
Reviewers	initial	comments	are	in	dark	blue	
Responses	to	the	comments	are	in	green	
	

Response	to	both	reviewers	
We	would	like	to	thank	the	reviewers	for	the	comprehensive	and	constructive	feedback	on	
the	manuscript.	We	feel	that	the	comments	that	they	made	have	contributed	to	a	much	
better	manuscript.		
	
Some	of	the	recommended	changes	were	fairly	large	and	thus	the	manuscript,	primarily	the	
results	and	discussion,	have	changed	significantly.	As	recommended	by	both	reviewers,	we	
have	deepened	both	the	analyses	and	the	discussion.			In	summary:	

• A	deeper	analyses	of	the	observational	estimates	assesses	the	performance	based	
on	the	RMSE	scores	(and	other	metrics)	and	then	assesses	the	difference	between	
the	estimates.		

• The	synthetic	data	experiments	have	been	formalised.	There	are	now	two	primary	
experiments:	1)	what	is	the	impact	of	including	coordinates	as	proxies	on	the	
estimates;	2)	what	is	the	effect	of	the	sampling	biases	in	SOCAT	v3.	We	also	find	that	
the	ensemble	mean	of	∆pCO2	scores	better	than	the	individual	methods.		

• The	discussion	is	structured	after	the	results	(two	points	above),	but	now	goes	much	
more	in	depth.		

• The	final	figure	focussing	on	the	trends	of	the	fluxes	has	been	removed.	This	is	due	
to	the	fact	that	the	manuscript	is	now	much	longer	and	the	trend	analysis	would	
distract	the	reader	from	the	primary	goal	of	the	study;	which	is	to	introduce	
methods	and	the	synthetic	data	experiments.		

• These	results	will	be	published	in	a	future	publication.		
	
The	remaining	comments	have	been	addressed	to	each	specific	reviewer.		
	
We	hope	that	these	changes	make	the	manuscript	suitable	for	publication.		
	
	
	
	 	



Response	to	R1	
Weaknesses		
 

• Methods:	The	weakest	bit	of	this	paper	certainly	is	the	methods	section	at	the	
moment.	Particularly	the	2	approaches	are	explained	to	briefly.	It	is	very	difficult	to	
follow	with	many	new	terms	being	introduced	but	not	explained,	e.g:	“	A	few	slack	
variables	(	)	are	allowed,	within	the	limits	of	a	slack	parameter”	–	what	are	“slack	
variables”	and	“slack	parameter”?	 “	versatile	by	mapping	X	onto	a	higher	
dimensional	feature	space	using	an	interchangeable	kernel”	–	feature	space?	
interchangeable	kernel? “	decision	trees”	–	to	the	average	BG	reader	a	tree	has	
leaves	or	needles	...	“	bagging”	–	the	meaning	is	not	clear	 “K-fold	cross-validation”	–	
again,	please	explain	what	this	means Without	knowing	all	these	terms	the	reader	is	
lost	and	understanding	a	method	means	trusting	a	method.	 	
We	have	addressed	this	weakness	by	including	more	detail	about	each	of	the	
methods.	This	includes	the	basic	formulation	for	SVR	and	RFR.	The	terms	are	also	now	
explained	more	explicitly.	

• Validation,	comparison:	It	is	disappointing	that	the	authors	only	provide	the	RMSE	
MAE	and	r2	in	the	manuscript	for	the	entire	period,	i.e	only	one	number.	Many	
statements	in	the	text	do	require	a	more	thorough	analysis.	E.G	section	4.1:	“	One	of	
the	most	marked	differences	is	the	weaker	sink	estimated	by	the	SOM-FFN	method	
in	the	SAZ	(Figure	4).”	–	Figure	4	shows	that	the	difference	between	the	estimates	is	
e.g.	larger	in	the	earlier	analysis	years	–	a	error/RMSE/r2	analysis	per	year	would	be	
interesting	and	make	a	stronger	case.	Furthermore,	it	would	be	very	interesting	how	
the	error/RMSE/r2	varies	with	data	density,	both	in	time	and	in	space.	
We	have	included	three	regional	time	series	of	RMSE	for	each	of	the	biomes.	These	
include	the	data	density.	Note	that	the	RMSE	values	have	also	increased	as	these	
were	previously	reported	for	only	the	SAZ	and	FPZ	combined.	There	is	also	now	an	
analysis	of	the	RMSE	in	the	SAZ	included	as	additional	material.	This	shows	that	the	
increase	in	error	in	the	SAZ	is	primarily	due	to	increased	number	of	coastal	
measurements.		

• The	usage	of	space	and	time	coordinates:	Firstly,	I	am	not	surprised	that	additional	
data	result	in	a	smaller	error,	as	they	add	additional	degrees	of	freedom.	Secondly,	
after	reading	the	methods	section	I	was	puzzled	why	they	were	included?	In	the	end,	
on	page	12	line	21	I	found	the	statement:	“	This	implies	that	the	available	proxy	
variables	are	not	able	to	capture	the	variability	of	pCO2	.“	pCO2	is	not	affected	by	
time	and	space,	but	by	the	environmental	conditions	reflected	in	proxies	such	as	SST	
or	biology.	Space	and	time	are	in	this	case	only	placeholders	for	unknown	proxies.	
This	needs	to	be	better	discussed	up-front.		
This	is	addressed	a	little	better	in	section	2.3:	Data	transformation	and	derived	
variables.	The	paragraph	now	reads:		
To	gain	a	better	understanding	of	these	methods'	strengths	and	weaknesses	we	implement	SVR	
and	RFR	in	a	synthetic	data	environment.		A	similar	approach	was	taken	by	{Friedrich2009}	in	the	
North	Atlantic,	which	experienced	a	similar	data	paucity	to	the	Southern	Ocean	in	the	early	
2000's.	This	idealised	environment	was	also	used	to	estimate	the	effect	of	including/excluding	
certain	proxy	variables	as	well	as	the	optimal	coverage	of	cruise	tracks	to	constrain	the	North	
Atlantic	∆pCO2	adequately.	Similarly,	we	assess	the	efficacy	of	including	coordinate	variables	as	
proxies	of	∆pCO2	in	the	empirical	methods.	In	the	intercomparison	study	by	proxies	typically	



include,	but	are	not	limited	to	sea	surface	temperature	(SST),	chlorophyll-a	(Chl-a),	mixed	layer	
depth	(MLD)	and	sea	surface	salinity	(SSS);	however	several	methods	in	the	study	also	include	
latitude	and	longitude.	While	coordinates	do	not	mechanistically	impact	∆pCO2,	they	do	help	to	
constrain	estimates	where	the	available	remote	sensing	proxies	cannot	adequately	do	so.	The	
synthetic	data	is	also	used	to	test	the	ability	of	the	SVR	and	RFR	to	approximate	∆pCO2	in	the	
seasonally	sparse	Southern	Ocean.	

Specific	and	minor	comments	
• Page	2	line	9:	“were”	–	I	suppose	“where”		

changed	to	where 
• Page	2	line	10:	“interannual	pCO2	trends”	–	interannual	trends?	I	suppose	you	mean	

interannual	variability,	otherwise	please	clarify		
changed	to	interannual	variability	 

• Page	2	lines	16-18:	This	statement	is	right	but	wrong:	Rödenbeck	et	al	indeed	did	
argue	that	there	is	a	lack	of	independent	ship-based	observations	in	the	SO	which	
prohibit	an	independent	comparison	–	hence	right.	However,	e.g.	Landschützer	et	al	
2015	used	for	their	trend	analysis	also	an	atmospheric	inverse	estimate	which	is	
based	on	independent,	namely	atmospheric,	observations	–	hence	wrong.	So,	in	
combination	with	the	text	above	this	statement	is	misleading.		
Changed	the	paragraph	completely.	The	intro	should	now	read	better.	 

• Page	4	line	8:	“gridded	observations”	–	I	don’t	think	–	not	even	for	the	sake	of	brevity	
–	you	can	call	data	from	an	assimilation	model	(ECCO2)	“gridded	observations”		
Corrected	 

• Page	5	line	5-6:	You	claim	that	log10	normalisation	of	CHL	and	MLD	leads	to	normal	
distribution,	but	I	doubt	that	–	I	suspect	it	rather	comprised	a	fairly	normal	
distribution	in	the	center	with	long	tails.		
Have	changed	this	to	“a	distribution	that	closer	resembles	a	normal	distribution” 

• Page	5	lines	9-10	and	following:	see	major	comment	above.	A	bit	more	discussion	is	
needed	what	these	coordinates	represent	in	terms	of	CO2	predictors. Page	5	line	25	
and	following:	The	methods	are	hard	to	follow.	Too	many	unknown	and	specific	
wording	is	used	(see	major	comment	above).		
Details	are	now	“fleshed	out”	on	pages	6	and	7 

• Page	7	lines	14-15:	why	Nightingale?	there	are	newer	transfer	velocity	estimates	
from	Wanninkhof	et	al.	(2013,	2014)	using	CCMP?		
Now	using	Wanninkhof	et	al.,	(2014) 

• Page	8	Figure	3:	It	is	confusing	that	the	SOM-FFN	method	is	called	“SOM”	here	–	
please	don’t	change	abbreviations	throughout	the	manuscript.		
SOM-FFN	is	continued	throughout	manuscript 

• Page	9	Figure	4:	In	all	the	following	text	the	difference	between	the	lines	is	discussed,	
but	not	that	they	are	based	on	different	datasets,	i.e.	SOCATv2	and	SOCATv3.	It	is	
certainly	plausible	that	the	availability	of	data	in	SOCAT	also	affects	the	difference?	I	
suggest	to	discuss	this	also	in	the	main	text.	
We	address	this	issue	in	two	ways:	estimates	are	compared	with	SOCAT	v2	and	v3;	
models	trained	with	SOCAT	v2	and	v3	are	compared	–	this	is	presented	only	in	the	
appendix. 

• Page	11	lines	5-12:	This	is	very	vague.	Firstly,	the	authors	have	not	properly	
calculated	uncertainties	for	each	region	and	timestep.	Secondly	–	as	mentioned	
above,	the	discussion	is	missing	the	difference	between	SOCATv2	and	SOCATv3.	How	



many	new	data	are	included	in	SOCATv3	and	where?	Could	this	add	to	the	
difference?	Thirdly,	the	statement	about	the	influence	of	the	tropics	is	vague.		
Table	2	has	been	changed	to	a	figure	showing	the	spatial	and	temporal	variability	of	
RMSE	for	each	of	the	methods.	Moreover,	there	is	also	a	table	detailing	the	average	
regional	RMSE,	MAE,	bias,	r2	and	n.	 
There	are	also	two	new	figures	in	the	additional	materials	that	address	the	issue	of	
SOCAT	v2	vs	v3.	We	show	that	the	relative	majority	of	points	gained	in	the	SAZ	in	
SOCAT	v3	are	in	the	Argentine	sea	–	a	region	of	high	complexity.	The	tropics	point	has	
been	changed	to	a	discussion	around	“remote	knowledge	transfer”	and	this	should	
now	be	much	clearer. 

• Page	12	lines	15-16:	I	suppose	discontinuity	at	a	cluster,	or	biome	border	is	a	sign	of	
bad	model	quality	as	well.	In	2	adjacent	biomes,	that	are	well	sampled,	I	would	
expect	no	hard	border,	whereas	in	more	poorly	reconstructed	biomes	this	border	
effect	is	more	prominent.	However,	continuity	is	no	sign	of	quality,	but	rather	
comprises	a	“prettier	picture”.	
Removed	the	statement	about	the	discontinuity	of	clusters	as	Reviewer	2	pointed	that	
this	is	a	trivial	issue	to	solve.	 

	
	 	



Response	to	R2	
Evaluation	

• Deepen	analysis:	While	the	manuscript	is	relatively	thorough	in	the	description	of	the	
two	methods	(with	exceptions	-	see	minor	comments	below),	I	find	that	the	
evaluation	part	has	quite	some	room	for	an	extension	and	some	deepening.	In	
particular,	I	am	missing	a	thorough	analysis	of	the	residuals	in	time	and	space.		
The	analyses	have	been	extended	significantly.	The	analysis	around	the	RMSE	
estimates	have	been	extended	and	the	differences	between	the	methods	are	now	
investigated	in	full.		

• Extend	scientific	discussion	of	method:	The	paper	would	benefit	substantially	from	an	
extension	of	the	scientific	discussion	of	the	pros	and	cons	of	the	method.	Many	
issues	are	currently	mentioned	and	investigated,	but	few	of	them	are	really	discussed	
to	the	necessary	level	of	detail	and	finality.	Examples	include	the	inclusion	of	the	
spatial	variables	in	the	regression,	which	is	tested,	but	then	only	partially	further	
investigated.	Another	good	example	is	the	more	limited	predictability	of	the	RFR	
relative	to	the	SVR.	Finally,	with	this	new	method	needing	to	compete	with	a	range	of	
already	existing	methods,	the	authors	needs	to	demonstrate	more	clearly	why	it	is	
better.	I	understand	that	these	are	difficult	issues	to	discuss,	and	that	it	is	likely	not	
possible	to	give	a	definite	answer.	But	it	would	behove	the	authors	well	to	push	the	
manuscript	as	far	as	possible	in	this	direction.	 	
The	results	and	discussion	have	been	extended	significantly.	The	synthetic	data	
experiments	have	been	formalised	and	are	now	discussed	fully.		

• Deepen	scientific	analyses	and	discussion	of	results:	As	it	stands,	the	paper	focuses	
nearly	entirely	on	the	method,	and	leaves	only	very	little	room	for	the	scientific	
findings.	This	is	a	shame,	in	my	opinion.	I	think	that	there	is	enough	room	in	the	
manuscript	to	add	a	few	more	scientific	analyses	to	the	paper	and	to	discuss	them	
thoroughly.	One	example	is	the	seasonal	cycle,	which	differs	quite	substantially	
between	the	different	estimates	and	is	hugely	important	for	determining	the	annual	
CO2	sink.	 	
As	stated	above,	the	scientific	analyses	have	been	deepened	and	we	feel	that	the	
manuscript	is	now	more	complete.		

• Language/Grammar:	There	are	several	places	where	the	writing	can	be	improved	and	
be	made	more	concise	and	precise.	Further,	the	manuscript	contains	a	number	of	
grammatical/typographic	errors	that	should	be	eliminated	before	the	resubmission.	 	
Changed	as	recommended	in	the	specific	comments	below	

	
Specific	and	minor	comments	

• Abstract,	p1,	line	5:	I	suggest	to	add	the	source	of	the	data	already	here,	i.e.,	to	write	
"The	methods	are	used	to	estimate	DpCO2	in	the	Southern	Ocean	based	on	SOCAT	
V3...	".		
SOCAT	added	to	the	abstract	

• Abstract,	p1,	line	6:	Typo.	Change	"The	RFR	as	able"	to	"The	RFR	is	able" 	
corrected	as	to	is	

• Abstract,	p1,	lines	6-7	and	elsewhere:	I	don’t	think	that	there	is	a	statistically	
significant	difference	in	the	RMSE	between	12.26	and	12.97	μatm.	Please	rephrase. 	



phrase	removed	–	also	note	that	these	estimates	have	changed.	The	previous	
estimates	were	for	the	SAZ	and	PFZ	biomes	only.		

• Abstract,	p1,	line	8:	"modelled	environment".	The	commonly	used	expression	here	is	
"synthetic	data".		
synthetic	data	now	used	throughout	the	manuscript	

• Abstract,	p1,	line	9:	"achieved".	Not	sure	that	this	is	the	best	expression,	since	one	
commonly	tries	to	achieve	something	that	is	desirable.	I	am	not	sure	that	having	a	
higher	error	is	a	desired	outcome.	Perhaps	simply	write	"have".		
this	has	been	changed	throughout	the	manuscript	

• Abstract,	p1,	line	11:	Add	"a"	to	ratio,	i.e.,	to	read	"with	a	lower	ratio".		
added	“a”	

• Abstract,	p1,	general:	Following	up	on	my	major	comments	(ii)	and	(iii),	I	think	that	
also	the	abstract	could	benefit	from	a	reshuffling	with	a	bit	more	text	devoted	to	the	
discussion	of	the	methods	and	how	they	compare	to	others,	and	a	bit	more	text	
about	the	results.		
A	large	portion	of	the	abstract	has	been	rewritten	to	accommodate	the	reviewer’s	
suggestions	

• Introduction,	p1-3:	general:	The	introduction	reads	well	and	contains	the	most	
important	pieces,	but	I	would	love	to	see	a	bit	more	material	with	regard	to	the	
particular	strengths	and	weaknesses	of	the	existing	methods.	As	it	stands,	it	does	not	
become	clear	to	the	average	reader	why	we	need	yet	another	set	of	methods	to	
interpolate	the	sparse	data.	This	also	helps	to	set	up	the	later	discussion	on	how	this	
new	set	of	methods	stacks	up	against	the	existing	ones.	
The	introduction	has	been	reformatted	to	include	a	motivation	for	each	of	the	
methods	as	well	as	the	description	of	the	different	methods	and	why	these	were	
chosen.		
Data	and	methods:	p4,	line	1-4:	It	would	be	much	cleaner	if	you	used	the	same	
biomes	for	the	synthetic	data	as	for	the	real	data.	Of	course	are	the	model	
boundaries	some-	what	different	if	one	used	the	same	criteria	as	used	by	Fay	and	
McKinley,	but	this	really	should	not	matter	much.	Much	more	relevant	is	that	you	use	
the	same	approach	when	using	the	synthetic	and	the	real	data,	so	that	you	can	really	
draw	conclusions	from	one	approach	to	the	other.	I	strongly	suggest	to	reconsider	
this	choice.		
The	northern	boundary	of	the	synthetic	data	has	been	changed	from	30°S	to	the	
boundaries	defined	by	Fay	and	McKinley	(2014).	

• Model	data:	p5,	line	2:	"resampled	to	...	monthly	averaged	resolution"	This	likely	adds	
quite	some	smoothing	to	the	data,	something	that	does	not	really	exist	in	the	
observations.	Although	the	latter	have	been	binned	to	1x1	dg	and	month	of	the	year,	
but	many	grid	cells	contain	only	a	few	observations,	and	therefore	do	not	really	
represent	a	monthly	average.	Why	not	spot	sampling	the	model	following	the	
sampling	scheme	of	the	observational	programs?		
Change	has	been	implemented	to	the	data,	and	the	text	now	reads:	The	synthetic	
observations	are	sampled	at	the	model	resolution	(5-day	x	0.5°)	to	resemble	the	
SOCAT	dataset.	Hereafter	all	data	is	resampled	to	1.0°	spatial	resolution	and	monthly	
temporal	resolution	data	to	match	observations.	

• Data	transformation:	p5,	line	5	(and	elsewhere).	"There	are	several	transformations	
that	are	applied..."	This	is	awkward	and	can	be	simplified	(and	improved)	to	"The	



input	data	are	transformed..."		
Changed	as	recommended	

• Data	transformation:	p5,	lines	9-10:	"This	then	raises	the	question..."	I	found	this	
some-	what	confusing.	I	suggest	that	you	simply	describe	what	you	did	in	the	method	
section,	i.e.,	that	your	standard	model	includes	the	spatial	coordinates,	but	that	you	
also	tested	a	version	without	them,	and	then	have	a	more	thorough	discussion	in	the	
discussion	section.		
This	has	been	introduced	briefly	in	the	methods	–	only	the	methodology	is	presented	

• Data	transformation:	p5,	lines	16-20:	I	suggest	to	add	here	somewhere	the	time	
period	that	these	data	cover.		
This	was	added	at	the	end	of	the	first	paragraph	in	section	2.1	Gridded	Data	

• Empirical	methods:	p5,	line	21,	Data	are	plural.	Thus	"The	data	are	split..." SVR:		
changed	as	recommended	

• p5,	line	26:	"The	formulation	of	the	SVR	is	such..."	Awkward	writing.	I	suggest	to	
simplify	this	to	"The	cost	function	of	the	SVR	minimizes	..."		
This	section	has	changed	–	more	detail	for	each	method	added	at	the	request	of	
Reviewer	1	

• SVR:	p6,	lines	1-7:	I	suggest	to	add	a	bit	more	text	here	to	better	explain	the	SVR,	and	
in	particular,	to	better	explain	the	particular	parameter	choices.		
More	detail	has	been	added.	The	cost	function	has	been	included.	

• RFR:	p7,	lines	1-6:	As	above,	I	also	suggest	here	to	better	explain	the	method	and	the	
parameter	choices.		
More	detail	has	been	added	about	the	RFR,	specifically,	the	theoretical	model	for	a	
decision	tree.		

• RFR:	p7,	line	9	"The	out-of-bag	error	is	used	to	select	the	hyper-parameters..."	This	is	
extraordinary	cryptic.	Please	explain	better.		
This	should	be	clearer	with	the	additional	information	provided.	

