air-sea CO, flux;-partieularty-in-winter-fluxes, due to ice cover —as shown by the dashed lines (Figure 6¢). Summer estimates
are also influenced by sea ice cover, but not to the extent that winter fluxes would be reduced.

3.2 Simulation experiment results

The advantage of using synthetic data is that both in- and space-coordinates-out-of-sample errors can be estimated, where the

in-sample error is calculated from the training points and the out-of-sample error from the entire predicted domain. The latter
ives a representation of the true error of the method. The results from these experiments are shown in Table 3. The detailed
out-of-sample histograms are shown in Figure B1.

3.2.1 Coordinates as proxy variables

16



12

10

ApCO, (natm) ApCO, (uatm)

ApCO, (uatm)

Figure 7. Distributions of root mean squared error (RMSE) for the three synthetic data experiments for RFR in the top row (a—c), SVR in the

middle row (d—f) and the ensemble mean for RFR and SVR in the bottom row (g—i). The first column (a, d, g) shows the RMSE for synthetic

SOCAT training locations without coordinates as proxies, while the second column (b, e, h) includes coordinates as proxies. The last column

¢, f, 1) shows the RMSE of randomly sampled training locations where coordinates are included as proxies.

This experiment used the synthetic dataset to test the influence of including or excluding transformed coordinates (time, latitude
and longitude) as proxies of ApCOoi i —Fhis+ in—Fi i . There are four

major results from the experiment results. Firstly, the RMSE estimates are smaller when coordinates are included as proxies

for both in- and out-of-sample subsets (Table 3). Secondly, RFR achieves marginally better out-of-sample RMSE than SVR
5.76 and 6.19 uatm respectively) when trained with coordinates{dashed-lines)-achievelower RMSE-—seores—relativeto—the

d a alid ne a male—e A ha RN [

of-, Third, both RFR and SVR have comparable out-of-sample RMSE estimates (7.46 uatm) for ApCQO, estimates trained with
and without coordinate proxies. Lastly, the ensemble mean of SVR and RFR has lower out-of-sample RMSE estimates than

the individual estimates for implementations with and without coordinate proxies, though these gains are marginal (Table 3).
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Figure 8. Time series of BIOPERIANTO05 ApCQO, (target) and empirical estimates of ApCO- for each of the experiments for RFR (a), SVR

b) and the ensemble mean estimates (¢). The SOCAT v3 estimates are trained using the locations of SOCAT v3 data. The w coords variant

includes coordinates as proxies of ApCO- while these are not included for w/o coords. The Random estimates are trained with uniforml

distributed random sample locations. The number of samples per time step for SOCAT (a) and random sampling locations (b) are shown b
the grey fill.

These points can also be gleaned from RMSE maps (Figure 7). Both RER and SVR errors are low; however the RFR
outperforms the SVR marginally for the open ocean regions. Errors in coastal regions remain high for each of the experiments
and methods (Figure 7a,b.d,e); such as in the Argentine Sea, the Agulhas retroflection, and the marginal ice zone. The ensemble
mean of the estimates achieves a balance between the two methods with low and moderate RMSE scores in the open ocean
and coastal regions. Lastly, the distributions of the errors for RER and SVR without coordinate proxies (and thus the ensemble
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The time series (Figure 8) show that including coordinate variables plays an important role in achieving accurate phasing of
the seasonal cycle. When coordinates are not included as proxies the phasing shifts earlier for both methods. There is also an
improvement of estimates over time, where the first two years (1998 and 1999) have worse estimates for both SVR and RER
(Figure 8). This does not seem to be linked to the number of observations, but could be due to the distribution. The ensemble
ApCO; in the 1998 to 1999 period is closer to BIOPERIANTOS output as the respectively over- and underestimates of REFR
and SVR compensate for each other.

3.22  Random sampling regime

This experiment is performed to assess the inaccuracies that arise due to the spatial and temporal sampling biases in the SOCAT
v3 dataset. A random sampling regime is compared to the Training locations are chosen at random and uniformly in time and
space, This eliminates any summer/winter biases as well as clustering of cruise tracks in certain regions (such as the Argentine
sea). Note that coordinates are included as proxies of ApCO; with the random sampling regime.

