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Abstract. 

Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity 

(TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal 

regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a 5 

particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands 

attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and 

endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef 

system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, 

weakening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in 10 

different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can 

capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this 

regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of 

coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate 

concentration. We find that regionally parameterised models capture local variability better than continental or 15 

open ocean parameterised models, however NRS clusters that model TA to a comparable robustness of regional 

models were identified. The strongest contribution to model improvement came through incorporating 

temperature as an input variable as well as salinity. Further improvements were achieved through the 

incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and chlorophyll-a 

constituting the minimum model in most cases. although the increases in robustness due to these improvements 20 

is regionally variable. These results provide an approach that can be applied to satellite Earth observation and 

autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.  
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1 Introduction 

Ocean acidification (OA), the reduction in oceanic pH caused by the oceans’ uptake of anthropogenic carbon 

dioxide (CO2) emissions, is a global phenomenon predicted to impact entire marine ecosystems, from microbial 

primary producers to top predators (Mostofa et al., 2016). Calcifying marine organisms generally show evidence 

of stress under ocean acidification scenarios, although the effects can vary widely, are species specific, and may 5 

depend on physiological traits (Comeau et al. 2017; Edmunds et al. 2016; Azevedo et al., 2015; Jokeil, 2016). 

Calcifying organisms potentially affected include corals, calcifying algae, molluscs, foraminifera, echinoderms, 

crustaceans, and bryozoans. In a high CO2 world, elevated ocean CO2 concentrations may stimulate 

photosynthesis (Gattuso et al., 2014) but may also decrease nitrogen fixation, leading to an overall decline in  

primary productivity (Hong et al. 2017), with uncertain but most-likely detrimental impacts on trophic 10 

interactions (Nagelkerken and Connell, 2015). Furthermore, the collapse of habitat builders such as corals, 

coralline algae and molluscs would have destructive impacts on entire marine ecosystems. Mesocosm and 

laboratory experiments have shown the majority of calcifying corals tested experience large declines in 

calcification and growth under OA scenarios (Gattuso et al., 2014).   

 15 

Australia’s coastline is over 36,000 km long, spanning ~33 degrees of latitude, from the tropics to the Southern 

Ocean. This coastline comprises unique and diverse marine ecosystems with high levels of endemism, of which 

the most famous is the Great Barrier Reef, the largest coral reef system on the planet and described as one of the 

seven natural wonders of the world (Mongin et al., 2016). The World Heritage-listed Ningaloo Reef system and 

remote reef systems of the Kimberley and Pilbara coasts in Western Australia are other examples of Australia’s 20 

vulnerable coral habitats. Elsewhere, sponges, bryozoans, molluscs and crustaceans contribute to a significant 

presence of vulnerable calcifying fauna, including some commercially significant species of abalone and 

scallop. Tracking and predicting the rate of progression of OA in these systems, to inform local management 

actions, requires the development of robust, and cost-effective methods of monitoring the marine carbonate 

system at synoptic scales.  25 

 

Understanding and quantifying distributions of total alkalinity (TA), the proton deficit of seawater relative to 

neutrality, is an indication of how much carbon dioxide seawater can hold. Waters with higher TA are less prone 

to rapid change in ocean pH, as they have a higher proton deficit to “consume” protons generated from CO2 

uptake, potentially offering refuge for marine biodiversity in the face of OA. Thus, TA is fundamental to 30 

understanding the rate of OA and oceanic uptake of CO2. Salinity is a conservative tracer within a water mass, 

meaning that it only experiences changes due to mixing of different water masses or through the addition or 

removal of freshwater. This leads to a linear relationship between salinity and TA in a region where convective 

mixing occurs between two waters with differing TA signals (Cai et al., 2010; Jiang et al., 2014; Lee et al., 

2006; Millero et al., 1998). This relationship has been exploited to predict alkalinity at the global scale from 35 

historical databases of ocean salinity (Lee et al., 2006; Millero et al., 1998).  While this works well for open 

ocean regions, alkalinity in coastal regions can be more variable due to  dynamic freshwater end-points in the 

TA-salinity relationship, the mixing of multiple oceanic end members, and the contribution of various processes 

that are non-conservative with salinity (e.g. dissolved organic inputs, organic matter respiration, and biological 

processes such as calcification and organic matter production) (Fig. 1). Thus, with the additional consideration 40 
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of non-conservative variability and convective mixing processes, it is clear that these relationships may not be 

robust in coastal regions (Bostock et al., 2013; Cai et al., 2010).  

 

To address this limitation, additional proxy variables have been incorporated into predictive alkalinity models to 

account for processes that affect TA conservatively, as well as non-conservatively (Jiang et al., 2014). For 5 

example, seawater temperature has been used to help account for mixing between water masses (Jiang et al., 

2014; Lee et al., 2006) and associated nutrient changes. Temperature also always has a seasonal component, so 

can be used to capture seasonal variations. To account for primary production, chlorophyll-a (CHL) (Hales et 

al., 2012), dissolved oxygen or nitrate (N) have also featured in such models (Bostock et al., 2013; Brewer and 

Goldman, 1976; Lee et al., 2008). However, there is still uncertainty about which proxies are the most robust to 10 

use, with the choice often being influenced by availability and location. In the literature, CHL is rarely used in 

linear regression (LR) models for TA, but rather N is included as a third explanatory variable after salinity (S) 

and temperature (T). This is not only because N directly affects TA, whereas CHL has indirect effects, but also 

that several other processes that influence TA variability can co-vary with N, making it a useful proxy 