• CO2	fluxes:	p7,	lines	14-16.	"calculated".	This	expression	is	used	three	times	in	a	row	
in	a	very	repetitive	manner.	This	makes	it	boring	and	hard	to	read.	Please	
reformulate.		
Restructured	as	suggested	

• Results,	p8,	lines	3-6:	This	connects	to	my	first	major	comment.	In	my	opinion,	this	
section	needs	to	be	substantially	extended	and	strengthened.	A	comparison	of	
correlation	coefficients	and	RMSE	is	insufficient	in	my	opinion.	I	would	like	to	see	an	
analysis	of	the	pattern	and	structure	of	the	residuals	in	time	and	space.	I	also	would	
like	to	see	the	biases	and	perhaps	a	few	other	metrics.		
The	results	and	discussion	have	been	updated	with	a		much	more	in	depth	look	at	the	
RMSE	values	for	the	observational	estimates	

• Results,	p8,	line	5:	"slightly	better...".	I	don’t	think	that	this	statement	holds	up	to	
further	scrutiny.	With	a	measurement	error	of	about	1	μatm	and	data	that	are	
distributed	in	time	and	space	anything	but	random,	I	don’t	think	that	this	difference	
is	significant.	To	me,	all	one	can	say	is	that	the	two	results	are	comparable	in	
performance.		
This	has	been	changed		

• Results,	p8,	Figure	3:	I	would	love	to	see	also	the	annual	mean	figure	and	its	
discussion	added	to	the	results	section.		
The	image	has	been	changed	and	now	includes	the	mean	state.		



	
	
	
	

• Results,	p9,	line	9:	"Estimates	are	higher..."	but	also	elsewhere	This	is	a	result	that	is	
picked	up	here,	but	it	is	not	really	discussed	later	on.	This	is	just	one	example	of	a	few	
such	mismatches	between	results	and	the	later	discussion	section.		
These	issues	have	hopefully	been	ironed	out.	The	results	and	discussion	have	been	
rewritten	to	a	large	extent.		

• Results,	p10,	lines	15-16	"Out-of-bag	error"	and	"Out-of-sample	error".	These	terms	
are	uncommon	and	thus	need	to	be	carefully	defined	and	later	repeated	in	order	for	
the	average	reader	to	be	able	to	follow	the	arguments.	
We	define	the	in	and	out	of	sample	errors	adequately	and	are	now	used	frequently	
enough	for	the	reader	to	keep	track.	The	out	of	bag	errors	are	only	referred	to	briefly	

• Results,	p11,	"These	results	suggest	that	estimates	would	benefit	from	the	inclusion	
of	coordinates".	This	statement	is	problematic	for	various	reasons.	First,	such	a	
conclusion	should	not	really	be	part	of	the	results	section.	Second,	I	don’t	really	buy	
the	argument,	since	almost	by	definition,	the	inclusion	of	additional	independent	
variables	tends	to	improve	the	fit,	i.e.,	it	increases	the	degrees	of	freedom	of	the	
problem	at	hand.	This	does	not	imply	an	increase	in	predictability	or	a	true	increase	
in	"knowledge",	as	tested,	for	example	through	an	analysis	of	the	Akaike	information	
criterion	(AIC).	Personally,	I	also	oppose	the	inclusion	of	such	variables,	as	they	do	not	
include	any	process	information,	and,	in	fact,	suppress	the	establishment	of	
knowledge	transfer	between	regions	of	similar	dynamics,	but	distant	in	time/space.	I	
suggest	to	reconsider	this	choice	and	conclusion.		
The	reviewer	makes	a	valid	point.	However,	the	whole	point	of	the	synthetic	data	
experiment	is	to	test	this.	We	feel	that	the	new	synthetic	data	experiments	should	
better	show	the	pros	and	cons	of	coordinates	as	proxies.	We	still	find	that,	in	the	case	
of	RFR	and	SVR	as	implemented	in	this	study,	should	be	included	as	the	current	
available	proxies	are	likely	not	fully	capturing	the	variability	of	∆pCO2.	

• Discussion,	p11,	line	6:	"weaker	sink".	This	is	not	really	obvious	from	Figure	4.	I	
suggest	to	add	a	figure	showing	the	annual	mean	DpCO2	including	the	differences	
between	the	different	estimates.	With	such	a	figure,	the	whole	paragraph	becomes	
much	easier	to	follow.		
This	region	has	now	been	highlighted	with	a	red	oval.	This	is	primarily	to	avoid	too	
many	figures	in	the	manuscript.	The	differences	of	summer	∆pCO2	have	been	added	
to	the	additional	materials	

• Discussion,	p11,	line	19:	"sparse	winter	data".	This	is	certainly	a	valid	hypothesis,	but	
couldn’t	the	authors	use	the	synthetic	data	to	test	this	hypothesis?		
The	manuscript	now	follows	a	format	of	two	primary	synthetic	data	experiments,	
where	the	first	asks	what	the	impact	of	coordinates	as	proxies	is	and	the	second	
addresses	the	issue	of	sampling	bias	in	the	SOCAT	dataset	

• Discussion,	p12,	line	1:	"Ensemble	estimate".	This	is	not	an	unreasonable	assumption,	
but	it	is	again	one	that	could	be	easily	tested	with	the	synthetic	data.		
We	now	show,	with	the	synthetic	data	that	the	ensemble	estimate	of	RFR	and	SVR	is	
in	fact	a	better	fit	to	the	out-of-sample	estimate	than	the	standalone	methods.	



• Discussion,	p12,	line	15:	"additional	complexity	of	dealing	with	DpCO2	
discontinuities"	It	turns	out	that	this	is	a	very	small	issue.	You	can	test	this	by	
comparing	the	smoothed	with	the	raw	version	in	the	pCO2	data	sets	provided	by	
Landschützer	et	al.	See	
http://cdiac.ornl.gov/oceans/SPCO2_1982_2011_ETH_SOM_FFN.html.		
This	has	been	removed	from	the	discussion	

• Discussion,	p12,	lines	17-30:	The	conclusion	stated	on	page	11	about	the	inclusion	of	
a	spatial	variable	should	come,	at	the	earliest	here.	
This	topic	has	been	moved	to	the	discussion	

• Discussion,	p12,	in	general:	There	are	many	other	things	that	need	to	be	discussed	
here	(see	also	my	second	major	comment	above).		
The	discussion	should	now	be	more	comprehensive	

• Discussion,	p13,	line	2,	"Tuning	the	algorithm..."	This	sentence	needs	to	be	
embedded	better	in	order	for	it	to	make	sense	to	the	average	reader.		
The	discussion	has	changed	–	this	sentence	no	longer	exists.	

• Discussion,	p13,	section	4.4.	"Trends	of	ensemble	estimates".	This	section	and	related	
ones	needs	to	be	substantially	strengthened.	As	it	stands,	this	small	section	is	not	
much	more	than	a	teaser.	This	should	not	be.		
We	removed	the	section	on	the	trends	as	it	may	in	fact	distract	the	reader	from	the	
already	dense	material.	This	will	be	published	in	the	near	future.	

• Conclusion,	p13,	line	32,	"from	satellite	proxies..."	This	is	not	quite	correct,	since	SSS,	
MLD,	and	atm.	CO2	stem	from	other	sources.	Please	reformulate.		
Sentence	now	reads:	The	SOCAT	v3	dataset	was	co-located	with	assimilative	model	
output	and	satellite	measurable	proxy	variables	to	create	a	training	dataset.	

• Conclusions,	p14,	lines	4-10:	Some	of	these	conclusions	are	not	really	that	evident	
from	the	results	provided	earlier.	This	has	a	lot	to	do	with	the	results	section	not	
having	made	the	point	well	enough.		
This	has	been	changed	substantially	and	should	no	longer	contain	any	surprise	results.	

• Data	availability,	p14:	I	think	it	would	be	much	better	if	the	data	were	hosted	by	an	
international	database	such	as	CDIAC	(in	the	future	NCEI)	or	Pangaea.		
This	will	be	hosted	by	FigShare	which	has	DOI	
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Abstract. The Southern Ocean accounts for 40% of oceanic CO2 uptake, but the estimates are bound by large uncertainties due

to a paucity in observations. Gap filling empirical methods have been used to good effect to approximate pCO2 from satellite

observable variables in other parts of the ocean, but many of these methods are not in agreement in the Southern Ocean. In

this study we propose two additional methods that perform well in the Southern Ocean: Support Vector Regression (SVR) and

Random Forest Regression (RFR). The methods are used to estimate ∆pCO2 in the Southern Ocean
:::::
based

:::
on

:::::::
SOCAT

::
v3,5

achieving similar results
::::
trends

:
to the SOM-FFN method by Landschützer et al. (2014). The RFR as able to achieve better

RMSE (12.26 µatm) compared the SVR (16.04 µatm) and
::::::
Results

:::::
show

::::
that

:::
the SOM-FFN (12.97

:::::::
approach

:::::::::::
outperforms

:::
the

::::
RFR

:::
and

:::::
SVR

:::::::
methods

::::
with

:::::::::
respective

::::::
RMSE

:::::
scores

::
of
::::::

14.84,
:::::
16.45

::::
and

:::::
24.40 µatm). To assess the efficacy of the methods

and the limits of the training dataset (SOCAT
:
.
::::::::
However,

:::
this

::
is,

::
in
::::
part,

::::
due

::
to

::
an

:::::::
increase

::
in

::::::
coastal

:::::::::::
observations

::::
from

:::::::
SOCAT

::
v2

::
to

:
v3), SVR and RFR are applied in a modelled environment. Again .

::::
The

::::::
success

::
of
:::

the
::::::::::
SOM-FFN

:::
and

::::
RFR

::::
both

:::::::
depend10

::
on

:::
the

::::::
ability

::
to

::::
adapt

::
to
::::::::
different

:::::
modes

:::
of

:::::::::
variability.

:::
The

:::::::::
SOM-FFN

::::::::
achieves

:::
this

:::
by

::::::
having

::::::::::
independent

::::::::
regression

:::::::
models

::
for

:::::
each

::::::
cluster,

:::::
while

:::
this

:::::::::
flexibility

:
is
::::::::
intrinsic

::
to the RFR methodoutperformed the SVR by a substantial margin. However,

both methods achieved higher out-of-sample than in-sample errors, indicating that the .
::::::::

Analyses
:::
of

:::
the

::::::::
estimates

:::::
shows

::::
that

::
the

:::::
SVR

:::
and

::::::
RFR’s

:::::::::
respective

::::::::
sensitivity

::::
and

:::::::::
robustness

::
to

:::::::
outliers

:::::
define

:::
the

:::::::
outcome

:::::::::::
significantly.

:::::::
Further

:::::::
analyses

:::
on

:::
the

:::::::
methods

::::
were

:::::::::
performed

::
by

:::::
using

::
a
:::::::
synthetic

::::::
dataset

:::
to

:::::
assess:

::::::
which

::::::
method

:::::
(RFR

::
or

:::::
SVR)

::::
has

:::
the

:::
best

::::::::::::
performance?;

:::::
what15

::
the

:::::
effect

:::
of

:::::
using

::::
time,

:::::::
latitude

:::
and

::::::::
longitude

::
as
::::::

proxy
:::::::
variables

::
is
:::
on

::::::::
∆pCO2?;

::::
and

::::
what

::
is

:::
the

::::::
impact

::
of

:::
the

::::::::
sampling

::::
bias

::
in

:::
the SOCAT v3 dataset is not yet fully representative of the Southern Ocean. The SVR was able to generalise better to the

training dataset than the RFR with lower ratio between the out-of-sample and in-sample errors, but not enough to compensate

for its poorer performance. The ensemble of the estimates show that interannual variability of the Southern Ocean CO2 sink is

dominated by the Polar Frontal Zone, while the Sub-Antarctic Zone is the dominant sink.
::
on

:::
the

:::::::::
estimates?

:::
We

:::
find

::::
that

:::::
while20

::::
RFR

::
is

:::::
indeed

:::::
better

::::
than

:::::
SVR,

:::
the

::::::::
ensemble

::
of

:::
the

::::
two

:::::::
methods

::::::::::
outperforms

:::::
either

::::
one,

::::
due

::
to

:::::::::::::
complementary

:::::::
strengths

::::
and

:::::::::
weaknesses

::
of
:::
the

::::::::
methods.

:::::::
Results

:::
also

:::::
show

:::
that

:::
for

:::
the

:::::
RFR

:::
and

::::
SVR

:::::::::::::::
implementations,

:
it
::
is

:::::
better

::::
two

::::::
include

::::::::::
coordinates

::
as

:::::
proxy

::::::::
variables

::
as

::::::
RMSE

::::::
scores

:::
are

:::::::
lowered

:::
and

:::
the

:::::::
phasing

::
of

:::
the

::::::::
seasonal

::::
cycle

::
is
:::::
more

::::::::
accurate.

:::::
Lastly

:::
we

:::::
show

::::
that

::::
there

::
is

::::
only

:
a
:::::
weak

::::
bias

:::
due

::
to
:::::::::::::

undersampling.
::::
The

::::::::
synthetic

::::
data

:::::::
provides

::
a

:::::
useful

:::::::::
framework

::
to

::::
test

:::::::
methods

::
in

:::::::
regions

::
of

:::::
sparse

::::
data

:::::::
coverage

::::
and

:::::::
showing

::::::::
potential

::
as

:
a
::::::
useful

:::
tool

::
to

:::::::
evaluate

::::::::
methods

::
in

:::::
future

::::::
studies.

:
25
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1 Introduction

The global oceans have played an important role in mitigating the effects of climate change by taking up 25% of anthropogenic

CO2 emissions annually (Khatiwala et al., 2013; Le Quéré et al., 2016). The Southern Ocean has played a disproportionate role

in this uptake, accounting for 40% of the oceanic anthropogenic CO2 uptake (Khatiwala et al., 2013; Frölicher et al., 2015).

Yet, despite the region’s importance, first order CO2 flux estimates are bound by large uncertainties due to sparse observations5

in the Southern Ocean (Lenton et al., 2006; Monteiro, 2010; Lenton et al., 2012; Takahashi et al., 2012; Bakker et al., 2016).

These uncertainties limit our capacity to resolve variability and trends of CO2.

Viable alternative methods to estimate net CO2 flux are atmospheric CO2 inversions, ocean biogeochemical process models

and empirical models (Rödenbeck et al., 2015). As shown by Le Quéré et al. (2007), atmospheric CO2 inversions are useful

tools to estimate the net CO2 fluxes, but fail to offer further understanding with spatially integrated air-sea flux estimates (Fay10

and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanistic understanding, but fail

to represent seasonality of CO2 fluxes in the Southern Ocean (Lenton et al., 2013; Mongwe et al., 2016). Empirical modelling

offers an opportunity to bridge the gap between sparse data in the Southern Ocean and correct parameterisation of future earth

systems models.

Empirical models maximise the utility of existing surface ocean CO2 observations (pCO2) by interpolating these with satel-15

lite proxy data. Access to in-situ pCO2 data, via platforms such as SOCAT (Surface Ocean CO2 Atlas), has been crucial to

the success of empirical methods (Rödenbeck et al., 2015; Bakker et al., 2016). This, in conjunction with the increasing use

of machine learning, has seen a proliferation in the number and diversity of methods in the literature. Rödenbeck et al. (2015)

compared a suite of fourteen methods using a regional framework provided by Fay and McKinley (2014). The
:::::::
majority

::
of

:::::
these

:::::::
methods

:::
are

::::::
variants

:::
of

:::::::
multiple

:::::
linear

::::::::
regression

:::::::
(MLR)

::
or

:::::::
artificial

:::::
neural

::::::::
networks

:::::::
(ANN),

::::
with

::::::::
regression

:::::
being

:::::::
applied

::
in20

:::::::
regional

:::::::
windows

::
or

:::::::
clusters

:::::
based

:::
on

:::::::::::
climatologies

::
of

:::::::
satellite

::::::::::
measurable

::::::::
variables.

:::
The

:
authors found that methods agreed

in regions were
:::::
where data coverage was adequate, but for data sparse regions, such as the Southern Ocean, interannual CO2

trends
:::::::::
variability of various empirical methods were not coherent.

The primary reason for the varied results in Rödenbeck et al. (2015) is thought to be the way in which the algorithms deal

with sparse data in the Southern Ocean. These methods were typically variants of multiple linear regression (MLR) or artificial25

neural networks (ANN) , with regression being applied in regional windows or clusters based on climatologies of satellite

measurable variables. The SOM-FFN approach by Landschützer et al. (2014)exemplifies the combination of non-linear clustering

coupled with regression. In a later work, Landschützer et al. (2015) used the SOM-FFN approach along with several other

methods
::::
Only

:::
two

:::
of

:::
the

::::::::
methods

::
in

::::::::::::::::::::::::
Rödenbeck et al. (2015) were

:::::
able

::
to

:::::::::
adequately

::::::::
represent

::::::::::
interannual

:::::::::
variability

:::
of

:::::::
∆pCO2,

:::::::
namely:

:::
the

:::::::::
SOM-FFN

::::::::::::::
(self-organizing

::::
map

::
–

::::
feed

:::::::
forward

::::::
neural

:::::::
network)

:::::
from

::::::::::::::::::::::
Landschützer et al. (2014),

::::
and30

::
the

::::::
mixed

:::::
layer

::::::
scheme

::::::
(MLS)

::::
from

:::::::::::::::::::::
Rödenbeck et al. (2014).

:::::
These

::::
two

:::::::
methods

::::
were

:::::
used

::
by

::::::::::::::::::::::
Landschützer et al. (2015) to

show that Southern Ocean CO2 uptake strengthened after 2000. However,
::::
these

:::::::
methods

:::::
often

:::::::
showed

:::::
large

::::::::::
interannual

:::::::::
differences

::
in

::::
flux

::::::::
estimates

::::::
despite

::::::::
agreeing

:::
on

:::
the

::::::
overall

:::::::
decadal

:::::
trend.

::::
This

::::::
shows

::::
that

::::
there

::
is
::::
lack

:::
of

::::::::
coherence

:::::
even

:::::::
amongst

:::
the

:::::::
methods

::::
that

:::::::
perform

:::::
well,

::::::::
meaning

:::
that

::::::::
different

:::::::
methods

::::
may

::::
lead

:::
to

:::::::
different

::::::::::::
interpretation

::
of

:
the lack of

2



measurements in the Southern Ocean meant that these methods could not be effectively tested with an independent dataset

(Rödenbeck et al., 2015).

In the early 2000s, the North Atlantic experienced similar data paucity. Friedrich and Oschlies (2009) approached this

problem by using process model output to evaluate the efficacy of an artificial neural network as well as finding the optimal

proxy variables for estimating p
::::::
drivers

::
of

:::
∆pCO2. This idealised environment was also used to estimate the effect of including/excluding5

certain proxy variables where it was found that filling remote sensing gaps in temperature and chlorophyll-a with climatology

improved the estimates. In the intercomparison study by Rödenbeck et al. (2015) proxies typically include, but are not limited

to : sea surface temperature (SST), chlorophyll-a (Chl-a), mixed layer depth (MLD) and sea surface salinity (SSS)
:::
The

:::::::
primary

:::::
reason

:::
for

:::
the

::::::
varied

::::::
results

::
is

:::::::
thought

::
to

::
be

::::
the

::::
way

::
in

:::::
which

::::
the

:::::::::
algorithms

::::
deal

::::
with

::::::
sparse

::::
data

::
in

:::
the

::::::::
Southern

::::::
Ocean

::::::::::::::::::::
(Rödenbeck et al., 2015).

::::
This

:::::::
alludes

::
to

:::
the

:::::::::
importance

:::
of

::::::
testing

:::::::
multiple

::::::::::
approaches,

::
as

::::::::
different

:::::::
methods

::::
may

:::
be

::::
able

::
to10

:::::
better

:::::::
represent

:::
the

:::::
CO2 :::::::

estimates
:::
in

::
the

::::
data

::::::
sparse

:::::::
Southern

::::::
Ocean.

In this study , we introduce and compare two empirical
:::
we

::::::::
introduce

:::
two methods new to this ocean CO2 application

::::::::::
application,

::::::
namely: Support Vector Regression (SVR) and Random Forest Regression (RFR). SVR is a method based on the theory of sta-

tistical learning, making the method robust to over-fitting by statistically determining the complexity of a problem rather than a

heuristic approach as required in setting up an ANNs hidden layer structure (Vapnik, 1999; ?).
::::::::::::::::::::::::::::
(Vapnik, 1999; Smola et al., 2004).15

::
In

:
a
::::::
review

:::
on

:::
the

:::
use

:::
of

:::::::
Support

:::::
Vector

:::::::::
Machines

::::
(the

:::::
broad

:::::::
category

:::
for

:::::::::
regression

::::
and

:::::::::::
classification

:::::::
variants)

:::
in

::::::
remote

::::::
sensing,

::::::::::::::::::::::::::
(Mountrakis et al., 2011) found

:::
that

:::
the

:::::::
method

:::
had

:::
the

::::::
“ability

::
to

:::::::::
generalize

::::
well

::::
even

::::
with

::::::
limited

::::::
training

:::::::::
samples”.

::::
This

:::::
makes

::::
SVR

:::
an

::::::::
appealing

:::::::::::
consideration

:::
for

:::
the

:::::::
sparsely

:::::::
sampled

::::::::
Southern

::::::
Ocean. RFR uses an ensemble of decision trees

to create robust estimates, often without requiring data pre-processing making it an effective “off the shelf” method (Louppe,

2014).20

::
As

::::
with

:::::
SVM,

::::::::
Random

::::::
Forests

::::
(both

:::::::::::
classification

:::
and

:::::::::
regression

:::::::
variants)

::::
have

::::
also

::::
been

::::
used

::
in

::::::
remote

::::::
sensing

:::::::::::
applications,

::::::
though

:
it
::::
does

:::
not

:::::
seem

::
to

::
be

::
as

::::::
widely

::::
used

::
in

:::::
earth

:::::::
systems

:::::::
sciences

::::::
despite

::::::
proving

::
to
:::
be

:
a
::::::::
powerful,

:::
yet

::::
easy

::
to

::::::::::
implement,

:::::::
learning

::::::::
algorithm

::::::::::::::::::::::::::::::::::::::::::::::
(Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009).

