1	Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau,
2	NWT, Canada
3	
4	Cara A. Bulger ^{1*} , Suzanne E. Tank ¹ , and Steven V. Kokelj ²
5	
6	¹ Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
7	² Northwest Territories Geological Survey, Government of the Northwest Territories, Yellowknife, NT,
8	Canada
9	*Author for correspondence: cara.bulger@gmail.com
10	

12 Abstract

13	In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of	
14	dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of	
15	retrogressive thaw slumps (RTS) on DOC concentration and transport, using data from eight RTS features	
16	on the Peel Plateau, NT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is	
17	comprised of thick, ice-rich tills that were deposited at the margins of the <u>Laurentide Ice Sheet</u> . RTS	Deleted: continental ice sheet
18	features are now widespread in this region, with headwall exposures up to 30 m high, and total	
19	disturbed areas often exceeding 30 ha. We find that intensive slumping on the Peel Plateau is universally	
20	associated with decreasing DOC concentrations downstream of slumps, even though the composition of	
21	slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios)	
22	is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream	
23	DOC flux relative to changes in total suspended solids suggest that the substantial fine-grained	Deleted: a conservative tracer
24	sediments released by <u>RTS features may sequester DOC</u> , Runoff obtained directly from within slump	Deleted: slumping
		Deletedy on this landscape
25	features, above entry into recipient streams, indicates that the deepest RTS features, which thaw the	Deleted: on this landscape
25 26	features, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when	
26	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when	
26 27	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are	Deleted: feature
26 27 28	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to	
26 27 28 29	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS <u>site</u> indicates that temperature and precipitation	
26 27 28 29 30	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS <u>site indicates that temperature and precipitation</u> serve as primary environmental controls on above-slump and below-slump DOC flux, but that the	
26 27 28 29 30 31	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS <u>site indicates that temperature and precipitation</u> serve as primary environmental controls on above-slump and below-slump DOC flux, but that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst	
26 27 28 29 30 31 32	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS <u>site indicates that temperature and precipitation</u> serve as primary environmental controls on above-slump and below-slump DOC flux, but that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect striking variation in thermokarst-associated	
26 27 28 29 30 31 32 33	greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS <u>site</u> indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect striking variation in thermokarst intensity and	

42 carbon mobilization in a warming <u>Arctic</u>.

43

Deleted: circumpolar world

45 1. Introduction

46	Anthropogenic climate change is significantly affecting the Canadian Arctic cryosphere (IPCC,	
47	2014). Temperature increases in Arctic regions are predicted to be at least 40% greater than the global	
48	mean, while precipitation is also expected to increase significantly in many locations (IPCC, 2014), The	
49	resulting degradation of permafrost is forecast to have wide-ranging effects, because thawing has the	De
50	potential to greatly alter the physical, chemical, and biological functioning of landscapes (Frey and	
51	McClelland, 2009; Khvorostyanov et al., 2008a, 2008b; Kokelj et al., 2017b; Schuur et al., 2008, 2013). In	
52	particular, permafrost acts as a long term storage medium for solutes and sediments, and as a barrier to	
53	the participation of permafrost-sequestered constituents within active biogeochemical cycles (Frey and	De
54	McClelland 209; Vonk et al. 2015b). Consequently, permafrost thaw, can enhance, linkages between	
55	terrestrial and aquatic systems, via <u>increased</u> transport of terrestrial compounds from land to water	De
56	(Kokelj et al. 2013; Tanski et al., 2016; Vonk et al., 2015b). Given that <u>northern circumpolar permafrost</u>	De
57	stores of carbon are estimated to be almost double that of the atmospheric carbon pool (Hugelius et al.,	
58	2014), there is great potential for large increases in carbon mobilization as a result of permafrost thaw	
59	(Schuur et al., 2015). Within this context, the <u>mobilization of dissolved organic carbon (DOC) from</u>	De
60	previously frozen soils is of particular interest, because DOC acts as the primary substrate for the	De
61	microbially-mediated mineralization of organic carbon to carbon dioxide (Battin et al., 2008), while also	De
62	serving as the primary vehicle for the delivery of terrestrial carbon to the Arctic Ocean (Dittmar and	De
63	Kattner, 2003; Holmes et al., 2012; Spencer et al., 2015). As a result, the implications of thaw-mediated	an to
64	DOC mobilization may range from effects on the permafrost-carbon feedback, to the ecological and	
65	biogeochemical functioning of streams, rivers, and the nearshore ocean (e.g. Fritz et al. 2017; Tank et	
66	al., 2012b; Vonk et al., 2015b).	
67	Permafrost thaw can manifest in many different forms, ranging from an increase in active layer	
68	thickness and terrain subsidence, to thermokarst features that significantly reconfigure the physical	
69	structure of the landscape. Of these, thermokarst has the potential to rapidly expose significant	

Deleted:	(IPCC, 2014)
Deleted:	(Walsh et al., 2011)

Deleted: (McGuire et al., 2009)

-1	Deleted: s
\neg	Deleted: s
-	Deleted: increasing
-	Deleted: global

-{	Deleted: transport
-{	Deleted: land to water
-{	Deleted: ; Spencer et al., 2015

Deleted: Dissolved organic carbon also forms the majority of total organic carbon flux in most Arctic rivers (Spencer et al., 2015), and is thus the primary vehicle for the delivery of terrestrial carbon to the Arctic Ocean

84	quantities of previously-frozen soils to biological and chemical processing (Abbott et al., 2014, 2015;	
85	Kokelj and Jorgenson, 2013; Malone et al., 2013 <u>; Tanski et al. 2017</u>). One of the most conspicuous	
86	manifestations of thermokarst is the retrogressive thaw slump (RTS; Fig. 1), which develops as a result of	
87	mass wasting, in ice-rich glacial deposits across northwestern Canada, Alaska, and western Siberia	
88	(Kokelj et al., 2017b), and in Yedoma regions of Alaska and Siberia (Murton et al., 2017). Thaw slumps	
89	are widespread throughout glaciated terrain in the western Canadian Arctic (Kokelj et al., 2017b <u>: Lantuit</u>	
90	et al. 2012), including on the Peel Plateau (Lacelle et al., 2015). These dynamic landforms develop via	
91	the ablation of an ice-rich headwall and – through the coupling of geomorphic and thermal processes –	
92	are particularly efficient at thawing thick zones of ice-rich permafrost and translocating large volumes of	
93	sediment from slopes to downstream environments (see Fig. 1). RTS features remain active for decades	
94	(Lantuit et al. 2012). They typically stabilize following sediment accumulation at the base of the	
95	headwall (Kokelj et al., 2015), but can reactivate causing thaw within the scar zone, and upslope	Deleted: that insulates the ground ice and arrests thaw
	expansion of the disturbance (Kokelj et al., 2013; Lantuit and Pollard, 2008). During periods of activity,	
96	expansion of the disturbance (Kokelj et al., 2013, Lantan and Fonard, 2000). During periods of activity,	
96 97	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are	
97	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are	
97 98	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall-	
97 98 99	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall- induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also	
97 98 99 100	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall- induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments.	Deleted: retrogressive thaw slumps
97 98 99 100 101	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall- induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with	Deleted: retrogressive thaw slumps
97 98 99 100 101 102	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall-induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with development rates and growth of <u>RTS features</u> (Kokelj et al., 2009, 2013, 2015; Lacelle et al., 2010;	Deleted: retrogressive thaw slumps
97 98 99 100 101 102 103	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall-induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with development rates and growth of <u>RTS features</u> (Kokelj et al., 2009, 2013, 2015; Lacelle et al., 2010; Lewkowicz, 1986, 1987), we know little about how these and other environmental drivers might control	Deleted: retrogressive thaw slumps
97 98 99 100 101 102 103 104	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall-induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with development rates and growth of <u>RTS features</u> (Kokelj et al., 2009, 2013, 2015; Lacelle et al., 2010; Lewkowicz, 1986, 1987), we know little about how these and other environmental drivers might control permafrost-DOC dynamics at the individual-slump to small watershed scale.	Deleted: s Deleted: commonly
97 98 99 100 101 102 103 104 105 106	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall- induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with development rates and growth of <u>RTS features</u> (Kokelj et al., 2009, 2013, 2015; Lacelle et al., 2010; Lewkowicz, 1986, 1987), we know little about how these and other environmental drivers might control permafrost-DOC dynamics at the individual-slump to small watershed scale. On the Peel Plateau, <u>an</u> individual thaw slump <u>can impact tens of hectares of terrain, displace</u> hundreds of thousands of cubic meters of sediments, and significantly alter surface water sediment and	Deleted: s
97 98 99 100 101 102 103 104 105	thawed materials accumulate as a saturated slurry in the slump scar zone (see Fig. 1b) and are translocated downslope by mass flow processes, which are accelerated by meltwater- and rainfall- induced saturation (Kokelj et al. 2015). During active and stabilized periods, surface runoff can also remove solutes and suspended sediment from the thawed substrate to downstream environments. Although variation in temperature, precipitation and solar radiation have been correlated with development rates and growth of <u>RTS features</u> (Kokelj et al., 2009, 2013, 2015; Lacelle et al., 2010; Lewkowicz, 1986, 1987), we know little about how these and other environmental drivers might control permafrost-DOC dynamics at the individual-slump to small watershed scale. On the Peel Plateau, <u>an</u> individual thaw slump <u>can impact tens of hectares of terrain, displace</u>	Deleted: s Deleted: commonly

114	enough to alter solute loads in the Peel River (70,000 km ² watershed area; Kokelj et al., 2013), even		
115	though only a small portion of that river's total catchment area (<1%) is influenced by thermokarst		Deleted: e
116	(Kokelj et al., 2017b; Segal et al., 2016). This contrasts with many other thaw-affected regions, where		Deleted: permafrost
117	increases in solute loads following permafrost disturbance can be transient (e.g., limited to spring		
118	freshet) and have little overall effect on annual solute fluxes (for example, in High Arctic regions affected		
119	by active layer detachments; Lafrenière & Lamoureux, 2013). In addition, permafrost thaw on the Peel		
120	Plateau is notable in that it exposes vast quantities of mineral-rich glacial till, which is overlain by a		
121	relatively shallow layer of slightly more organic-rich soils (Duk-Rodkin and Hughes, 1992; Kokelj et al.		
122	2017a). Although this <u>till-associated, RTS-susceptible landscape type is found across the Laurentide and</u>		Deleted: landscape type is found across glaciated permafrost terrains of the circumpolar Nort
123	Barents-Kara glacial margins of Canada, Alaska, and Siberia (Kokelj et al. 2017b), it contrasts with		Deleted: h
124	regions of Alaska and eastern Siberia that are either Yedoma-rich or were patchily glaciated during the		Deleted: e.g.,
125	late Pleistocene, which have been common focus points for study of permafrost-DOC interactions to		Deleted: and
126	date (Abbott et al., 2014, 2015; Drake et al., 2015; Mann et al., 2012; Vonk et al., 2013b).		
127	Thermokarst has been documented to enhance DOC concentrations in recipient aquatic		Deleted: In several Arctic regions, p
120			Deleted: ermafrost thaw, including t
128	ecosystems in several Arctic regions (Frey and McClelland, 2009; Tank et al., 2012a; Vonk et al., 2013a;	Ľ	Deleted: ,
129	Vonk and Gustafsson, 2013). <u>In Alaska</u> , streams draining thaw slumps have higher DOC concentrations		Deleted: For example
130	than un-affected systems across various terrain types $(2-3 \text{ fold increase}; Abbot et al., 2014)$, while in		Deleted: in Alaska
131	eastern Siberia the DOC concentration in runoff from thawing Yedoma is considerably greater than		Deleted: in eastern Siberia
132	concentrations in recipient river systems (~30-fold elevation; Spencer et al. 2015). However, multiple		
133	factors, including variable carbon content in permafrost soils (Hugelis et al. 2014) and variation in		
134	ground ice type and volume (Fritz et al. 2015) may affect DOC release from permafrost. In regions where		Deleted:
			Deleted: with
135	thermokarst transports fine-grained sediments to aquatic systems, sorption processes may also be		Deleted: thaw
136	important, because dissolved organic matter (DOM) can readily sorb to mineral soils (e.g., Kothawala et		Deleted: This
		/ >	Deleted: rapid process
137	al. 2009). Sorption to mineral sediments can cause DOM to be rapidly removed from solution in stream		Deleted: is largely regulated by the chemical composition and clay content of mineral sediments (Kothawala et al. 2009), and
138	systems (Kaiser and Guggenberger, 2000; <u>Kothawala et al. 2009;</u> McDowell, 1985) <u>, while also enabling</u> 6		Deleted: .The DOM-mineral complex can be an important mechanism for
•			

161	the downstream transport and continued sequestration of organic carbon (Hedges et al., 1997). This		Deleted:
162	process may be particularly important for regulating DOC dynamics in glacial margin landscapes such as		Deleted
			Deleted
163	those in the western Canadian Arctic, where a predisposition to thaw slumping results in an abundance		Deleted:
164	of <u>thermokarst-</u> related slope disturbances which mobilize fine-grained glacial sediment stores to		Deleted:
165	downstream systems (Kokelj et al., 2017a, 2017b; Lantuit et al. 2012; Rampton, 1988). <u>Although the</u>		Deleted: Deleted:
166	mechanisms governing the thaw-mediated transport of DOC from land to freshwater seem likely to		
167	differ in till-dominated landscapes when compared to other regions studied to date, little is known		
168	about the downstream consequences of permafrost thaw for carbon biogeochemistry in regions such as		
169	the Peel Plateau.		
170	The objective of this study is to quantify how RTS features affect the concentration and		Deleted
			Deleted:
171	composition of DOC across a series of slump-affected streams on the Peel Plateau, and to examine how		Deleted
172	observed variation in slump morphology affects DOC dynamics in slump-affected downstream		Deleted
173	environments. We further investigate how short-term variation in precipitation, temperature, and solar		Deleted:
174	radiation affect DOC delivery from land to water, using measurements of DOC flux above and below a		
175	single RTS feature, We target the thermokarst-sensitive <u>Peel Plateau for this work</u> , which is		Deleted:
176	characteristic of till-rich, glacial margin landscapes throughout Canada, Alaska, and Siberia (Kokelj et al.	\bigcirc	Deleted
177	2017b). By comparing our results to those from other regions, this allows us to consider how broad	$\langle \rangle$	Deleted: Deleted:
178	variation in permafrost soil composition, permafrost genesis, and Quaternary history may drive variation	\swarrow	Deleted:
179	in Jand-freshwater DOC dynamics across divergent regions of the Arctic affected by permafrost thaw.	\square	Deleted:
	···· /	(N)	Deleted:
180		() ()	Deleted:
181			Deleted:
101			Deleted:
182	2 Study Site	/	Deleted:
183	2.1 General study site description		understan terrain, an temper th
184	Our study was conducted on the Peel Plateau, situated in the eastern foothills of the Richardson		interaction landscape

-{	Deleted: Sorption
,	
1	Deleted: processes
-{	Deleted: transport
1	Deleted: the glaciated
1	Deleted: landscape
-(Deleted: thermokarst
1	Deleted: effectively

1	Deleted: In this study, we
ſ	Deleted: on the Peel Plateau
-	Deleted: within
1	Deleted: recipient stream systems

Deleted: , to explore how DOC mobilization from land to water is affected by thermokarst in this region.