(Hieronymus and Walin, 2013). Nonetheless, an important factor in considering such proxies is their amenity to 15 

broad-scale measurement. While N can be measured in situ using UV absorption sensors deployable on 

autonomous platforms (Johnson and Coletti, 2002), it cannot be measured directly from satellite instruments as 

it lacks an electromagnetic signature (Sarangi, 2011). There are, however, well developed remote sensing 

algorithms for retrieval of oceanic surface CHL concentration from satellites, suggesting a possible advantage 

for the use of CHL as an explanatory variable for TA, indicating changes due to primary productivity. 20 

 

There has been little investigation of the distribution of TA in Australian coastal waters due to sparse 

availability of measurements. Global (Lee et al., 2006; Millero et al., 1998) and regional (Lenton et al., 2015) 

algorithms have been applied to the oceans surrounding Australia but little progress has been made in 

investigating variability in TA and its drivers in Australia’s coastal waters. In this paper we analyse a seven year 25 

time series of observations from nine National Reference Stations (NRS) around Australia in order to quantify 

the suitability of a range of conservative and non-conservative regression models to predict TA in Australian 

coastal waters at regional (within the locality of the NRS) and synoptic (algorithms that combine at least 2 NRS) 

scales. From this we draw conclusions on the regional dependence of modelling TA in coastal waters and 

construct a visual guide for the modelling of TA at the nine NRS at synoptic scales. An important consideration 30 

of this work is the ability to increase spatial coverage using remote sensing techniques, thus we focus on proxy 

variables that can be measured from satellite Earth observation or autonomous in situ technologies such as 

gliders.  
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2 Data and Methods 

2.1 National Reference Station (NRS) Data 

As part of Australia’s Integrated Marine Observing System (IMOS), time series data for nutrient and carbon 5 

variables are routinely measured at nine National Reference Stations (NRS) located around the Australian 

coastline (Lynch et al. 2014, Fig. 2). Measurements are made, processed, and quality controlled using consistent 

methods across all stations, as described by Morello, Galibert et al. (2014), and are available from the Australian 

Ocean Data View (AODV) portal (https://imos.aodn.org.au). For this study, time series of temperature (T), 

salinity (S), total alkalinity (TA), chlorophyll-a (CHL) concentration and nitrate (N) concentration were used. 10 

These measurements were made at monthly-to-quarterly frequency as some NRS were established later than 

others and were sampled at different frequencies. One outlier, measured at the Maria Island NRS on the 

14/02/2013 at 10m, was removed (S=23.15). The durations for each NRS are presented in Table S1.  

 

Sampling and measurement protocols were undertaken according to the National Reference Stations 15 

Biogeochemical Operations Handbook (2016) and the PreRun Check and Field Sampling CTD Procedural 

Guide (2014), available for download from the IMOS website 

(http://imos.org.au/moorings_documentation.html). Triplicate samples of TA, S, N, and CHL were collected 

from Niskin bottles at 10m-20m depth intervals. TA samples were poisoned with mercury chloride solution 

upon collection. All samples were then taken back to the laboratory for analysis. TA was determined by an 20 

automated open cell potentiometric titration using 0.1 M HCl as the titrant. The data for S used in this work was 

collected from bottle salinity data measured by a Guildline Autosal 8400B salinometer using conductivity ratios. 

CHL data was collected from filtered phytoplankton biomass, analysed using HPLC, and was a summed 

measurement of chorophyll-a and divinyl chlorophyll-a. The nearest CHL measurement to a maximum 

constraint of 10m was taken, as limited measurements were taken within the water column at each sampling 25 

point. Finally, N was measured using a Lachat 8000 flow injection analyser with detection limit of 0.1 µM. The 

resulting data were quality controlled (QC) and flagged according to the National Reference Stations 

Biogeochemical Operations handbook (2016). Only results flagged 1 or 2 were used. 

 

Profiling SeaBird 19+ SEACAT Conductivity, Temperature, and Depth (CTD) instruments were used for 30 

continuous measurements of T, which were then binned into 1m depth intervals. Measurements were quality 

controlled according to the Australian National Moorings Network (ANMN) Standardised Profiling CTD Data 

Processing Procedures Appendix 4, using the SBE Data Processing-Win32 software and the IMOS MATLAB 

toolbox, before they were uploaded to the portal (procedures and toolbox available at 

https://github.com/aodn/imos-toolbox). In this study, only TA measurements from the upper 60 m of the water 35 

column were used, and only CTD measurements sampled within one hour and 1 m vertically of bottle sampling 

were used in our analyses. 
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2.2 Linear regression (LR) analysis and model development 

LR is well recognised as a useful predictive tool for spatial extrapolation, particularly in comparison to neural 

networks which are proven to have less predictive power in extrapolation (Lefèvre et al., 2008). Given the goal 

of enabling predictions of TA in areas of sparse in situ measurements, we restricted the range of input variables 

to those available with broad coverage from satellite Earth observation, namely T, S, and CHL. Additionally, a 5 

fourth BM that included nitrate (N) rather than CHL was included for comparison, which can be measured in 

situ using autonomous sensors. This variable choice accommodates the conservative three end-member mixing 

model presented in Fig. 1, in addition to testing for variability due to primary production and other non-

conservative coastal processes. 