:
We use SVR and RFR to estimate CO2 fluxes in

the Southern Ocean to try to better resolve the seasonal cycle from 1998 to 2014. These methods are trained with SOCAT

v3 data collocated with satellite proxies. We compare these results with those of Landschützer et al. (2014). In the next part25

we aim to better
:::::::
However,

:::
the

::::
lack

:::
of

::::
data

::
in

:::
the

::::::::
Southern

::::::
Ocean,

::::::::::
particularly

::
in

::::::
winter,

::::::
makes

:
it
:::::::
difficult

::
to

:
understand the

limitations of these methods within the framework of the SOCAT v3 data.
::::::
context

::
of

:::::::
SOCAT

::::
data.

::
To

::::
gain

:
a
:::::
better

::::::::::::
understanding

::
of

:::::
these

::::::::
methods’

:::::::
strengths

::::
and

:::::::::
weaknesses

:::
we

:::::::::
implement

:
SVR and RFR are implemented in

a simulated environmentwith a realistic sampling strategy to assess if there are biases to this sparse data . This approach allows

us to test the impact of includingvarious
:
in

::
a

:::::::
synthetic

::::
data

:::::::::::
environment.

::
A

::::::
similar

:::::::
approach

::::
was

::::
taken

:::
by

::::::::::::::::::::::::::
Friedrich and Oschlies (2009) in30

::
the

::::::
North

::::::::
Atlantic,

::::::
which

::::::::::
experienced

::
a
::::::
similar

::::
data

:::::::
paucity

:::
to

:::
the

::::::::
Southern

::::::
Ocean

::
in
::::

the
:::::
early

::::::
2000’s.

:::::
This

::::::::
idealised

::::::::::
environment

::::
was

::::
also

::::
used

::
to

:::::::
estimate

:::
the

:::::
effect

::
of

::::::::::::::::
including/excluding

::::::
certain proxy variables as done by Friedrich and Oschlies (2009).

Thereafter the methods are applied to observational data for actual estimates of p
:::
well

::
as

:::
the

:::::::
optimal

:::::::
coverage

::
of

::::::
cruise

:::::
tracks

::
to

:::::::
constrain

:::
the

:::::
North

:::::::
Atlantic

::::
∆pCO2 :::::::::

adequately.
::::::::
Similarly,

:::
we

:::::
assess

:::
the

:::::::
efficacy

::
of

::::::::
including

:::::::::
coordinate

::::::::
variables

::
as

:::::::
proxies

::
of

::::::
∆pCO2::

in
:::
the

::::::::
empirical

::::::::
methods.

::
In

:::
the

:::::::::::::
intercomparison

:::::
study

:::
by

::::::::::::::::::::::::::
Rödenbeck et al. (2015) proxies

:::::::
typically

:::::::
include,

:::
but

:::
are35
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Table 1. Information on data products used in this study. The temporal and spatial resolutions are for the raw data (before gridding). Dashes

show that times are either not applicable or that the dataset is continually updated. Note that the start and end year show full years only. Links

to download the data are given in the additional materials. The asterisk (*) indicates that variables are the output of a data assimilative model.

Group / Product Variables
Date Range Resolution

Reference
Start End Time Space

SOCAT v3 fCO2sea
::::::
fCOsea

2 1970 2014 1 mon 1° (Bakker et al., 2016)

CDIAC xCO2atm
:::::::
xCO2atm

2 1970 2014 – – (?)
::::::::::::::::
(Masarie et al., 2014)

Globcolour Chlorophyll 1998 – 1 day 0.25° (Maritorena and Siegel, 2005)

GHRSST Sea Surface Temperature 1981 – 1 day 0.25° (Reynolds et al., 2007)

ECCO2 (cube92)
*Mixed Layer Depth 1992 2015 1 day 0.25° (Menemenlis et al., 2008)

*Salinity

:::
not

::::::
limited

::
to

:::
sea

::::::
surface

::::::::::
temperature

::::::
(SST),

:::::::::::
chlorophyll-a

:::::::
(Chl-a),

::::::
mixed

::::
layer

:::::
depth

:::::::
(MLD)

:::
and

:::
sea

:::::::
surface

::::::
salinity

::::::
(SSS);

:::::::
however

::::::
several

:::::::
methods

:::
in

:::
the

:::::
study

::::
also

::::::
include

:::::::
latitude

:::
and

:::::::::
longitude.

::::::
While

::::::::::
coordinates

::
do

:::
not

::::::::::::::
mechanistically

::::::
impact

:::::::
∆pCO2,

::::
they

::
do

::::
help

::
to

::::::::
constrain

::::::::
estimates

:::::
where

:::
the

::::::::
available

::::::
remote

::::::
sensing

::::::
proxies

::::::
cannot

:::::::::
adequately

:::
do

::
so.

::::
The

::::::::
synthetic

:::
data

::
is
::::
also

::::
used

::
to

:::
test

:::
the

::::::
ability

::
of

:::
the

::::
SVR

::::
and

::::
RFR

::
to

:::::::::::
approximate

:::::::
∆pCO2 ::

in
:::
the

::::::::
seasonally

::::::
sparse

::::::::
Southern

:::::
Ocean.

2 Data and Methods5

This study is presented in two parts. The first applies SVR and RFR to the SOCAT v3 dataset and compares these outputs with

those of the SOM-FFN by Landschützer et al. (2014). These estimates will be referred to as the observational estimates. Here

the domain is limited to the three Southern Ocean (SO) domains of Fay and McKinley (2014) that are shown in Figure 1. These

biomes are used to assess the performance of each of the methods, as done in Rödenbeck et al. (2015). Fay and McKinley

(2014) use a different nomenclature, which roughly corresponds to frontal zones. We rename the Sub-Tropical Seasonally10

Stratified biome (STSS) as the Sub-Antarctic Zone (SAZ); the Sub-Polar Seasonally Stratified biome (SPSS) becomes the

Polar Frontal Zone (PFZ) and the ice biome (ICE) is the Antarctic Zone (AZ) (Mongwe et al., 2016).

The second part aims to better understand the limitations of these methods with the given dataset by implementing the meth-

ods to ocean biogeochemical model output. This will be referred to as the simulation experiment. Here the domain of the study

is south of 34°S – the biomes Fay and McKinley (2014)
:::
The

:::::::
domain

::
of

::::
this

:::::::
synthetic

::::
data

::::::::::
experiments

::
is
:::::::
defined

::
by

:::
the

:::::
three15

:::::::
southern

::::::
biomes

:::
of

::::::::::::::::::::::
Fay and McKinley (2014).

:::::
These

:
are defined by

::::::::
observed oceanographic and biological parametersand

would thus be different in
:
,
:::
but

:::
are

::::
used

:::
for

:::
the

::::
sake

::
of

::::::::::
consistency

::::::
despite

:::::::
potential

::::::::::
differences

:::::::
between

::::::::::
observations

::::
and the

model.
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Figure 1. The three Southern Ocean biomes as defined by Fay and McKinley (2014). The common names for the biomes are shown in the

key, with the abbreviations shown in the round brackets. The abbreviation in the square brackets show the abbreviations as given by Fay and

McKinley (2014).

2.1 Gridded Data

The data sources are shown in
:::::
Table 1. These gridded data refer primarily to remotely sensed data, with the exception of MLD

and SSS. These
:::
The latter variables are output from ECCO2, an assimilative modelspecific to the Southern Ocean. For the

sake of brevity, these variables will be included under the description of “gridded observations”.
:::
The

::::::::
temporal

:::::
range

:::
of

:::
the

:::
data

:::::
(1998

:::::::
through

:::::
2014)

::
is

::::::
limited

:::
by

:::
the

:::::::::
availability

::
of

::::::::::
Globcolour

:::::
(Chl-a

:::::::
starting

::
in

:::::
1998)

:::
and

:::::::
SOCAT

:::
v3

::::::
(fCO2 ::::::

ending
::
in5

:::::
2014).

:

All data are gridded to monthly x 1° using iris and xarray packages in Python (?Met Office)
::::::::::::::::::::::::::::::::
(Hoyer and Hamman, 2017; Met Office).

Gridded pCO2 (SOCAT v3) is used to train the algorithms (Bakker et al., 2016). Surface station measurements (flask and tower)

of atmospheric xCO
::::
xCO2 are interpolated to a regular grid using support vector regression (Masarie et al., 2014). Mean sea

level pressure (NCEP2) is used in the conversion from xCO
::::
xCO2 to pCO2 (Kanamitsu et al., 2002).10
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Cloud coverage and low light at high latitudes during winter result in missing Chl-a data. Cloud gaps are filled with the

climatology of Chl-a (from 1998 to 2014) and missing low light data are filled with a value of 0.1 ± 0.03 mg m−3 (uniformly

distributed random noise).

2.2 Model Data

The prognostic coupled physics – biogeochemical model used in this study is
:::::
output

::::
from

:
a regional NEMO-PISCES config-5

uration ,
:
(BIOPERIANT05-GAA95b. This model

:
)
::
is

::::
used

::
as

:::
the

::::::::
synthetic

:::::::
dataset.

:::
The

::::::::::::
configuration is an updated version

of PERIANT05 used by Dufour et al. (2012), where BIOPERIANT05-GAA95b includes biogeochemistry with PISCES-v2.

The model has a peri-Antarctic domain with an open northern boundary at 30°S. The horizontal resolution of the configuration

is 0.5° cos(latitude) with 46 vertical levels. The northern boundary is forced by a global 0.5° model, ORCA05 as presented

in Biastoch et al. (2008). Output was
::
is saved as five-day averages. The simulation was run from 1992

::::
1998

:
to 2009. The10

:::::::
synthetic

:::::::::::
observations

:::
are

:::::::
sampled

::
at

:::
the

::::::
model

::::::::
resolution

::::::
(5-day

::
×

:::::
0.5°)

::
to

::::::::
resemble

:::
the

:::::::
SOCAT

::::::
dataset.

::::::::
Hereafter

:::
all data

is resampled to 1.0° spatial resolution and monthly temporal resolution data to match observations.
::::::
Finally,

:::
for

:::
the

:::::::::
simulation

:::::::::
experiment

:::
we

:::::
define

:::
the

::::::::
Southern

::::::
Ocean

:::::
using

:::
the

::::
three

::::::::::::
southernmost

::::::
biomes

:::::::
defined

::
in

:::::::::::::::::::::::
Fay and McKinley (2014) as

:::::
done

::
for

:::
the

::::::::::::
observational

::::::::
estimates.

2.3 Data transformation and derived variables15

There are several transformations that are applied to data for both model output and gridded observations
::::
Both

:::::::
gridded

:::
data

::::
and

:::::::
synthetic

:::::
input

::::
data

:::
are

::::::::::
transformed

::
in

::::::::::
preparation

::
for

:::
the

::::::::
empirical

::::::::::
algorithms. The log10 transformations of MLD and filled

chlorophyll (Chl-aclim) are taken to return a
:::::::::
distribution

::::
that

:::::
closer

:::::::::
represents

:
a normal distribution.

Several of the studies in Rödenbeck et al. (2015) included latitude, longitude and/or time as proxies of ∆pCO2. However,

many of the methods that are regional or cluster the data before regression
:
It

::
is

:::::::::
important

::
to

::::
note

::::
that

::::::::::
coordinates

::
do

::::
not20

::::
drive

::::::::::
mechanistic

:::::::
changes

::
in

::::::::
∆pCO2.

::::::
Rather,

:::
the

::::::::
inclusion

::
of

::::::::::
coordinates

::
in

:::
the

::::::::
empirical

::::::::
methods

:::::::
account

::
for

::::::::
unknown

:::
or

::::::::
regionally

:::::::
varying

::::::
proxies

:::
that

::::::
cannot

::
be

::::::::
measured

::::::::
remotely.

:::::
Many

:::::::
methods

::
in

:::
the

:::::::::::::
intercomparison

:::
by

::::::::::::::::::::
Rödenbeck et al. (2015) did

not include coordinates,
::::

but
:::::::
account

::
for

:::::::::::::
unaccountable

::::::
spatial

::::::::
variability

:::
by

:::::::::
clustering

::
or

:::::::::
subsetting

::::
data

::::::::
regionally. In this

study, we use a single large domain with no clustering or regional subsets. This then raises the question of whether including

coordinates would improve estimates or not. Including the coordinates may create a model where the training location is too25

narrow.
::::
Two

::::::::
scenarios

:::
for

::::
each

::::::
method

::
in

:::
the

:::::::::
simulation

:::::::::
experiment

:::
are

::::
run:

::
no

:::::::::
coordinate

::::::::
variables,

::::
and

::::::::
including

:::::::::
coordinate

:::::::
variables

:::::
(time,

:::::::
latitude

:::
and

::::::::::
longitude).

:::
The

::::::::::
coordinates

:::
are

::::::::::
transformed

::
to

:::::::
preserve

:::
the

::::::::
continuity

:::
of

::
the

::::
data

::
as

::
is

::::::
shown

:::::
below.

:
Seasonality of the data is preserved

by transforming the day of the year (j) and is included in both SVR and RFR analyses:

t=

 cos(j · 2π
365 )

sin(j · 2π
365 )

 (1)30
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Transformed coordinate vectors were passed to only SVR
::::
both

:::::
SVR

:::
and

::::
RFR

:
using n-vector transformations of latitude (λ)

and longitude (µ) (Gade, 2010; Sasse et al., 2013), with n containing:

A,B,C =


sin(λ)

sin(µ) · cos(λ)

−cos(µ) · cos(λ)

 (2)

Co-located fCO2 (y) and proxy data (X) were
:::
are used to create training arrays (x). The final input for SVR were the

following proxies
:::
and

::::
RFR

:::
are (with 12 columns): log10(Chl-aclim), SST, fCO2(atm), ADT, log10(MLD), ICE, SSS, cos(j),5

sin(j) and n-vectors [A, B, C]. SVR requires each column of the proxies to be z-scored; i.e. normalized to the mean (µ) and

standard deviation (σ) of each column (x−µσ ).

2.4 Empirical methods and implementation

Data is
::::
Data

:::
are

:
split randomly into a training and independent test dataset with a ratio 0.7 : 0.3. The independent dataset

is used to give a test error of the trained algorithm. The statistical learning package, Scikit-Learn, in Python is used for all10

regression and cross-validation methods (Pedregosa et al., 2011). The details on each cross-validation method are outlined in

the subsections below.

2.4.1 Support vector regression

The
::::
basic formulation of SVR is such that

::::::
similar

::
to

:::
that

::
of
::::::
linear

::::::::
regression

::
as

:::::::::
described

::
by

::::::::::::::::
Smola et al. (2004):

:

f(x) = 〈w,x〉+ b with b ∈ R
::::::::::::::::::::::::::::

(3)15

:::::
where

:
b
::

is
:::

an
::::::::
intercept,

::::
〈·, ·〉

:::::::
denotes

:::
the

:::
dot

:::::::
product

::
of

:
the cost function minimizes the number of points on or outside the

allowable error margins (ε) as shown in 2a. A few slack variables (ξ) are allowed, within the limits of a slack parameter (C)

, which is set by the user. The
::::::
weights

::::
(w)

:::
and

::
x,

::::
the

::::::
training

:::::
data.

::::
The

::::::
weights

::::
and

:::::::
intercept

:::
are

::::::
found

::
by

:::::::
solving

:::
the

::::
cost

:::::::
function:

:

minimise
:::::::::

1

2
||w||2 subject to

::::::::::::::::

yi−〈w,xi〉− b ≤ ε

〈w,xi〉+ b− yi ≤ ε
:::::::::::::::::::

(4)20

::
In

:::
this

:::::
form,

::
w

::
is
:::::::::
minimised

:::::::::
according

::
to

:::
the

:::::
target

::::::
values

:::
(yi)::

to
::

a
::::::::
precision

::
of

::
ε

:
–
:::
i.e.

::::
there

::
is

::
no

:::::
room

:::
for

:::::
error

::::::
greater

:::
than

::
ε.
::::::::
However,

::::
with

:::
the

::::::::
majority

::
of

::::::::
problems,

:::::::
meeting

:::::
these

:::::::::
constraints

::
is

:::
not

:::::::
possible

:
if
::::
data

:::
are

:::::
noisy

::
or

:
ε
::
is

:::
set

:::::
small.

::::
The

:::::::
inclusion

::
of
:::::::::::::

slack variables
::::::
(ξi, ξ∗i )

::::::
relaxes

:::
the

:::::::::
constraints

:::
and

:::
the

::::::::
problem

:
is
::::
now

::::::::::
formulated

::
as:

:

minimise
:::::::::

1

2
||w||2 +C

n∑
i=1

(ξi + ξ∗i )

::::::::::::::::::::

subject to
:::::::::


yi−〈w,xi〉− b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

:::::::::::::::::::::::

(5)
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::::
Here

::
C

::
is

:
a
:::::::::
parameter

:::
that

::::::
adjusts

:::
for

:::
the

:::::::
amount

::
of

::::
error

::::
that

:::
the

:::::::::::
minimisation

::::::
allows.

::::
The

::::
slack

:::::::
variable

:::
|ξ|

::
is

::::
only

:::::::
counted

::::::
towards

:::
the

::::
cost

::
if

:::
the

:::::
point

:::
lies

::::::
outside

:::
the

:::::::
margin

:::::::
(|ξ| ≥ ε).

::::
The

:
points on or outside these margins are the

:::
the

:::::::
margins

:::
are

:::::
called support vectors and are used to construct the hypothesis function, h(x). This elegant approach is made versatile by

mapping X
:
is

::::::
shown

::
in

::::::
Figure

::
2a

::::::
where

:
a
:::::
linear

:::::
SVR

::
is

:::::
fitted

::
to

:::::
noisy

::::
data

::::::::
produced

::::
from

::
a

:::::
cubic

:::::
spline.

::::
The

:::::::::::
optimisation

:::::::
problem

:::::
shown

:::
in

:::
Eq.

:
5
::
is
::::::
solved

::
in

:::
its

::::
dual

::::::::::
formulation

:::
(see

::::::::::::::::::
Hastie et al. 2009 for

:::
the

:::
full

:::::::::::
description).

::::::::::
Importantly,

:::::::
solving5

::
the

::::
dual

::::::::::
formulation

::::::
allows

:::
for

:::::::
efficient

:::::::::::
kernelisation

::
of

:::::
SVR.

:::::::::::
Kernelisation

::::::::
describes

:::
the

:::::::
process

::::
that

:::::
maps

:::
the

:::::
proxy

::::::::
variables

::::
(x) onto a higher dimensional feature spaceusing an

interchangeable kernel. In this study we used a Gaussian kernel (or radial basis function – RBF), which allows for potentially

infinite complexity , determined by the number of support vectors (Vapnik, 1999). The assignment of the number of support

vectors is analogous to defining the architecture of an ANN. The RBF kernel introduces an additional hyper-parameter (γ)10

that defines the width of the Gaussian. Selection of the SVR hyper-parameters (ε, C, γ) is done using a two-stage coarse–fine

::::::::
exhaustive

:
grid search approach using

:::
with

:::::
cross

:::::::::
validation.

:::
We

::::
use K-fold cross validationwith

:
,
:::::
where

:::
the

::::
data

::
is
:::::::
divided

:::
into

:::::
eight

::::
equal

:::::::
“folds”

:
(k = 8.

:
).
::::::
Seven

::
of

:::
the

::::
folds

:::
are

::::
used

::
to

::::
train

:::
the

::::::
model,

:::::
while

:::
the

::::::::
remaining

::::
fold

::
is

::::
used

:::
for

:::::::::
validation.

::::
This

:
is
:::::
done

::::::::
iteratively

::::
until

:::::
each

:::::::
excluded

::::
fold

:::
has

::::
been

:::::
used

::
to

:::
test

:::
the

::::::
results.

:

2.4.2 Random Forest Regression15

A random forest
:::::::
Decision

::::
trees

::::
form

:::
the

:::::
basic

:::::::
building

:::::
block

::
of

:
a
::::::::
Random

:::::
Forest

:
(RF)is an ensemble of decision trees, which

means that the average estimate of n trees is taken
:
,
::::
with

:::
the

:::::::
average

::
of

::
n

::::::
decision

:::::
tress

::
is

:::::
taken

::
as

:::
the

::::::::
ensemble

::::::::
estimate

(Breiman, 2001) (Figure 2b).
:::
The

::::
basic

::::
idea

:::
of

:
a
::::::::

decision
:::
tree

::
is
:::

to
::::::::
iteratively

::::::::
partition

::::
data

::::
into

:::::
boxes

:::::
using

::::::
simple

:::::
rules

:::
that

::::::::
minimize

:::
the

:::::
error

::
at

::::
each

::::
split

::::::::
(referred

::
to

:::
as

:
a
:::::
node)

::
–
:::::
these

:::::
boxes

::::::
would

:::::::
become

:::::::::
hypercubes

:::
in

:::::
higher

:::::::::::
dimensional

::::::::
problems.

::::
This

::
is

::::::::
described

::
by

:::
the

:::::
basic

::::::::::
formulation

::
as

::::::::
described

::
in
::::::::::
Loh (2011):

:
20

1.
:::::::::::::::::
Start at the root node

2.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
For each X, find the set S that minimizes the sum of the node impurities in the two child nodes and choose the split

:::::
X ∈ S

::::::::::::::::::::::::::::::::
that gives the minimum overall X and S.