Firstly, the RFR-without-eoordinatesis-the same-as-the SVR-results show that the biases in SOCAT v3 do contribute to
out-of-sample errors, as the random sampling regime achieved lower RMSE scores than any of the other experiments (4.88

and 4.94 patm for RFR and SVR respectively as in Table 3). However, RFR is marginally less susceptible to sampling biases
than SVR as the relative improvement for the latter is larger (with differences of 0.88 and 1.70 uatm respectively). The spatial

distributions of RMSE for the random sampling implementations (Figure 7c,f) show that errors in coastal regions remain high

> 12 uatm) with uniform sampling. Lastly, there is an improvement in the estimates from 1998 to 2000 with the ineluston

Rrandom sampling particularly for the SVR (Figure 8)

4 Discussion

4.1 Methodologieal-differences-in-observational-Observational estimates

The-differences-observed- In this section we address the methods’ ability to fit the training data, in other words an assessment
of in-sample errors (Figure 4 and Table 2). Thereafter we investigate the differences in the estimates of ApCOs are-drivenby
differenees-in-(Figures 5 and 6).

4.1.1 Assessment of in-sample errors
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Based on the results, the SOM-FEN method (by Landschiitzer et al. (2014)) proves to be an elegant implementation of neural
network methods that is able to estimate SOCAT ApCO, (in-sample estimate) better than the RFR and SVR methods (with
respective RMSE estimates of 14,84, 16.43 and 24.40 patm). Here we assess these differences and try to identify the possible
reasons for the differences.

One of the largest differences in the methods ability to fit the training data is in the SAZ where the RER and SVR score
poorly in comparison to SOM-FEN, particularly from 2000 to 2006 (Figure 4a). This is during a period where the number
of observations are still relatively low in the SOCAT v3 database (Figure 4a). This may then be due to an increase in the

complexity of ApCO, estimates in the SAZ from SOCAT v2 to v3 from 1998 through 2006, thus more challenging to fit

accurately. This is exemplified in the maps of RMSE (Figure 4 where coastal regions typically have larger error estimates.

A comparison of SOCAT v2 and v3 for this period shows that the increase in the number of observations occurs primarily in
the Argentine Sea, thus confirming this hypothesis (Figure Ala). The comparison of SOCAT v2 and v3 RMSE results for RER
and SVR confirm this (Table 2), where there is a marked improvement when using the older dataset. Importantly, this shows
that increasing the number of measurements does not necessarily improve the in-sample error estimates, but may yield a more
accurate out-of-sample estimate; however this is difficult to test with limited data.

Despite the improvement in performance when testing against SOCAT v2, SVR and RFR still have poorer performance than
the SOM-FEN approach. We attribute this in part, to the SOM-FFN’s ability to reduce the large RMSE contributions observed
in the other two methods. This notion is supported by the smaller difference between RMSE and MAE, especially in the SAZ
Table 2). The SOM-FEN achieves this by increasing the flexibility of the algorithm by having multiple regression models that
can each be optimised for data with a particular length scale of variability. This allows the SOM-FFN approach to adapt to
short scales of variability in dynamic regions such as the atgorithimsas-well-as-the implementation-of these- methods—Argentine
Sea and the coastal Antarctic (Figure 4i).

In comparison, this implementation of SVR, which is theoretically similar to an artificial neural network, only has one
length scale for the entire domain (Vapnik, 1999; Smola et al.. 2004). This becomes apparent in the AZ, where many of the
observations are in the more biogeochemically dynamic coastal Antarctic, where melting sea ice results in short decorrelation
length scales (Bakker et al., 2008; Chierici et al., 2012; Jones et al,, 2012). The SVR has much larger RMSE scores in the AZ
than the RFR or SOM-FFEN (35.69, 23.49 and 21.32 patm respectively). This suggests that implementing the SVR approach
without an initial clustering or regionalisation step, will not yield good results.

By comparison, the RER approach is more adept at fitting various length scales of variability, accounting for both the higher
and lower variability in the AZ and PFZ respectively (with SOCAT v3 standard deviations of 54.65 and 20.01 respectively).