Ι	Deleted: , to explore the drivers of temporal variation in DOC flux
	Deleted: specifically
\square	Deleted: se
$\langle \rangle$	Deleted: glacial deposits
$\langle \rangle$	Deleted: are
ľ	Deleted: large portions
Υ	Deleted: of the circumpolar Arctic, to explicitly
\square	Deleted: s
Ŋ	Deleted: ,
//	Deleted: influence
Ν,	Deleted: variability
$\langle \rangle \rangle$	Deleted: permafrost-DOC interactions
	Deleted: vast
	Deleted: Arctic regions. The study results broaden our understanding of land-water carbon mobilization in permafrost terrain, and indicate that slumping on the Peel Plateau may act to temper the flux of DOC within this landscape, via mineral-carbon interactions. These findings also underline the importance of landscape characteristics and geological inheritance for determining the biogeochemical effects of thermokarst, particularly as hillslope thermokarst intensifies across many Arctic regions (Kokelj et al., 2017b).

220	Mountains, NWT, Canada, in the zone of continuous permafrost (Fig. 1a), The fluvially-incised Plateau		Deleted: (Kokelj et al., 2016)
221	ranges in elevation from 100 to 650 masl, The region was covered by the Laurentide Ice Sheet (LIS) for a		Deleted: (Catto, 1996)
222	brief period <u>(a maximum of 2,000-3,000 years)</u> 18,500 cal yr BP (Lacelle et al., 2013). The bedrock of the		Deleted: Laurentian
223	region is Lower Cretaceous marine shale from the Arctic River formation (Norris, 1984) and siltstone		
224	overlain by Late Pleistocene glacial, glacio-fluvial and glacio-lacustrine sediments (Duk-Rodkin and		
225	Hughes, 1992), covered by a shallow organic layer. These Pleistocene deposits host ice-rich permafrost.		
226	Radiocarbon dating in the region has placed the age of relict ground ice in the late Pleistocene epoch		Deleted: Carbon
227	(18,100 \pm 60 ¹⁴ Cyr BP; Lacelle et al., 2013). Upper layers of permafrost thawed during the early Holocene	$\langle \rangle$	Deleted: and ¹⁸ O measurements Deleted: have
228	and host younger, Holocene-aged organic materials (7890 \pm 250 14 Cyr BP; Lacelle et al., 2013). These are		
229	clearly delineated from deeper Pleistocene-aged permafrost by a thaw unconformity (Burn 1997; Fig. 1),		
230	which developed when warmer climate during the early Holocene prompted the thawing of near-		
231	surface permafrost and a regional increase in active layer thickness, enabling the leaching of soluble ions		Deleted: es
232	and integration of organic matter into these previously thawed soils (see Fig. 1c-d). Subsequent		
233	aggradation of permafrost due to gradual cooling has archived this notable stratigraphic variation in		
234	geochemistry, organic matter content, and cryostructure (Burn 1997; Fritz et al. 2012; Kokelj et al.,		
235	2002; Lacelle et al., 2014; Murton and French, 1994).		
236	Ice-marginal glacigenic landscapes such as the Peel Plateau host thick layers of ice-rich		
237	sediments, and thus have a predisposed sensitivity to climate-driven thaw slump activity (Kokelj et al.,		
238	2017). On the Peel Plateau, slumping is largely constrained by the maximum extent of the LIS, because		
239	the thick layers of ice-rich permafrost necessary for RTS activity are not present beyond its glacial limits		Deleted: is
240	(Lacelle et al., 2015). Fluvial incision provides the topographic gradients necessary for thaw slump		
241	development and RTS features are common; ranging in size from small, newly developing features,		
242	which are relatively numerous, to those greater than 20 ha, which are rare (<5% prevalence; Lacelle et		
243	al., 2015). The recent intensification of slumping on the Peel Plateau is driven in part by increasing air		
244	temperatures and summer rainfall intensity (Kokelj et al., 2015). This intensification is also increasing the 8		
	о О		

253	thaw of the deepest layer of ice-rich, organic-poor, Pleistocene-aged glacigenic tills that underlie this	
254	region. The pattern of abundant thaw slump development across ice-marginal glaciated permafrost	
255	landscapes extends from the Peel Plateau across the western Canadian Arctic, and persists at	
256	continental scales (Kokelj et al., 2017b).	
257		
258	2.2 Regional climate	
259	The regional climate is typical of the subarctic with long, cold winters and short, cool summers.	
260	Mean annual air temperature (1981-2010) at the Fort McPherson weather station (Fig. 1a) is -7.3 $^{\circ}$ C	
261	with average summer (June-August) temperatures of 13.3 $^{ m o}$ C (Environment Canada, 2015). A warming	
262	trend of 0.77 °C per decade since 1970 has been recorded; however these increases are most apparent	
263	in the winter months (Burn and Kokelj, 2009). Our sample period spanned the thaw months of July and	
264	August; average 1981-2010 temperatures for those months, recorded at Fort McPherson, are 15.2 and	
265	11.8 °C, respectively, similar to temperatures at Fort McPherson during 2014 (15.6 and 11.6 °C), but	
266	slightly higher than 2014 averages observed at a <u>recently established meteorological station on the Peel</u>	Deleted: more elevated, centrally-located meteorological station
267	Plateau (Fig. 1a; 13.2 °C in July and 9.5 °C in August). Annual cumulative rainfall (1981-2010) at Fort	Deleted: (Fig. 1a) during our study
268	McPherson averages 145.9 mm, with July and August having the highest rainfall levels at 46.4 and 39.1	Deleted: the Deleted: weather station
269	mm (Environment Canada, 2015). In 2014, rainfall for July and August was <u>71 and 121 mm at Fort</u>	
270	McPherson, and 128.7 and 170.7 mm on the Peel Plateau. This continues the trend for this region of	Deleted: makes 2014 a cooler year than average, and
271	increasingly wet summers with numerous extreme rainfall events (Kokelj et al., 2015).	Deleted: ter
272		
273	3 Methods	
274	3.1 Slump site selection	
275	Eight RTS features were selected from across the study region, using aerial surveys and previous	
276	knowledge of features across this landscape (Fig. 1; Fig. S1; Table 1). Selected slumps possessed a debris	
277	tongue that extended to the valley bottom and directly impacted a stream system. Sampling at each	

284	slump occurred at three discrete locations: upstream, within-slump, and downstream of slump influence	
285	(Fig. 1b). Upstream sites were trunk streams that connected with the slump flow path further	
286	downstream, and were un-affected by any major geomorphic disturbance and thus representative of an	
287	undisturbed, pristine environment. Within-slump sampling locations were locations of channelized	
288	slump runoff within the scar zone or upper debris tongue. Downstream sampling locations were located	
289	below the confluence of the sampled upstream flow and all within-slump runoff paths, and were chosen	
290	to be representative of slump impact on aquatic ecosystems across the Peel Plateau landscape. In one	
291	instance (Slump HD, August 17), a fluidized flow event between sampling events saturated the scar zone	
292	and obliterated within-slump channelized surface flow. As a result, the within-slump sample taken at	
293	this site was not representative of typical channelized slump runoff that characterized all other slump	
294	sampling conditions, and has been discarded from all analyses.	
295	A general classification of the slumps is difficult as these features are influenced by a diverse	
296	range of geomorphic processes that vary in intensity over time (Table 1; Fig. S1). Three of the slumps	
297	(FM4, FM2, FM3) are classified as 'mega slumps', characterised by areas greater than 5 ha, a headwall	
298	greater than 4 m in height, and a debris tongue that connects the slope to the valley below (Kokelj et al.,	
299	2013, 2015). Of these, FM4 possesses a headwall approximately 20 m in height, but was largely	Deleted: subs
300	stabilized in 2014, indicated by the small outflow, long, dry, and significantly revegetated debris tongue	Deleted: is cu
301	(Fig. S1). FM2 is among the largest active slumps in the region, with a headwall 25-30 m high and visible	
302	as a much smaller feature in air photos since 1944 (Lacelle et al. 2015). FM2 geochemistry and	
303	geomorphology were previously described by Malone et al. (2013). Slump FM3, which was chosen for	
304	our 'environmental controls' work (further described below) covers an area of approximately 10 ha, and	
305	has a headwall of approximately 10 m in height and a debris tongue that extends nearly 600 m down	
306	valley (Table 1). Headwall retreat rate at FM3 over a 20 year period has been calculated at 12.5 m yr $^{-1}$	
307	(Lacelle et al., 2015). SD is the smallest and youngest slump that we studied, and was initiated when	
308	diversion of a small creek caused lateral bank erosion. In 2014, the SD headwall was 2-4 m high with a	Deleted: T Deleted: is
I	10	

ed: substantial ed: is currently

313	scar zone extending approximately 20m, and no defined debris tongue. The remaining slump sites (HA,	Deleted: that extends
314	HB, HC, HD) were all well-developed active RTS features with headwalls similar to, or smaller than, FM3,	
315	but with debris tongues much smaller in volume (Table 1). With the exception of SD, slump headwalls	Deleted: that are
316	exposed permafrost well below a thaw unconformity, indicating that Pleistocene-aged, unweathered	
317	glacigenic materials were being thawed by the slump (Lacelle et al., 2013).	Deleted: are
318		
319	3.2 Field sampling and data collection	
320	3.2.1 The effect of slumping on DOC and stream water chemistry	
321	The majority of our sampling was conducted during the summer of 2014. Of the eight slumps	Deleted: At each slump, samples were collected at upstream, downstream, and within-slump locations.
322	that were sampled, three were accessed from the Dempster Highway three times over the sampling	
323	season, one (FM3; see also 3.2.2) was accessed twice from the highway, and four were accessed twice	
324	via helicopter (Table 1). At each of the upstream, downstream, and within-slump sampling locations,	
325	specific conductivity, pH, and temperature were recorded using a YSI Pro Plus multi-parameter meter.	
326	Water samples were collected from directly below the stream surface into 1 L acid washed HDPE bottles	
327	and allowed to sit in chilled, dark conditions for 24 hours to enable the considerable sediments in these	Deleted: substantial
328	samples to partially settle out of suspension. Sample water was then filtered with pre-combusted	
329	(475°C, 4 hours) Whatman GF/F filters (0.7 μ m pore size). Filtered sample water was transferred into 40	
330	mL acid washed, pre-combusted glass bottles for DOC analysis, or 60 mL acid washed HDPE bottles for	
331	the analysis of absorbance and major ions. DOC samples were acidified with hydrochloric acid (1 μ L mL $^-$	
332	¹), following Vonk et al. (2015b). The GF/F filters were retained for <u>analysis of total suspended solids</u>	Deleted: All samples were refrigerated until analysis. Deleted: sediment
552		Deleted: ?
333	(TSS), Samples for stable water isotopes were collected directly from streams into acid washed 40 mL	Deleted: analysis
224	HDRE battles with no bookspace and cooled. During summer 2016, samples were additionally collected	Deleted: analyses
334	HDPE bottles with no headspace and sealed, During summer 2016, samples were additionally collected	Deleted: . Bottles were
335	from a subset of slump locations (FM2, FM3, FM4 and SD) for the ¹⁴ C signature of DOC at upstream and	Deleted: and refrigerated until analysis
		Deleted: Field
336	within-slump sites. <u>DO14C</u> samples were collected in <u>acid</u> -washed polycarbonate bottles, allowed to	Formatted: Superscript
337	settle for 24 hours, and filtered using pre-combusted Whatman GF/F filters into pre-combusted glass	Deleted: pre
557	sectie for 24 hours, and intered using pre-combusted whatman of /1 inters into pre-combusted glass	Deleted: 1-2 L

354	media bottles with phenolic screw caps with butyl septa. <u>All samples were</u> refrigerated until analysis.	Deleted: Sample bottles were wrapped in aluminum foil and
355	Absorbance samples were analyzed within 1 week of collection, cation samples within 4 months of	
356	collection, and DOC (including 14 C) samples within 1-2 months of collection. Samples for Fe and δ^{18} O	Formatted: Superscript
357	were analyzed within 6 months of collection.	
358		Deleted: 1
359	3.2.2 Environmental controls on DOC flux	
360	To explore how environmental variables control the flux of DOC from RTS-affected streams, we	
361	visited slump FM3 an additional 17 times beyond the sampling described above. <u>This intensively-studied</u>	
362	site was chosen to be representative of active Peel Plateau slumps that are eroding Holocene- to	
363	Pleistocene-aged sediments. During each visit, we measured discharge at the upstream and downstream	
364	locations to calculate DOC flux, and collected upstream and downstream DOC concentration samples.	
365	Downstream discharge was measured using an OTT C2 current meter at three locations across the small	
366	stream and at 40% depth. Due to the shallow, low flow conditions at the upstream site, upstream	
367	discharge was measured using the cross sectional method (Ward and Robinson, 2000). In both cases,	
368	discharge was calculated as the product of velocity and stream cross-sectional area. Local daily climate	
369	data were obtained from an automated meteorological station established in 2010 by the Government	Deleted: previously
370	of the Northwest Territories (Kokelj et al. 2015). The station is located within 2 km of slump FM3 (Fig.	
371	1a) and is instrumented for the measurement of air temperature, rainfall, and net radiation.	
372		
373	3.3 Laboratory analyses	
374	3.3.1 Major ions, dissolved organic carbon, δ^{18} O and DO 14 C	
375	Cation concentrations (Ca ²⁺ , Mg ²⁺ , Na ⁺) were analyzed on a Perkin Elmer Analyst 200 Atomic	
376	Absorption Spectrometer at York University. A subset of collected samples were analyzed for total	
377	dissolved Fe at the University of Alberta on an Inductively Coupled Plasma - Optical Emission	
378	Spectrometer (Thermo Scientific ICAP6300), to allow for the correction of our Specific UV Absorbance 12	