 10 

General and regional models for the prediction of TA were constructed from LR analysis using the four base 

models (BM) shown below and the lm() function in R. General models refer to those derived from a combined 

dataset collected from all nine NRS. Regional models refer to those derived from data collected from singular 

NRS. In total, 40 models were derived (the 4 base models applied to 1 general coastal model and 9 regional 

models).  15 

 

𝐵𝑀1: 𝑇𝐴 = 𝑎𝑆 + 𝑑 

𝐵𝑀2: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑑 

𝐵𝑀3: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑐𝑙𝑜𝑔 𝐶𝐻𝐿 + 𝑑 

𝐵𝑀4: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑐𝑙𝑜𝑔 𝑁 + 𝑑 

 

where T is water temperature, S is salinity, CHL is chlorophyll-a concentration, N is nitrate concentration, and 

a-d are constants calculated via LR. A log transformation was applied to CHL to account for its well-described, 

log-normal distribution in the ocean (Campbell et al., 1998) and to satisfy the normality assumption of LR 20 

analysis. The same transformation is applied to N as it was strongly right skewed. 

 

Some of the regional NRS data sets had small numbers of observations (n) for some variables, which is not ideal 

for LR (Table S2-S5), particularly the Ningaloo, Darwin, and Esperance NRS. For BM4, the number of 

observations used in LR analysis was significantly reduced at Yongala and Kangaroo Island NRS, with only 25 

four NRS possessing a robust number of observations (n ≥ 30*[number of explanatory variables]). The results of 

these models are still presented although they should be considered to be less robust than those for stations with 

higher n. For the combined data set, Shapro-Wilk normality tests rejected the hypothesis that S, T, log[N], and 

log[CHL] were each individually normally distributed. It is rare for such data to resemble a normal distribution 

closely and it was concluded that the symmetrical distributions of S, T log[CHL], and log[N] were acceptable to 30 

proceed with LR analysis.  

 

All residuals showed evidence of being normally distributed, appearing trendless, and homoscedastic, as should 

be seen for LR. Some quantile-quantile (Q-Q) plots (not presented) showed evidence of outliers, however the 

decision was made not to remove these apparent outliers due to the small size of some data sets.  35 
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2.3 Open ocean model (Lee et al. 2006) 

In order to compare the performance of the models tested with an open ocean ‘base’ model, TA was 

reconstructed from an implementation of the model of Lee et al. (2006) using observed S and T measurements 

collected at the nine NRS. The open ocean model is a quadratic model and has one dynamic geographical 

boundary through Australian coastal waters, which varies seasonally with T. Like BM2, the number of 5 

observations able to be modelled by the open ocean model was restricted by temperature. The numbers of 

observations used for the open ocean model are the same for those used in the regional modelling of BM2 

(Table S3). 

2.4 Statistical analysis 

Four statistical measures and one test were utilised in order to compare models, assess their robustness and 10 

determine the minimum model, which is the model that minimises information loss from the observations.  

1. Residual standard error (RSE) was calculated as a measure of the error in a model, when compared to 

observations. By multiplying by the appropriate standard z-value, 1.96 from the standard normal distribution, 

we obtain an approximation of the 95% confidence error (CE) associated with the model. These estimates are 

not reliable for models with n < 30, which will have a larger CE in accordance with the central limit theorem. 15 

2. Mean absolute error (MAE) was calculated as the mean of absolute residuals from each respective model. 

This is an important indication of how well a model captures the anomalous variations in the data which are 

more likely to be influenced by non-conservative processes, whilst keeping the measure comparable over data 

sets with different n. Outliers can obscure these values, so a visual assessment of residuals was conducted to 

assess if extreme residuals were characteristic anomalies (ie. occurred in groups or due to scatter), or single 20 

outliers. Only one outlier was found at the Esperance NRS, which was excluded in the calculation of MAE for 

models developed from Esperance NRS data. 

3. Bootstrapped Kolmogorov–Smirnov (KS) tests were employed in order to test the hypothesis that 

reconstructed alkalinity values are drawn from the same distribution as observations. These were tested at a 5% 

significance level. As both data sets in the KS tests came from the same environment (same sample of water) the 25 

test had to be bootstrapped (Kleijen, 1999).  P-values are shown in Supplementary Table 5. 

4. The Akaike Information Criterion (AIC) measures the relative quality of statistical models and is 

particularly useful when models with different numbers of variables are being compared. In calculating AIC 

there is a trade-off between the goodness-of-fit and the complexity of the model, adding an extra level of 

analysis compared to RSE. The minimum model, the model that minimises information loss, can then be 30 

determined as the model with the lowest AIC value. Using AIC values, the relative probability of minimising 

information loss (RPMIL) for each model can also be determined which normalises differences in AIC 

according to the number of observations. This allows a more intuitive and robust method for comparing models, 

by determining probabilities that another model is actually the minimum model given infinite data points. 

 35 

2.5 Analysis of regional dependence for estimating TA 

To assess the regional dependence of the distribution of TA in the Australian coastal zone two analyses were 

performed. 
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1. 2-D Multi-dimensional scaling (MDS) was employed to investigate the regional differences in ocean 

variables. A 2-D MDS plot was produced using the cmdscale() function in R, on a the subset of the entire NRS 

data set that contained no missing values for TA, S, T and CHL. N was not included in this analysis as it was 

shown to have a smaller variability (Table 1).  

2. A network was constructed from the results of K-S tests performed (as described in Section 2.4) between 5 

models from each sites. For each base model, a matrix was constructed as below, with the number 1 indicating 

that observations at one NRS were significantly similar to reconstructed TA based on a regression trained from 

the data of a different NRS.  

 

𝑀!"# =

𝑥!! ⋯ ⋯ 𝑥!"

⋮
⋱

𝑥!" ⋮

𝑥!" ⋯ 𝑥!!
⋱
⋯ 𝑥 !!