3.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child node in turn.

:::::::
Decision

:::::
trees

::::
have

::::
high

:::::::
variance

::::
due

::
to

::::
their

:::::::
discrete

::::::
nature.

:
Random forests reduce the high variance of decision trees by25

bagging (bootstrap aggregating)in which the
::
this

:::::
high

:::::::
variance

:::
by

:::::::::::
bootstrapping

::::
with

::::::::::
aggregation

::::::
(called

:::::::
bagging

::
):

:
a
::::::
subset

::
of

:::
the

:::::::
available

:
training dataset is sampled with replacement resulting in

::
for

:::::
each

:::::::
decision

::::
tree

::
in

:::
the

:::
RF.

::::
The

::::::::
sampling

::::
with

::::::::::
replacement

::::::
means

:::
that

:::::
each

:::::::
training

::::::::::
observation

:::
has

:
a ∼ 63% chance of being chosen at least once for a particular tree

(Louppe, 2014). A
:::
This

:::::::::::
subsampling

:::::::
provides

::::::::
estimates

::::
that

:::
are

:::::
robust

::
to
:::::::
outliers

::
as

:::::
these

::::
have

::
a

::::::
chance

::
of

:::::
being

:::::::
omitted

::
in

:::::::
training.

::::
This

::::::
means

:::
that

::
a random forest typically performs better when number of

:::::::
decision trees (t) is large, but increasing30

the number of trees has diminishing returns in terms of performance vs. computation. Additional robustness is given to RFs

by randomizing and/or limiting the number of
::::
proxy

:
variables (m) given to the nodes in each tree when splitting the data
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Figure 2. A simple example demonstrating the principle of (a) support vector regression and (b) random forest regression. The dashed grey

line is the true function f(x) = 0.4x3 with the blue dots representing a random sample taken from this function f(x)+σ, where σ is normally

distributed noise. The black line in each figure, h(x), show the estimate of the true function. The orange dots in (a) show the samples from

the random subset chosen as support vectors from which h(x) is estimated. The orange lines in (b) show 200 decision tree estimates, gi(x),

which are averaged to create the ensemble, h(x).

(hence random) (Louppe, 2014).
:
In

::::
this

:::::
study,

:::
the

:::::::::
maximum

::::::
number

:::
of

:::::
proxy

::::::::
variables

::::::::
(m= 11)

:::
was

:::::
given

::
to

:::
the

:::::
RFR.

:
The

complexity of a RF can be adjusted by limiting the minimum number of leaves at a terminal branch (l), where a fully-grown

tree would allow l to be one; tree depth can also be limited to reduce the complexity and has a similar effect to limiting l.

A useful feature of bagging is that it intrinsically provides a cross-validation dataset (a.k.a. out-of-bag samples) that is not

part of the training procedure (for a specific set of trees). The
::::::::
out-of-bag

:::::::
samples

:::
are

::::
those

::::
that

:::
are

:::
not

:::::::
selected

:::::
during

::::::::
bagging.5

:::
The

:
advantage of this approach over K-fold cross-validation is that the full dataset can be used in the training procedure, as

opposed to splitting the dataset for cross-validation. The out-of-bag error is used to
:::::::::::
cross-validate

:::
the

::::::
model

:::
and

:
select the

hyper-parameters (t, m, l) for the RF.
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Figure 3.
::

The
::::::
spatial

::::::::
distribution

::
of
::::::::

sampling
:::::::
locations

::
in

::
the

:::::::
synthetic

::::::
dataset

:::::::::::::::
(BIOPERIANT05).

:::
The

:::
top

::::
panel

:::
(a)

:::::
shows

:::
the

:::::::
sampling

::::::
strategy

::::
using

::::::
SOCAT

::
v3

::::::::
locations;

:::
and

::
the

::::::
bottom

::::
panel

::
(b)

:::::
shows

:::
the

::::::
uniform

::::::
random

:::::::
sampling

::::::::
distribution

::::
used

::
in

::
the

::::::
second

:::::::::
experiment.

2.5 CO2 fluxes

Air-sea CO2 fluxes are calculated from
::::::::
quantified

::::
with:

FCO2 =K0 · kw ·∆pCO2 · (1− [ice]) (6)

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the coefficients of ?. Wind speed

is calculated from the u and v
::::::::::::::::
Wanninkhof (2014).

::::
The

:
u
:::
and

::
v vectors of CCMP v2

:::
are

::::
used

::
to

:::::::
compute

:::
the

::::
wind

:::::
speed

:
(Atlas5

et al., 2011). Coefficients from Weiss (1974) are used to calculate K0
:::
for

:::
K0 and ∆pCO2 is estimated by the empirical models.

The effect of sea-ice cover on CO2 fluxes is treated linearly; the fraction of sea ice cover ([ice]) is converted to fraction of open

water by subtracting one as shown in Equation (6).

These results are analyzed regionally with the three Southern Ocean biomes defined by Fay and McKinley (2014) (Figure 1).

We compare our estimates of CO2 fluxes with those of Landschützer et al. (2014) who used a two-step neural network method10

abbreviated to SOM-FFN (self-organizing map – feed forward neural network).
::::
Note

:::
that

:::
the

:::::::::
SOM-FFN

:::::::
method

::::
was

::::::
trained

::::
using

:::::::
SOCAT

:::
v2

::::::::
compared

::
to

:::
the

:::::::
methods

::
in
::::
this

:::::
study

:::
that

::::
used

:::::::
SOCAT

:::
v3.

:

2.6
::::::::
Synthetic

:::::
data

:::::::::::
experiments

:::
Two

:::::::::::
experiments

:::
are

:::
run

::::
with

::::
the

:::::::
synthetic

:::::
data.

::::
The

:::
first

::::::::::
experiment

::::
aims

:::
to

:::::::
identify

:::
the

::::::
efficacy

:::
of

::::::::
including

::
or

::::::::
omitting

:::::::::
coordinates

::
as
::::::

proxy
::::::::
variables

::
on

::::
each

::::::::
method’s

::::::
ability

::
to

::::::::
estimate

:::::::
∆pCO2 ::::

using
:::::::

SOCAT
:::

v3
::::::::
locations.

:::::
This

:
is
::::::::

achieved
:::
by15

:::::::::::
implementing

:::
the

:::::
model

::::
with

:::
the

::::::::::
transformed

:::::::::
coordinate

::::::::
variables

::
as

::::::
proxies

:::
and

::::
then

:::::::
without.

::::
Note

::::
that

:::
the

::::::
training

:::::::::
procedure

::
for

:::
the

:::::::
models

::::::
remains

:::
the

:::::
same

::
as

:::
for

:::
the

:::::::::::
observational

::::::::
estimates

::
of

::::::::
∆pCO2.
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:::
The

::::::
second

:::::::::
experiment

:::::::
assesses

:::
the

::::::
impact

::::
that

::
the

:::::::::
seasonally

::::::
sparse

::::::
SOCAT

:::
v3

:::
has

::
on

:::
the

::::::
ability

::
of

::
the

::::::::
methods

::
to

:::::::
estimate

:::::::
∆pCO2.

::::
This

::
is

::::
done

::
by

:::::::::
comparing

:::
the

::::::
results

::
of

:::::::
∆pCO2::::::::

estimates
:::::
when

::::::
trained

::::::::
according

:::
to:

::
1)

:::::::
SOCAT

::
v3

::::::::
locations

::::::
trained

::::
with

:::::::
synthetic

::::
data

:::::::
(Figure

::::
3a);

::
2)

::::::::
uniformly

:::::::
random

::::::::
sampling

::::::::
locations

:::::::
(random

:::
in

:::::
space

:::
and

:::::
time)

::::
with

::
a

::::::
sample

::::
size

:::
the

::::
same

::
as

:::::::
SOCAT

:::
v3

::::::
(Figure

::::
3b).

::::
Once

:::::
again

::::
this

:::
the

::::::
training

:::::::::
procedure

:::::::
remains

:::
the

::::
same

:::
(as

:::::
stated

:::::::
above).

3 Results5

3.1 Observational CO2 data results

Figure 4. The scores
::::
RMSE

::::
(top

:::
row,

::::
a–c) for each of the empirical methods trained with SOCAT v3 data

:::
three

:::::::
Southern

:::::
Ocean

::::::
biomes

:::
for

:::
RFR

::::::
(blue),

::::
SVR

:::::
(green)

:::
and

:::::::::
SOM-FFN

::::
(red). The domain

:::
grey

::
fill

::
in

:::
the

:::
top

:::
row

::::
(a–c)

:::::
shows

:::
the

::::::
number

:
of
::::::::::

observations for these scores

is
:::
each

::
of

:
the

::::::
biomes

::
for

::::
each

::::
year.

:::
The

:::::
maps

::
in

::
the

::::::
bottom

:::
row

::::
(d–f)

:::::
show

::
the

::::::
spatial

::::::::
distribution

::
of
:::::::
residuals

::
in
:::
the Southern Ocean

::
for

::::
SVR

:::
(d),

::::::::
SOM-FFN

::
(e)

:::
and

::::
RFR

:::::::::
(out-of-bag

:::::
errors)

:::
(f).

:::
The

:::
thin

:::::
black

:::
lines

:::::
define

:::
the

::::
three

:::::::
Southern

:::::
Ocean

::::::
biomes as defined by Fay and

McKinley (2014).
::::
Note

:::
that

::::
RFR

:::
and

::::
SVR

:::
are

:::::
trained

:::
and

:::::
tested

:::
with

:::::::
SOCAT

::
v3

::::
while

::::::::
SOM-FFN

::
is
::::::
trained

:::
and

::::
tested

::::
with

::::::
SOCAT

:::
v2.

METHOD

:::
We

:::
use

:::
the

::::
root

:::::
mean

::::::
squared

:::::
error

:::::::
(RMSE)

::
as

:::
the

:::::::
primary

::::::
metric

::
of

:::
the

::::::::
methods’

:::::::::::
performance

::
as

::::::
shown

::
in

::::::
Figure

:::::
4a–c.

::::
Note

::::
that

:::
the

::::
RFR

::::::
RMSE

::
is

:::::::::
calculated

::::
from

:::
the

:::::::::
out-of-bag

:::::
error

::::::::::
(effectively

::
an

:::::::::::
independent

:::::
error).

::::::::::
SOM-FFN

:::
has

:::
the

::::
best

:::::
RMSE

:::::
score

::
of

:::::
14.84

:::::
µatm

:::::
(using

:::::::
SOCAT

::::
v2),

:::::
which

::
is
:::::
better

::::
than

:::
the

::::::
RMSE

::
of

:::::
RFR

:::::
(16.45

::::::
µatm)

:::
and

::::
SVR

:::::::
(24.404

::::::
µatm),

:::::
which

:::
are

::::::
trained

::::
with

:::::::
SOCAT

:::
v3.

:::
The

::::::
biases

::
of

:::
the

:::::::
different

::::::::
methods

::
are

:::::::
similar

::
in

:::::::::
magnitude

::
for

:::::
each

::
of

:::
the

::::::
biomes

::::::
(-0.40,10

::::
-0.03

::::
and

:::::
-0.75

::::
µatm

:::
for

::::
the

:::::::::
SOM-FFN,

:::::
RFR

::::
and

::::
SVR

::::::::::::
respectively).

:::
The

::::::
mean

:::::::
absolute

:::::
errors

:::::::
(MAE)

:::
for

:::
the

:::::::::
respective

:::::::
methods

:::
are

::::
9.78,

::::
9.85

::::
and

:::::
15.27

::::
µatm

:::::::::::
respectively.
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Table 2.
:::::
Various

::::::::::
performance

::::::
metrics

:::
for

:::::::
empirical

:::::::
estimates

::
of
:::::::
∆pCO2 ::

in
:::
the

:::::::::
Subantarctic

::::
Zone

::::::
(SAZ),

:::::
Polar

:::::
Frontal

:::::
Zone

:::::
(PFZ)

:::
and

:::::::
Antarctic

::::
Zone

::::
(AZ)

::
(as

::::::
defined

::
by

:::::::::::::::::::
Fay and McKinley 2014).

::::::
Results

:::::
tested

:::::::
according

::
to

::::::
SOCAT

::
v2

::::
and

::::::
SOCAT

::
v3

:::
are

:::::
shown

::
for

:::
the

::::
SVR

:::
and

:::
RFR

:::::::
methods.

:

::::::
Method RMSE MAE r2

:

2
: :::

Bias

SVR

SAZ

::::
SVR

:::
(v3)

:
16.04

::::
18.14 10.55

::::
11.28

:::
0.48

: :::
0.61

::::
SVR

:::
(v2)

: ::::
15.99

::::
10.36

:::
0.49

: :::
0.20

::::
RFR

:::
(v3)

: ::::
13.67

:::
8.16

:::
0.70

: ::::
-0.14

::::
RFR

:::
(v2)

: ::::
12.66

:::
7.65

:::
0.68

: ::::
-0.29

::::::::
SOM-FFN

::::
10.07

:::
7.04

:::
0.76

: ::::
-1.15

PFZ

::::
SVR

:::
(v3)

: ::::
14.45

::::
10.06

:::
0.48

: :::
0.31

::::
SVR

:::
(v2)

: ::::
14.29

::::
10.01

:::
0.44

: ::::
-0.01

::::
RFR

:::
(v3)

: ::::
10.71

::
6.7

:::
0.71

: :::
0.21

::::
RFR

:::
(v2)

: ::::
10.56

:::
6.77

:::
0.69

: ::::
-0.34

::::::::
SOM-FFN

::::
11.01

:::
7.68 0.6

:::
0.26

RFR height

AZ

12.26
:::
SVR

::::
(v3) 7.43

::::
36.14 0.77

::::
25.19

:::
0.56

: ::::
-3.22

::::
SVR

:::
(v2)

: ::::
35.69

::::
25.01

:::
0.59

: ::::
-2.88

::::
RFR

:::
(v3)

: :::
23.8

::::
15.81

::
0.8

: ::::
-0.27

::::
RFR

:::
(v2)

: ::::
23.49

::::
15.63

:::
0.81

: ::::
-0.62

SOM-FFN 12.97
::::
21.32 8.56

::::
14.91 0.7

:::
0.82

: ::::
-0.77

:::
The

:::::::::
difference

:::::::
between

:::
the

:::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

::::
and

:::
the

::::::
RMSE

::::::
informs

:::
on

:::
the

::::::
ability

::
of

:::::::
methods

:::
to

::
fit

::::::
outliers

:::
or

::::::
extreme

::::::
points,

:::
as

:::
the

::::::
RMSE

:::::
scores

::::::
larger

:::::
errors

:::::
much

:::::
more

:::::::
severely

::::
than

:::::
MAE.

::::
The

:::::::::
SOM-FFN

::::::::
approach

::::
has

:::
the

:::::::
smallest

::::::::
difference

:::::::
between

:::::
these

:::
two

:::::::
metrics

:::::
(5.06,

::::
6.60

:::
and

::::
9.13

:::::
µatm

:::
for

:::
the

:::::::::
SOM-FFN,

:::::
RFR

:::
and

::::
SVR

::::::::::::
respectively).

::::
This

:::::::
superior

::::::::::
performance

::::
may

:::
be

:::
due

::
to

::::
two

::::::
factors.

::::::
Firstly,

:::
the

::::::::::
SOM-FFN

::::::
method

::::
may

:::
be

:::::
better

::
at

:::::
fitting

:::
the

:::::::
extreme

::::::
points

:::::
(those

::::
that

::
are

:::
in

:::
the

::::
outer

::::::::::
percentiles

::
of

:::
the

:::::::::::
distribution).

:::::::
Second,

::
it

::::
may

:::::
allude

:::
to

:::
the

:::
fact

::::
that

:::
the

:::::::
SOCAT

::
v2

:::::::
dataset

::
is

:::
less

::::::::
variable.5

::::::
Testing

:::
the

::::
SVR

::::
and

::::
RFR

::::::::::::::
implementations

::::::
against

:::::::
SOCAT

::
v2

::::::
yields

::::::
similar

::::::
results,

::::
with

:::
the

::::::::
exception

::
of
:::
in

:::
the

::::
SAZ,

::::::
where

::::
both

::::::
RMSE

:::
and

:::::
MAE

:::::::
improve

::::::
(results

::::::
shown

::
in

:::::
Table

:::
2).

The RMSE, MAE and r2 scores for each method applied to the data shown in Table 1 are shown in Table ??. The RFR

score is taken from the out-of-bag error, while the independent test set scores are used for SVR
::::::
RMSEs

:::
and

::::::
biases

::
in

:::
the

::::
PFZ

::
are

:::::
least

:::::::
variable

:::::::
between

::::::::
methods.

:::::
While

:::::
there

::
is

:
a
:::::::::
substantial

:::::::
increase

::
in

:::
the

:::::::
number

::
of

:::::::::::
observations

::::
from

:::::
2004

::::
there

::
is
:::
no10

:::::::::
appreciable

::::::
change

::
in
:::
the

:::::::
RMSE.

:::
The

::::::::
Antarctic

:::::
Zone

::::
(AZ)

::
is
:::
the

:::::::
primary

:::::::::
contributor

::
to

:::::
these

:::::
errors

::::
with

:::::
much

:::::
larger

:::::::
average

:::::
RMSE

::::::
values

::::
than

:::
for

::::
the

::::
SAZ

::::
and

::::
PFZ

::::::
(36.14,

::::::
23.80 and

::::
21.32

:::::
µatm

:::
for

:::::
SVR,

:::::
RFR

::::
and SOM-FFN

::::::::::
respectively).

:::::
This

:::::::
increase

::
in

:::
the

:::::
RMSE

::
is
:::::
likely

::::::
driven

::
by

:::
the

:::::
larger

:::::::::
variability

::
of

:::::::
∆pCO2:::::::::::

observations
::
in

:::
the

:::
AZ,

::::::
where

:::::::
standard

:::::::::
deviations

::
of

::::::::::
observations

:::
are

::::::
25.05,

:::::
20.01

:::
and

:::::
54.65

:::::
µatm

:::
for

:::
the

:::::
SAZ,

::::
PFZ

:::
and

::::
AZ

::::::::::
respectively. RFR achieves the best scores, with an
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Figure 5.
:::::::
Seasonal

::::::
averages

:::
for

::::::
∆pCO2::::

from
::::
1998

::
to

::::
2014

::
for

:::::
SVR,

::::::::
SOM-FFN

:::
and

::::
FRF.

:::
The

:::::
annual

::::
mean

::
is
:::::
shown

::
in

:::
the

::
top

:::
row

:::
(a,

:
b,
:::
c);

::
the

:::::
mean

::::::
summer

:::::
(DJF)

::::::
∆pCO2::

is
:::::
shown

::
in

::
the

::::::
middle

:::
row

::
(d,

::
e,
::
f);

::::
and

::
the

:::::
mean

:::::
winter

::::
(JJA)

::::::
∆pCO2::

is
:::::
shown

::
in

:::
the

:::::
middle

:::
row

:::
(g,

::
h,

::
i).

:::
The

:::
thin

::::
black

::::
lines

:::::
denote

:::
the

::::
SAZ,

::::
PFZ

:::
and

:::
AZ

::::
from

:::::
outside

::::::
inward.

::::
Note

:::
that

:::
the

::::::
∆pCO2:::

has
::::
been

::::::::
normalized

::
to
:::
sea

:::
ice

::::
cover

:::::
where

::::::
∆pCO2::

is
:::::::
multiplied

:::
by

::::::::
(1− [ice]).

::::
The

::
red

::::
oval

::
in

::
(e)

::::::::
highlights

:::
the

::::::::
difference

::
in

::::::::
SOM-FFN

:::::::
estimates

::
of

:::::::
∆pCO2 :::::

during
::::::
summer

::
in

:::
the

::::::
Atlantic

:::::::
compared

::
to

::::
SVR

:::
and

::::
RFR.

:

RMSE of 12.26 atm. This is slightly better than the RMSE of the SOM-FFN (12.97 atm). The SVR performs poorly with an

RMSE of 16.04 atm.
:::::::
reflected

::
in

:::
the

::::::
highest

:::
r2 :::::

scores
::
in

:::
the

:::
AZ

:::
for

:::
the

:::::::::
respective

:::::::
methods

:::::
(Table

:::
2).

:

The

:::
The

::::::
annual

:::
and

:
seasonal averages (winter = JJA, summer = DJF) for ∆pCO2 estimated by SVR, SOM-FFN and RFR for the

entire Southern Ocean region
::::
RFR,

:::::
SVR

:::
and

:::::::::
SOM-FFN

:::
for

:::
the

::::::::
Southern

:::::
Ocean

:
are shown in Figure 5. These show that there5

is, in general, good agreement in the spatial distribution between the methods. In winter (Figure 5a-c), there is outgassing south
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of the Polar Front as previously found (Metzl et al., 2006). This is true also for the AZ, but sea ice cover suppresses the effect.

The estimates of ∆pCO2 have thus
:::
Note

::::
that

:::
the

::::::::
estimates

::::
have been scaled to sea ice concentration (∆pCO2× (1− [ice])) as

also done for fluxes in Equation 6 .

Seasonal averages for ∆pCO2 from 1998 to 2014 for SVR, SOM and FRF. The mean winter (JJA) ∆pCO2 is shown in the

top row (a, b, c) and the mean summer (DJF) ∆pCO2 is shown in the bottom row (d, e, f). The thin black lines denote the SAZ,5

PFZ and AZ from outside inward. Note that the ∆pCO2 has been normalized to sea ice cover where ∆pCO2 is multiplied by

(1− [ice]).