382	results (see below). DOC samples were analyzed on a Shimadzu TOC-V analyzer; DOC was calculated as			
383	the mean of the best 3 of 5 injections with a coefficient of variation of <2%; the precision of a 10 mg L^{-1}	(Deleted: variance	
384	caffeine standard across all sample runs was 0.32 mg L ⁻¹ . A Picarro liquid water isotope analyzer was		Formatted: Superscript	\Box
564			Formatted: Superscript	
385	used to measure δ^{18} Q at the University of Alberta, following filtration (0.45 µm cellulose acetate,	(Deleted: stable water isotope samples	
386	Sartorius) into 2 mL autosampler vials (National Scientific), without headspace. The precision of our			
387	$\delta^{18}\text{O}$ analysis is ± 0.2%. The radiocarbon signature of DOC was measured following extraction and			
388	purification at the A.E. Lalonde AMS facility (University of Toronto) using a 3MV tandem accelerator			
389	mass spectrometer (High Voltage Engineering) following established methodologies (Lang et al., 2016;			
390	Palstra and Meijer, 2014; Zhou et al., 2015), and is reported with an error estimate of 1 σ .			
391				
392	3.3.2 Total suspended <u>solids</u>	(Deleted: sediments	
393	Samples for TSS were filtered in the field for later analysis, ensuring that there was enough	_	Deleted: total suspended sediments (
		\leq	Deleted:)	\neg
394	sediment on the pre-combusted (475°C, 4 hours) and pre-weighed GF/F filters. Filters were stored			
395	frozen, dried at 60°C for 8 hours, placed in a desiccator overnight and promptly weighed. TSS was			
396	calculated as the difference in filter weight before and after sediment loading, divided by volume			
397	filtered.			
398				
399	3.3.3 Dissolved organic matter spectral characteristics			
400	DOM composition was assessed using absorbance-based metrics. A 5 cm quartz cuvette was			
401	used to obtain UV-visible spectra data from 250-750 nm, using a Genesys 10 UV-Vis spectrophotometer.			
402	A baseline correction was applied to eliminate any minor interference from particles \leq 0.7 μ m (Green	(Deleted: potential	
403	and Blough 1994). Specific UV absorbance at 254 nm (SUVA ₂₅₄), which is correlated with DOM		Deleted: following	
		\triangleleft	Deleted: &	\dashv
404	aromaticity (Weishaar and Aiken, 2003), was calculated by dividing the decadal absorbance at 254 nm	l)
405	(m ⁻¹) by the DOC concentration (mg L^{-1}). SUVA ₂₅₄ values were corrected for Fe interference following			
406	Poulin et al. (2014) using maximum Fe concentrations from laboratory analyses or as reported in Malone			
	13			

416 et al. (2013). Spectral slopes between 275 and 295 nm, and 350 and 400 nm (S275-295, S350-400) were calculated following Helms et al. (2008), and are reported as positive values to adhere to mathematical 417 418 conventions. Slope ratios (S_R), which correlate with DOM molecular weight (Helms et al., 2008), were 419 calculated as the ratio of S275-295 to S350-400. 420 421 3.4 Statistical analyses and calculations 422 Statistical analyses were completed in R version 3.1.3 (R Core Team, 2015) using packages 'nIme' 423 (Pinheiro et al., 2015), 'Imtest' (Zeileis and Hothorn, 2002), 'ImSupport' (Curtin, 2015), 'car' (Fox and Weisberg, 2011), and 'zoo' (Zeileis and Grothendieck, 2005). The effect of slumping on stream chemistry 424 425 and optical characteristics was assessed using linear mixed effects models in the 'nlme' package of R. For 426 each parameter, analyses were split into two separate models that included data for upstream and 427 downstream chemistry, and upstream and within-slump chemistry. We used this approach to separately 428 assess the effects of slumping downstream of slump systems, and to compare the composition of slump 429 runoff to nearby, pristine environments. For each analysis, we included slump location (see Table 1) as a 430 random effect, and considered models that either nested Julian date within the random effect of slump 431 location, or allowed Julian date to occur as a fixed effect. The best model was chosen using the Akaike 432 information criterion (AIC), and best-fit models were refit with a variance structure to ensure that model assumptions were met. The variance structures varIdent (for within-slump site and slump location) and 433 434 varFixed (for Julian date) were used together (using varComb) and in isolation for this purpose (Zuur et al., 2009). AIC values for the weighted and un-weighted models were again compared to choose a final 435 model of best fit for each analysis. 436 437 We used the high-frequency data from slump FM3 to assess how environmental conditions 438 (rainfall, temperature, solar radiation) and TSS affect DOC delivery to slump-affected streams. To do 439 this, we conducted multiple linear regressions, using AIC values to determine models of best fit

(Burnham and Anderson, 2002). To enable a specific assessment of environmental controls on

440

Deleted: systems

442	downstream DOC flux, upstream DOC flux was separated out into a distinct regression analysis, because	
443	upstream DOC flux was strongly correlated with flux downstream, and therefore overwhelmed all	
444	environmental variables in the downstream model. Models were tested for serial correlation using the	
445	auto-correlation function, and models with variance inflation factors greater than 10 or significant	 Deleted: (ACF)
446	Durbin Watson test results (indicative of correlated variables; Durbin & Watson, 1950; Hair et al., 1995)	
447	were discarded. Residuals were examined to ensure the model was a good fit for the data (Zuur et al.,	
448	2009). We considered both time-of-sampling (0 h) and past (48, 72, and 120 h) environmental conditions	
449	in our analyses. Because cumulative values for environmental variables (i.e. accumulated rainfall in the	
450	previous 48, 72 and 120 h) showed a strong positive correlation to one another, we used temporally	
451	shifted data (i.e. rainfall 48, 72 and 120 h prior to the DOC flux measurement) in the final model. Similar	
452	models were also constructed to examine the effects of environmental drivers on DOC concentration.	
453	Differences in paired upstream-downstream measures of DOC flux and concentration at slump FM3	 Deleted: Finally, d
454	were <u>also</u> assessed using a Wilcoxon Signed Rank Test, a non-parametric analog to the paired-t test.	
455	Following our finding of decreasing DOC concentrations downstream of slumps (see Sections 4.1 +	Formatted: Indent: First line: 0.5", No widow/orphan control
456	and 5.1) we used data from slump FM3, where we have upstream, downstream, and within-slump DOC	
457	concentration measurements, and upstream and downstream discharge measurements, to calculate a	
458	mass balance for DOC across the three sampling locations. These data - available for all three locations	
459	on two dates during the summer of 2014 – were used to calculate DOC flux at upstream and	
460	downstream sites as $flux_{DOCdown} = [DOC]_{down} \bullet discharge_{down} \text{ or } flux_{DOCup} = [DOC]_{up} \bullet discharge_{up}$, and at	
461	within-slump sites as flux _{DOCwithin} = (discharge _{down} – discharge _{up}). We calculate a similar mass balance for	
462	TSS, which we use as a rough tracer for the inflow of slump runoff over the < 1 km span between	
463	upstream and downstream locations at this site,	 Deleted: 1

4. Results

469 4.1 DOC concentration across slump sites

470	While DOC concentrations ranged broadly across pristine streams on the Peel Plateau (Fig. 2;	Deleted: On the Peel Plateau,
471	from 5.4 to 26.1 mg L ⁻¹ at upstream, pristine sites), concentrations consistently declined downstream of	Formatted: Superscript
472	slumps, when compared to paired, upstream locations (p<0.001; Fig. 2; Table 2). Although this effect	
473	was modest (typically less than 20%; Fig. 2), it <u>occurred reliably</u> across all slump sites. In contrast,	Deleted: was consistent
474	comparisons of upstream and within-slump sites showed no consistent trend in DOC concentration,	
475	when evaluated across all slump locations (p=0.153; Fig. 2; Table 2). Instead, the effects of slumping on	
476	the DOC concentration of slump runoff <u>varied</u> by site. At the largest, most well-developed slump	Deleted: appeared to vary
477	complexes (FM4, FM2, and FM3), where debris tongues are extensive and thaw extends well into the	
478	deepest layer of Pleistocene-aged glacigenic materials, DOC concentrations tended to be lower in slump	
479	runoff than at the paired upstream sites (Fig. 2). At more modestly-sized slump sites (HB, HC, and HD),	
480	where the modern and relict Holocene active layers form a greater proportion of the actively thawing	
481	headwall, within-slump DOC concentrations tended to be higher than values upstream (Fig. 2). Within	
482 483	each site, DOC concentrations were relatively consistent across the 2-3 sampling periods (Fig. 2).	Deleted: However, there was significant variation in DOC concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
482 483 484	each site, DOC concentrations were relatively consistent across the 2-3 sampling periods (Fig. 2).	concentration between slump locations (i.e., across the Peel
483		concentration between slump locations (i.e., across the Peel
483 484	4.2 Bulk chemistry of pristine waters and slump runoff	concentration between slump locations (i.e., across the Peel
483 484 485	4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
483 484 485 486	4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined concentrations of <u>major</u> ions, conductivity and TSS as 'tracers' of slump activity, because these	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
483 484 485 486 487	4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined concentrations of <u>major</u> ions, conductivity and TSS as 'tracers' of slump activity, because these constituents have previously been shown to be significantly affected by slumping in this region (Kokelj et	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
483 484 485 486 487 488	 4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined concentrations of <u>major</u> ions, conductivity and TSS as 'tracers' of slump activity, because these constituents have previously been shown to be significantly affected by slumping in this region (Kokelj et al., 2005, 2013; Malone et al., 2013; Thompson et al., 2008). Major ion (Ca²⁺, Mg²⁺, Na⁺) concentrations 	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
483 484 485 486 487 488 489	 4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined concentrations of <u>maior</u> ions, conductivity and TSS as 'tracers' of slump activity, because these constituents have previously been shown to be significantly affected by slumping in this region (Kokelj et al., 2005, 2013; Malone et al., 2013; Thompson et al., 2008). Major ion (Ca²⁺, Mg²⁺, Na⁺) concentrations in slump runoff were considerably greater than in pristine streams (a 2.7 to 11.7-fold increase; Fig. 3b-d; 	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).
483 484 485 486 487 488 489 490	 4.2 Bulk chemistry of pristine waters and slump runoff To better understand how the input of slump runoff affects downstream DOC, we examined concentrations of <u>maior</u> ions, conductivity and TSS as 'tracers' of slump activity, because these constituents have previously been shown to be significantly affected by slumping in this region (Kokelj et al., 2005, 2013; Malone et al., 2013; Thompson et al., 2008). Major ion (Ca²⁺, Mg²⁺, Na⁺) concentrations in slump runoff were considerably greater than in pristine streams (a 2.7 to 11.7-fold increase; Fig. 3b-d; Table 2). These patterns were similar, though muted, at slump-affected downstream sites, where major 	concentration between slump locations (i.e., across the Peel Plateau landscape; Fig. 2).

501	an average of 2.6 times greater than those upstream (Fig. 3e). Finally, TSS was also significantly elevated
502	at slump-affected sites (p< 0.001; Table 2) with levels being more than two orders of magnitude greater
503	within slumps when compared to upstream, and more than one order of magnitude greater
504	downstream, when compared to upstream sites (Fig. 3a). The effect of slump runoff on downstream
505	chemistry is also reflected in DOC: ion, and DOC: TSS ratios, which decreased markedly between
506	upstream and downstream locations. For example, molar ratios of (Ca ²⁺ + Mg ²⁺): DOC averaged 0.78 \pm
507	0.37 (mean \pm standard error) upstream of slumps, but 2.07 \pm 0.45 downstream, while average gram-
508	weight ratios of TSS: DOC were 32 ± 12 upstream, but 1454 ± 332 at downstream locations.
509	
510	4.3 Spectral and isotopic characteristics
511	SUVA254, which is positively correlated with DOM aromaticity (Weishaar and Aiken, 2003), was
512	significantly lower within slumps, and downstream of slumps, than in upstream, pristine, environments
513	(p<0.001; Fig. 4; Table 2). Average within-slump SUVA ₂₅₄ was less than half of that observed for pristine
514	waters (Fig. 4), while downstream values declined by approximately 20%. In accordance with the
515	SUVA ₂₅₄ results, $S_{275-295}$, $S_{350-400}$, and S_R were all significantly greater within slumps when compared to
516	upstream sites (p<0.001; Fig. 4; Table 2), indicating lower DOM molecular weight within slumps (Helms
517	et al., 2008). Differences in slope parameters between upstream and downstream locations were muted
518	relative to the within-slump: upstream comparisons (Fig. 4), with $S_{275-295}$ (p=0.011) and S_R (p<0.001)
519	increasing significantly, but more modestly, downstream of slumps, and $S_{350-400}$ declining slightly
520	(p=0.001; Fig. 4; Table 2).
521	Upstream δ^{18} O averaged -20.1‰ \pm 0.12, which corresponds to a modern <u>active layer pore water</u>
522	δ^{18} O signature for this region (Lacelle et al., 2013; Fig. 5). Within-slump δ^{18} O was discernibly depleted
523	when compared to upstream locations, with average values of -22.7‰ \pm 0.72, which falls between
524	previously-identified regional endmembers for Pleistocene-aged ground ice (18,100 \pm 60 14 Cyr BP) and
525	the modern active layer (Lacelle et al., 2013; Fig. 5). Within-slump δ^{18} O was also much more variable
	17