  

 10 

where xij = 1 when observed values at NRS i are statistically similar to reconstructed values from base model k, 

trained using data from NRS j. Finally, uni-directional links (ie. where xij≠xji) were ignored as to only obtain 

results in which both NRS are modelled to the same standard by one base model, as a cross-validation technique 

for cluster identification.  

 15 
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3. Results 

3.1 Open ocean model (Lee et al. 2006) 

Figure 3 shows the differences between modelled and in situ TA observations using the open ocean model at the 

nine NRS. All nine NRS showed RSE less than 14 µmol kg-1. The model performed particularly well at the 

Kangaroo Island NRS, predicting TA with an average difference of - 0.70 µmol kg-1 (i.e. lower than in situ 5 

observations) with a residual standard error (RSE) of 5.40 µmol kg-1. However, the model underperformed 

significantly at the Darwin and Yongala NRS, while also overestimating at the remaining six NRS. At the 

Darwin NRS, on average the model predicted TA to be 20.28 µmol kg-1 lower than observed values while at the 

Yongala NRS on average the model predicted TA of 14.65 µmol kg-1 above observed values.  

3.2 Kolgorov-Smirnov (KS) tests 10 

Table 2 shows results of KS tests between respective models and observed TA with a 95% confidence level.  

Results indicate that the open ocean model produces statistically similar results to observed values at the 

Kangaroo Island and Ningaloo Island NRS. The statistical distribution of TA was only successfully modelled 

for all NRS using regionally developed algorithms that include N or CHL, T and S, and not by general models 

for all Australian waters. Nonetheless, regional models that only use S were also able to significantly reproduce 15 

the statistical distribution of TA, with the exception of the North Stradbroke Island, Maria Island, and Yongala 

NRS. At a regional level, observations from the Maria Island and North Stradbroke Island NRS were 

successfully modelled with BM2, BM3, and BM4, but the Yongala NRS was only successfully modelled with 

BM3 and BM4. All NRS that were successfully modelled regionally by BM1, were also successfully modelled 

regionally by all other base models.  20 

3.3 95% Confidence Errors (CE)  

95% CE are shown in Fig. 4. The combined general model showed a marked decrease in error over BM1-BM2, 

and comparable errors over BM2-BM4. Regionally, most NRS exhibited similar errors over the four base 

models, with the exceptions being Darwin and Ningaloo. The Darwin NRS showed particularly high errors over 

the 4 base models. Lowest errors were given by BM3 (Darwin, Esperance, Ningaloo, North Stradbroke Island, 25 

Port Hacking Bay, Yongala) or BM4 (Kangaroo Island, Maria Island, general coastal). Overall, errors were 

highest for the Darwin and Yongala regional models, and the general coastal models, with 95% CE >10 µmol 

kg-1. All other models had 95% CE < 10 µmol kg-1 for BM2-BM4. 

3.4 AIC  

AIC values are displayed in Fig. 5, and associated relative probabilities of minimising information loss 30 

(RPMIL) are presented in Table S6. AIC values are clearly higher for BM1 in all cases. AIC values indicate that 

BM3 is clearly the minimum model at 5 NRS, with the exception of the Esperance, Kangaroo Island, Ningaloo 

and Yongala NRS for which BM4 is the minimum model. Little difference in AIC is seen between BM2 and the 

minimum model at the Ningaloo, Esperance and Rottnest Island NRS, although when translated to RPMIL it is 

clear that probabilistically, the minimum model is almost certainly (>90%) that indicated by AIC values. AIC 35 

values indicate that the minimum model for the Yongala NRS and the Maria Island NRS was not the best in 
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terms of RSE and MAE. Upon further analysis, at the Maria Island NRS BM3 removed two anomalous TA 

residuals as there was not CHL available to them. Thus BM3, the minimum model, is not the best model at this 

site and BM4 is a better choice. 

 

3.5 Regional dependence and clustering  5 

Mean and standard deviations for the studied ocean variables are presented in Table 1. A network map 

representing the results for cluster identification, using p-values from K-S tests as an indication of connectivity 

via different BM is presented in Fig. 6. A dominant cluster (C1) between three NRS was identified, containing 

the Rottnest Island, Esperance and Port Hacking Bay NRS, which are linked by BM1, BM2 and BM3. A second 

cluster (C2) linked by BM2 and BM3 also was identified, which includes all members from C1, and the North 10 

Stradbroke Island NRS. This aligns well with other K-S results, which show that at the North Stradbroke Island 

NRS TA cannot be modelled by S alone. A final cluster (C3) was identified, connected by BM4, which includes 

the Esperance, Maria Island and Ningaloo NRS. The 2-D MDS plot (Fig. 7) shows a clear regional gradient, 

when considering selected ocean variables, and it is evident that the members of C1 and C2 are geometrically 

close and have similar seawater characteristics. However, the members of C3 are relatively geometrically distant 15 

as indicated by median the geometric positions of each NRS as displayed on the 2-D MDS plot. Additionally, in 

C1 and C2 clusters members have differing minimum models, meaning that error could be introduced through 

the use of BM3 at NRS, which have a regional recommended model of BM4 (Esperance NRS). Regression 

parameters for each cluster are presented alongside the results from other models in the supplementary material. 