To the north of the Polar Front, in the SAZ, the ocean is a
:
–

:::
this

::::::
mutes

:::::
winter

:::::::::
estimates

::
in

:::
the

::::
AZ.

:::::
There

::
is,

:::
in

:::::::
general,

::::
good

:::::::::
agreement

::
in

:::
the

::::::
spatial

:::::::::
distribution

:::::::
between

:::
the

::::::::
methods

::::
with

:::
the

::::
SAZ

:::::
being

:
a
:::
net

:
sink of CO2 (Figure 5) . The surface

∆p
:::
and

::
the

::::::
region

:::::
south

::
of

:::
the

:::::
Polar

::::
Front

:::::
(PFZ

:::
and

::::
AZ)

:
a
::::::
source

::
of

:
CO2 is more zonally symmetric in winter when compared10

to summer. The
::
to

::
the

::::::::::
atmosphere

::
as

::::::
found

::
by

::::::::::::::::
Metzl et al. (2006).

::::
More

:::::::::::
specifically,

::::
there

::
is
::::::::
stronger zonal asymmetry in summer

::::::::
compared

::
to
:::::::

winter.
::::
This

:
is driven, in part, by a strong

reduction of ∆p
:
pCO2 driven by biological production the Southern Ocean (Metzl et al., 2006; Lenton et al., 2012). There

are three regions in the SAZ where ∆pCO2 reduction is strongest and consistent between methods
::::::
(Figure

::
5): east of South

America (Malvinas Confluence), southeast
:::::
south

:::
east

:
of Africa (Agulhas retroflection) and between Australia and New Zealand15

(Tasman Sea). The reduction of ∆pCO2 in the PFZ is strongest in the Atlantic sector downstream of the South Sandwich and

South Georgia Islands and in the Indian sector downstream of the Kerguelen Plateau (Figure 5d-f). In both cases, SAZ and

PFZ, these regions are consistent with regions of high biomass (Thomalla et al., 2011; Carranza and Gille, 2015).

There are clear

::::::::
However,

::::
there

:::
are

:::::
more

:::::
subtle differences in the spatial variability between methods. The most marked difference in winter20

is that the SVR estimates the PFZ as a stronger source of CO2 to the atmosphere
:::::::::
magnitudes

::::
and

::::::::::
distributions

:::
of

:::::
these

:::::::
patterns.

::::
The

::::
RFR

:::::::::::::
underestimates

::::::
winter

:::::::::
outgassing

:::::
south

::
of

::::
the

:::::
Polar

:::::
Front

::::::
(Figure

::::
5g) compared to the SOM-FFN and

RFR approaches
::::
other

:::::::
methods

::::::::
resulting

::
in

:
a
::::::
weaker

::::::
annual

::::::
source.

::::::::::
Conversely,

:::
the

::::
SVR

:::
has

::::::
strong

:::::
winter

:::::::::
outgassing

:
(Figure

5a-c)
::
h)

::
in

:::
the

::::
PFZ

:::::::::
compared

::
to

:::::
other

:::::::
methods. In summer, the largest difference occurs in the eastern Atlantic sector of

the SAZ where the SOM-FFN estimates higher ∆pCO2 :::::::
estimates

::::::::::
(highlighted

::
in
::::::
Figure

:::
5f)

:::
are

:::::
larger

:
compared to SVR and25

RFR(Figure 5d-f).
:
.
:::::
Other

:::::::::
differences

::
in

:::
the

::::::
spatial

:::::
output

:::
are

:::::
more

::::::
subtle.

Time-series of ∆pCO2 estimates for the three Southern Ocean biomes as defined by Fay and McKinley (2014): SAZ, PFZ

and MIZ. The y-axis gridlines represent the same scale for figures (a) through (c). The SOM-FFN estimates are only available

until 2011 as it is trained with SOCAT v2, while the SVR and RFR are trained with SOCAT v3. Note that ∆pCO2 is not

normalised to sea ice concentration in this figure.30

The time-series (1998 – 2014) for ∆pCO2 for
:::
The

::::::::::
agreements

::::
and

:::::::::
differences

:::::::
between

::::::::
methods

:::
are

::::
also

:::::::
observed

:::
in

:::
the

::::
time

:::::
series

:::
for each of the Southern Ocean biomes as defined by Fay and McKinley (2014) are shown in Figure 6. In general

there is good coherence between the three methods with agreement in the
::::::
biomes

:::::::
(Figure

::
6).

::::::::::
Importantly

:::::
there

::
is

:::::::::
coherence

::
in

:::
the

:::::::::::
strengthening

::::
sink

::::::
(2002

::
to

:::::
2012)

::::
and

:
timing of the seasonal cycle and the strengthening sink over the period 2002

– 2012 (Landschützer et al., 2015). However, the differences pointed out in the seasonally averaged maps are also present in35
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Figure 6.
::::::::
Time-series

::
of

::::::
∆pCO2::::::::

estimates
::
for

:::
the

::::
three

:::::::
Southern

::::::
Ocean

:::::
biomes

::
as
::::::

defined
:::
by

:::::::::::::::::::
Fay and McKinley (2014):

:::::
SAZ,

::::
PFZ

:::
and

::::
MIZ.

:::
The

:::::
y-axis

:::::::
gridlines

:::::::
represent

::
the

:::::
same

::::
scale

::
for

:::::
figures

:::
(a)

::::::
through

:::
(c).

:::
The

::::::::
SOM-FFN

::::::::
estimates

::
are

::::
only

:::::::
available

::::
until

::::
2011

::
as

:
it
::
is

:::::
trained

::::
with

::::::
SOCAT

:::
v2,

::::
while

:::
the

::::
SVR

:::
and

:::
RFR

:::
are

::::::
trained

:::
with

::::::
SOCAT

:::
v3.

::::::
∆pCO2:::::::::

normalised
::
to

::
sea

:::
ice

::::
cover

::
is
:::::
shown

::
by

::::::
dashed

::::
lines

:
in
:::
the

::::
AZ.

:

the time-series representation
::::::
between

:::
the

:::::
three

:::::::
methods

:::::::::::::::::::::::
(Landschützer et al., 2015).

::::
The

:::::::::
differences

::
in

:::
the

:::::::::
magnitude

:::
of

:::
the

:::::
winter

:::::::::
outgassing

::
in

:::
the

::::
PFZ

:::
and

::::
AZ

::::::
(Figure

:::::
6b,c)

:::
are

:::
also

::::::::
apparent,

::::
with

:::
the

:::::
SVR

::::::::::::
overestimating

:::::::
∆pCO2 ::::::::

compared
::
to

:::::
other

:::::::
methods

:::
and

:::
the

::::
RFR

::::
with

:::::::::::
conservative

:::::::::
outgassing

::::::::
estimates.

In the SAZ, the largest difference is
:::::
There

::
is

::::
also

:
a
:::::

large
:::::::::
difference between the SOM-FFN and the other two methods.

This is limited to the end of summerin the first half of the time-series. Comparatively, estimates
::
two

:::::
other

:::::::
methods

::
in
::::::::
summer,5

:::::::::
particularly

:::::
from

::::
1998

:::::::
through

:::::
2006.

::::::
Figure

::
5f

::::::
shows

::::
that

:::
this

:::::
could

:::
be

:::::
driven

:::
by

:::
the

:::::::::
difference

::
in

:::
the

::::::
eastern

:::::
sector

:::
of

:::
the

::::::
Atlantic

:::::::
(circled

::::
with

::::
red).

:::::::::
Estimates of winter ∆pCO2 agree

:::
are

::
in

:::::::::
agreement, with the exception of the last four years when

SVR winter estimates increase relative to RFR. The overestimation of winter ∆pCO2 by the SVR is also observed in the PFZ,

but for the majority of the time series. The SAZ and PFZ also show variability in the magnitude of a seasonal shoulder in late

summer, where increasing ∆pCO2 is briefly delayed by a short sharp decrease resulting in a saw-tooth pattern. This effect is10

the strongest for the SVR and weakest for the RFR. The seasonal amplitudes
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Table 3. The performance metrics of
::::
Root

::::
mean

::::::
squared

::::
error

::::::
(RMSE

:
-
:::::
µatm)

::
for

:::
the

::::
three

:::::::
synthetic

::::
data

:::::::::
experiments

::
for

::::
RFR

:::::
(left), SVR

::::::
(middle)

:
and RFR in estimating ∆pCO2 in a model simulation

::
the

:::::::
ensemble

:::::
mean (BIOPERIANT05

::::
ENS) using SOCATv3 cruise tracks

as “sampling” locations
::
of

:::
the

:::
two

::::::
methods. Both the in- and out-of-sample errors are shown

::::::
reported

::
(E[

::
in]

:::
and

:
E[

::
out]

::::::::::
respectively). This

::::::
SOCAT

:::::::::
experiments

:::
are

::::
those

:::::
where

:::
the

::::::
location

::
of

:::::::
synthetic

::::::
training

::::
data is done

::
the

::::
same

::
as
:::::::
SOCAT

::
v3.

::::
This

:::
was

:::
run

:
with

::
(W

::::::
coords)

and without
::::::::
coordinates

:::::
(W/O

::::::
coords)

::::::
namely

::::
time,

::::::
latitude

:::
and

::::::::
longitude.

:
A
::::

third
:::::::::

experiment
:::
was

:::
run

::::
with

::::::
random

::::::
samples

::
– coordinate

::::::
variables

:::
are

:::::::
included

::
as proxies. The metrics are: RMSE = root mean squared error, MAE = mean absolute error, r-squared.

ERROR

MODEL
::::::::
Experiment

:
INPUT

::::
RFR RMSE

:::
SVR

:
MAE r2

::::
ENS

E[in]
::::::
SOCAT

::::
(W/O

::::::
coords)

:
No coords

:::
6.65 8.2

:::
7.47

:
5.98 0.87

::
—

::::::
SOCAT

:::
(W

:::::
coords)

:
Coords

:::
5.12 6.26

:::
5.10

:
4.75 0.92

::
—

::::::
Random

::::::::
Sampling No coords

:::
7.23 6.27

:::
7.83

:
3.78 0.93

::
—

Coords 4.7 2.72 0.95 height

E[out]
::::::
SOCAT

::::
(W/O

::::::
coords)

:
No coords

:::
7.46 8.7

:::
7.46

:
6.51 0.67

::::
7.08

::::::
SOCAT

:::
(W

:::::
coords)

:
Coords

:::
5.76 7.89

:::
6.19

:
5.99 0.72

::::
5.36

::::::
Random

::::::::
Sampling No coords

:::
4.88 7.87

:::
4.94

:
5.58 0.73

::
—

Coords 6.33 4.5 0.82 height
The results also show that including time

:::
The

:::::::
seasonal

:::::::::
amplitude of ∆pCO2 in the AZ are

::
is far larger than for both

::
in the SAZ and PFZ

::::::
(Figure

:::
6c)

:::::::
resulting

::
in

:::::
large

::::::::::::
methodological

::::::::::
differences. However, this large differential may not be realized as an outgassing

:
is

:::
not

:::::::
realized

::
in

:::::::::
calculated

:::::
air-sea

:
CO2 flux, particularly in winter,

:::::
fluxes,

:
due to ice cover .

::
as

::::::
shown

::
by

:::
the

::::::
dashed

::::
lines

:::::::
(Figure

:::
6c).

::::::::
Summer

::::::::
estimates

::
are

::::
also

:::::::::
influenced

::
by

::::
sea

::
ice

::::::
cover,

:::
but

:::
not

::
to

:::
the

:::::
extent

::::
that

:::::
winter

:::::
fluxes

::::::
would

::
be

::::::::
reduced.

3.2 Simulation experiment results5

The results from the simulation experiments are summarized in Table ??. RFR consistently performs better than the SVR

approach. This is consistent for both in- and out-of-sample errors, where in-sample errors represent only the SOCAT dataset

and the out-of-sample errors represent the entire domain. The in-sample error is representative of the error that would be

reported in the application of the data to observed data. Note that the in-sample error for the RFR methods is estimated using

the out-of-bag errors. The out-of-sample error is considerably larger for each respective method, indicating that reported error10

estimates for the Southern Ocean could be underestimated. These in sample and out of sample errors are illustrated in Figure

??(a) and (b) respectively.

:::
The

:::::::::
advantage

::
of

::::
using

::::::::
synthetic

::::
data

::
is

:::
that

::::
both

:::
in- and space coordinates

:::::::::::
out-of-sample

:::::
errors

::::
can

::
be

:::::::::
estimated,

:::::
where

:::
the

::::::::
in-sample

::::
error

::
is
:::::::::
calculated

::::
from

:::
the

:::::::
training

:::::
points

::::
and

:::
the

::::::::::::
out-of-sample

::::
error

::::
from

:::
the

:::::
entire

::::::::
predicted

:::::::
domain.

::::
The

:::::
latter

::::
gives

::
a

::::::::::::
representation

::
of

:::
the

:::
true

::::
error

::
of

:::
the

:::::::
method.

::::
The

::::::
results

::::
from

:::::
these

::::::::::
experiments

:::
are

::::::
shown

::
in

:::::
Table

::
3.

::::
The

:::::::
detailed15

:::::::::::
out-of-sample

:::::::::
histograms

:::
are

::::::
shown

::
in

::::::
Figure

:::
B1.

:

3.2.1
::::::::::
Coordinates

:::
as

:::::
proxy

::::::::
variables
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Figure 7.
::::::::::
Distributions

::
of

:::
root

::::
mean

::::::
squared

::::
error

:::::::
(RMSE)

::
for

:::
the

::::
three

:::::::
synthetic

:::
data

:::::::::
experiments

:::
for

::::
RFR

:
in
:::
the

:::
top

:::
row

::::
(a–c),

::::
SVR

::
in

:::
the

:::::
middle

:::
row

::::
(d–f)

:::
and

:::
the

:::::::
ensemble

::::
mean

:::
for

::::
RFR

:::
and

::::
SVR

::
in

::
the

::::::
bottom

:::
row

::::
(g–i).

:::
The

::::
first

:::::
column

:::
(a,

::
d,

:
g)
:::::
shows

:::
the

:::::
RMSE

:::
for

:::::::
synthetic

::::::
SOCAT

::::::
training

:::::::
locations

::::::
without

::::::::
coordinates

::
as

::::::
proxies,

:::::
while

::
the

::::::
second

::::::
column

::
(b,

::
e,

::
h)

::::::
includes

:::::::::
coordinates

::
as

::::::
proxies.

:::
The

:::
last

::::::
column

::
(c,

:
f,
::
i)

:::::
shows

::
the

::::::
RMSE

::
of

:::::::
randomly

:::::::
sampled

::::::
training

:::::::
locations

::::
where

:::::::::
coordinates

:::
are

::::::
included

::
as
:::::::
proxies.

::::
This

:::::::::
experiment

::::
used

:::
the

:::::::
synthetic

::::::
dataset

::
to
::::
test

::
the

::::::::
influence

::
of

::::::::
including

::
or

:::::::::
excluding

::::::::::
transformed

:::::::::
coordinates

:::::
(time,

:::::::
latitude

:::
and

:::::::::
longitude) as proxies of ∆pCO2improves the estimates. This is shown in Figure 6 where the estimates .

::::::
There

:::
are

::::
four

:::::
major

:::::
results

:::::
from

:::
the

::::::::::
experiment

::::::
results.

::::::
Firstly,

:::
the

::::::
RMSE

::::::::
estimates

:::
are

:::::::
smaller

:::::
when

:::::::::
coordinates

:::
are

::::::::
included

::
as

:::::::
proxies

::
for

:::::
both

::
in-

::::
and

::::::::::::
out-of-sample

::::::
subsets

::::::
(Table

:::
3).

::::::::
Secondly,

::::
RFR

::::::::
achieves

:::::::::
marginally

:::::
better

::::::::::::
out-of-sample

::::::
RMSE

::::
than

:::::
SVR

::::
(5.76

::::
and

::::
6.19

:::::
µatm

:::::::::::
respectively)

:::::
when

:
trained with coordinates(dashed-lines) achieve lower RMSE scores relative to the5

estimates trained without coordinates (solid lines). Importantly, this is true for both in- and out-of-sample errors . The RMSE

of
:
.
:::::
Third,

::::
both

::::
RFR

::::
and

::::
SVR

::::
have

::::::::::
comparable

::::::::::::
out-of-sample

::::::
RMSE

:::::::
estimates

:::::
(7.46

:::::
µatm)

:::
for

:::::::
∆pCO2 ::::::::

estimates
::::::
trained

::::
with

:::
and

:::::::
without

:::::::::
coordinate

:::::::
proxies.

::::::
Lastly,

:::
the

::::::::
ensemble

:::::
mean

::
of

:::::
SVR

:::
and

::::
RFR

::::
has

:::::
lower

::::::::::::
out-of-sample

::::::
RMSE

::::::::
estimates

::::
than

::
the

:::::::::
individual

::::::::
estimates

:::
for

::::::::::::::
implementations

::::
with

:::
and

:::::::
without

:::::::::
coordinate

:::::::
proxies,

::::::
though

::::
these

:::::
gains

:::
are

:::::::
marginal

::::::
(Table

:::
3).
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Figure 8.
::::
Time

::::
series

::
of
:::::::::::::
BIOPERIANT05

:::::::
∆pCO2 :::::

(target)
:::
and

:::::::
empirical

::::::::
estimates

:
of
:::::::
∆pCO2 ::

for
::::
each

::
of

::
the

::::::::::
experiments

::
for

::::
RFR

:::
(a),

::::
SVR

::
(b)

:::
and

:::
the

:::::::
ensemble

::::
mean

::::::::
estimates

:::
(c).

:::
The

::::::
SOCAT

::
v3

:::::::
estimates

:::
are

::::::
trained

::::
using

:::
the

:::::::
locations

::
of

::::::
SOCAT

::
v3

::::
data.

:::
The

::::::::
w coords

:::::
variant

::::::
includes

:::::::::
coordinates

::
as

::::::
proxies

::
of

::::::
∆pCO2:::::

while
::::
these

:::
are

::
not

:::::::
included

:::
for

::::::::
w/o coords

:
.
:::
The

:::::::
Random

:::::::
estimates

:::
are

:::::
trained

::::
with

::::::::
uniformly

::::::::
distributed

::::::
random

:::::
sample

::::::::
locations.

:::
The

::::::
number

::
of

::::::
samples

:::
per

:::
time

::::
step

::
for

:::::::
SOCAT

::
(a)

:::
and

::::::
random

:::::::
sampling

:::::::
locations

:::
(b)

::
are

:::::
shown

:::
by

::
the

::::
grey

:::
fill.

:::::
These

:::::
points

::::
can

::::
also

:::
be

:::::::
gleaned

::::
from

::::::
RMSE

:::::
maps

:::::::
(Figure

:::
7).

:::::
Both

::::
RFR

::::
and

:::::
SVR

:::::
errors

:::
are

::::
low;

::::::::
however

:::
the

:::::
RFR

::::::::::
outperforms

:::
the

::::
SVR

:::::::::
marginally

:::
for

:::
the

::::
open

::::::
ocean

::::::
regions.

::::::
Errors

::
in

::::::
coastal

::::::
regions

::::::
remain

::::
high

:::
for

::::
each

:::
of

::
the

:::::::::::
experiments

:::
and

:::::::
methods

::::::
(Figure

::::::::
7a,b,d,e);

::::
such

::
as
::
in
:::
the

:::::::::
Argentine

:::
Sea,

:::
the

:::::::
Agulhas

:::::::::::
retroflection,

:::
and

:::
the

::::::::
marginal

:::
ice

::::
zone.

::::
The

::::::::
ensemble

::::
mean

:::
of

:::
the

::::::::
estimates

:::::::
achieves

::
a

::::::
balance

::::::::
between

:::
the

:::
two

::::::::
methods

::::
with

:::
low

::::
and

::::::::
moderate

::::::
RMSE

::::::
scores

::
in

:::
the

::::
open

::::::
ocean

:::
and

::::::
coastal

:::::::
regions.

::::::
Lastly,

:::
the

::::::::::
distributions

::
of

:::
the

:::::
errors

:::
for

::::
RFR

::::
and

::::
SVR

:::::::
without

:::::::::
coordinate

::::::
proxies

::::
(and

::::
thus

:::
the

::::::::
ensemble5

:::::
mean)

:::
are

::::::
similar.

:
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:::
The

::::
time

:::::
series

:::::::
(Figure

::
8)

::::
show

::::
that

::::::::
including

:::::::::
coordinate

::::::::
variables

::::
plays

:::
an

::::::::
important

:::
role

::
in
:::::::::
achieving

:::::::
accurate

:::::::
phasing

::
of

::
the

::::::::
seasonal

:::::
cycle.

:::::
When

::::::::::
coordinates

:::
are

:::
not

::::::::
included

::
as

::::::
proxies

:::
the

:::::::
phasing

:::::
shifts

::::::
earlier

::
for

:::::
both

:::::::
methods.

::::::
There

::
is

:::
also

:::
an

:::::::::::
improvement

::
of

::::::::
estimates

::::
over

:::::
time,

:::::
where

:::
the

::::
first

:::
two

:::::
years

:::::
(1998

::::
and

:::::
1999)

::::
have

:::::
worse

::::::::
estimates

:::
for

::::
both

:::::
SVR

:::
and

:::::
RFR

::::::
(Figure

:::
8).

::::
This

::::
does

:::
not

:::::
seem

::
to

::
be

::::::
linked

::
to

:::
the

::::::
number

:::
of

:::::::::::
observations,

:::
but

:::::
could

::
be

::::
due

::
to

:::
the

::::::::::
distribution.