526	between RTS features than upstream and downstream δ^{18} O values. Similar to upstream sites,
527	downstream δ^{18} O clustered near the modern active layer δ^{18} O endmember, but with a small depletion
528	that was consistent with a contribution from slump inflow (-20.7‰ \pm 0.21).
529	To further investigate the effect of water source on DOM composition, we examined the
530	relationship between SUVA_{254} and δ^{18} O. More depleted samples taken from within-slump sites had
531	clearly depressed SUVA_{254} values when compared to samples with more enriched δ^{18} O (Fig. 5). Of the
532	large, most well-developed slumps that were identified in Section 4.1, two (FM2 and FM3), in addition
533	to site HB, had δ^{18} O values that were more depleted than the Holocene-aged icy diamicton values
534	reported in Lacelle et al. (2013), suggesting some contribution of runoff from older, Pleistocene-aged
535	permafrost (Fig. 5). It is likely that the δ^{18} O signal at the relatively stable mega-slump site (FM4) was
536	somewhat diluted by the 7.2 mm of rainfall that fell in the 48 hours preceding our sample. Although
537	sites FM3 and SD received 12.4 and 3.5 mm of rain, respectively, in the 48 hours prior to sampling, these
538	are both much more active slump sites, and thus less prone to dilution of the slump outwash signature.
539	There was no significant rainfall immediately preceding sampling at any other sites.
540	The radiocarbon signature of DOC from upstream and within-slump locations at sites FM4, FM2,
541	FM3, and SD largely mirrors the δ^{18} O results. DOC from sites upstream of slump disturbances was
542	approximately modern in origin (ranging from 217 \pm 24 14 C yr BP to modern in age; Table 3). In contrast,
543	within-slump waters from site FM2 and FM3 were early Holocene-aged (9592 \pm 64, and 8167 \pm 39 14 C yr
544	BP, respectively; Table 3). Slump runoff from site SD was older than at upstream sites, but younger than
545	for the larger slumps, described above (1157 \pm 23 14 C yr BP; Table 3).
546	
547	4.4 Patterns and environmental drivers of DOC flux
548	Similar to our findings for the distributed sampling scheme (Fig. 2), downstream DOC
549	concentration was consistently lower than concentrations upstream, across the 19 paired
550	measurements taken at the intensively studied slump site (slump FM3; p<0.001, N=19, W=0; Wilcoxon

Ic c 4		
551	Signed Rank Test; mean decline of 2.5 \pm 0.2 mg L ⁻¹ , compared to a mean upstream concentration of 13.6	
552	± 0.5 mg L ⁻¹ , To explore environmental drivers of DOC movement within this landscape, however, we	Deleted:)
553	focus on DOC flux, which allows a direct assessment of slump-mediated DOC addition to this system.	Deleted: (as mg s ⁻¹)
554	Downstream DOC flux (mg s ⁻¹) tended to be slightly greater than upstream flux on most, but not all,	
555	sampling occasions (Fig. 6). As a result, paired comparisons indicate no statistical difference between	
556	upstream and downstream DOC flux at this site (Wilcoxon signed rank test; p=0.096, N=19, W=53).	
557	Because upstream and downstream DOC flux were strongly correlated to one another ($r^2 = 0.94$;	
558	p<0.0001), our downstream model was run without upstream DOC flux as a predictor variable. The best-	
559	fit multiple linear regression model for downstream DOC flux (r ² = 0.84; p<0.01) retained seven	
560	variables, of which two were significant (Table 4). Of these, air temperature (72h prior to sampling)	
561	showed a negative relationship with downstream DOC flux while rainfall (0h; time of sampling) showed	Deleted: and
562	a strong positive relationship (Table 4). The best-fit model for upstream DOC flux ($r^2 = 0.87$; p<0.001)	
563	also retained seven variables, of which four were significant (p<0.05; Table 4). Similar to the	
564	downstream analysis, air temperature (0h, 72h) had a negative relationship, and time-of-sampling (0h)	
565	rainfall had a strong positive relationship, with DOC flux (Table 4). However, 120h rainfall showed a	
566	negative relationship with DOC flux in this model. Regressions assessing controls on downstream DOC	Deleted: exploring
567	flux relative to upstream flux (i.e., as a ratio, or the difference between the two values) were not	
568	significant. Models to explore controls on upstream and downstream DOC concentration were also	Deleted: ing
569	relatively similar to one another, showing strong, positive relationships between DOC concentration and	
570	air temperature, and more modest negative relationships between DOC concentration and net radiation	
571	(Table 4).	
572		

579 5. Discussion

580 5.1 Retrogressive thaw slumps and carbon delivery to streams of the Peel Plateau

000			
581	In <u>both</u> Eastern Siberia <u>(Spencer et al. 2015; Vonk et al., 2013b) and</u> Alaska (Abbott et al., 2014)		Deleted: (Drake et al., 2015; Mann et al., 2015; Vonk et al., 2013b),
582	permafrost slumping has been associated with significant increases in DOC mobilization from		Deleted: Balcarczyk et al., 2009;
583	permafrost thaw features to aquatic systems. Our data show that this was not the case on the Peel		Deleted: , and the Canadian High Arctic (Melville Island; Woods et al., 2011),
584	Plateau, where the landscape-induced variation in DOC concentration among pristine stream sites was	Y	Deleted: to streams
585	much greater than the change in stream water DOC as a result of slumping. Across all of our study sites,		
586	DOC concentrations consistently decreased downstream of slumps when compared to upstream		
587	locations, while at an intensively-sampled slump, DOC flux did not differ significantly between upstream		
588	and downstream locations. In contrast, comparisons of channelized slump runoff (our within-slump		
589	sites) and paired un-affected sites showed no consistent DOC trend. Instead, DOC concentrations in		
590	slump runoff were either greater than, or less than, their comparison upstream locations, in a manner		
591	that differed depending on slump morphological characteristics such as slump size and headwall height		
592	(Fig. 1; see further discussion in Section 5.3). The moderate effect of slumping on DOC concentration		
593	occurred despite the significant influence of these disturbances on the delivery of many biogeochemical		
594	constituents to recipient streams. For example, conductivity was approximately one order of magnitude		
595	greater, and TSS two orders of magnitude greater, in slump-derived runoff than at upstream, un-		
596	affected sites. This led to substantially increased TSS:DOC and (Ca + Mg):DOC ratios downstream of		
597	slumps, when compared to pristine, upstream locations.		
598	Decreasing DOC concentrations downstream of slumps, despite increasing concentrations of		
599	indicators of slump activity (major ions, TSS) could <u>result from several, potentially co-occurring</u>	(Deleted: have
600	mechanisms. In some locations, decreases may be partially caused by low DOC concentrations in slump		Deleted: causes
601	outflow (a dilution effect; see slumps FM2, FM3, and FM4, in Fig. 2; further discussed in Section 5.3).		Deleted: ;
602	However, our results suggest that DOC sorption to suspended inorganic sediments could also play a role	(Deleted: field evidence suggests
603	in regulating DOC dynamics in slump-affected systems on the Peel Plateau. At multiple sites (HB, HC, and 20		

614	HD), DOC concentrations declined downstream of slumps despite a modest elevation in DOC	
615	concentration in slump drainage waters (Fig. 2). Thermokarst contributes significant amounts of fine-	
616	grained glacigenic sediment to fluvial systems on the Peel Plateau (Kokelj et al., 2013; silty-clay sediment	<
617	classification for FM3 in Lacelle et al., 2013). DOC sorption can occur in seconds to minutes in freshwater	
618	systems (Qualls and Haines, 1992), with fine-grained materials being particularly conducive to this	
619	process (Kothawala et al., 2009). Data from site FM3, where we have upstream and downstream	_
620	discharge data coupled with DOC and TSS concentrations at upstream, downstream, and within-slump	
621	locations on two separate dates, allows us to assess possible DOC sorption at this site. On these dates,	//
622	DOC flux declines downstream of the slump (i.e., flux _{DOCdown} < flux _{DOCup}), despite a clear and measurable	
623	efflux of DOC from the slump to the receiving stream system (flux DOC within; Fig. 7). This same calculation]
624	using TSS as a <u>rough</u> ‡racer of slump <u>inflow</u> shows the calculated <u>efflux</u> of TSS <u>from this slump</u>	
625	(flux _{TSSwithin}) to be almost identical to the <u>increase</u> in TSS flux downstream <u>of the disturbance</u> (as	
626	flux _{TSSdown} – flux _{TSSup} ; Fig. 7). Thus, it <u>seems likely that relatively rapid processes</u> , such as sorption <u>to</u>	
627	mineral surfaces, are affecting DOC dynamics in downstream <u>fluvial systems</u> on the Peel Plateau.	
628	Although a similar decrease in DOC concentration with slumping has been found for lakes in this	\mathbb{V}
629	region (Kokelj et al., 2005), our findings contrast with work to-date in other areas of the Arctic, where	\swarrow
630	thermokarst has been demonstrated to lead to an efflux of high-DOC waters from slump features (e.g.,	
631	Abbott et al., 2014; Vonk et al., 2013a). Ice-marginal glaciated landscapes are common throughout the	
632	western Canadian Arctic, however, and in many other Arctic regions. This terrain type is characterized by	
633	thick, mineral-rich but carbon_poor tills, and high ice contents that are predisposed to intense climate-	
634	driven thaw slumping and the release of glacigenic sediments (Kokelj et al., 2017b). As a result, DOC	
635	'sequestration' following slumping seems unlikely to be limited to the Peel Plateau. Given the high TSS	
636	export and apparent organic carbon sorption to glacigenic sediments observed with slumping on the	
637	Peel Plateau, we expect that substantial organic carbon is mobilized from these slumps in the particle-	1
638	attached, rather than dissolved, form (i.e., as particulate organic carbon; POC). Quantifying this POC	
1	21	

Deleted: (Kokelj et al., 2013), and this material is fine-grained **Deleted:** e.g., sediments from the FM3 headwall have been classified as silty clay;

	eleted: these
D	eleted: es
D	Peleted: within
D	eleted: calculated as [DOC] _{within} • (discharge _{down} – discharge _{up});
D	Peleted: conservative
D	eleted: activity
D	eleted: within-slump flux
D	eleted: (as [TSS] _{within} • (discharge _{down} – discharge _{up}))
D	eleted: difference
D	eleted: between
D	eleted: and upstream locations
D	eleted: is
D	eleted: of slumps
D	Peleted: The
D	eleted: downstream of Peel Plateau slumps
D	eleted: is similar to, but more muted than results
D	eleted: ,
cl co	eleted: where following slump stabilization, lakes are haracterized by increases in conductivity, clear decreases in DOC oncentration, and a strong negative correlation between these wo parameters
is ei se	veleted: . The greater magnitude of effect for lakes in this region likely caused by substantial particle settling in lentic nvironments, which enables DOC scavenging with the inorganic ediment inputs of thermokarst (Kokelj et al., 2005). Although ecreasing DOC with RTS activity on the Peel Plateau
D	eleted: s
D	eleted: regions (e.g., Abbott et al., 2014; Vonk et al., 2013a),
D	eleted: i
D	eleted: intensely affected by RTS
D	eleted: ,
D	eleted: (Kokelj et al., 2017b). In general, t
D	eleted: typically
D	eleted:
D	eleted: which with their
	alatadi Thus, it seems likelu that
D	eleted: Thus, it seems likely that
D	eleted: Thus, it seems likely that eleted: the processes we observe are not limited to the Peel lateau: research to quantify

680	mobilization, its fate once subject to contemporary biogeochemical processing, and the mechanisms	
681	that enable DOC sequestration to occur, are key avenues for future research, on the Peel Plateau and	
682 683	elsewhere.	Deleted: via so where thermoka sediments to do
684	5.2 The effect of retrogressive thaw slumps on DOM composition	
685	Despite the fact that DOC concentrations did not increase in RTS-affected streams absorbance	Deleted: , SUV
686	metrics clearly indicate that slump-derived DOM on the Peel Plateau is compositionally different than	
687	DOM from upstream locations. Upstream waters had significantly higher SUVA ₂₅₄ values <u>than</u>	Deleted: comp
688	downstream and within-slump sites (Table 2, Fig. 4). Similarly, while the average S_{R} of Peel Plateau	
689	upstream waters (0.74 \pm 0.005) was within the range of S_R typically associated with fresh, terrestrial	
690	DOM (~ 0.70; Helms et al., 2008), values were significantly greater within-slump (0.92 \pm 0.015) and	
691	downstream (0.89 \pm 0.009) (Table 2, Fig. 4), indicating decreasing DOM molecular weight as a result of	
692	RTS activity. High SUVA ₂₅₄ values accompanied by low S_R at upstream sites suggest that water flow in	
693	undisturbed catchments is restricted to shallow, organic-rich flowpaths through the active layer, with	
694	permafrost inhibiting water contributions from deeper, groundwater or mineral-associated sources	
695	(Balcarczyk et al., 2009; MacLean et al., 1999; Mann et al., 2012; O'Donnell et al., 2010 <u>; Street et al.</u>	
696	2016). In contrast, within-slump and downstream measurements indicate a clear transition in DOM	
697	source.	
698	The comparatively low SUVA_{254,} and high S_{R} values for downstream and within-slump sites	
699	indicate that permafrost-derived carbon on the Peel Plateau is characterized by relatively low molecular	
700	weight and aromaticity, and is thus similar in its composition to permafrost carbon from other regions.	
701	For example, $SUVA_{254}$ values were low in waters draining active thaw slumps when compared to	
702	stabilized and undisturbed sites on the North Slope of Alaska (Abbott et al., 2014), while in Siberia, 14 C-	
703	depleted DOM from small tributary streams affected by thermokarst had lower $SUVA_{254}$ values	
704	compared to younger DOM from the Kolyma River mainstem (Mann et al., 2015; Neff et al., 2006). 22	

sorption processes seems warranted across regions karst intensifies the transport of mineral-rich ownslope aquatic systems.