 20 

3.6 A special case: The Yongala NRS 

The Yongala NRS displayed a dominant inter-annual trend within the residuals of all regional BM. Upon further 

investigation it was revealed that this trend was a reflection of an inter-annual trend in TA, which co-varied 

closely with S (Fig. 8). It was also found that anomalous values were obscuring statistical tests, displaying high 

statistical leverage on models, which alters fit. This means that on average, BM3 and BM4 actually increased 25 

the error of a large portion of residuals further indicated by increases in MAE (Table S2-5).  
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4 Discussion 

This paper presents a comparison of different linear regression (LR) models for the prediction of alkalinity in 

Australian coastal waters. In other regions, a simple linear TA-S dependence has often been assumed when 

estimating TA for use in calculations of other carbonate parameters (Bates et al., 2006; Hales et al., 2012; Lee et 

al., 2008; Majkut et al., 2014). In Australian waters, LR has also been utilised at a continental scale for the 5 

prediction of TA in carbon studies (Lenton et al., 2015; Takahashi, T., et al. 2014; Lenton et al., 2012), but not 

yet at a regional scale within coastal waters. Despite the wide application of such regression approaches in 

estimating TA, little investigation has been undertaken on the sensitivity of TA estimates to different input 

variables in this region. This is surprising given the wider range of processes that can influence TA in coastal 

waters beyond a simple water-mass mixing model, such as variable inputs of nutrients and dissolved organic 10 

material, and their influence on primary production. Here we provide recommendations for the modelling of TA 

for carbon studies at 9 NRS (Table 3), and have shown that the inclusion of not only salinity (S) but also 

temperature (T), and either chlorophyll (CHL) or nitrate (N) concentration in these models can significantly 

improve their performance. In addition to exploring regional relationships, we explore the possibility of 

estimating TA robustly at synoptic scales, which include the locality of multiple NRS. We find that the 15 

Esperance, Rottnest Island, North Stradbroke Island and Port Hacking Bay NRS can be combined for robust 

monitoring at a synoptic scale. However, regular cross-validation should be performed to identify anomalous 

events, or deviations from trends, as these NRS are on the opposite side of the continent and are influenced by 

different long-term climate patterns. This knowledge can be employed to construct cost-effective strategies for 

the monitoring of TA and considered for application to the monitoring other carbon variables in the Australian 20 

coastal zone. 

 

A major finding relates to the use of globally-parameterised open ocean algorithms for modelling TA. It has 

been shown that such algorithms often fail in coastal waters due to the strong influence that coastal processes 

have on the distribution of TA (Bostock et al., 2013;Cai et al., 2010). Our results confirmed that such open 25 

ocean models are not necessarily optimal for predicting TA in coastal waters and their use can result in large 

systematic errors in some regions (Fig. 3). Nonetheless, the use of the open ocean model at the Kangaroo Island 

NRS appears to be consistent with regional parameterisations, and is further supported by KS tests. KS tests also 

suggest that the open ocean algorithm performs reasonably at Ningaloo, but still, a systematic error can be seen 

in Fig. 3. This result is due largely to the low number of observations obtained at the Ningaloo NRS and the 30 

large amount of scatter in observations, which reduces the sensitivity of the result.  

 

It was found from AIC values that using S alone as a predictor for TA does not give the most informative 

results, and that the addition of T to the model substantially increases the information of the model at regional 

scales as well as at synoptic scales (Fig. 5). This is found at all NRS locations, and between the general and 35 

regional models. This conclusion is not as strongly reflected in model errors (Fig. 4) due to the substantial 

decreases in observation numbers (n) seen between the four models but is reflected in MAE values, and such 

AIC values are important to consider within model comparisons. Thus we recommend that as a minimum, T be 

included in regression models for the estimation of TA in Australian coastal waters. Further, AIC values 

indicated that the addition of a third variable increased the information of the model. As such, BM3 was the 40 
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minimum model for estimating TA in Australian coastal at 5 of the NRS; elsewhere BM4 was the minimum 

model. Based on RPMIL values there are no situations in which two models were comparably as likely to be the 

minimum model (Table S7), however the minimum model for the Yongala and the Maria Island NRS are not the 

best models when RSE and MAE are further considered.  

 5 

The regional dependence of models for modelling TA in Australian coastal waters is evident throughout the 

results. The 2-D MDS plot shows a tendency for observations from the same NRS to cluster together (Fig. 7). 

This indicates that the distribution of selected ocean variables of a NRS is dependent on its location, and cannot 

be explained by variability in any of the ocean variables studied, and require regionally derived algorithms. KS 

tests showed that regionally-modelled TA values, constructed from BM4 and BM3, were statistically similar to 10 

NRS observations, at all locations, however modelled observations at a continental scale were not statistically 

similar to observations at all individual NRS locations for any of the BM. This shows that modelling TA at a 

continental scale is not the most robust method, and further illustrates how the addition of the third variable 

increases the confidence in successfully modelling TA regionally, if the dependence of TA on predictor 

variables is unknown.  15 

 

When taking a closer look at the 2-D MDS plot, there is evidence of connectivity between individual NRS, 

which could lead to clustering. To assess the significance of this connectivity, a network was constructed from 

the 9 NRS as outlined in Section 2.6 (Fig. 6). Three clusters were identified, which were all successfully 

modelled from regressions developed from data collected at other NRS, which were members of the same 20 

cluster. Combining the results of the MDS plot and this cluster analysis, there is some doubt as to whether C3 is 

a viable model, as points on the MDS are geometrically distant meaning that sites do not display the same 

variability. Thus we recommend that C3 not be employed for the synoptic scale estimation of TA.  By taking 

into account all statistical results we have proposed a simplistic guide to help users of the NRS data set, or of 

data collected in close proximity to NRS sites to understand which method of estimating TA is most robust 25 

(Table 3). However, knowledge on robustness alone is not enough to make informed decisions on the 

employment of environmental surrogates (Lindemayer et al. 2016), and users may wish to consider robustness 

trade offs for benefits such as cost reduction. 