::::
The

::::::::
ensemble

::::::
∆pCO2::

in
:::

the
:::::

1998
::
to

:::::
1999

:::::
period

::
is
::::::
closer

::
to

::::::::::::::
BIOPERIANT05

::::::
output

::
as

:::
the

::::::::::
respectively

:::::
over-

::::
and

::::::::::::
underestimates

::
of

:::::
RFR5

:::
and

::::
SVR

::::::::::
compensate

:::
for

::::
each

:::::
other.

:

3.2.2
:::::::
Random

:::::::::
sampling

::::::
regime

::::
This

:::::::::
experiment

::
is

::::::::
performed

::
to
::::::
assess

:::
the

::::::::::
inaccuracies

:::
that

::::
arise

::::
due

::
to

:::
the

:::::
spatial

::::
and

:::::::
temporal

::::::::
sampling

:::::
biases

::
in

:::
the

:::::::
SOCAT

::
v3

:::::::
dataset.

::
A

::::::
random

::::::::
sampling

::::::
regime

::
is

::::::::
compared

::
to
:::
the

::::::::
Training

::::::::
locations

:::
are

::::::
chosen

::
at

::::::
random

::::
and

::::::::
uniformly

::
in

::::
time

::::
and

:::::
space.

::::
This

:::::::::
eliminates

:::
any

:::::::::::::
summer/winter

:::::
biases

::
as

::::
well

::
as

:::::::::
clustering

::
of

:::::
cruise

:::::
tracks

::
in

::::::
certain

::::::
regions

:::::
(such

::
as

:::
the

:::::::::
Argentine10

::::
sea).

::::
Note

::::
that

:::::::::
coordinates

:::
are

::::::::
included

::
as

::::::
proxies

::
of

:::::::
∆pCO2::::

with
:::
the

:::::::
random

::::::::
sampling

::::::
regime.

:

::::::
Firstly, the RFR without coordinates is the same as the SVR

:::::
results

:::::
show

:::
that

::::
the

:::::
biases

::
in

:::::::
SOCAT

:::
v3

:::
do

::::::::
contribute

:::
to

:::::::::::
out-of-sample

::::::
errors,

::
as

:::
the

:::::::
random

::::::::
sampling

::::::
regime

::::::::
achieved

:::::
lower

::::::
RMSE

::::::
scores

::::
than

:::
any

:::
of

:::
the

:::::
other

::::::::::
experiments

:::::
(4.88

:::
and

::::
4.94

::::
µatm

:::
for

:::::
RFR

:::
and

:::::
SVR

::::::::::
respectively

::
as

::
in

:::::
Table

:::
3).

::::::::
However,

::::
RFR

::
is

:::::::::
marginally

::::
less

:::::::::
susceptible

::
to
::::::::
sampling

::::::
biases

:::
than

:::::
SVR

::
as

:::
the

::::::
relative

::::::::::::
improvement

::
for

:::
the

:::::
latter

::
is

:::::
larger

:::::
(with

:::::::::
differences

::
of

::::
0.88

::::
and

::::
1.70

::::
µatm

:::::::::::
respectively).

::::
The

::::::
spatial15

::::::::::
distributions

::
of

::::::
RMSE

:::
for

:::
the

::::::
random

::::::::
sampling

::::::::::::::
implementations

:::::::
(Figure

::::
7c,f)

::::
show

::::
that

:::::
errors

::
in

::::::
coastal

:::::::
regions

::::::
remain

::::
high

::
(>

::
12

::::::
µatm)

::::
with

:::::::
uniform

:::::::::
sampling.

::::::
Lastly,

::::
there

::
is
:::
an

:::::::::::
improvement

::
in

:::
the

::::::::
estimates

:::::
from

:::::
1998

::
to

::::
2000

:
with the inclusion

of coordinates, again highlighting the superior accuracy of the RFR
::::::
random

::::::::
sampling

::::::::::
particularly

:::
for

::::
the

::::
SVR

:::::::
(Figure

:::
8),

:::::::::
suggesting

:::
that

:::
the

:::::::
method

::
is

::::
more

::::::::::
susceptible

::
to

:::
the

::::::::
temporal

:::
bias

::::
than

:::::
RFR

::
(if

::::::::::
coordinates

:::
are

::::::::
included

::
as

:::::::
proxies). These

results suggest that estimates would benefit from the inclusion of coordinates .20

(a) In sample errors and (b) out of sample errors. Two SVR models are shown, one with the same variables as the SVR and

another without space and time coordinates. The RFR outperforms the SVR, but the RFR without coordinates does not perform

as well as the SVR. Clearly, adding the coordinates improves estimates.

4 Discussion

4.1 Methodological differences in observational
::::::::::::
Observational

:
estimates25

The differences observed
::
In

:::
this

:::::::
section

::
we

:::::::
address

:::
the

::::::::
methods’

:::::
ability

:::
to

::
fit

:::
the

::::::
training

:::::
data,

::
in

:::::
other

:::::
words

::
an

::::::::::
assessment

::
of

::::::::
in-sample

:::::
errors

:::::::
(Figure

:
4
::::
and

:::::
Table

::
2).

:::::::::
Thereafter

:::
we

:::::::::
investigate

:::
the

:::::::::
differences

:
in the estimates of ∆pCO2 are driven by

differences in
:::::::
(Figures

::
5

:::
and

:::
6).

4.1.1
::::::::::
Assessment

::
of

:::::::::
in-sample

::::::
errors

19



:::::
Based

::
on

:::
the

:::::::
results,

:::
the

:::::::::
SOM-FFN

::::::
method

::::
(by

::::::::::::::::::::::
Landschützer et al. (2014))

::::::
proves

::
to

::
be

:::
an

::::::
elegant

:::::::::::::
implementation

::
of

::::::
neural

:::::::
network

:::::::
methods

::::
that

:
is
::::

able
:::

to
:::::::
estimate

:::::::
SOCAT

:::::::
∆pCO2 :::::::::

(in-sample
::::::::
estimate)

:::::
better

::::
than

:::
the

:::::
RFR

:::
and

:::::
SVR

:::::::
methods

:::::
(with

::::::::
respective

::::::
RMSE

::::::::
estimates

::
of

::::::
14.84,

:::::
16.45

:::
and

:::::
24.40

::::::
µatm).

::::
Here

:::
we

::::::
assess

::::
these

::::::::::
differences

:::
and

:::
try

::
to

:::::::
identify

:::
the

:::::::
possible

::::::
reasons

:::
for

:::
the

::::::::::
differences.

:::
One

:::
of

:::
the

::::::
largest

:::::::::
differences

::
in

:::
the

::::::::
methods

::::::
ability

::
to

::
fit

:::
the

:::::::
training

::::
data

::
is

::
in

:::
the

:::::
SAZ

:::::
where

:::
the

:::::
RFR

:::
and

:::::
SVR

:::::
score5

:::::
poorly

::
in
::::::::::

comparison
:::

to
::::::::::
SOM-FFN,

:::::::::
particularly

:::::
from

:::::
2000

::
to

:::::
2006

::::::
(Figure

::::
4a).

::::
This

::
is

::::::
during

:
a
::::::

period
::::::
where

:::
the

:::::::
number

::
of

::::::::::
observations

::::
are

:::
still

:::::::::
relatively

:::
low

::
in
::::

the
:::::::
SOCAT

::
v3

::::::::
database

:::::::
(Figure

:::
4a).

:::::
This

::::
may

::::
then

:::
be

:::
due

::
to
:::

an
:::::::
increase

:::
in

:::
the

:::::::::
complexity

::
of

:::::::
∆pCO2:::::::::

estimates
::
in

:::
the

::::
SAZ

:::::
from

:::::::
SOCAT

:::
v2

::
to

:::
v3

::::
from

:::::
1998

:::::::
through

:::::
2006,

::::
thus

:::::
more

::::::::::
challenging

::
to

:::
fit

:::::::::
accurately.

::::
This

:
is
::::::::::
exemplified

::
in
:::
the

:::::
maps

::
of

::::::
RMSE

::::::
(Figure

:::::
4g-i),

::::::
where

::::::
coastal

::::::
regions

::::::::
typically

::::
have

:::::
larger

::::
error

:::::::::
estimates.

:
A
::::::::::

comparison
:::
of

::::::
SOCAT

:::
v2

:::
and

:::
v3

:::
for

:::
this

::::::
period

::::::
shows

:::
that

:::
the

:::::::
increase

::
in

:::
the

:::::::
number

::
of

:::::::::::
observations

::::::
occurs

::::::::
primarily

::
in10

::
the

:::::::::
Argentine

::::
Sea,

::::
thus

:::::::::
confirming

:::
this

:::::::::
hypothesis

:::::::
(Figure

::::
A1a).

::::
The

::::::::::
comparison

::
of

:::::::
SOCAT

::
v2

::::
and

::
v3

::::::
RMSE

::::::
results

::
for

:::::
RFR

:::
and

::::
SVR

:::::::
confirm

::::
this

:::::
(Table

:::
2),

:::::
where

:::::
there

::
is

:
a
:::::::

marked
:::::::::::
improvement

:::::
when

:::::
using

:::
the

:::::
older

::::::
dataset.

:::::::::::
Importantly,

:::
this

::::::
shows

:::
that

:::::::::
increasing

:::
the

::::::
number

::
of

::::::::::::
measurements

:::::
does

:::
not

:::::::::
necessarily

:::::::
improve

:::
the

::::::::
in-sample

:::::
error

::::::::
estimates,

:::
but

::::
may

:::::
yield

:
a
:::::
more

:::::::
accurate

:::::::::::
out-of-sample

::::::::
estimate;

:::::::
however

::::
this

::
is

::::::
difficult

::
to
::::
test

::::
with

::::::
limited

::::
data.

:

::::::
Despite

:::
the

:::::::::::
improvement

::
in

:::::::::::
performance

::::
when

::::::
testing

::::::
against

:::::::
SOCAT

:::
v2,

::::
SVR

::::
and

::::
RFR

:::
still

:::::
have

:::::
poorer

:::::::::::
performance

::::
than15

::
the

::::::::::
SOM-FFN

::::::::
approach.

:::
We

:::::::
attribute

::::
this

::
in

::::
part,

::
to

:::
the

::::::::::
SOM-FFN’s

::::::
ability

::
to

::::::
reduce

:::
the

::::
large

::::::
RMSE

:::::::::::
contributions

::::::::
observed

::
in

:::
the

::::
other

::::
two

:::::::
methods.

:::::
This

:::::
notion

::
is

::::::::
supported

:::
by

:::
the

::::::
smaller

:::::::::
difference

:::::::
between

::::::
RMSE

:::
and

::::::
MAE,

::::::::
especially

::
in
:::
the

:::::
SAZ

:::::
(Table

:::
2).

:::
The

:::::::::
SOM-FFN

::::::::
achieves

:::
this

:::
by

::::::::
increasing

:::
the

::::::::
flexibility

:::
of

:::
the

::::::::
algorithm

::
by

::::::
having

:::::::
multiple

:::::::::
regression

::::::
models

::::
that

:::
can

::::
each

:::
be

::::::::
optimised

:::
for

::::
data

::::
with

::
a
::::::::
particular

::::::
length

::::
scale

:::
of

:::::::::
variability.

::::
This

::::::
allows

:::
the

:::::::::
SOM-FFN

::::::::
approach

:::
to

:::::
adapt

::
to

::::
short

:::::
scales

::
of

:::::::::
variability

::
in

:::::::
dynamic

:::::::
regions

::::
such

::
as the algorithms as well as the implementation of these methods.

::::::::
Argentine20

:::
Sea

:::
and

:::
the

::::::
coastal

::::::::
Antarctic

:::::::
(Figure

:::
4i).

::
In

::::::::::
comparison,

::::
this

:::::::::::::
implementation

:::
of

:::::
SVR,

:::::
which

::
is
:::::::::::

theoretically
::::::
similar

:::
to

::
an

::::::::
artificial

::::::
neural

:::::::
network,

:::::
only

:::
has

::::
one

:::::
length

:::::
scale

:::
for

:::
the

:::::
entire

:::::::
domain

::::::::::::::::::::::::::::
(Vapnik, 1999; Smola et al., 2004).

::::
This

::::::::
becomes

::::::::
apparent

::
in

:::
the

::::
AZ,

:::::
where

:::::
many

:::
of

:::
the

::::::::::
observations

:::
are

::
in

:::
the

:::::
more

::::::::::::::
biogeochemically

::::::::
dynamic

::::::
coastal

::::::::
Antarctic,

::::::
where

::::::
melting

:::
sea

:::
ice

::::::
results

::
in

:::::
short

:::::::::::
decorrelation

:::::
length

:::::
scales

::::::::::::::::::::::::::::::::::::::::::::::::::
(Bakker et al., 2008; Chierici et al., 2012; Jones et al., 2012).

:::
The

:::::
SVR

:::
has

:::::
much

:::::
larger

::::::
RMSE

:::::
scores

:::
in

:::
the

:::
AZ25

:::
than

:::
the

:::::
RFR

::
or

:::::::::
SOM-FFN

:::::::
(35.69,

:::::
23.49

:::
and

:::::
21.32

:::::
µatm

:::::::::::
respectively).

:::::
This

:::::::
suggests

::::
that

:::::::::::
implementing

:::
the

:::::
SVR

::::::::
approach

::::::
without

:::
an

::::::
initial

::::::::
clustering

::
or

:::::::::::::
regionalisation

::::
step,

:::
will

:::
not

:::::
yield

::::
good

:::::::
results.

::
By

:::::::::::
comparison,

:::
the

::::
RFR

::::::::
approach

:
is
:::::
more

:::::
adept

::
at

:::::
fitting

::::::
various

::::::
length

:::::
scales

::
of

:::::::::
variability,

:::::::::
accounting

:::
for

::::
both

:::
the

::::::
higher

:::
and

:::::
lower

:::::::::
variability

::
in

:::
the

:::
AZ

::::
and

::::
PFZ

::::::::::
respectively

:::::
(with

:::::::
SOCAT

::
v3

::::::::
standard

::::::::
deviations

:::
of

:::::
54.65

:::
and

:::::
20.01

::::::::::::
respectively).

:::
The

::::
high

:::
r2

:::::
scores

::::::::
achieved

:::
by

::::
RFR

::
in

:::
the

::::
AZ

:::
and

::::
PFZ

:::::
(0.81

::::
and

::::
0.71

:::::::::::
respectively)

:::::::
highlight

:::
the

:::::::::
flexibility

::
in

:::
the

:::::::
method30

:::::
(Table

:::
2).

::::
This

::
is

:::
due

::
to

:::
the

::::::::::
differences

::
in

:::
the

:::::::::
underlying

:::::::::::
mathematics

::
of

:::
the

::::::::
methods.

:::::::
Decision

:::::
trees,

::::::
which

:::
are

:::
the

:::::::
building

::::
block

:::
of

:::::
RFR,

:::::::
separate

::::
data

::
at

::::
each

::::::::
decision

::::
node

::::
with

::
a
:::::::
discrete

::::::::
boundary

::::::::::::::
(Breiman, 2001).

::::::::::
Conversely,

::::::
ANNs

:::
and

::::::
SVRs

::::
often

:::
use

::::::::
Gaussian

::::::::
functions

::
in
:::
the

::::
cost

::::::::
function,

:::::::
resulting

:::
in

::::::::
smoother

:::::::::::::
approximations

:::::::::::::
(Vapnik, 1999).

::::
This

:::::
makes

::::::::
decision

::::
trees

:::::
prone

::
to

:::::::::
overfitting,

:::
but

:::
the

::::::::
ensemble

:::::::::::::
implementation

::
of

::::::::
Random

::::::
Forests

:::::::::
eliminates

:::
this

::
to

:
a
:::::
large

::::::
extent.
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4.1.2
::::::::::
Differences

::
in

:::::::
∆pCO2:::::::::

estimates

One of the most marked differences
:::::
largest

:::::::::
differences

::
in
:::::::
∆pCO2:

is the weaker sink estimated by the SOM-FFN method in the

SAZ (Figure 6). This difference can be traced to the eastern Atlantic SAZ(Figure 5e), where the SOM-FFN has higher estimates

of ∆pCO2 .
::::::
(Figure

::
5e

::::::
shown

::
by

:::
the

:::
red

::::
oval

:::
and

:::
the

:::::::::
differences

:::::::
between

:::
the

:::::::
methods

::
in

::::::
Figure

::::::
A3a,b).

::
A

::::::::::
comparison

:::::::
between

::
the

:::::
SVR

:::
and

:::::
RFR

::::::
trained

::::
with

:::::::
SOCAT

::
v2

::::
and

:::
v3

::::::
further

::::::::
eliminates

:::
the

::::
use

::
of

:::::::
different

:::::::
training

:::::::
datasets

::
as

:::::::
primary

:::::::
sources5

::
of

:::::::::
difference,

:::::
where

::::::::::::
methodology

::
is

:
a
::::::
higher

:::::
order

:::::
driver

:::
of

::::::::
difference

:::::::
(Figure

::::
A2).

:
The lack of this feature in the

::::::
eastern

::::::
Atlantic

::::::
sector

::
of

::::
the

::::::::
Southern

:::::
Ocean

:::
in

:
SVR and RFR estimates suggests that this is a function of the initial clustering

step in the SOM-FFN. This clustering step separates the global
::::
The

::::::::
clustering

:::::::
process

::::::::
separates pCO2 dataset into distinct

clusters defined by oceanographic and biological properties rather than region (Landschützer et al., 2014). Thus a cluster in the

subtropical South Atlantic could be grouped to the same cluster as the tropical South Atlantic. The
::::::::::
observations

::::
into

:::::::
clusters10

:::
that

:::
are

:::
not

:::::::::
restricted

::
in

::::
time

::::
and

:::::
space

::::::::::::::::::::::
(Landschützer et al., 2014).

:::::
This

::::::
allows

:::
the SOM-FFN is implemented in a global

domain, meaning that the algorithm could be mapping the relationship between
::
to

:::::::
“transfer

::::::::::
knowledge”

:::::
from

:
a
::::::
remote

:::::::
location

::::
(even

:::::::
outside

::
the

::::::::
Southern

:::::::::::
Hemisphere)

::
if

::::::
proxies

:::
are

::::::
similar

::
to

:::
the

:::::::
Southern

:::::::
Ocean.

::::
This

:::::::::
knowledge

::::::
transfer

:::::::
assumes

::::
that

:::
the

:::::::::
relationship

::::::::
between

:
pCO2 and its proxies from more tropical waters.

::
the

::::::::
measured

:::::::
proxies

::
is

:::::::
globally

:::::::::
consistent.

:::::::::
Moreover,

::::
there

::
is

:::
the

::::::::::
assumption

:::
that

:::
all

:::::
pCO2:::::::::

variability
::::::
(within

::
a
::::::
cluster)

::::
can

:::::::
captured

:::
by

:::
the

::::::::
measured

:::::::
proxies.

::::
This

::::::::::
assumption

::
is15

:::
not

::::
made

:::::
when

:::::
using

::::::::::
coordinates

::
or

:::::::
regional

::::::
subsets

::
as

::::::::
locations

:::
are

:::::::
isolated,

:::
but

:::::
there

:
is
::::
then

:::
the

::::::::
potential

:::
loss

:::
of

:::::::::
knowledge

::::
from

::::::
remote

::::::::
locations.

::::
This

::::::::
question

:::
will

:::
be

::::::::
addressed

::::::
further

::
in
:::
the

:::::::::
discussion

:::
on

:::
the

:::
use

::
of

:::::::::
coordinate

::::::::
variables

::
as

:::::::
proxies

::
of

:::::::
∆pCO2.

:

Another difference
::::::
between

:::::::
∆pCO2::::::::

estimates is the tendency for the SVR to overestimate ∆pCO2 compared
::::::
relative to the

RFR and SOM-FFN approaches,
::::::::::
particularly

::
in

:::
the

::::
PFZ

:::
and

:::
AZ

::::::
where

:::::
winter

::::
data

::
is
::::::
sparse

::::::
(Figure

:::::
6)b,c. We attribute this to20

the SVR’s sensitivity to outliers
:
,
:::::::::
determined

:::
by

::
the

::::
fact

:::
that

:::
the

::::
cost

:::::::
function

::::::::
penalises

::::::
outliers

::::::
heavily

:::::::::
(Equation

::
5). In context

of the SOCAT v3 dataset, the algorithm may treat the sparse winter data as outliers. This means that the higher estimates
:
is
::::
due

::
to

::
the

::::
fact

:::
that

::::::
sparse

:::::
winter

::::::::::::
measurements

:
of ∆pCO2 in winter could be extrapolated, leading to the relatively elevated winter

estimates.
::
are

:::::::
positive,

:::::
while

:::
the

::::::::
abundant

:::::::
summer

::::::::::::
measurements

:::
are

::::::::
negative

:::::::::::::::::::::::::::::::::
Metzl et al. (2006); Lenton et al. (2013).

::::
This

:::
may

::::
then

:::
be

:
a
:::::::
positive

:::::::::
realisation

::
of

:
a
:::::::::::::
methodological

:::::::
attribute

::::
that

::
is

:::::::
typically

:::::::::
considered

::
a
::::::::
weakness.