/A₂₅₄ and

pared to

710	Although SUVA $_{254}$ values for waters draining Peel Plateau thaw slumps are slightly lower than those	
711	reported for Siberian Yedoma disturbances (Mann et al., 2015), the overall similarity of permafrost-	
712	derived DOM composition across these various regions is striking, given the regional differences in	
713	permafrost origin and depositional history. For example, while the DOM released by permafrost thaw on	
714	the Peel Plateau is till-associated, and early-Holocene in mean age, east Siberian Yedoma is composed of	
715	loess-derived Pleistocene deposits that sequestered carbon in association with synengetic aggradation	
716	of permafrost. This suggests that common processes may enable the organic matter contained in	
717	permafrost soils to become compositionally similar across diverse Arctic regions. Such compositional	
718	similarity also indicates that permafrost-origin DOM from the Peel Plateau – similar to that from other	
719	regions (Abbott et al., 2014; Drake et al., 2015) – may be readily degraded by bacteria, despite the	
720	divergent origin of this carbon.	
721		
722	5.3 The effect of slump morphometry on runoff water biogeochemistry	
723	δ^{18} O and DO 14 C data provide further evidence that intense slumping enables novel sources of	
724	water and solutes to be transported to fluvial systems on the Peel Plateau. For most of the RTS features	
725	that we studied, the δ^{18} O signature of within-slump waters ranged from those similar to the 'icy	
726	diamicton' that overlies the early Holocene thaw unconformity, to those for underlying Pleistocene-aged	
727	ground ice (Lacelle et al., 2013; Fig. 5). Similarly, DO ¹⁴ C from a subset of sites indicates slump-derived	
728	DOC is early Holocene, in age for all but the shallowest slump surveyed. This suggests that our slump	
729	outflow samples were likely comprised of a mixture of Pleistocene-, Holocene-, and modern-sourced	
730	water (see Fig. 1c-e), but that the contribution of these end-members varied across slumps depending	
731	on the relative volume of different stratigraphic units being mobilized.	
732	The between-site variation in δ^{18} O signature (Fig. 5) and relative DOC concentration (Fig. 2b) of	
733	slump runoff waters appears to be related to differences in slump morphometry (size, headwall height,	
734	and the length and area of the debris tongue; <i>see Table 1 and Fig. 1c-e</i>) across sites. The well-developed, 23	

Deleted: -aged

736	larger slump complexes (FM4, FM2 and FM3) were more likely to have δ^{18} O signatures that lie between
737	end-member values for <u>Holocene-aged</u> icy diamicton and Pleistocene-aged ground ice (Fig. 5; although
738	note that dry and stabilized FM4 differs somewhat from this trend). These well-developed slumps also
739	stood out as displaying within-slump DOC concentrations that were lower than at upstream comparison
740	sites (Fig. 2b). The headwall exposure at these largest slumps exposes Pleistocene-aged permafrost to
741	several metres depth (see Fig. 1c), while the evacuation of scar zone materials have produced extensive
742	debris tongues up to several kilometers long (Table 1, Figs. 1b, S1e and S1g). This significant exposure of
743	mineral-rich, Pleistocene-aged glacial till contributes solutes from low-carbon mineral soils and low-DOC
744	ground ice (Fritz et al. 2015; Tanskii et al. 2016) to runoff, while entraining fine-grained sediments which
745	provide mineral surface area for possible DOC adsorption. Adsorption may be further enhanced as
746	slump and stream runoff continue to entrain sediments as flows incise the lengthy debris tongue
747	deposits. In contrast, slumps with slightly shallower headwalls (HA, HB, HC, HD; see Fig. 1d), and less
748	well-developed debris tongues (Table 1), appear to elicit a slightly different response than the largest
749	slumps discussed above. At these mid-sized sites, within-slump DOC concentrations were typically
750	higher than those found at upstream comparison sites (Fig. 2b), which may reflect the greater relative
751	inputs from thawing of the Holocene-aged relict active layer, and decreased interaction with debris
752	tongue deposits at these smaller disturbances. Similarly, runoff δ^{18} O tends to lie between Holocene and
753	modern end-member values at these sites (though note the more depleted value for HB; Fig. 5),
754	indicating a lower relative contribution of Pleistocene-aged ground ice to slump outflow waters.
755	Finally, the youngest and shallowest slump surveyed (SD), exposes only near-surface permafrost
756	soils for leaching and geochemical transport (Figs. 1e and S1; Table 1), and not the underlying mineral
757	and ice-rich glacigenic substrates. Accordingly, the effects of slumping on stream chemistry, optical
758	parameters, and isotopes appear muted at SD when compared to the larger slumps discussed above.
759	These morphometry-related shifts in the downstream effects of slumping suggest that we should expect
760	non-linearity in the biogeochemical response as <u>RTS</u> features develop over time, particularly if slumping
I	24

Deleted: slump

762	continues to intensify with future warming on the Peel Plateau (e.g., Kokelj et al., 2017b). <u>This</u>	
763	underscores the importance of long-term monitoring on the Peel Plateau and elsewhere, and indicates	 Deleted: L
764	that the incorporation of non-linearity into modelling efforts is critical for predicting future change	 Deleted: models
765		Deleted: , are clearly warranted for the Peel Plateau and elsewhere in the Arctic
766	5.4 Environmental controls on DOC flux and concentration	
767	Air temperature and rainfall exerted the strongest control on DOC flux at our intensively studied	
768	site, which was chosen to be representative of active Peel Plateau slumps that are eroding Holocene- to	
769	Pleistocene-aged sediments (slump FM3; Fig. 6; Table 4). Upstream of the slump, rainfall was positively	 Deleted:
770	correlated, and air temperature negatively correlated, with DOC flux. However, precipitation events are	
771	negatively related to temperature at the upstream site (Fig. 6), suggesting that at the single-season scale	 Deleted: this
772	of our investigation, precipitation served as the primary environmental control on DOC flux. DOC	
773	concentration was relatively constant with discharge upstream (r=-0.342, p=0.151), indicating that	Deleted: at the
774	precipitation controls DOC flux largely as a result of changes in water flow in pristine streams on the	Deleted: site
775	<u>Peel Plateau</u> , and that DOC was not <u>source-l</u> imited over the time scale of our investigation. <u>However,</u>	Deleted: source
776	upstream DOC concentration was positively related to temperature. (Table 4), suggesting that biological	Deleted: , however
777	activity is an important regulator of within-soil DOC production (c.f. Pumpanen et al., 2014). These	
778	upstream-of-slump results are consistent with work from other undisturbed permafrost and boreal	
779	regions, where precipitation and catchment runoff have been shown to control DOC flux in streams	
780	(Prokushkin et al., 2005; Pumpanen et al., 2014), and increasing temperature has been shown to	
781	increase DOC production in soils (Christ and David, 1996; Neff and Hooper, 2002; Prokushkin et al.,	
782	2005; Yanagihara et al., 2000). They are also consistent with the concept that the permafrost barrier	 Deleted: impermeable
783	forces precipitation to travel through the shallow active layer, where high hydraulic conductivity leads to	
784	rapid transport of carbon into fluvial systems, and little degradation in soils ($ ho'$ Donnell et al., 2010;	 Deleted:
785	Striegl et al., 2005).	

799	Slumping did not significantly <u>affect</u> downstream DOC flux at the intensively studied slump site,		Deleted: modify
800	when compared to DOC flux upstream of this site (Fig. 6; Section 4.4). Although concentration		Deleted: slump FM3
801	consistently declined downstream at <u>FM3</u> (Sections 4.1 and 4.4), downstream <u>DOC</u> flux was either		Deleted: this site
802	slightly higher, or slightly lower, than upstream <u>flux; a result that seems likely to play out at other,</u>		Deleted: values
803	comparable Peel Plateau slumps, given the coherent concentration patterns that we observed with		Deleted: , across the multiple measurement points
804	slumping, Concordant with the lack of change in DOC flux in response to slumping, neither the ratio of		Deleted: that we considered
805	(downstream: upstream) or difference between (downstream – upstream) upstream and downstream		Deleted: this Deleted: finding
806	DOC flux could be explained by any of our environmental variables, while downstream flux showed an		
807	almost identical relationship with environmental controls as those upstream (Table 4). The lack of clear		
808	environmental control on relative downstream: upstream DOC flux occurred despite the fact that		
809	precipitation has been shown to be a strong driver of ablation and sediment movement from slump		
810	features on the Peel Plateau, at time scales similar to those used for this work (Kokelj et al., 2015).		
811	Considering the Peel Plateau landscape as a whole, it appears that precipitation serves as a		
812	primary, positive control on DOC flux. Thus, this study adds DOC production to the list of changes – such		
813	as increasing slump activity and sediment mobilization – that can be expected with the increases in		
814	precipitation that are underway in this region, and are predicted for many Arctic regions (IPCC, 2014;		Deleted: expected throughout the Arctic
815	Kokelj et al., 2015). However, it appears that slumping does not over-ride the landscape-scale control on		Deleted: ; Walsh et al., 2011
816	DOC flux in this system – at least at the scale of this single-season – perhaps because processes like DOC		
817	sorption mask the influx of slump-derived DOC (Fig. 6). This result highlights the complexity of the		Deleted: clearly
818	interaction between changing climatic parameters and DOC dynamics on the Peel Plateau, where slump		
819	features of increasing size incorporate thawing till, glaciolacustrine, glaciofluvial, and organic deposits,		Deleted: ;
820	while also draining contemporary active layers across a shrub-tundra to spruce forest upland gradient		Deleted: additionally
821	DOC dynamics are thus affected by both water and carbon generation across these variable landform	\geq	Deleted: ; Deleted: and where
822	types, and <u>by biogeochemical interactions such as mineral adsorption in recipient systems. While</u> future		Deleted: variably
823	work to tease apart the interactions between changing climatic parameters, slump development, and		Deleted: It also underscores the need for
	26		

841	resultant biogeochemical effects, is clearly warranted on the Peel Plateau and elsewhere, we must also		Deleted: ; both
			Deleted: across the Arctic
842	recognize that environmental controls on slump activity and thus downstream biogeochemistry can be	Ì	Deleted: where
843	expected to show marked regional variation (see for example, work from Eureka Sound; Grom & Pollard		
844	2008).		
845			
846	5.5 Study implications and future research directions: <u>Dissolved</u> carbon mobilization across diverse		Deleted: dissolved
847	permafrost landscapes		
848	Carbon dynamics in Arctic aquatic systems are influenced by numerous factors, including		
849	geology, Quaternary and glacial history, soil composition, vegetation, active layer dynamics, and the		
850	nature and intensity of thermokarst. As a result, the effect of permafrost thaw on DOC concentration		
851	and flux should – at a fundamental level – vary across broad, regional scales. <u>Our results</u> demonstrate,		Deleted: This study
			Deleted: s
852	that we can expect <u>marked</u> inter-regional variation in DOC transport to streams in response to	_	Deleted: large
853	normafract degradation. For example, declines in DOC concentration downstream of dumns on the Bool		Deleted: s
854	permafrost degradation, <u>For example</u> , declines in DOC concentration downstream of slumps on the Peel Plateau <u>clearly</u> differ from what has been found in eastern Siberia and regions of Alaska, where		Deleted: , and that results from multiple regions are needed to understand change across the Arctic as whole
034	Plateau <u>cleany</u> differ _y norm what has been found in eastern siberia and regions of Alaska, where		Deleted: The
855	thermokarst releases substantial quantities of DOC (e.g., Spencer et al. 2015), and increases DOC	$\backslash \downarrow$	Deleted: strikingly
			Deleted: for example,
856	concentrations in downstream systems (Abbott et al. 2015). Efforts that incorporate information		Deleted: significantly
857	concerning the geology and Quaternary history of thawing landscapes, the physical and geochemical		Deleted: Modelling e
037	concerning the scoresy and quaterniary motory of <u>charming innoceaped</u> the physical and scothermed		Deleted: that are being thawed
858	composition of permafrost soils, and the nature and intensity of thermokarst processes within		Deleted: the
859	landscapes (see, for example, Olefeldt et al. 2016) will considerably increase our ability to accurately		Deleted: would
			Deleted: clearly enable more accurate predictions
860	predict, how carbon delivery from land to water will respond to climate change on a pan-Arctic scale.		Deleted: of
861	At finer scales, however, this work <u>underscores</u> the variability of thermokarst effects within		Deleted: underlines
862	regions, and the local-scale control on this variability. On the Peel Plateau, for example, between-site		
863	differences in the biogeochemical effect of thermokarst correspond, to variation in soil stratigraphy (i.e.,		Deleted: s
864	the relative depth of the <u>Holocene aged paleo-active layer</u>) and ever-evolving slump morphometry.		Delete de la
865	Although striking within-region variability in biogeochemical response to thermokarst has been seen		Deleted: the Deleted: effects of
	27		Defected. effects of

890	elsewhere (e.g., Watanabe et al., 2011), <u>responses in other regions occuras a result of very different –</u>	Deleted: it
	· · · · · · · · · · · · · · · · · · ·	Deleted: s
891	and region-specific – landscape-level drivers. This landscape-specificity also extends to the non-linear	Deleted: ity of
892	biogeochemical response as slump features develop over time. <u>Changes in</u> downstream	Deleted: the
		Deleted: The changing response of
893	biogeochemistry with slump development <u>are very different on the Peel Plateau</u> , for example, than in	Deleted: is
894	other regions (e.g., Abbot et al. 2015), while non-linearity can also be expected to extend to different	
895	types of permafrost thaw (Kokelj et al. 2002, Vonk et al. 2016), such as increasing active layer thickness	
896	(Romanovsky et al. 2010). Only with a tiered approach, where we work within regions to understand	Deleted: focus
~~-		
897	how local controls drive regional responses to thaw, and across regions to document how predictable,	Deleted: and changing effects over time
898	broad-scale variation <u>controls responses at continental to pan-Arctic scales</u> , will we be able to	Deleted: affects the nature of thermokarst effects
899	understand the future biogeochemical functioning of thermokarst-affected landscapes throughout	Deleted: truly
		Deleted: at the pan-Arctic scale
900	<u>Arctic regions</u> .	
901		
902		
903	Acknowledgements	
904	Financial support for this research was provided by Ontario Graduate Scholarship, York University	
905	Fieldwork Cost Fund, York University Research Cost Fund, Northern Scientific Training Program, NSERC	
906	Discovery and Northern Research Supplement grants to SET, the Campus Alberta Innovates Program,	
907	and the Polar Continental Shelf Program. We would like to thank Scott Zolkos for his support as a field	
908	assistant and for the production of Figure 1; S. Tetlichi, D. Neyando, and P. Snowshoe for field sampling	

- 909 assistance; and the Tetlit Gwich'in (Fort McPherson) Renewable Resources Council. Sarah Shakil and
- 910 Scott Zolkos assisted with the collection of samples for DO¹⁴C; Justin Kokoszka performed geospatial
- 911 calculations of slump area and debris tongue length. <u>Comments from Michael Fritz and one anonymous</u>
- 912 reviewer greatly improved the content of the manuscript.