The high 72 scores achieved by RFR in the AZ and PFZ (0.81 and 0.71 respectively) highlight the flexibility in the method

Table 2). This is due to the differences in the underlying mathematics of the methods. Decision trees, which are the buildin
block of RFR, separate data at each decision node with a discrete boundary (Breiman, 2001). Conversely, ANNs and SVRs
often use Gaussian functions in the cost function, resulting in smoother approximations (Vapnik, 1999). This makes decision
trees prone to overfitting, but the ensemble implementation of Random Forests eliminates this to a large extent.
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4.1.2 Differences in ApCO- estimates

One of the most-marked-differences-largest differences in ApCO is the weaker sink estimated by the SOM-FFN method in the
SAZ (Figure 6). This difference can be traced to the eastern Atlantic SAZ(Figure-Se), where the SOM-FFN has higher estimates
of ApCO; ~(Figure Se shown by the red oval and the differences between the methods in Figure A3a,b). A comparison between
of difference, where methodology is a higher order driver of difference (Figure A2). The lack of this feature in the eastern

Atlantic_sector of the Southern Ocean in SVR and RFR estimates suggests that this is a function of the initial clustering
step in the SOM-FFN. This-clustering-step-separates-the-global-The clustering process separates pCO, dataset-into-distinet

W&M SOM-FFN w—lmp%ememeéﬂﬂ—d—g%eba
rto “transfer knowledge” from a remote location
(even outside the Southern Hemisphere) if proxies are similar to the Southern Ocean. This knowledge transfer assumes that the
relationship between pCO; and its-proxies-from-more tropical-waters—the measured proxies is globally consistent. Moreover,
there is the assumption that all pCO, variability (within a cluster) can captured by the measured proxies. This assumption is
not made when using coordinates or regional subsets as locations are isolated, but there is then the potential loss of knowledge
from remote locations. This question will be addressed further in the discussion on the use of coordinate variables as proxies

of ApCOs.
Another difference between ApCO; estimates is the tendency for the-SVR to overestimate ApCO, eompared-relative to the

RFR and SOM-FFN approaches, particularly in the PFZ and AZ where winter data is sparse (Figure 6)b,c. We attribute this to
the SVR’s sensitivity to outliers, determined by the fact that the cost function penalises outliers heavily (Equation 5). In context
of the SOCAT v3 dataset, the algorithm may treat the sparse winter data as outliers. This meam—fhat—&he«h*gher—esﬂma&eﬁs due
to the fact that sparse winter measurements of ApCOy in-wi
mﬁﬂwmmmwmm&mmw
may then be a positive realisation of a methodological attribute that is typically considered a weakness.
Converselythe-RER-, RFR winter estimates of ApCO; are often lower than the SOM-FFN and SVR estimates, again in the
AZ and PFZ (Figures 5g—i and 6b,c). This may be due to the method™’s resilience against outliers—Fhis-is-primarity-due-to-the

the feature space with the use of bootstrap aggregation as these points will be sampled less frequently. Secondly, individual
decision trees 4

dataregress values by using the average of samples in a terminal node (or leaf), where the minimum number of samples per
terminal node is set by the user. This second attribute means that estimates will never be outside the bounds of the minimum
and maximum of the training dataset, thus leading to conservative estimates (as shown in Figure 2b).
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The differences between the methods shown in Figure 6 could be a good case for an ensemble approach, where the strengths

of one model compensate for the weakness of another. This is assessed in the synthetic data and will be discussed further.

of RFR-—Sueh non-linearity inereases-the risk-of over fittingto_These attributes may also be the reason for the differences
in_the magnitudes of the autumn peak in ApCO; in the SAZ and PFZ. Mechanistically this peak could be attributed to a
sharp increase in cooling leading into winter, resulting in increased solubility of CO; and thus a sharp reduction of ApCO;.
(Metzl et al., 2006; Takahashi et al.. 2002). Deeper mixing of the noise-water column shortly thereafter would entrain CO, rich
waters, thus increasing ApCOy (Lenton et al., 2013). However, the trend for this peak to shrink in the SAZ and PFZ for all

be-able-toreduce-the-overfitting-SOCAT dataset.