 

The results of Table 3 can be attributed to the differences in the oceanographic and benthic processes of the 30 

seven characteristic regions. The Yongala NRS and the Darwin NRS experience different distributions of the 

ocean variables studied compared to other NRS, according to the 2-D MDS plot. Darwin has a distinct 

geographical setting, located in the Beagle Gulf, between an island and the mainland. This location experiences 

highly variable freshwater inputs from land-masses, as well as seasonal perturbations from surrounding coral 

reefs. The Darwin site, exhibits a lower salinity, compared to other NRS, which supports the hypothesis that it is 35 

influenced by freshwater. This variability is best captured using BM3, indicating that non-conservative TA 

anomalies have an annual seasonal dependence, like those seen in phytoplankton variability. The Yongala NRS 

also experiences large variability, and residuals show that there is a large, inter-annual seasonal component that 

cannot be explained fully by any on the models (Fig. 8).  The cause of this variability seems to be driven by 

salinity, leading to the conclusion that increased freshwater input is the cause of this variability. When TA is 40 
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further plotted with salinity in a time series, this is obviously the case, and we see that this variability is reduced 

by a large factor using a regional BM2. This region is prone to flooding, and river flow data presented in Lough 

et al. (2015) demonstrates that during the study period (2009-2016), the region was transitioning from a period 

of high flooding frequency to low flooding frequency, consistent with the trends shown in Fig. 8. Further, the 

maximum anomalies seen in the residuals corresponds to the worst flooding event, at the start of 2011 where 5 

three-quarters of the councils in the Australian state of Queensland were declared disaster zones. Here we only 

present the impacts of the flooding on employing pre-determined models in Yongala, however, understanding 

the impacts of this phenomenon on the carbon cycle would be an interesting consideration for future work. 

 

The Ningaloo NRS also experiences large variability, as it is located over a coral reef. The remoteness of this 10 

NRS has resulted in relatively low levels of sampling effort (n), particularly CHL and N observations (Table 1). 

BM2 appears to capture most variability, and the further inclusion of nitrate to the model does appear to reduce 

error related to anomalies as inferred by RSE and MSE results, but more study of this area is required before an 

understanding of the mechanisms behind this can be reached. The Maria Island and Kangaroo Island NRS show 

evidence of similar characterisation, due to their latitude and influence from the Southern Ocean, but are still 15 

separated to a degree on the 2-D MDS plot. This is not surprising as Maria Island has a higher influence of 

oceanic waters, as it is located closer to the shelf edge, and is influenced by variability in subsurface currents 

where as Kangaroo Island is driven by seasonal currents (Lynch et al. 2014). There is most likely a high 

influence of upwelling at the Maria Island NRS, producing high levels of primary production, as indicated by 

higher nitrate and chlorophyll average distributions (Table 1). Although its water mass characteristics are very 20 

similar, the North Stradbroke Island NRS is not a member of the dominant cluster C1, and shows different 

mechanisms of variability. There is a large coastal bay in the vicinity of this NRS, which could be driving the 

dependence for the minimum model of TA on CHL, as waters from this region would exhibit higher CHL, 

however this is speculative and a more detailed study of biogeochemistry is required to confirm this hypothesis. 

Finally, the estimation of TA at the synoptic scale using C1 and C2 is possible as the three locations have a 25 

shared influence of boundary currents that flow from North to South, promoting upwelling coastal in these three 

regions (Lynch et al. 2014; Jones et al. 2015). This means that the source waters are comparable, as latitude is 

the primary driver of biogeochemical distribution in the open ocean (Lee et al. 2006), and that coastal processes 

have a comparable effect at the three locations. In this context, it makes sense that Maria Island NRS is excluded 

from C1 and C2, as here multiple currents converge and flow into the Tasman Sea, making the region unique 30 

(Jones et al. 2015).   

 

Similarity deduced from average distributions of biogeochemical and physical ocean variables (Table 1) and 

latitude are not enough to predict the similarities observed between TA relationships at different NRS in coastal 

Australian waters. For example, Kangaroo Island is on the same latitudinal gradient, and in close proximity to 35 

the Esperance NRS, yet has no connectivity to it through any of the base models. The results of this work show 

why TA relationships, in addition to average distributions, must be studied to characterise regions with similar 

TA, as although their average distribution may exhibit similar characteristics, their anomalous TA observations 

that have largely been influenced by coastal processes may exhibit different driving characteristics. 

Consequently, interpolation between NRS cannot be recommended until further data is collected to increase 40 
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spatial resolution. Shipboard measurements offer an interesting resolution to this problem . Additionally low 

cost, autonomous carbon flux chambers may soon provide supplementary or alternative sampling to surface DIC 

measurements (Bastviken et al. 2015), allowing the entire carbonate system to be determined at significantly 

reduced cost.  

 5 

The results of this study highlight a large limitation to broad-scale predictions of the progression of ocean 

acidification in vulnerable coastal regions, namely the paucity of high quality TA observations available for 

development of suitable algorithms. Australia has benefited from the establishment of national reference stations 

as part of an Integrated Marine Observing System (IMOS) that takes consistent time series observations around 

the coast. Nonetheless, TA observations have only been collected since 2009, so the temporal range of this data 10 

is minimal. Spatially, the data is also limited to only nine locations around a 36,000 km long coastline. For the 

Ningaloo, Darwin, Kangaroo Island, and Esperance stations, the number of available observations was 

particularly low, resulting in models for these locations being statistically less robust. The Ningaloo and 

Esperance NRS were removed in 2015 due to budget constraints, removing the opportunity for extending these 

relationships in the future (note also that this leaves only one reference station monitoring the western third of 15 

Australia’s coastal environment). For many parts of the world, even this level of observation is not currently 

achievable, increasing the challenges of monitoring the progress and impacts of ocean acidification over coming 

decades. 