924 Literature Cited

Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B., and Balser, A. W.: Elevated dissolved organic
carbon biodegradability from thawing and collapsing permafrost, J. Geophys. Res., 119, 2049–2063,
doi:10.1002/2014JG002678, 2014.

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of
 hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–
 3740, doi:10.5194/bg-12-3725-2015, 2015.

Balcarczyk, K. L., Jones, J. B., Jaffé, R., and Maie, N.: Stream dissolved organic matter bioavailability and
 composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 94, 255–270,
 doi:10.1007/s10533-009-9324-x, 2009.

Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., and
Sabater, F.: Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100,
doi:10.1038/ngeo101, 2008.

 Burn, C. R.: Cryostratigraphy, paleogeography, and climate change during the early Holocene warm

 interval, western Arctic coast, Canada. Can. J. Earth Sci. 34, 912-925, doi: 10.1139/e17-076, 1997.

- Burn, C. R. and Kokelj, S. V: The environment and permafrost of the Mackenzie Delta area, Permafr.
 Periglac. Process., 20, 83–105, doi:10.1002/ppp.655, 2009.
- Burnham, K. P. and Anderson, D. R.: Model Selection and Multi- Model Inference: A Practical
 Information-Theoretic Approach, Springer, New York., 2002.

943 Chin, K. S., Lento, J., Culp, J. M., Lacelle, D., and Kokelj, S. V.: Permafrost thaw and intense thermokarst
944 activity decreases abundance of stream benthic macroinvertebrates, Glob. Chang. Biol., 22, 2715–2728,
945 doi:10.1111/gcb.13225, 2016.

Christ, M. J. and David, M. B.: Temperature and moisture effects on the production of dissolved organic
 carbon in a Spodosol, Soil Biol. Biochem., 28, 1191–1199, doi:10.1016/0038-0717(96)00120-4, 1996.

948 Curtin, J.: ImSupport: Support for Linear Models. R package version 2.9.2., 2015.

Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a
 review, Mar. Chem., 83, 103–120, doi:10.1016/S0304-4203(03)00105-1, 2003.

- 951 Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., and Striegl, R. G.: Ancient low-
- molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw, Proc.
 Natl. Acad. Sci., 112, 13946–13951, doi:10.1073/pnas.1511705112, 2015.

Duk-Rodkin, A. and Hughes, O. L.: Surficial Geology, Fort McPherson-Bell River. Yukon-Northwest
 Territories. Geological Survey of Canada, Map 1745A, scale 1:250 000, Geological Survey of Canada, Map

- 956 1745A, scale 1:250 000, 1992.
- Durbin, J. and Watson, G. S.: Testing for serial correlation in least squares regression I, Biometrika, 37,
 409–428, 1950.
- 959 Environment Canada: Canadian Climate Normals 1981-2010 Station Data, Fort McPherson, 2015.
- 960 Fox, J. and Weisberg, S.: An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA:

Deleted: Catto, N. R.: Richardson Mountains, Yukon-Northwest Territories: The northern portal of the postulated "Ice-Free Corridor," Quat. Int., 32, 3–19, doi:10.1016/1040-6182(95)00062-3, 1996.¶

Field Code Changed

- 965 Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion., 2011.
- Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on arctic river biogeochemistry,
 Hydrol. Process., 23, 169–182, doi:10.1002/hyp, 2009.
- Pfritz, M., Vonk, J. E., and Lantuit, H.: Disappearing Arctic coastlines, Nat. Clim. Change, 7, 6-7,
 doi:10.1038/nclimate3188, 2017.
- 970Fritz, M., Opel, T., Tanski, G., Herzschuh, U., Meyer, H., Eulenburg, A., and Lantuit, H.: Dissolved organic971carbon (DOC) in Arctic ground ice, The Cryosphere, 9, 737-752, doi:10.5194/tc-9-737-2015, 2015.
- 972 Fritz, M., Wetterich, S., Schirrmeister, L., Meyer, H., Lantuit, H., Preusser, F., and Pollard, W. H.: Eastern
- 973 Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal
- 974 Plain, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol., 319–320, 28–45, doi:
- 975 <u>10.1016/j.palaeo.2011.12.015, 2012.</u>
- 976 Fulton, R. J.: Surficial Materials of Canada, Natural Resources Canada., 1995.
- 977 Green, S. A. and Blough, N. V.: Optical absorption and fluorescence properties of chromophoric
- 978 dissolved organic matter in natural waters, Limnol. Oceanogr., 39, 1903–1916,
- 979 doi:10.4319/lo.1994.39.8.1903, 1994.
- Hair, J. F. J., Anderson, R. E., Tatham, R. L., and Black, W. C.: Multivariate Data Analysis, 3rd ed.,
 Macmillan, New York., 1995.
- Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial organic matter in the ocean?, Org.
 Geochem., 27, 195–212, 1997.
- Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.: Absorption spectral
 slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric
 dissolved organic matter, Limnol. Oceanogr., 53, 955–969, doi:10.4319/lo.2008.53.3.0955, 2008.
- Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V.,
 Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.:
 Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and
 surrounding seas, Estuaries and Coasts, 35, 369–382, doi:10.1007/s12237-011-9386-6, 2012.
- 991 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L., Schirrmeister, L., Grosse,
- G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J.,
 and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges
 and identified data gaps, Biogeosciences, 11, 6573–6593, doi:10.5194/bg-11-6573-2014, 2014.
- IPCC: Topic 2: Future Climate Changes, Risks, and Impacts *In* Climate Change 2014: Synthesis Report.
 Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
 Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva,
 Switzerland, 151 pp, Geneva, Switzerland., 2014.
- 999 Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in the preservation of 1000 organic matter in soils, Org. Geochem., 31, 711–725, doi:10.1016/S0146-6380(00)00046-2, 2000.
- 1001 Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M., and Zimov, S. A.: Vulnerability of permafrost 1002 carbon to global warming. Part I: Model description and role of heat generated by organic matter

decomposition, Tellus, Ser. B Chem. Phys. Meteorol., 60 B, 250–264, doi:10.1111/j.1600 0889.2007.00333.x, 2008a.

1005 Khvorostyanov, D. V., Ciais, P., Krinner, G., Zimov, S. A., Corradi, C., and Guggenberger, G.: Vulnerability
1006 of permafrost carbon to global warming. Part II: Sensitivity of permafrost carbon stock to global
1007 warming, Tellus, Ser. B Chem. Phys. Meteorol., 60 B, 265–275, doi:10.1111/j.1600-0889.2007.00336.x,

1008 2008b.

1009 Kokelj, S. V, Tunnicliffe, J. F., and Lacelle, D.: The Peel Plateau of northwestern Canada : an ice-rich

- hummocky moraine landscape in transition, in Landscapes and Landforms of western Canada, edited by
 O. Slaymaker, pp. 109–122, Springer International Publishing, Switzerland., 2017a.
- 1012Kokelj, S. V. and Jorgenson, M. T.: Advances in thermokarst research, Permafr. Periglac. Process., 24,1013108–119, doi:10.1002/ppp.1779, 2013.

Kokelj, S. V., Smith, C. A., and Burn, C. R.: Physical and chemical characteristics of the active layer and
permafrost, Herschel Island, western Arctic Coast, Canada, Permafr. Periglac. Process., 13, 171–185,
doi:10.1002/ppp.417, 2002.

1017 Kokelj, S. V., Jenkins, R. E., Milburn, D., Burn, C. R., and Snow, N.: The influence of thermokarst
1018 disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories,
1019 Canada, Permafr. Periglac. Process., 16, 343–353, doi:10.1002/ppp.536, 2005.

Kokelj, S. V., Lantz, T. C., Kanigan, J. C., Smith, S. L., and Coutts, R.: Origin and polycyclic behaviour of
tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada, Permafr. Periglac. Process.,
20, 173–184, doi:10.1002/ppp, 2009.

Kokelj, S. V., Lacelle, D., Lantz, T. C., Tunnicliffe, J., Malone, L., Clark, I. D., and Chin, K. S.: Thawing of
massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of
watershed scales, J. Geophys. Res. Earth Surf., 118, 681–692, doi:10.1002/jgrf.20063, 2013.

Kokelj, S. V., Tunnicliffe, J., Lacelle, D., Lantz, T. C., Chin, K. S., and Fraser, R.: Increased precipitation
drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern
Canada, Glob. Planet. Change, 129, 56–68, doi:10.1016/j.gloplacha.2015.02.008, 2015.

Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, D.: Climate-driven thaw of permafrost
preserved glacial landscapes, northwestern Canada, Geology, 45, 371–374, doi:10.1130/G38626.1,
2017b.

1032 Kothawala, D. N., Moore, T. R., and Hendershot, W. H.: Soil properties controlling the adsorption of 1033 dissolved organic carbon to mineral soils, Soil Sci. Soc. Am. J., 73, 1831–1842,

1034 doi:10.2136/sssaj2008.0254, 2009.

Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors affecting contemporary (19502004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT,
Canada, Permafr. Periglac. Process., 21, 1–15, doi:10.1002/ppp.666, 2010.

Lacelle, D., Lauriol, B., Zazula, G., Ghaleb, B., Utting, N., and Clark, I. D.: Timing of advance and basal
condition of the Laurentide Ice Sheet during the last glacial maximum in the Richardson Mountains,
NWT, Quat. Res. (United States), 80, 274–283, doi:10.1016/j.yqres.2013.06.001, 2013.

1041 Lacelle, D., Fontaine, M., Forest, A. P., and Kokelj, S.: High-resolution stable water isotopes as tracers of

thaw unconformities in permafrost: A case study from western Arctic Canada, Chem. Geol., 368, 85–96,
doi:10.1016/j.chemgeo.2014.01.005, 2014.

- 1044Lacelle, D., Brooker, A., Fraser, R. H., and Kokelj, S. V.: Distribution and growth of thaw slumps in the1045Richardson Mountains–Peel Plateau region, northwestern Canada, Geomorphology, 235, 40–51,1046Lacelle, D., Brooker, A., Fraser, R. H., and Kokelj, S. V.: Distribution and growth of thaw slumps in the
- 1046 doi:10.1016/j.geomorph.2015.01.024, 2015.

Lafrenière, M. J. and Lamoureux, S. F.: Thermal perturbation and rainfall runoff have greater impact on
 seasonal solute loads than physical disturbance of the active layer, Permafr. Periglac. Process., 24, 241–
 251, doi:10.1002/ppp.1784, 2013.

Lang, S. Q., McIntyre, C. P., Bernasconi, S. M., Früh-Green, G. L., Voss, B. M., Eglinton, T. I., and Wacker,
 L.: Rapid ¹⁴C analysis of dissolved organic carbon in non-saline waters, Radiocarbon, 58, 505–515,

1052 doi:10.1017/RDC.2016.17, 2016.

Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and retrogressive thaw slump activity on
 Herschel Island, southern Beaufort Sea, Yukon Territory, Canada, Geomorphology, 95, 84–102,
 doi:10.1016/j.geomorph.2006.07.040, 2008.

Lantuit, H., Pollard, W. H., Couture, N., Fritz, M., Schirrmeister, L., Meyer, H., and Hubberten, H.W.:
 Modern and late Holocene retrogressive thaw slump activity on the Yukon Coastal Plain and Herschel
 Island, Yukon Territory, Canada. Permafrost Periglacial Process. 23, 39–51, doi: 10.1002/ppp.1731, 2012.

Lantz, T. C. and Kokelj, S. V.: Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada, Geophys. Res. Lett., 35, 1–5, doi:10.1029/2007GL032433, 2008.

Lewkowicz, A. G.: Rate of short-term ablation of exposed ground ice, Banks Island, Northwest
 Territories, Canada, J. Glaciol., 32, 511–519, 1986.

Lewkowicz, A. G.: Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories, Can. J.
Earth Sci., 24, 1077–1085, doi:10.1139/e87-105, 1987.

MacLean, R., Oswood, M. W., Irons, J. G., and McDowell, W. H.: The effect of permafrost on stream
 biogeochemistry: A case study of two streams in the Alaskan (U.S.A.) taiga, Biogeochemistry, 47, 239–
 267, doi:10.1007/BF00992909, 1999.

Malone, L., Lacelle, D., Kokelj, S., and Clark, I. D.: Impacts of hillslope thaw slumps on the geochemistry
of permafrost catchments (Stony Creek watershed, NWT, Canada), Chem. Geol., 356, 38–49,
doi:10.1016/j.chemgeo.2013.07.010, 2013.

1071 Manley, W. F. and Kaufman, D. S.: Alaska PaleoGlacier Atlas: Institute of Arctic and Alpine Research 1072 (INSTAAR), University of Colorado., 2002.

Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S., Bulygina, E., Zimov, S., and Holmes,
R. M.: Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River
basin, J. Geophys. Res. Biogeosciences, 117, G01028, doi:10.1029/2011JG001798, 2012.

Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., Holmes, R. M., and
Spencer, R. G. M.: Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks, Nat.
Commun., 6, 7856, doi: 10.1038/ncomms8856, 2015.

1079 McDowell, W. H.: Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream,

1080 Biogeochemistry, 1, 329–352, 1985.

1081Murton, J. and French, H.: Cryostructures in permafrost, Tuktoyaktuk coastlands, western arctic Canada,1082Can. J. Earth Sci., 31, 737–747, doi:10.1139/e94-067, 1994.