4.2 Synthetic data experiments

In this section we discuss the outcomes of the two experiments performed on the synthetic dataset (BIOPERIANTOS model
output). The first experiment addresses the efficacy of including coordinate variables as proxies of ApCO,discontintities-of
ehuster-boundaries—, This is done by running two implementations RFR and SVR: without coordinates as proxies, and with
coordinates as proxies. The second experiment addresses the impact that the SOCAT dataset, biased in both space and time has
on ApCO, estimates.

4.2.1 Coordinate variables improve estimates
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This topic has to some extent already been mentioned in the discussion of the observational data, where pointed out the case
for and against the inclusion of coordinate variables as proxies for A Cngel&HveerLweH—b&{—me—reJr&ﬁeﬂsmﬁJee%wee&mese

elustering-approaches-achieve: This implies that the-avaitabte-, If coordinates are not included there is the benefit of potential
information transfer from remote parts of the domain, but this assumes that the satellite observable proxies (and assimilative
model output) constrain ApCO, in a globally consistent way. If coordinates are included the information transfer is lost and the
assumption is made that the proxy variables are not able to eapture-the-variability-ef-constrain ApCO in a globally consistent

manner.

Fe%emmple—fhere%mbeﬁ#er%eew%ehﬂeashp«bﬁmThe results of this experiment show that coordinates

improve estimates of A C02 an

with better RMSE scores for both SVR and RFR (Table 3). We are thus in favour of the second hypothesis that the available
proxies cannot sufficiently constrain ApCO, —This-means-that-the- RER-estimates-are-more-conservative-than-SVR-and-without

coordinates. A two step clustering approach, such as SOM-FFN, wh:ehﬂfeﬂlﬂe—teﬁtr&pelate%efewer—ﬁmekaﬁveﬁaue&y

‘may be able to achieve
comparable results without coordinates. but this would have to be tested with that specific method. However, this may also lead
to trends in the data that may be artefacts of remote knowledge transfer, as potentially seen in the observational data (Figure
5f).

An important outcome of this experiment is that the inclusion of coordinates improves the seasonal phasing of the methods
Mmmmmmm %baggﬂwmfng—wh

thistmbalaneeas the seasonal cycle phasing may be a useful indicator of anthropogenic driven changes to the marine carbonate
system.

Seuthern-Oecean,—meaning-that-One of the assumptions in these synthetic data experiments is that the models are, to some
extent, representative of the variability in the observed ocean. However, the BIOPERIANTOS5 output does not achieve this
with a standard deviation of 19.80 uatm for synthetic SOCAT v3 fyﬂe{—yeﬁepfeseﬁfa%weeﬁhef&ﬂSeﬁfheereﬁdeﬁm
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n—data compared to 38.20 upatm of the gridded SOCAT
v3 observations (according to Southern Ocean as defined by Fay and McKinley 2014). This could be a cause for concern.

However, we believe that this creates an even a stronger case for the use of coordinates as proxy variables. The increased
variability in the observations could be due to processes that deterministic models can not yet constrain due to our lack of
understanding of the marine carbonate system (Lenton et al., 2013; Mongwe et al., 2016).

42.1 SOCAT biases

The lack of winter pCO, data is a problem throughout the mid and high latitude oceans, but is particularly severe in the
Southern Ocean (Bakker et al., 2016), but the impact of the lack of data in the Southern Ocean is not known. Moreover. the
efficacy of various methods to fill this large temporal gap is unknown (Rodenbeck et al., 2015). Here we show that there is a
considerable impact in this synthetic data environment, but the effect of the sampling bias is perhaps smaller than we would
ww&mmmw ApCO; —Fhis-resulisin

—with relative accuracy (Figures 8 and 7 and

Table 3). This could be due to two factors.
T—summary,Firstly, winter data is less variable than summer data and requires less sampling. Mechanistically, this is a
likely scenario. In summer ApCOs is spatio-temporally heterogeneous in the Southern Ocean due to the uptake of CO5 b

of phytoplankton are complex due to the

thetraining-datasetco-limitation of light and iron (as a micronutrient) in the Southern Ocean (Boyd and Ellwood, 2010; Thomalla et al., 201

This_complexity would require more sampling, perhaps additional proxies or increased spatial resolution to capture the
variability of ApCO,. Conversely, processes driving winter ApCO,., namely the interaction of mixing and buoyancy, act on
larger scales, potentially leading to less spatio-temporal heterogeneity. However, in-the-case-of the lack of observations means
that we simply cannot know with certainty. This makes a strong case for autonomous sampling platforms to the Southern
Oceanseetor-of-the- SOCATv3-dataset-the-data-is-not-yetrepresentative-of-’s winter sampling gap. The SOCCOM float project
may soon yield such measurements with pH derived estimates of pCO, for-the entire-domain—This-means that there-witt-be
biases-in-estimates that generalization-teehniques (Russell et al., 2014; Johnson et al., 2017; Williams et al., 2017).