 

A promising opportunity lies in the application of regional relationships to satellite Earth observation data, a 20 

direction that so far has been little investigated. Recent advances in Earth observation mean that salinity, 

temperature, and chlorophyll-a are able to be remotely sensed using a range of passive (visible spectrum 

radiometry) and active (microwave and radar) sensors on orbital satellites (Land et al., 2015). This opens up 

avenues for exploitation of LR models developed from in situ data to enable synoptic-scale monitoring of TA 

variability and other carbonate system parameters. While such approaches have been successfully trialled for 25 

open oceans (Lee et al., 2006; Millero et al., 1998), less effort has been invested on its application at the coastal 

scale. The success of this application will depend largely on the resolution of the satellite data that the algorithm 

is applied to, the accuracy of the algorithm itself and the ability to quantify associated errors, increasing the need 

for high quality in situ measurements. Satellite observations are vulnerable to inaccuracies in coastal waters due 

to factors including cloud cover, the presence of coloured dissolved organic matter (CDOM) and suspended 30 

sediments, the presence of both marine and terrestrial aerosols, land adjacency effects, and the electromagnetic 

complexity of coastal signals (in both optical and radio wave spectrum) (Schalles, 2006; Land et al., 2015). 

Future planned sensors with higher spatial and spectral resolution may help reduce these current limitations.  

 

Our analysis has been conducted to additionally explore the possibilities of applying remote sensing platforms 35 

for the monitoring of TA. We find that this is a viable pathway, in which further study can be done, however 

first sampling needs to be performed on an increased spatial scale, so that algorithms can be interpolated 

accurately. The technology does not currently exist to remotely-sense nitrate from satellites, so BM4 is not 

useful when considering algorithms that can be applied to Earth observation. Nonetheless, BM4 can be utilised 

with data from autonomous platforms equipped with nitrate sensors, such as gliders and biogeochemical 40 
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profiling floats, thus was regarded important to include in this work. These autonomous platforms provide a cost 

effective solution for the monitoring of TA over long time periods (with intermittent model validation), and an 

avenue to which the spatial distribution of TA in Australian coastal waters can be resolved. 

 

The chemistry of the ocean is dynamic and varies between seasons and years, as well as through direct uptake of 5 

anthropogenic CO2 emissions, and the influence of changing water temperature and salinity from climate 

forcing. Empirically-parameterised algorithms for TA may therefore require regular retuning to remain robust 

through time. The presence of ocean acidification will change TA through increasing carbonate dissolution over 

time (Cross et al., 2013), a process which cannot be estimated from any of the proxy variables explored in this 

paper. This might change the required algorithm inputs significantly and increase uncertainties in algorithms 10 

over time. As such, on-going in situ monitoring for alkalinity and other carbonate system parameters will 

continue to be required to support synoptic scale approaches to monitoring the progression of ocean 

acidification. 
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5 Conclusion 

In addressing the two main applications of the results of this paper, we have defined two different minimum sets 

of variables for the prediction of TA in coastal waters: S, T, and log[CHL] for applications to satellite Earth 

observations, and S, T, and log[N] for in situ applications. We have shown that a uni-parameter model is not the 10 

best model for predicting TA from ocean observations. The use of T as a predictor will improve the model 

significantly and the addition of a third predictor offers further improvement. We find that the influence of 

biological responses on the distribution of TA can be significant at some locations in Australian coastal waters, 

and must be considered when estimating TA. Finally, we offer recommendations for the development of robust 

algorithms within the locality of the 9 NRS, and present cluster models of NRS that can be used to estimate TA 15 

at a synoptic scale. These recommendations have been made by considering the results from a number of 

statistical parameters to assess model robustness. With this information and the models presented in this paper, 

more informed decisions can be made about modelling TA in Australian and other coastal waters, assisting 

efforts to track the progress of ocean acidification. 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

 

 

 35 

 

 

 



17 
 

References 

Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H. and Gålfalk, M.: Cost-efficient approaches to measure 
carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini 
loggers. Biogeosciences, 12, 3849-3859, 2015. 

Bates, N. R., Pequignet, A. C., and Sabine, C. L.: Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal 5 
variability of inorganic carbon and airsea CO2 gas exchange, Glob. Biogeochem. Cycle, 20, GB3020, 
2006. 

Bostock, H. C., Fletcher, S. E. M., and Williams, M. J. M.: Estimating carbonate parameters from hydrographic 
data for the intermediate and deep waters of the Southern Hemisphere oceans, Biogeosciences, 10, 
6199-6213, 2013. 10 

Brewer, P. G., and Goldman, J. C.: Alkalinity changes generated by phytoplankton growth1, Limnol. Oceanogr., 
21, 108-117, 1976. 

Cai, W. J., Hu, X. P., Huang, W. J., Jiang, L. Q., Wang, Y. C., Peng, T. H., and Zhang, X.: Alkalinity 
distribution in the western North Atlantic Ocean margins, J. Geophys. Res. Oceans, 115, C08014, 
2010. 15 

Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., and Öquist, G.: Chlorophyll fluorescence analysis of 
cyanobacterial photosynthesis and acclimation, Microb. Mol. Biol. Rev., 62, 667-683, 1998. 