1083 Murton, J. B., Edwards, M. E., Lozhkin, A. V, Anderson, P. M., Savvinov, G. N., Bakulina, N., Bondarenko,

1084 O. V, Cherepanova, M. V, Danilov, P. P., Boeskorov, V., Goslar, T., Grigoriev, S., Gubin, S. V, Korzun, J. A.,

1085 Lupachev, A. V, Tikhonov, A., Tsygankova, V. I., Vasilieva, G. V., and Zanina, O. G.: Preliminary

paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast
 Siberia, Quat. Res., 87, 314–330, doi:10.1017/qua.2016.15, 2017.

1088Neff, J. C. and Hooper, D. U.: Vegetation and climate controls on potential CO2, DOC and DON1089production in northern latitude soils, Glob. Chang. Biol., 8, 872–884, doi:10.1046/j.1365-

1090 2486.2002.00517.x, 2002.

Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J., Schuur, E. A. G., and Davydova, A. I.:
Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams,
Geophys. Res. Lett., 33, 1–5, doi:10.1029/2006GL028222, 2006.

1094 Norris, D. K.: Geology of the northern Yukon and northwestern District of Mackenzie. Geological Survey 1095 of Canada, Map 1581A, scale 1:500 000, 1984.

1096 O'Donnell, J. A., Aiken, G. R., Kane, E. S., and Jones, J. B.: Source water controls on the character and
1097 origin of dissolved organic matter in streams of the Yukon River basin, Alaska, J. Geophys. Res.
1098 Biogeosciences, 115, 1–12, doi:10.1029/2009JG001153, 2010.

Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V.
 <u>E., Sannel, A. B. K., Schuur, E. A. G., and Turetsky, M. R.: Circumpolar distribution and carbon storage of</u>
 thermokarst landscapes, 7, 13043, 2016.

1102Palstra, S. and Meijer, H.: Biogenic carbon fraction of biogas and natural gas fuel mixtures determined1103with ¹⁴C, Radiocarbon, 56, 7–28, doi:10.2458/56.16514, 2014.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: nlme: Linear and nonlinear mixed effects
 models. R package version 3.1-120, http://CRAN.R-project.org/package=nlme>., 2015.

Poulin, B. A., Ryan, J. N., and Aiken, G. R.: Effects of iron on optical properties of dissolved organic
matter, Environ. Sci. Technol., 48, 10098–10106, doi:10.1021/es502670r, 2014.

1108 Prokushkin, A. S., Kajimoto, T., Prokushkin, S. G., McDowell, W. H., Abaimov, A. P., and Matsuura, Y.:

1109 Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-

1110 permafrost Siberian watershed, Can. J. For. Res., 35, 2130–2140, doi:10.1139/x05-150, 2005.

1111 Pumpanen, J., A, L., Heli, M., Kolari, P., Ilvesniemi, H., Mammarella, I., Hari, O., Nikinmaa, E., Heinonsalo,

J., Back, J., Ojala, A., Berninger, F., and Vesala, T.: Precipitation and net ecosystem exchange are the
most important drivers of DOC flux in upland boreal catchments, J. Geophys. Res. Biogeosciences, 119,
1861–1878, doi:10.1002/2014JG002705, 2014.

1115Qualls, R. and Haines, B. L.: Measuring adsorption isotherms using continuous, unsaturated flow through1116intact soil cores, Soil Sci. Soc. Am. J., 56, 456–460, doi:10.2136/sssaj1992.03615995005600020019x,

1117 1992.

Deleted: McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., Heimann, M., Lorenson, T. D., MacDonald, R. W. and Roulet, N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523–555, doi:10.1890/08-2025.1, 2009.¶

- 1123R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical1124Computing, Vienna, Austria. http://www.r-project.org/., 2015.
- 1125 Rampton, V. N.: Quaternary geology of the Tuktoyaktuk coastlands, Northwest Territories, Geol. Surv.1126 Canada, 1988.

127Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern128Hemisphere during the international polar year 2007–2009: a synthesis, Permafrost Periglacial Process.,12921, 106-116, doi: 10.1002/ppp.689, 2010.

- 1130 Schuur, E., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V, Hagemann, S.,
- 1131 Kuhry, P., Lafleur, P. M., Lee, H., Nelson, M. F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
- 1132 Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of permafrost carbon to climate 1133 change : Implications for the global carbon cycle, Bioscience, 58, 701–714, doi:10.1641/B580807, 2008.
- 1134 Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P., Canadell, J. G., Chanton, J. P.,
- 1135 Chapin, F. S., Christensen, T. R., Ciais, P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J.,
- 1136 Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D., Krinner, G., Kuhry, P., Lawrence, D. M.,
- 1137 McGuire, A. D., Natali, S. M., O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E., Sannel,
- 1138 A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M., Tarnocai, C., Turetsky, M. R., Waldrop, M. P.,
- Walter Anthony, K. M., Wickland, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of vulnerability
 of permafrost carbon to climate change, Clim. Change, 119, 359–374, doi:10.1007/s10584-013-0730-7,
- 1141 2013.
 - 1142Schuur, E. A. G., McGuire, A. D., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., and1143Kuhry, P.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179,
 - 1144 doi:10.1038/nature14338, 2015.
 - 1145Segal, R. A., Lantz, T. C., and Kokelj, S. V: Acceleration of thaw slump activity in glaciated landscapes of1146the Western Canadian Arctic, Environ. Res. Lett., 11, 34025, doi:10.1088/1748-9326/11/3/034025, 2016.
 - Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., Mcintyre, C., Holmes, R. M., Zimov, N., and
 Stubbins, A.: Detecting the signature of permafrost thaw in Arctic rivers, Geophys. Res. Lett., 42,
 doi:10.1002/2015GL063498, doi:10.1002/2015GL063498, 2015.
 - Street, L. E., Dean, J. F., Billett, M. F., Baxter, R., Dinsmore, K. J., Lessels, J. S., Subke, J.-A., Tetzlaff, D.,
 and Wookey, P. A.: Redox dynamics in the active layer of an Arctic headwater catchment; examining the
 potential for transfer of dissolved methane from soils to stream water, J. Geophys. Res. Biogeosci., 121,
 2776-2792, doi: 10.1002/2016JG003387, 2016.
 - Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A., and Wickland, K. P.: A decrease in
 discharge-normalized DOC export by the Yukon River during summer through autumn, Geophys. Res.
 Lett., 32, 1–4, doi:10.1029/2005GL024413, 2005.
 - Tank, S. E., Raymond, P. A., Striegl, R. G., McClelland, J. W., Holmes, R. M., Fiske, G. J., and Peterson, B.
 J.: A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic
 rivers to the Arctic Ocean, Global Biogeochem. Cycles, 26, GB4018, doi:10.1029/2011GB004192, 2012a.
 - Tank, S. E., Manizza, M., Holmes, R. M., McClelland, J. W., and Peterson, B. J.: The processing and impact
 of dissolved riverine nitrogen in the Arctic Ocean, Estuaries and Coasts, 35, 401–415,
 - 1162 doi:10.1007/s12237-011-9417-3, 2012b.

- 1163 Tanski, G., Couture, N., Lantuit, H., Eulenburg, A., and Fritz, M.: Eroding permafrost coasts release low
- 1164 amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean, 1165 Glob. Biogeochem. Cycles, 30, 1054–1068, doi:10.1002/2015GB005337, 2016.
- 1166 Tanski, G., Lantuit, H., Ruttor, S., Knoblauch, C., Radosavljevic, B., Strauss, J., Wolter, J., Irrgang, A. M.,
- 1167 Ramage, J., and Fritz, M.: Transformation of terrestrial organic matter along thermokarst-affected
- 1168 permafrost coasts in the Arctic. Sci. Total Environ. 581-582, 434-447, doi:
- 1169 10.1016/j.scitotenv.2016.12.152, 2017.
- 1170 Thompson, M. S., Prowse, T. D., Kokelj, S. V., and Wrona, F. J.: The impact of sediments derived from 1171 thawing permafrost on tundra lake water chemistry: An experimental approach, Proc. Ninth Int. Conf. 1172 Permafr., 29, 1763-1768, 2008.
- Vonk, J. E. and Gustafsson, Ö.: Permafrost-carbon complexities, Nat. Geosci., 6, 675–676, 1173 1174 doi:10.1038/ngeo1937, 2013.
- 1175 Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov, N., Spencer, R. G. M., Bulygina, 1176 E. B., Eglinton, T. I., and Holmes, R. M.: Dissolved organic carbon loss from Yedoma permafrost amplified 1177 by ice wedge thaw, Environ. Res. Lett., 8, 35023, doi:10.1088/1748-9326/8/3/035023, 2013a.
- Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M., Schade, J., Sobczak, W. V., Zimov, 1178 1179 N., Zimov, S., Bulygina, E., Eglinton, T. I., and Holmes, R. M.: High biolability of ancient permafrost carbon 1180
- upon thaw, Geophys. Res. Lett., 40, 2689–2693, doi:10.1002/grl.50348, 2013b.
- 1181 Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and 1182 Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-
- 1183 analysis, Biogeosciences, 12, 6915-6930, doi:10.5194/bgd-12-8353-2015, 2015a.
- 1184 Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., 1185 Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., Macmillan, 1186 G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost 1187 thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, doi:10.5194/bg-12-7129-2015,
- 1188 2015b.
- 1189 Ward, R. C. and Robinson, M.: Principles of Hydrology, Fourth Edition, McGraw-Hill International (UK) 1190 Limited., 2000.
- 1191 Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R., and Vincent, W. F.: Optical diversity of thaw ponds in 1192 discontinuous permafrost: A model system for water color analysis, J. Geophys. Res. Biogeosciences, 116, doi:10.1029/2010JG001380, 2011. 1193
- 1194 Weishaar, J. and Aiken, G.: Evaluation of specific ultra-violet absorbance as an indicator of the chemical 1195 content of dissolved organic carbon, Environ. Chem., 37, 4702-4708, doi:10.1021/es030360x, 2003.
- Woods, G. C., Simpson, M. J., Pautler, B. G., Lamoureux, S. F., Lafrenière, M. J., and Simpson, A. J.: 1196 1197 Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic, Geochim. Cosmochim. Acta, 75, 7226–7241, doi:10.1016/j.gca.2011.08.013, 1198
- 1199 2011.
- Yanagihara, Y., Koike, T., Matsuura, Y., Mori, S., Shibata, H., Satoh, F., Masuyagina, O., Zyryanova, O., 1200 1201 Prokushkin, A. S., Prokushkin, S. G., and Abaimov, A. P.: Soil respiration on the contrasting north- and
- 1202 south-facing slopes of a larch forests in Central Siberia, Eurasian J. For. Res., 1, 19–29, 2000.

Deleted: Walsh, J. E., Overland, J. E., Groisman, P. Y. and Rudolf, B.: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway., 2011.¶

- 1207 Zeileis, A. and Grothendieck, G.: 200: S3 infrastructure for regular and irregular time series, J. Stat.
 1208 Softw., 14, 1–27, 2005.
- 1209 Zeileis, A. and Hothorn, T.: Diagnostic checking in regression relationships., R News, 2, 7–10, 2002.
- 1210 Zhou, Y., Guo, H., Lu, H., Mao, R., Zheng, H., and Wang, J.: Analytical methods and application of stable
- isotopes in dissolved organic carbon and inorganic carbon in groundwater, Rapid Commun. Mass
 Spectrom., 29, 1827–1835, doi:10.1002/rcm.7280, 2015.
- 1213 Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed Effects Models and Extensions
 1214 in Ecology with R, Springer, New York., 2009.

1216 **Table 1:** Slump characteristics and sampling information for eight retrogressive thaw slumps sampled

1217 during the 2014 field season on the Peel Plateau, NWT, Canada. Characteristics are derived from

1218	published values and field estimations.
------	---

Slump	Sample dates	Latitude	Longitude	Area	Debris	Headwall
location	(Julian day)ª			(ha)	tongue (m) ^b	height (m
FM4	202, 210, 223	67 16.679	-135 09.573	8.8	960	16 to 20 ^d
FM2	200, 209, 222	67 15.462	-135 14.216	31.7	1529	25 ^e
FM3	197, 212	67 15.100	-135 16.270	6.1	576	10 ^e
SD	196, 213, 234	67 10.818	-135 43.630	3.3	NA	2 – 4 ^d
HA	190, 229	67 09.057	-135 41.121	5.9	288	$6 - 10^{d}$
НВ	190, 229	67 14.397	-135 49.167	13.6 ^c	257	$6 - 10^{d}$
HC	190, 229	67 19.652	-135 53.620	10.3, 10.3 ^c	408	$6 - 10^{d}$
HD	190, 229	67 24.025	-135 20.048	1.8	137	$6 - 10^{d}$
Weather Station		67 14.756	-135 12.920			

1219

^a Excludes samples for the FM3 'environmental controls' analysis which was conducted on 17 additional
 dates; HD, Julian date 229 did not include a within-slump sample.

1222 ^b The length of debris tongue measured from the base of the debris scar, along the valley bottom stream

1223 ^c Site HB is comprised of two smaller slump features that have merged into the scar zone delineated

here; site HC is comprised of 5 separate slump features that have merged into two scar zones, each withan area of 10.3 ha

^d Rough estimates by field crews over 2014 and 2015 field seasons

1227 ^e (Kokelj et al., 2015)

1228

1229

1230

1231	Table 2: Results of the mixed-effects models used to assess the effects of slumping on stream water	
------	---	--

1232 chemistry and optical characteristics. Downstream models incorporated data from downstream and

1233 upstream sites; within-slump models incorporated data from within-slump and upstream sites. Provided

1234 <u>are degrees of freedom (df), t-statistics, and p-values for individual model runs.</u> Further details on the

1235 statistical approach are provided in Section 3.4.