Secondly, the model used to generate the synthetic data may not be representative of the Southern Ocean. This has been
discussed in the previous section, but here, rather than increasing our confidence, it diminishes our confidence in the result.
Studies have shown that process models are not able to resetvefor-which-more representative-data-isrequired—
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4.3 Trends of ensemble estimates

While-methodelogical-differenees-exist-the-trends-of-Apaccurately represent the seasonal cycle of CO, and-air-sea-in the
Southern Ocean (Lenton et al., 2013; Mongwe et al., 2016). Moreover, ApCO, flux—as—shewn—inFigure—6)-are—mestly—in

Hsorith differanece aach mathad avhil and o alvac tq ancamble h
R}

approach-allowsformorerobustestimates-ofis often driven by processes that are not representative of observations (Mongwe et al., 2016).

The most likely scenario is likely a combination of these two factors, where winter data is in fact less variable than summer
data, but the error is larger than the experiment shows due to incomplete knowledge of the processes that describe pCO5 anéd

by-the-SVRin the process models.

4.2.1 The best method: the ensemble average

The synthetic data also allows us to compare the two methods relative to each other, in the context of the SOCAT v3 data.
The data show that the RER method performs better than the SVR (trained with coordinates as proxies) with respective
out-of-sample RMSEs of 5.76 and 6.19 patm (Table 3). However, it is the average of these two methods (ensemble mean)
that achieves the lowest RMSE (5.36 patm), albeit marginal. The time series in Figure 8c shows that the improvement may
come from the period 1998 i invigoration

t0 2000, when RER is plagued by
underestimation of the sink strength, while SVR overestimates the sink strength. This supports the notion that the strengths and
weaknesses of these two methods compliment each other. Moreover, it supports the merit of multiple approaches and further
development of empirical methods for the estimation of ApCOzebserved-in-the AZis-damped-by-weakerwinds-and-winter-ice

A a oA ad-the PE omBare o-thePE nd-A ha A onoc-and-con an
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5 Conclusions

In this study two empirical methods (SVR and RFR) are presented as alternative (and perhaps eemphmeﬂeafy—)fnefhedﬁe

. We apply the methods to the Southern
Ocean where the paucity of ship based measurements during winter is one of the major challenges. The SOCAT v3 dataset was

co-located with assimilative model output and satellite measurable proxy variables to create a training dataset (Bakker et al., 2016).
These estimates were compared with the SOM-FFN method-approach by Landschiitzer et al. (2014). There-is-good-agreement

We found that the SOM-FFN method outperformed the new approaches with lower RMSE estimates than the RFR and
SVR. The RFR performed comparably to the SOM-FEN approach when compared with the SOCAT v2 dataset, with which
SOM-FEN was trained. The increase in the number of measurements in the highly variable coastal ocean between SOCAT
v2 and v3 leads to increased RMSE values, particularly in the Subantarctic Zone (SAZ). Despite accounting for the increase
in coastal data, the SOM-FEN still outperformed the SVR and RFR approaches in the SAZ. We attribute this to the methods
ability to cluster the training data into regions of different modes of variability to which individual regressions are then applied.
The SVR method performed poorly due to its inability to adapt to various modes of variability, while the RER is intrinsically
much more flexible, thus performed well in fitting the training data.

There was good agreement amongst the three methods with respect to the overall trend of ApCOyeompared-to-, but there
were also differences. The primary difference was in the the
estimates-of Atlantic sector of the SAZ, where the SOM-FEN overestimated ApCO, in-winter—The-ensemble-fluxes showed
that-the SAZ region-asresponsible for the-majority-of relative to the other methods. This is likely due to remote knowledge
transfer within a data sparse cluster; however, we cannot identify this as right or wrong due to the lack of data in this region.
Other differences were due to intrinsic attributes of the methods: SVR was sensitive to outliers resulting in relatively large
winter ApCO, uptake-over-the-period{(1998-estimates — i i i tabili
%M%HWWWM@MWM

ApCO; relative to the other methods due to its robustness to outliers.