:
25

Converselythe RFR
:
,
::::
RFR

::::::
winter estimates of ∆pCO2 are often lower than the SOM-FFN and SVR estimates

:
,
:::::
again

::
in

:::
the

:::
AZ

:::
and

::::
PFZ

:::::::
(Figures

::::
5g–i

::::
and

::::
6b,c). This may be due to the method’’s resilience against outliers. This is primarily due to the

bagging approach, where
:
,
:::::
which

:::::
could

:::
be

:::
due

::
to
::::

two
::::::::
attributes

::::::::::::::
(Louppe, 2014).

::::::
Firstly,

:::::::
outliers

:::
are

:::
less

:::::
likely

:::
to

::::::::
dominate

::
the

:::::::
feature

:::::
space

::::
with

:::
the

:::
use

:::
of

::::::::
bootstrap

::::::::::
aggregation

::
as

:::::
these

:::::
points

::::
will

::
be

::::::::
sampled

:::
less

::::::::::
frequently.

::::::::
Secondly,

:
individual

decision trees are trained with a subset of data that is sampled with replacement, thus the chance of sampling sparse winter30

data is lower. Moreover, the estimates will be more conservative due to the methods inability to estimate beyond the training

data
::::::
regress

:::::
values

:::
by

:::::
using

:::
the

::::::
average

:::
of

:::::::
samples

::
in

:
a
::::::::
terminal

::::
node

:::
(or

:::::
leaf),

:::::
where

:::
the

:::::::::
minimum

::::::
number

:::
of

:::::::
samples

:::
per

:::::::
terminal

::::
node

::
is

:::
set

::
by

:::
the

:::::
user.

::::
This

::::::
second

:::::::
attribute

::::::
means

:::
that

::::::::
estimates

::::
will

:::::
never

::
be

:::::::
outside

:::
the

::::::
bounds

::
of

:::
the

:::::::::
minimum

:::
and

::::::::
maximum

:::
of

:::
the

::::::
training

:::::::
dataset,

::::
thus

::::::
leading

::
to

:::::::::::
conservative

::::::::
estimates (as shown in Figure 2b).
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The differences between the methods shown in Figure 6 could be a good case for an ensemble approach, where the strengths

of one model compensate for the weakness of another.
::::
This

:
is
::::::::
assessed

::
in

:::
the

:::::::
synthetic

::::
data

::::
and

:::
will

:::
be

::::::::
discussed

::::::
further.

:

4.2 Performance and caveats of methods in simulation experiment

In both the simulation and observations, the RFR achieved the lowest RMSE for in- and out-of-sample scores. We postulate that

RFR is able to outperform both SVR and SOM-FFN due its ability to model data that contains a higher degree of non-linearity.5

The high degree of non-linearity stems from the discrete decision boundaries associated with decision trees, the building blocks

of RFR. Such non-linearity increases the risk of over fitting to
:::::
These

::::::::
attributes

::::
may

::::
also

:::
be

:::
the

::::::
reason

:::
for

:::
the

::::::::::
differences

::
in

:::
the

::::::::::
magnitudes

::
of

:::
the

:::::::
autumn

::::
peak

:::
in

:::::::
∆pCO2::

in
:::
the

:::::
SAZ

:::
and

:::::
PFZ.

::::::::::::::
Mechanistically

:::
this

:::::
peak

:::::
could

::
be

:::::::::
attributed

::
to

::
a

::::
sharp

::::::::
increase

::
in

::::::
cooling

:::::::
leading

::::
into

::::::
winter,

:::::::
resulting

::
in
:::::::::

increased
::::::::
solubility

::
of

::::
CO2::::

and
::::
thus

:
a
:::::
sharp

::::::::
reduction

:::
of

:::::::
∆pCO2

::::::::::::::::::::::::::::::::::
(Metzl et al., 2006; Takahashi et al., 2002).

:::::::
Deeper

::::::
mixing

::
of the noise

::::
water

:::::::
column

::::::
shortly

::::::::
thereafter

:::::
would

::::::
entrain

::::
CO2::::

rich10

::::::
waters,

::::
thus

:::::::::
increasing

:::::::
∆pCO2 :::::::::::::::::

(Lenton et al., 2013).
::::::::
However,

:::
the

:::::
trend

:::
for

::::
this

::::
peak

::
to

::::::
shrink

::
in

:::
the

:::::
SAZ

:::
and

::::
PFZ

:::
for

:::
all

:::::::
methods

:::::::
suggests

::::
that

:::
this

::::
may

:::
an

::::::
artefact

::::
that

::
is specific to the training dataset. However, over fitting is minimized by using

a large number of trees in a random forest, which, combined with bagging, results in good generalization (Louppe, 2014).

However, if the training dataset is not representative of the entire domain, generalization techniques such as bagging will not

be able to reduce the over fitting.
::::::
SOCAT

:::::::
dataset.15

In contrast to RFR, the non-linearity of SVR is fixed by the selection of a constant width of the Gaussian kernel for the

entire domain, thus applying the assumption of constant variability to the domain (both temporally and spatially). This can be

overcome by clustering regions of similar variability, as was done in the two-step SOM-FFN approach by Landschützer et al. (2015).

In fact the similarity between FFN and SVR (Vapnik, 1999), could lead to similar results if a clustering technique was applied

to the latter. However, this introduces the additional complexity of dealing with20

4.2
::::::::

Synthetic
:::::

data
:::::::::::
experiments

::
In

:::
this

::::::
section

:::
we

:::::::
discuss

:::
the

::::::::
outcomes

::
of

:::
the

::::
two

::::::::::
experiments

:::::::::
performed

:::
on

:::
the

::::::::
synthetic

::::::
dataset

:::::::::::::::
(BIOPERIANT05

::::::
model

::::::
output).

::::
The

::::
first

:::::::::
experiment

:::::::::
addresses

:::
the

::::::
efficacy

:::
of

::::::::
including

:::::::::
coordinate

::::::::
variables

::
as

:::::::
proxies

::
of ∆pCO2discontinuities of

cluster boundaries. .
:::::

This
::
is

::::
done

:::
by

:::::::
running

:::
two

::::::::::::::
implementations

:::::
RFR

:::
and

:::::
SVR:

:::::::
without

::::::::::
coordinates

::
as

:::::::
proxies,

::::
and

::::
with

:::::::::
coordinates

::
as

:::::::
proxies.

::::
The

::::::
second

:::::::::
experiment

::::::::
addresses

:::
the

::::::
impact

::::
that

::
the

:::::::
SOCAT

:::::::
dataset,

:::::
biased

::
in

::::
both

:::::
space

::::
and

::::
time

:::
has25

::
on

:::::::
∆pCO2::::::::

estimates.
:

The non-linearity of the RFR allows the implementation without coordinates to marginally outperform the SVR implemented

with coordinates (Table ??). Though the inclusion of coordinates improves the RFR and, to a lesser extent, SVR error estimates.

This indicates that SST, Chl-a, MLD and SSS are able to represent

4.2.1
::::::::::
Coordinate

::::::::
variables

:::::::
improve

:::::::::
estimates30
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::::
This

::::
topic

:::
has

::
to
:::::

some
::::::
extent

::::::
already

:::::
been

:::::::::
mentioned

::
in

:::
the

:::::::::
discussion

::
of

:::
the

:::::::::::
observational

:::::
data,

:::::
where

:::::::
pointed

:::
out

:::
the

::::
case

::
for

::::
and

::::::
against

:::
the

::::::::
inclusion

::
of

:::::::::
coordinate

::::::::
variables

::
as

:::::::
proxies

:::
for

:::
∆pCO2relatively well, but the relationship between these

variables changes by region and period. The inclusion of coordinates decomposes the problem to specific regions or periods as

clustering approaches achieve. This implies that the available .
::
If
::::::::::
coordinates

:::
are

:::
not

::::::::
included

::::
there

::
is

:::
the

::::::
benefit

::
of

::::::::
potential

:::::::::
information

:::::::
transfer

:::::
from

::::::
remote

::::
parts

::
of
::::

the
:::::::
domain,

:::
but

:::
this

:::::::
assumes

::::
that

:::
the

:::::::
satellite

:::::::::
observable

:::::::
proxies

::::
(and

::::::::::
assimilative5

:::::
model

::::::
output)

::::::::
constrain

:::::::
∆pCO2 ::

in
:
a
:::::::
globally

::::::::
consistent

:::::
way.

:
If
::::::::::
coordinates

:::
are

:::::::
included

:::
the

::::::::::
information

::::::
transfer

::
is
::::
lost

:::
and

:::
the

:::::::::
assumption

::
is

:::::
made

:::
that

:::
the

:
proxy variables are not able to capture the variability of

:::::::
constrain ∆pCO2 ::

in
:
a
:::::::
globally

:::::::::
consistent

::::::
manner.

For example, there may be differences in the relationship between
::::
The

:::::
results

:::
of

:::
this

::::::::::
experiment

:::::
show

::::
that

::::::::::
coordinates

:::::::
improve

::::::::
estimates

::
of

:::
∆pCO2 and SSS in the western Atlantic compared to the eastern Indian sector. A prior clustering step ,10

or the addition of coordinate proxies would account for these differences.

While the RFR method achieved the lowest RMSE scores, it is not without limitations. The RFR method, unlike SVR, is

not able to extrapolate estimates of CO2 beyond the bounds of the observations (Louppe, 2014). This is due to the structure of

decision trees, where estimates are based purely input and cannot extrapolate beyond the minimum and maximum observed

::::
with

:::::
better

::::::
RMSE

:::::
scores

:::
for

::::
both

:::::
SVR

:::
and

:::::
RFR

:::::
(Table

:::
3).

:::
We

:::
are

::::
thus

::
in

::::::
favour

::
of

:::
the

::::::
second

:::::::::
hypothesis

::::
that

:::
the

::::::::
available15

::::::
proxies

::::::
cannot

:::::::::
sufficiently

::::::::
constrain ∆pCO2 . This means that the RFR estimates are more conservative than SVR and

::::::
without

::::::::::
coordinates.

::
A

:::
two

::::
step

::::::::
clustering

:::::::::
approach,

::::
such

::
as

:
SOM-FFN, which are able to extrapolate. Moreover, the relative paucity

of winter data combined with the bagging approach exacerbates the relative underestimates of winter
::::
may

::
be

::::
able

::
to

:::::::
achieve

:::::::::
comparable

::::::
results

:::::::
without

::::::::::
coordinates,

:::
but

:::
this

:::::
would

:::::
have

::
to

::
be

:::::
tested

::::
with

:::
that

:::::::
specific

:::::::
method.

::::::::
However,

:::
this

::::
may

::::
also

::::
lead

::
to

:::::
trends

::
in

:::
the

::::
data

::::
that

::::
may

::
be

::::::::
artefacts

::
of

::::::
remote

:::::::::
knowledge

:::::::
transfer,

:::
as

:::::::::
potentially

::::
seen

::
in

:::
the

:::::::::::
observational

::::
data

:::::::
(Figure20

:::
5f).

::
An

:::::::::
important

:::::::
outcome

::
of

::::
this

:::::::::
experiment

::
is

::::
that

:::
the

:::::::
inclusion

:::
of

:::::::::
coordinates

::::::::
improves

:::
the

::::::::
seasonal

::::::
phasing

::
of

:::
the

::::::::
methods

::::::
(Figure

:::::
8a,b).

::
It

::
is

::::::
critical

:::
for

:::
the

::::::::
empirical

:::::::
methods

::
to
::::::::
correctly

:::::::
estimate

:::
the

:::::::
phasing

::
of

:
∆pCO2 . In bagging sampling with

replacement would result in far more frequent selection of summer data than winter data. More winter data is needed to improve

this imbalance
:
as

:::
the

:::::::
seasonal

:::::
cycle

:::::::
phasing

::::
may

::
be

:
a
::::::
useful

:::::::
indicator

::
of

::::::::::::
anthropogenic

::::::
driven

:::::::
changes

::
to

::
the

::::::
marine

:::::::::
carbonate25

::::::
system.

4.3 Limitations of SOCAT v3

A key finding of the simulation experiment is that out-of-sample RMSEs arelarger than in-sample RMSEs, implying that

error estimates for observational ∆pCO2 would also be underestimated. This is due to the paucity of measurements in the

Southern Ocean, meaning that
:::
One

::
of

:::
the

:::::::::::
assumptions

::
in

:::::
these

::::::::
synthetic

::::
data

::::::::::
experiments

:::
is

:::
that

:::
the

:::::::
models

::::
are,

::
to

:::::
some30

:::::
extent,

::::::::::::
representative

:::
of

:::
the

::::::::
variability

:::
in

:::
the

::::::::
observed

::::::
ocean.

::::::::
However,

:::
the

:::::::::::::::
BIOPERIANT05

:::::
output

:::::
does

:::
not

:::::::
achieve

::::
this,

::::
with

:
a
:::::::
standard

::::::::
deviation

::
of

:::::
19.80

:::::
µatm

:::
for

::::::::
synthetic SOCAT v3 is not yet representative of the full Southern Ocean domain,

despite significant increases in the number of samples (Bakker et al., 2016). Tuning the algorithms to generalize to the dataset

is crucial to avoid over fitting to the noise of the training subset. However, in this case, more strategic measurements are
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needed to make SOCAT more representative of the Southern Ocean.
::::
data

::::::::
compared

::
to
::::::

38.20
::::
µatm

:::
of

:::
the

:::::::
gridded

:::::::
SOCAT

::
v3

:::::::::::
observations

:::::::::
(according

::
to
::::::::

Southern
::::::

Ocean
:::
as

::::::
defined

:::
by

:::::::::::::::::::::
Fay and McKinley 2014).

:::::
This

:::::
could

::
be

::
a
:::::
cause

:::
for

::::::::
concern.

::::::::
However,

:::
we

::::::
believe

::::
that

:::
this

:::::::
creates

::
an

:::::
even

:
a
:::::::
stronger

:::::
case

:::
for

:::
the

:::
use

:::
of

::::::::::
coordinates

::
as

:::::
proxy

:::::::::
variables.

:::
The

:::::::::
increased

::::::::
variability

::
in
::::

the
::::::::::
observations

:::::
could

:::
be

::::
due

::
to

::::::::
processes

::::
that

:::::::::::
deterministic

::::::
models

::::
can

:::
not

:::
yet

::::::::
constrain

::::
due

::
to

:::
our

::::
lack

:::
of

:::::::::::
understanding

::
of
:::
the

::::::
marine

:::::::::
carbonate

::::::
system

:::::::::::::::::::::::::::::::::::
(Lenton et al., 2013; Mongwe et al., 2016).5

The ratio of in-sample and out-of-sample errors for SVR and RFR can be used to gain insight about the ability of the

respective methods to generalize to the training dataset. This ratio (Eout

Ein
) is 1.26 for SVR and 1.35 for RFR, showing the SVR

has the ability to generalize better to the training dataset, but this needs to be viewed in context of the methods’ RMSE scores.

These ratios can be applied to the in-sample errors in the observational estimates

4.2.1
:::::::
SOCAT

:::::
biases10

:::
The

::::
lack

:::
of

:::::
winter

::::::
pCO2::::

data
::
is

::
a
:::::::
problem

::::::::::
throughout

:::
the

::::
mid

:::
and

:::::
high

::::::
latitude

:::::::
oceans,

:::
but

::
is
::::::::::

particularly
::::::

severe
:::
in

:::
the

:::::::
Southern

::::::
Ocean

::::::::::::::::::
(Bakker et al., 2016),

:::
but

:::
the

::::::
impact

::
of

:::
the

::::
lack

::
of

::::
data

:::
in

:::
the

:::::::
Southern

::::::
Ocean

::
is

:::
not

:::::::
known.

:::::::::
Moreover,

:::
the

::::::
efficacy

::
of
:::::::

various
:::::::
methods

::
to
:::
fill

::::
this

::::
large

::::::::
temporal

:::
gap

::
is
::::::::
unknown

:::::::::::::::::::::
(Rödenbeck et al., 2015).

:::::
Here

::
we

:::::
show

::::
that

::::
there

::
is
::
a

::::::::::
considerable

::::::
impact

::
in

::::
this

::::::::
synthetic

::::
data

:::::::::::
environment,

:::
but

:::
the

:::::
effect

::
of

:::
the

::::::::
sampling

::::
bias

::
is

:::::::
perhaps

::::::
smaller

::::
than

:::
we

::::::
would

::::
have

::::::::::
anticipated.

::::
Both

:::::::
methods

:::
are

::::
able

::
to

::::::::
estimate

:::
the

:::::
spatial

::::::::::
distribution

:::
and

:::
the

::::::::
seasonal

:::::
cycle of ∆pCO2 . This results in15

a theoretical out-of-sample RMSE of 20.21 µatm for SVR and 16.76 µatm for RFR for the estimates calculated from SOCAT

v3. There may be variations of RFR, such as Extremely Randomized Trees (Geurts et al., 2006), that are perhaps better at

generalizing to a sparse dataset, but investigating this requires additional work.
::::
with

::::::
relative

::::::::
accuracy

:::::::
(Figures

::
8
::::
and

:
7
::::
and

::::
Table

:::
3).

::::
This

:::::
could

::
be

::::
due

::
to

:::
two

:::::::
factors.

In summary,
::::::
Firstly,

:::::
winter

::::
data

::
is
::::

less
:::::::
variable

::::
than

::::::::
summer

::::
data

:::
and

:::::::
requires

::::
less

:::::::::
sampling.

:::::::::::::
Mechanistically,

::::
this

::
is

::
a20

:::::
likely

:::::::
scenario.

:::
In

:::::::
summer

:::::::
∆pCO2 ::

is
:::::::::::::::
spatio-temporally

::::::::::::
heterogeneous

::
in

:::
the

::::::::
Southern

::::::
Ocean

:::
due

::
to
:::

the
::::::

uptake
:::

of
::::
CO2:::

by

::::::::::::
phytoplankton

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Metzl et al., 2006; Bakker et al., 2008; Thomalla et al., 2011; Chierici et al., 2012; Lenton et al., 2013).

::::
The

:::::
drivers

::
of

::::::::::::
phytoplankton

::
are

::::::::
complex

:::
due

::
to the correct implementation of machine learning algorithms should minimize over fitting to

the training dataset
::::::::::
co-limitation

::
of

::::
light

::::
and

:::
iron

:::
(as

:
a
::::::::::::
micronutrient)

::
in

:::
the

::::::::
Southern

:::::
Ocean

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Boyd and Ellwood, 2010; Thomalla et al., 2011; Tagliabue et al., 2014).

::::
This

:::::::::
complexity

::::::
would

:::::::
require

:::::
more

:::::::::
sampling,

:::::::
perhaps

::::::::
additional

:::::::
proxies

:::
or

::::::::
increased

::::::
spatial

:::::::::
resolution

:::
to

::::::
capture

::::
the25

::::::::
variability

::
of

::::::::
∆pCO2.

::::::::::
Conversely,

::::::::
processes

:::::::
driving

:::::
winter

::::::::
∆pCO2,

::::::
namely

:::
the

:::::::::
interaction

:::
of

::::::
mixing

:::
and

:::::::::
buoyancy,

:::
act

:::
on

:::::
larger

:::::
scales,

:::::::::
potentially

:::::::
leading

::
to

:::
less

:::::::::::::
spatio-temporal

::::::::::::
heterogeneity. However, in the case of the

:::
lack

:::
of

::::::::::
observations

::::::
means

:::
that

:::
we

::::::
simply

::::::
cannot

:::::
know

:::::
with

::::::::
certainty.

::::
This

::::::
makes

:
a
::::::

strong
::::
case

:::
for

:::::::::::
autonomous

::::::::
sampling

::::::::
platforms

:::
to

:::
the

:
Southern

Oceansector of the SOCAT v3 dataset, the data is not yet representative of
:
’s

:::::
winter

::::::::
sampling

::::
gap.

::::
The

:::::::::
SOCCOM

::::
float

::::::
project

:::
may

:::::
soon

::::
yield

:::::
such

::::::::::::
measurements

::::
with

:::
pH

:::::::
derived

::::::::
estimates

::
of

:
pCO2 for the entire domain. This means that there will be30

biases in estimates that generalization techniques
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Russell et al., 2014; Johnson et al., 2017; Williams et al., 2017).

::::::::
Secondly,

:::
the

::::::
model

::::
used

::
to

::::::::
generate

:::
the

::::::::
synthetic

::::
data

::::
may

:::
not

::
be

::::::::::::
representative

:::
of

:::
the

:::::::
Southern

:::::::
Ocean.

::::
This

:::
has

:::::
been

::::::::
discussed

::
in

:::
the

:::::::
previous

:::::::
section,

:::
but

:::::
here,

:::::
rather

::::
than

:::::::::
increasing

:::
our

::::::::::
confidence,

::
it
:::::::::
diminishes

::::
our

:::::::::
confidence

::
in

:::
the

::::::
result.

::::::
Studies

::::
have

::::::
shown

:::
that

:::::::
process

::::::
models

:
are not able to resolve for which more representative data is required.
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4.3 Trends of ensemble estimates

While methodological differences exist, the trends of ∆p
::::::::
accurately

::::::::
represent

::::
the

:::::::
seasonal

:::::
cycle

::
of

:
CO2 and air-sea

::
in

:::
the

:::::::
Southern

::::::
Ocean

:::::::::::::::::::::::::::::::::::
(Lenton et al., 2013; Mongwe et al., 2016).