1236

		Downstream	n	Within-slump			
	df	t	р	df	t	р	
DOC	20	-12.895	<.0001	30	-1.468	0.153	
Na	33	9.662	<.0001	30	7.278	0.000	
Ca	33	9.767	<.0001	30	4.782	0.000	
Mg	33	6.166	<.0001	30	8.593	0.000	
Conductivity	32	43.083	<.0001	30	11.895	0.000	
TSS	29	6.692	<.0001	28	2.187	0.037	
SUVA	31	-5.296	<.0001	30	-35.052	0.000	
S _R	31	5.092	<.0001	31	8.065	0.000	
S ₂₇₅	30	2.695	0.011	31	8.159	0.000	
S ₃₅₀	31	-3.595	0.001	31	16.665	0.000	

1237

1238

1239	Table 3: Measured fraction modern carbon (F ¹⁴ C) and estimated calendar years before present for ¹⁴ C of
1240	dissolved organic carbon samples collected upstream of, and within drainage waters of, selected slump

- dissolved organic carbon samples collected upstream of, and within drainage waters of, selected slump 1241
- sites. Data were collected during the summer of 2016. nc indicates sample not collected. $\underline{\text{Error}}$ estimates indicate 1o.
- 1242
- 1243

	F ¹	⁴ C	¹⁴ C	yr BP
Site	Upstream	Within-slump	Upstream	Within-slump
FM4	0.9734 ± 0.0029	nc	217 ± 24	nc
FM2	0.9764 ± 0.0032	0.3030 ± 0.0024	192 ± 27	9592 ± 64
FM3	1.0023 ± 0.0030	0.3618 ± 0.0018	modern	8167 ± 39
SD	1.0216 ± 0.0035	0.8659 ± 0.0025	modern	1157 ± 23

1245 **Table 4:** Results of multiple linear regression analyses to assess environmental controls on upstream and downstream DOC flux, and upstream

1246 and downstream DOC concentration. nr indicates variables that were not retained in the best fit regression model; NA indicates variables that

1247 were not run in individual analyses. Significant p-values are indicated with bold text; marginal results (0.05 < p < 0.10) are indicated in italics.

1248 Model statistics are as follows: downstream flux r^2 =0.84, $F_{7,11}$ =8.25, p = 0.001; upstream flux r^2 =0.87, $F_{7,11}$ =10.79, p <0.001; downstream

1249 concentration r^2 =0.85, $F_{4,14}$ =19.57, p < 0.001; upstream concentration r^2 =0.91, $F_{5,13}$ =27.05, p < 0.001.

	Dow	nstream	DOC	Up	stream D	OC	Dow	nstream	DOC	Up	stream D	OC
		flux			flux		со	ncentrati	on	со	ncentrati	on
Coefficient	Estimate	t	р	Estimate	t	р	Estimate	t	р	Estimate	t	р
Average Air Temperature (°C)												
0 h	-67.08	-1.685	0.120	-115.96	-3.286	0.007	nr	nr	nr	0.165	2.349	0.035
48 h	nr	nr	nr	56.32	1.534	0.153	0.332	6.886	<0.001	0.396	5.510	<0.001
72 h	-95.15	-2.594	0.025	-94.17	-2.717	0.020	nr	nr	nr	nr	nr	nr
120 h	nr	nr	nr	nr	nr	nr	0.134	3.527	0.003	0.203	4.411	<0.001
Rainfall (mm)												
Oh	116.13	5.411	<0.001	105.47	6.039	<0.001	-0.066	-1.967	0.069	nr	nr	nr
48h	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr
72h	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr
120h	-23.94	-1.970	0.075	-24.15	-2.529	0.028	nr	nr	nr	nr	nr	nr
Average net radiation (W m ⁻²)												
Oh	4.96	1.286	0.225	nr	nr	nr	-0.021	-4.043	0.001	-0.021	-3.387	0.005
48h	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr
72h	5.58	1.545	0.151	4.04	1.563	0.146	nr	nr	nr	nr	nr	nr
120h	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr
Total suspended sediment (mg L ⁻¹)												
Downstream	-0.02	-2.102	0.059	NA	NA	NA	nr	nr	nr	NA	NA	NA
Upstream	NA	NA	NA	-0.32	-1.626	0.132	NA	NA	NA	-0.0006	-1.627	0.128

1250 Figure captions:

- **Fig. 1**: Location and morphology of thaw slumps on the Peel Plateau, Northwest Territories, Canada.
- 1252 Panel A depicts the stream networks and location of the eight retrogressive thaw slumps studied, Panel
- 1253 B depicts representative sampling locations at each slump site; FM3 depicted. Panels C-E depict
- 1254 representative thaw-slump headwall stratigraphies. Panel C shows a mega-slump (FM3, the smallest
- 1255 mega-slump, is depicted); panel D shows a moderate-sized slump (HB); panel E shows the smallest
- 1256 slump that was sampled (SD). In panels C and D, the approximate location of the modern active layer (a),
- 1257 early Holocene-aged relict active layer (b), and Pleistocene-aged glacigenic materials (c) is shown.
- 1258 **Fig. 2:** The effect of retrogressive thaw slumps on stream water dissolved organic carbon (DOC)
- 1259 concentration. Each data point represents the mean and standard error of measurements across all
- 1260 sampling dates, as described in Table 1. The bottom two panels show the ratio of within-slump:
- 1261 upstream, and downstream: upstream DOC concentrations within individual slumps, with points
- 1262 indicating the mean and standard error of this ratio across sample dates.

Fig. 3: Box and whisker plots to illustrate the effects of retrogressive thaw slump activity on stream
 geochemistry. Each boxplot includes data from across all slumps and sampling periods, and indicates
 median values, 25th and 75th percentiles (box extremities), 10th and 90th percentiles (whiskers), and
 outlier points. U=upstream sites; W=within-slump sites; D=downstream sites.

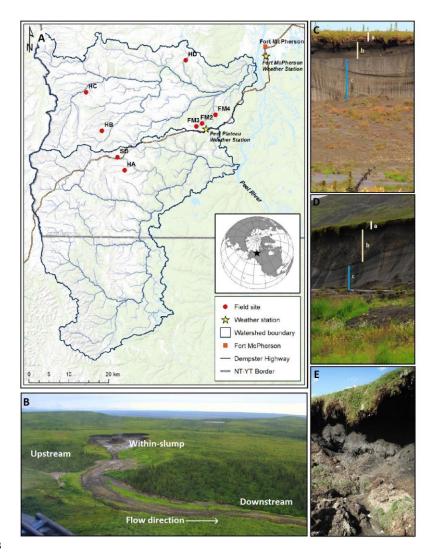
- Fig. 4: The effect of retrogressive thaw slumps on the optical properties of stream water dissolved
 organic matter. Each data point represents the mean and standard error of measurements across all
 sampling dates, as described in Table 1. <u>Shown are specific UV absorbance (SUVA₂₅₄), spectral slopes</u>
- 1270 <u>between 275-295 and 350-400 nm $(S_{275-295}; S_{350-400})$ and the slope ratio (S_R) .</u>

Fig. 5: Paired oxygen isotopic (δ^{18} O ‰) and SUVA₂₅₄ (L mg C⁻¹m⁻¹) data, to demonstrate the relationship between source water age and dissolved organic matter composition. Reference, δ^{18} O values are from

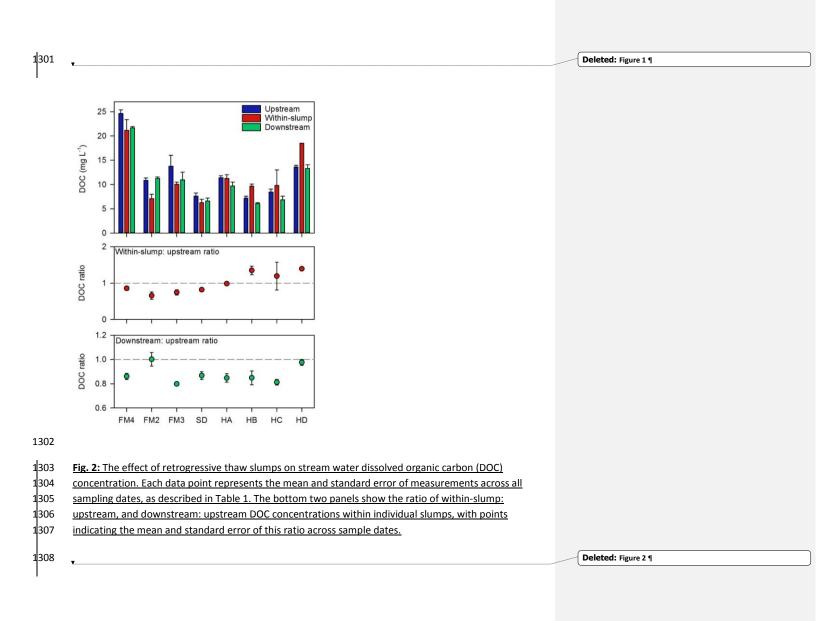
- 1273 Lacelle et al. (2013): the modern active layer value is derived from active layer pore water in this region,
- 1274 icy diamicton has been souced as Holocene in origin, and the $\frac{\delta^{18}O}{V}$ value for Pleistocene-aged ground ice
- 1275 is the most <u>positive</u> value for this region.

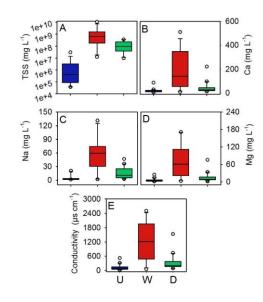
Fig. 6: Environmental conditions (solar radiation, precipitation and mean daily air temperature) and DOC
flux upstream and downstream of slump FM3 across a month-long sample period (July 12-August 12,
2014). Corresponding multiple linear regressions are described in Table 4.

Fig. 7: Within-slump fluxes of dissolved organic carbon (DOC), and TSS, compared to the calculated
 (downstream - upstream) fluxes for these two constituents. TSS – a conservative tracer over short


1281 distances – shows an additive response where the measured within-slump flux is equivalent to the

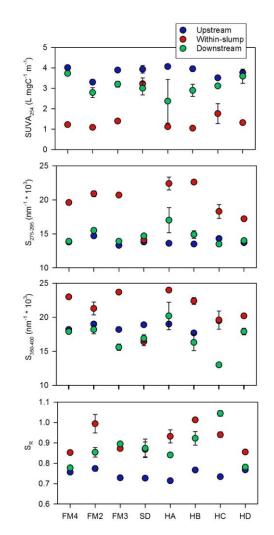
1282 calculated (downstream - upstream) flux. In contrast, DOC shows clear evidence of downstream loss.

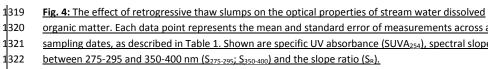

- 1283
- 1284


Deleted: on the Peel Plateau, Northwest Territories, Canada

Formatted	: Subscript
Formatted	: Subscript
Formatted	: Subscript
Formatted	: Subscript
Deleted: s	
Deleted: is	equivalent ot the meteoric water line
Formatted	I: Not Highlight
Deleted: is	
Deleted: b	een aged to be
Deleted: e	ra
Deleted: e	nriched
Deleted: P	leistocene-aged

1294 Fig. 1: Location and morphology of thaw slumps on the Peel Plateau, Northwest Territories, Canada. 1295 Panel A depicts the stream networks and location of the eight retrogressive thaw slumps studied. Panel 1296 B depicts representative sampling locations at each slump site; FM3 depicted. Panels C-E depict 1297 representative thaw-slump headwall stratigraphies. Panel C shows a mega-slump (FM3, the smallest 1298 mega-slump, is depicted); panel D shows a moderate-sized slump (HB); panel E shows the smallest 1299 slump that was sampled (SD). In panels C and D, the approximate location of the modern active layer (a), 1300 early Holocene-aged relict active layer (b), and Pleistocene-aged glacigenic materials (c) is shown.




1312 Fig. 3: Box and whisker plots to illustrate the effects of retrogressive thaw slump activity on stream
--

- 1313 1314 1315 geochemistry. Each boxplot includes data from across all slumps and sampling periods, and indicates
- median values, 25th and 75th percentiles (box extremities), 10th and 90th percentiles (whiskers), and
- outlier points. U=upstream sites; W=within-slump sites; D=downstream sites.

1316

Deleted: Figure 3 ¶

organic matter. Each data point represents the mean and standard error of measurements across all

- sampling dates, as described in Table 1. Shown are specific UV absorbance (SUVA₂₅₄), spectral slopes
- between 275-295 and 350-400 nm (S₂₇₅₋₂₉₅; S₃₅₀₋₄₀₀) and the slope ratio (S_R).
- 1323

Deleted: Figure 4 ¶

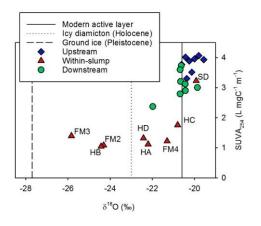
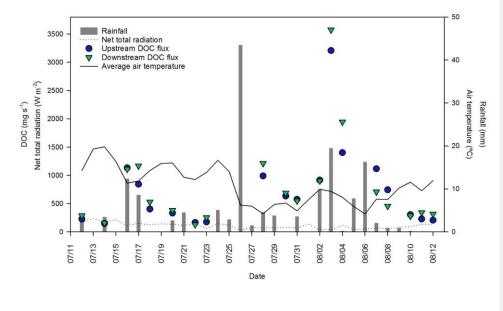



Fig. 5: Paired oxygen isotopic (δ¹⁸O ‰) and SUVA₂₅₄ (L mg C¹m⁻¹) data, to demonstrate the relationship
 between source water age and dissolved organic matter composition. Reference δ¹⁸O values are from
 Lacelle et al. (2013): the modern active layer value is derived from active layer pore water in this region,
 icy diamicton has been sourced as Holocene in origin, and the δ¹⁸O value for Pleistocene-aged ground ice
 is the most positive value for this region.

Deleted: Figure 5 ¶

1	
1334	Fig. 6: Environmental conditions (solar radiation, precipitation and mean daily air temperature) and DOC

- flux upstream and downstream of slump FM3 across a month-long sample period (July 12-August 12,
- 1335 1336 2014). Corresponding multiple linear regressions are described in Table 4.

1337

Deleted: Figure 6 ¶

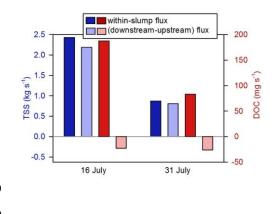


Fig. 7: Within-slump fluxes of dissolved organic carbon (DOC), and TSS, compared to the calculated1342(downstream - upstream) fluxes for these two constituents. TSS – a conservative tracer over short1343distances – shows an additive response where the measured within-slump flux is equivalent to the1344calculated (downstream - upstream) flux. In contrast, DOC shows clear evidence of downstream loss.

Deleted: Figure 7