To test the efficacy of these methods, they were f

of-the-current-ship-based-measurements-of-CO--that-is-the-applied to a synthetic dataset (process model output). Two major

uestions were asked: 1) what is the efficacy of including coordinate variables (time, latitude and longitude) as proxy variables?

2) What is the impact of sampling biases in the SOCAT v3 dataset—? The results showed that RFR-is-better-able-to-estimate
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including coordinate variables improved the estimates of ApCOq from-the-SOCATv3-data—The-experiment-alse-confirmed
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SVR and RFR. Moreover, the phasing of the seasonal cycle was also improved with the inclusion of coordinates. The second
experiment showed that there is only a small bias in the estimates of ApCOqo—Jtisshewn-thatthe-SOCATv3-datasetisnot-yet

however, the inability of process models to represent Southern Ocean ApCO. estimates—in—the-SouthernOecean—aretikely

estimate-pCO-—frompH-sensors-(Williams-etal5 2047 )—variability accurately places uncertainty on this result.
Lastly we show that while the RFR approach outperforms the SVR approach, the ensemble mean of the two methods

scores better than either individual methods. This motivates for continued research on methods that complement each other in

strengths and weaknesses.

Data availability. The data are available at (https://figshare.com/s/dd034ad593cfd8c5188a)

Appendix A: Comparison of SOCAT v2 and v3

SOCAT observations (v3 - v2)

Figure Al. The increase in the number of observations between SOCAT v2 and SOCAT v3 for two periods: (a) 1998 through 2006, and
2007 through 2014.

One of the shortcomings of this study is that the SOM-FFN method used SOCAT v2 as a training dataset, while the SVR

and RFR methods were trained with SOCAT v3. Figure A3 shows, there is a marked difference between the two datasets.

27


https://figshare.com/s/dd034ad593cfd8c5188a

Importantly, the increase in the number of observations between 1998 and 2006 between SOCAT v2 and v3 are almost
exclusively in the Argentine Sea.
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Figure A2. Comparison air-sea COy flux RFR and SVR when trained with SOCAT v2 and v3. The SOM-FFN method, trained with
SOCAT v2, is also shown. The figure demonstrates that methodology plays a larger role in determining the outcome of the estimate than the
availability of data (for these two methods).

These differences may have an impact on the estimates of ApCO,. To test this, the methods were implemented as explained

in Section 2.4 with the exception that RFR and SVR methods were trained with both SOCAT v2 and v3. Figure A2 shows that

on average, there is a larger difference between the RFR and SVR methods than the different training datasets.

The differences between the different methods are shown in Figure A3. Figures (a) and (b) show that the SVR and RFR

methods estimate a stronger sink in the Atlantic sector of the SAZ. Here (Figure A3b) the tendency of the SVR method to

estimate strong outgassing south of the Polar Front relative to SOM-FFN and RFR is also seen. Conversely, the RFR, on

average, underestimates ApCO- south of the Polar Front.

(a) RFR - SOM-FFN (b) SVR - SOM-FFN (c) RFR - SVR

Figure A3. The differences between annual averages of each of the approaches for the period 1998 to 2006: (a) RFR — SOM-FEN; (b) SVR
— SOM-FEN; (c) RFR — SVR.
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Appendix B: Synthetic data experiments
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Figure B1. Two dimensional histograms for the distributions of out-of-sample estimates of ApCO; relative to target ApCO2
BIOPERIANTO0S). The top row (a—c) shows estimates made by RFR and the bottom row (d—f) shows estimates of SVR. The first column
(a,) shows those estimates trained SOCAT v3 locations without coordinate variables (time, latitude and longitude) as proxy variables and
the second column (b.e) shows those with coordinate proxies. The last column (c.f) shows estimates trained with random locations (uniform

in time and space) with coordinate proxies. The metrics are shown on each plot where MAE and RMSE are Mean Absolute Error and, Root
Mean Squared Error respectively. n shows the number of observations in the estimate.
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