::::::::::
Moreover,

:::
∆pCO2 flux (as shown in Figure 6) are mostly in

agreement. Moreover, the algorithmic differences that each method exhibit lend themselves to an ensemble approach. This

approach allows for more robust estimates of
:
is

::::
often

::::::
driven

::
by

::::::::
processes

::::
that

:::
are

::
not

::::::::::::
representative

::
of

::::::::::
observations

:::::::::::::::::::
(Mongwe et al., 2016).5

:::
The

:::::
most

:::::
likely

:::::::
scenario

::
is

:::::
likely

:
a
::::::::::
combination

:::
of

::::
these

::::
two

::::::
factors,

::::::
where

:::::
winter

::::
data

::
is

::
in

:::
fact

::::
less

:::::::
variable

::::
than

:::::::
summer

::::
data,

:::
but

:::
the

::::
error

::
is
:::::
larger

::::
than

:::
the

::::::::::
experiment

:::::
shows

::::
due

::
to

::::::::::
incomplete

:::::::::
knowledge

::
of

:::
the

::::::::
processes

::::
that

:::::::
describe

:
pCO2 and

air-sea CO2 fluxes (FCO2). For instance, the conservative estimates of the RFR could be offset by the relative overestimation

by the SVR
::
in

:::
the

::::::
process

:::::::
models.10

The trends of the ensemble of FCO2 for the SAZ, PFZ and AZ are shown in Figure ??. These are in agreement with the

trends explained in Landschützer et al. (2015): a slight weakening of the sink from

4.2.1
:::
The

::::
best

::::::::
method:

:::
the

::::::::
ensemble

::::::::
average

:::
The

::::::::
synthetic

::::
data

::::
also

::::::
allows

::
us

::
to

::::::::
compare

:::
the

::::
two

:::::::
methods

:::::::
relative

::
to

::::
each

:::::
other,

:::
in

:::
the

::::::
context

::
of
::::

the
:::::::
SOCAT

::
v3

:::::
data.

:::
The

::::
data

:::::
show

::::
that

:::
the

:::::
RFR

:::::::
method

::::::::
performs

:::::
better

::::
than

::::
the

::::
SVR

:::::::
(trained

:::::
with

::::::::::
coordinates

::
as

::::::::
proxies)

::::
with

:::::::::
respective15

:::::::::::
out-of-sample

:::::::
RMSEs

::
of
:::::

5.76
:::
and

::::
6.19

:::::
µatm

::::::
(Table

:::
3).

::::::::
However,

::
it

::
is

:::
the

:::::::
average

::
of

:::::
these

::::
two

:::::::
methods

:::::::::
(ensemble

::::::
mean)

:::
that

:::::::
achieves

::::
the

:::::
lowest

::::::
RMSE

:::::
(5.36

::::::
µatm),

:::::
albeit

::::::::
marginal.

::::
The

::::
time

:::::
series

:::
in

::::::
Figure

::
8c

::::::
shows

:::
that

:::
the

::::::::::::
improvement

::::
may

::::
come

:::::
from

:::
the

:::::
period

:
1998 into the early 2000s (as also found by Le Quéré et al. 2007) followed by a reinvigoration of CO2

uptake through to the end of the time series in 2014. The PFZ dominates this interannual variability of FCO2 with a strong

reduction in outgassing between 2002 and 2010. The relatively large seasonal amplitude of
:
to

:::::
2000,

:::::
when

::::
RFR

::
is
:::::::
plagued

:::
by20

:::::::::::::
underestimation

::
of

:::
the

::::
sink

:::::::
strength,

:::::
while

::::
SVR

::::::::::::
overestimates

:::
the

:::
sink

::::::::
strength.

::::
This

:::::::
supports

:::
the

:::::
notion

::::
that

:::
the

:::::::
strengths

::::
and

:::::::::
weaknesses

:::
of

::::
these

::::
two

:::::::
methods

::::::::::
compliment

::::
each

::::::
other.

::::::::
Moreover,

::
it
:::::::
supports

:::
the

:::::
merit

::
of

::::::::
multiple

:::::::::
approaches

::::
and

::::::
further

::::::::::
development

::
of

::::::::
empirical

::::::::
methods

::
for

:::
the

:::::::::
estimation

::
of

:
∆pCO2observed in the AZ is damped by weaker winds and winter ice

cover resulting in relatively weak fluxes (compared the PFZ). Compared to the PFZ and AZ, the SAZ is a strong and consistent

sink (with meanuptake of -0.042, -0.025 and -0.55 PgC yr−1 respectively) that strengthens slightly throughout the period, but25

the seasonal signal and amplitude are dominated by intra-seasonal modes as was found in observations (Monteiro et al., 2015).

To understand the driving mechanisms behind these trends, an in depth study needs to be undertaken.

Ensemble air-sea CO2 fluxes for each region as defined by Fay and McKinley (2014). Flux is calculated as shown in Equation

6. The SAZ = Sub-Antarctic Zone, PFZ = Polar Frontal Zone, and AZ = Antarctic Zone.

25



5 Conclusions

In this study two empirical methods (SVR and RFR) are presented as alternative (and perhaps complimentary) methods to

estimating ∆p
::::::::::::::
complementary)

:
pCO2 from satellite proxies by tuning the methodsto best predict ship-based measurements

:::
gap

:::::
filling

:::::::
methods. These algorithms are established in other fields, but have not been applied for the estimation of surface ocean

∆pCO2to overcome the limitations of the existing paucity of in situ observations, particularly in the Southern Ocean. The5

seasonal bias in observations is particularly evident during winter .

Both methods, with coordinate proxies, were applied to observational data and .
::::
We

:::::
apply

:::
the

:::::::
methods

:::
to

:::
the

::::::::
Southern

:::::
Ocean

:::::
where

:::
the

:::::::
paucity

::
of

::::
ship

:::::
based

:::::::::::
measurements

::::::
during

::::::
winter

::
is

:::
one

::
of

:::
the

:::::
major

:::::::::
challenges.

::::
The

:::::::
SOCAT

::
v3

::::::
dataset

::::
was

::::::::
co-located

::::
with

::::::::::
assimilative

::::::
model

:::::
output

:::
and

:::::::
satellite

:::::::::
measurable

:::::
proxy

::::::::
variables

::
to

:::::
create

:
a
:::::::
training

::::::
dataset

:::::::::::::::::
(Bakker et al., 2016).

:::::
These

::::::::
estimates

::::
were

:
compared with the SOM-FFN method

:::::::
approach by Landschützer et al. (2014). There is good agreement10

between the trends of each of the methods, though an absolute assessment of the results to an independent datasetwas not

possible due to the paucity of data. Methodological differences were apparent over and above the dominant trend. The SVR is

more likely to produce overestimates of winter

:::
We

:::::
found

::::
that

:::
the

:::::::::
SOM-FFN

:::::::
method

::::::::::::
outperformed

:::
the

::::
new

:::::::::
approaches

:::::
with

:::::
lower

::::::
RMSE

::::::::
estimates

::::
than

::::
the

::::
RFR

::::
and

::::
SVR.

::::
The

:::::
RFR

::::::::
performed

:::::::::::
comparably

::
to

:::
the

:::::::::
SOM-FFN

::::::::
approach

:::::
when

:::::::::
compared

::::
with

:::
the

:::::::
SOCAT

::
v2

:::::::
dataset,

::::
with

::::::
which15

:::::::::
SOM-FFN

:::
was

:::::::
trained.

::::
The

:::::::
increase

::
in
:::

the
:::::::

number
:::
of

::::::::::::
measurements

::
in

:::
the

::::::
highly

:::::::
variable

::::::
coastal

:::::
ocean

::::::::
between

:::::::
SOCAT

::
v2

:::
and

:::
v3

:::::
leads

::
to

::::::::
increased

::::::
RMSE

::::::
values,

::::::::::
particularly

::
in

:::
the

:::::::::::
Subantarctic

::::
Zone

:::::::
(SAZ).

::::::
Despite

::::::::::
accounting

:::
for

:::
the

:::::::
increase

::
in

::::::
coastal

::::
data,

:::
the

:::::::::
SOM-FFN

::::
still

:::::::::::
outperformed

:::
the

:::::
SVR

:::
and

:::::
RFR

:::::::::
approaches

::
in
:::

the
:::::

SAZ.
::::
We

:::::::
attribute

:::
this

::
to

:::
the

::::::::
methods

:::::
ability

::
to

::::::
cluster

:::
the

::::::
training

::::
data

::::
into

::::::
regions

::
of

:::::::
different

::::::
modes

::
of

:::::::::
variability

::
to

:::::
which

:::::::::
individual

:::::::::
regressions

:::
are

::::
then

:::::::
applied.

:::
The

:::::
SVR

::::::
method

:::::::::
performed

::::::
poorly

:::
due

::
to

:::
its

:::::::
inability

::
to

:::::
adapt

::
to

::::::
various

::::::
modes

::
of

:::::::::
variability,

:::::
while

:::
the

:::::
RFR

::
is

::::::::::
intrinsically20

::::
much

:::::
more

:::::::
flexible,

::::
thus

:::::::::
performed

::::
well

::
in

:::::
fitting

:::
the

:::::::
training

::::
data.

:::::
There

:::
was

:::::
good

:::::::::
agreement

:::::::
amongst

:::
the

:::::
three

:::::::
methods

::::
with

:::::::
respect

::
to

:::
the

::::::
overall

:::::
trend

::
of

:
∆pCO2compared to ,

:::
but

:::::
there

::::
were

::::
also

::::::::::
differences.

::::
The

:::::::
primary

:::::::::
difference

::::
was

::
in

:::
the

:
the other two approaches. Conversely, the RFR produced lower

estimates of
:::::::
Atlantic

:::::
sector

::
of

:::
the

:::::
SAZ,

::::::
where

:::
the

:::::::::
SOM-FFN

::::::::::::
overestimated

:::
∆pCO2 in winter. The ensemble fluxes showed

that the SAZ region as responsible for the majority of
::::::
relative

:::
to

:::
the

::::
other

::::::::
methods.

::::
This

::
is
::::::
likely

:::
due

::
to

::::::
remote

::::::::::
knowledge25

::::::
transfer

::::::
within

:
a
::::
data

::::::
sparse

::::::
cluster;

::::::::
however,

:::
we

::::::
cannot

::::::
identify

::::
this

::
as

::::
right

:::
or

:::::
wrong

::::
due

::
to

:::
the

::::
lack

::
of

::::
data

::
in

::::
this

::::::
region.

:::::
Other

:::::::::
differences

:::::
were

:::
due

::
to
::::::::

intrinsic
::::::::
attributes

::
of

:::
the

::::::::
methods:

:::::
SVR

::::
was

:::::::
sensitive

::
to

:::::::
outliers

::::::::
resulting

::
in

::::::::
relatively

:::::
large

:::::
winter

:::
∆pCO2 uptake over the period (1998

::::::::
estimates – 2014), while the PFZ dominated interannual variability. Ice cover

in the AZ muted the large seasonal amplitude of
:::::::::
potentially

:
a
::::::::

desirable
:::::::
feature

::
for

::::::
sparse

::::::
winter

::::
data;

:::::
RFR

:::::::::::::
underestimated

∆pCO2 ::::::
relative

::
to

:::
the

::::
other

::::::::
methods

:::
due

::
to

::
its

:::::::::
robustness

::
to
:::::::
outliers.30

To test the efficacy of these methods, they were first applied in an idealized model environment that simulates the distribution

of the current ship based measurements of CO2, that is the
::::::
applied

::
to

::
a
::::::::
synthetic

::::::
dataset

:::::::
(process

::::::
model

::::::
output).

::::
Two

::::::
major

::::::::
questions

::::
were

:::::
asked:

::
1)

:::::
what

::
is

::
the

:::::::
efficacy

::
of

::::::::
including

:::::::::
coordinate

::::::::
variables

:::::
(time,

::::::
latitude

:::
and

:::::::::
longitude)

::
as

:::::
proxy

:::::::::
variables?

::
2)

:::::
What

::
is

:::
the

::::::
impact

::
of

::::::::
sampling

:::::
biases

::
in
:::

the
:

SOCAT v3 dataset.
:
?
:
The results showed that RFR is better able to estimate

26



::::::::
including

:::::::::
coordinate

:::::::
variables

:::::::::
improved

:::
the

::::::::
estimates

::
of

:
∆pCO2 from the SOCAT v3 data. The experiment also confirmed

that both SVR and RFR estimates are improved by including transformations of time and space coordinates as proxies of
:::
for

::::
SVR

:::
and

:::::
RFR.

:::::::::
Moreover,

:::
the

:::::::
phasing

::
of

:::
the

:::::::
seasonal

:::::
cycle

::::
was

:::
also

:::::::::
improved

::::
with

:::
the

:::::::
inclusion

:::
of

::::::::::
coordinates.

::::
The

::::::
second

:::::::::
experiment

:::::::
showed

:::
that

:::::
there

:
is
::::
only

::
a
:::::
small

:::
bias

::
in
:::
the

::::::::
estimates

::
of
::::
∆pCO2. It is shown that the SOCAT v3 dataset is not yet

completely representative of the Southern Ocean. The in-sample error estimates were smaller than the out-of-sample estimates,5

but this varied according to each method ’s ability to generalize to the data. This showsthat reported errors of empirical
:
;

:::::::
however,

:::
the

::::::::
inability

::
of

:::::::
process

::::::
models

:::
to

::::::::
represent

::::::::
Southern

::::::
Ocean ∆pCO2 estimates in the Southern Ocean are likely

underestimated. More representative data will thus have to be collected to reduce the uncertainty of the mean annual flux to

the < 10% threshold (Lenton et al., 2006). This may already be an achievable goal with biogeochemical Argo floats able to

estimate pCO2 from pH sensors (Williams et al., 2017).
::::::::
variability

:::::::::
accurately

:::::
places

::::::::::
uncertainty

::
on

::::
this

:::::
result.

:
10

:::::
Lastly

:::
we

:::::
show

::::
that

:::::
while

:::
the

:::::
RFR

::::::::
approach

:::::::::::
outperforms

:::
the

::::
SVR

:::::::::
approach,

:::
the

:::::::::
ensemble

:::::
mean

::
of

:::
the

::::
two

::::::::
methods

:::::
scores

:::::
better

::::
than

:::::
either

:::::::::
individual

:::::::
methods.

:::::
This

::::::::
motivates

:::
for

::::::::
continued

:::::::
research

:::
on

:::::::
methods

:::
that

:::::::::::
complement

::::
each

:::::
other

::
in

:::::::
strengths

::::
and

::::::::::
weaknesses.

Data availability. The data are available at (https://figshare.com/s/dd034ad593cfd8c5188a)

Appendix A:
::::::::::
Comparison

:::
of

:::::::
SOCAT

::
v2

::::
and

:::
v315

(a)
1998 : 2006

(b)
2007 : 2014
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Figure A1.
:::
The

::::::
increase

::
in

:::
the

::::::
number

::
of

::::::::::
observations

::::::
between

:::::::
SOCAT

::
v2

:::
and

::::::
SOCAT

:::
v3

::
for

::::
two

::::::
periods:

:::
(a)

::::
1998

::::::
through

:::::
2006,

:::
and

::::
2007

::::::
through

::::
2014.

:

:::
One

:::
of

:::
the

:::::::::::
shortcomings

::
of

::::
this

:::::
study

::
is

:::
that

:::
the

::::::::::
SOM-FFN

::::::
method

::::
used

:::::::
SOCAT

:::
v2

::
as

::
a

::::::
training

:::::::
dataset,

:::::
while

:::
the

:::::
SVR

:::
and

::::
RFR

::::::::
methods

::::
were

:::::::
trained

::::
with

:::::::
SOCAT

:::
v3.

::::::
Figure

:::
A3

::::::
shows,

:::::
there

::
is

::
a

::::::
marked

:::::::::
difference

:::::::
between

::::
the

:::
two

::::::::
datasets.
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::::::::::
Importantly,

:::
the

:::::::
increase

:::
in

:::
the

:::::::
number

:::
of

::::::::::
observations

::::::::
between

:::::
1998

:::
and

:::::
2006

::::::::
between

:::::::
SOCAT

:::
v2

:::
and

:::
v3

::::
are

::::::
almost

:::::::::
exclusively

:::
in

:::
the

::::::::
Argentine

::::
Sea.

:

Figure A2.
:::::::::
Comparison

:::::
air-sea

:::::
CO2 :::

flux
::::
RFR

::::
and

::::
SVR

::::
when

::::::
trained

::::
with

:::::::
SOCAT

::
v2

:::
and

:::
v3.

::::
The

::::::::
SOM-FFN

:::::::
method,

::::::
trained

::::
with

::::::
SOCAT

::
v2,

::
is
:::
also

::::::
shown.

:::
The

:::::
figure

::::::::::
demonstrates

:::
that

::::::::::
methodology

::::
plays

:
a
:::::
larger

:::
role

::
in

:::::::::
determining

:::
the

::::::
outcome

::
of
:::
the

:::::::
estimate

:::
than

:::
the

::::::::
availability

::
of

:::
data

::::
(for

::::
these

:::
two

:::::::
methods).

:::::
These

:::::::::
differences

::::
may

::::
have

:::
an

:::::
impact

:::
on

:::
the

::::::::
estimates

::
of

:::::::
∆pCO2.

:::
To

:::
test

::::
this,

:::
the

:::::::
methods

::::
were

:::::::::::
implemented

:::
as

::::::::
explained

::
in

::::::
Section

:::
2.4

::::
with

:::
the

::::::::
exception

::::
that

::::
RFR

:::
and

:::::
SVR

:::::::
methods

::::
were

::::::
trained

::::
with

::::
both

:::::::
SOCAT

::
v2

::::
and

:::
v3.

:::::
Figure

:::
A2

::::::
shows

::::
that,

::
on

:::::::
average,

:::::
there

:
is
::
a
:::::
larger

:::::::::
difference

:::::::
between

:::
the

::::
RFR

:::
and

:::::
SVR

:::::::
methods

::::
than

:::
the

:::::::
different

:::::::
training

:::::::
datasets.

:
5

:::
The

::::::::::
differences

:::::::
between

:::
the

::::::::
different

:::::::
methods

:::
are

::::::
shown

::
in

::::::
Figure

::::
A3.

::::::
Figures

:::
(a)

::::
and

:::
(b)

::::
show

::::
that

:::
the

:::::
SVR

:::
and

:::::
RFR

:::::::
methods

:::::::
estimate

::
a

:::::::
stronger

::::
sink

::
in

:::
the

:::::::
Atlantic

::::::
sector

::
of

:::
the

:::::
SAZ.

:::::
Here

::::::
(Figure

:::::
A3b)

:::
the

::::::::
tendency

::
of

:::
the

:::::
SVR

:::::::
method

::
to

:::::::
estimate

:::::
strong

::::::::::
outgassing

:::::
south

::
of

:::
the

:::::
Polar

:::::
Front

:::::::
relative

::
to

::::::::::
SOM-FFN

:::
and

:::::
RFR

::
is

::::
also

:::::
seen.

::::::::::
Conversely,

:::
the

:::::
RFR,

:::
on

:::::::
average,

::::::::::::
underestimates

:::::::
∆pCO2:::::

south
::
of

:::
the

:::::
Polar

:::::
Front.

Figure A3.
::
The

:::::::::
differences

::::::
between

::::::
annual

::::::
averages

::
of

::::
each

::
of

:::
the

::::::::
approaches

:::
for

::
the

:::::
period

::::
1998

::
to
:::::
2006:

::
(a)

::::
RFR

:
–
:::::::::

SOM-FFN;
:::
(b)

::::
SVR

:
–
:::::::::
SOM-FFN;

::
(c)

::::
RFR

:
–
:::::
SVR.
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Appendix B:
::::::::
Synthetic

::::
data

:::::::::::
experiments
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Figure B1.
:::
Two

::::::::::
dimensional

:::::::::
histograms

:::
for

:::
the

:::::::::::
distributions

::
of

:::::::::::
out-of-sample

::::::::
estimates

:::
of

:::::::
∆pCO2 ::::::

relative
:::

to
:::::
target

:::::::
∆pCO2

::::::::::::::
(BIOPERIANT05).

:::
The

:::
top

::::
row

::::
(a–c)

:::::
shows

:::::::
estimates

::::
made

:::
by

::::
RFR

:::
and

::
the

::::::
bottom

:::
row

::::
(d–f)

:::::
shows

::::::::
estimates

::
of

::::
SVR.

:::
The

::::
first

::::::
column

:::
(a,c)

:::::
shows

:::::
those

:::::::
estimates

:::::
trained

:::::::
SOCAT

::
v3

:::::::
locations

::::::
without

::::::::
coordinate

:::::::
variables

:::::
(time,

::::::
latitude

:::
and

::::::::
longitude)

::
as

:::::
proxy

:::::::
variables

:::
and

::
the

::::::
second

:::::
column

::::
(b,e)

:::::
shows

::::
those

::::
with

::::::::
coordinate

::::::
proxies.

::::
The

:::
last

:::::
column

::::
(c,f)

:::::
shows

:::::::
estimates

:::::
trained

::::
with

::::::
random

:::::::
locations

:::::::
(uniform

:
in
::::
time

:::
and

:::::
space)

::::
with

::::::::
coordinate

::::::
proxies.

:::
The

::::::
metrics

:::
are

:::::
shown

::
on

::::
each

:::
plot

:::::
where

::::
MAE

:::
and

::::::
RMSE

::
are

:::::
Mean

:::::::
Absolute

::::
Error

::::
and,

::::
Root

::::
Mean

::::::
Squared

:::::
Error

:::::::::
respectively.

::
n

::::
shows

:::
the

::::::
number

::
of

:::::::::
observations

::
in
:::
the

:::::::
estimate.
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