Comeau S., Tambutté E., Carpenter R.C., Edmunds P.J., Evensen N.R., Allemand D., Ferrier-Pagès C., 
Tambutté S, Venn A.A.: Coral calcifying fluid pH is modulated by seawater carbonate chemistry not 
solely seawater pH, InProc. R. Soc. B., 284(1847),  20161669, 2017. 20 

Cross, J. N., Mathis, J. T., Bates, N. R., and Byrne, R. H.: Conservative and non-conservative variations of total 
alkalinity on the southeastern Bering Sea shelf, Mar. Chem., 154, 100-112, 2013. 

Edmunds, P.J., Comeau, S., Lantz, C., Andersson, A., Briggs, C., Cohen, A., Gattuso, J.P., Grady, J.M., Gross, 
K., Johnson, M. and Muller, E.B.: Integrating the effects of ocean acidification across functional scales 
on tropical coral reefs, BioScience, 66(5), 350-362, 2016. 25 

Gattuso, J. P., Hansson, L., and Gazeau, F.: Ocean acidification and its consequences, Ocean in the Earth 
System, 189-253, 2014. 

Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and Chavez, F.: 
Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific, Prog. Oceanogr., 103, 
1-15, 2012. 30 

Hieronymus, J. and Walin, G.: Unravelling the land source: an investigation of the processes contributing to the 
oceanic input of DIC and alkalinity, Tellus Ser. B, 65, 19683, 2013.  

Hong, H., Shen, R., Zhang, F., Wen, Z., Chang, S., Lin, W., Kranz, S.A., Luo, Y.W., Kao, S.J., Morel, F.M. and 
Shi, D.: The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium 
Trichodesmium, Science, 356(6337), 527-531, 2017. 35 

Jiang, Z. P., Tyrrell, T., Hydes, D. J., Dai, M. H., and Hartman, S. E.: Variability of alkalinity and the alkalinity-
salinity relationship in the tropical and subtropical surface ocean, Glob. Biogeochem. Cycle, 28, 729-
742, 2014. 

Johnson, K.S. and Coletti, L.J.: In situ ultraviolet spectrophotometry for high resolution and long-term 
monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Res. Pt I, 49(7), 1291-1305, 2002. 40 

Jones, E.M., Doblin, M.A., Matear, R. and King, E.: Assessing and evaluating the ocean-colour footprint of a 
regional observing system, J. Marine Syst., 143, pp.49-61, 2015. 

Kleijnen, J.P.C: Validation of models: statistical techniques and data availability, Wint. Simul. C. Proc.,1, 647-
654, 1999. 

Land, P. E., Shutler, J. D., Findlay, H. S., Girard-Ardhuin, F., Sabia, R., Reul, N., Piolle, J.-F., Chapron, B., 45 
Quilfen, Y., and Salisbury, J.: Salinity from space unlocks satellite-based assessment of ocean 
acidification, Environ. Sci. Technol., 49, 1987-1994, 2015. 

Lee, H.-W., Lee, K., and Lee, B.-Y.: Prediction of surface ocean pCO2 from observations of salinity, 
temperature and nitrate: The empirical model perspective, Ocean Sci., 43, 195-208, 2008. 

Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H., Wanninkhof, R., 50 
Feely, R. A., and Key, R. M.: Global relationships of total alkalinity with salinity and temperature in 
surface waters of the world's oceans, Geophys. Res. Let., 33, 5, 2006. 

Lefèvre, N., Guillot, A., Beaumont, L., and Danguy, T.: Variability of fCO2 in the Eastern Tropical Atlantic 
from a moored buoy, J. Geophys. Res. Oceans, 113, C01015, 2008. 

Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T., Sutherland, S. C., Sweeney, C., and 55 
Tilbrook, B.: The observed evolution of oceanic pCO2 and its drivers over the last two decades, Global 
Biogeochem. Cycles, 26, Gb2021, 2012. 

Lenton, A., Tilbrook, B., Matear, R., Sasse, T., and Nojiri, Y.: Historical reconstruction of ocean acidification in 
the Australian region, Biogeosciences, 13, 1753-1765, 2016. 



18 
 

Lough, J.M., Lewis, S.E. and Cantin, N.E.: Freshwater impacts in the central Great Barrier Reef: 1648–
2011. Coral Reefs, 34(3), 739-751, 2015. 

Lynch, T.P., Morello, E.B., Evans, K., Richardson, A.J., Rochester, W., Steinberg, C.R., Roughan, M., 
Thompson, P., Middleton, J.F., Feng, M. and Sherrington, R.: IMOS National Reference Stations: a 
continental-wide physical, chemical and biological coastal observing system, PloS one, 9(12), 5 
e113652, 2014. 

 Majkut, J. D., Carter, B. R., Frolicher, T. L., Dufour, C. O., Rodgers, K. B., and Sarmiento, J. L.: An observing 
system simulation for Southern Ocean carbon dioxide uptake, Philos. Trans. R. Soc. A-Math. Phys. 
Eng. Sci., 372, 17, 2014. 

Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in the surface waters of the major oceans, Mar. 10 
Chem., 60, 111-130, 1998. 

Mongin, M., Baird, M.E., Tilbrook, B., Matear, R.J., Lenton, A., Herzfeld, M., Wild-Allen, K., Skerratt, J., 
Margvelashvili, N., Robson, B.J. and Duarte, C.M.: The exposure of the Great Barrier Reef to ocean 
acidification, Nat. Commun., 7, 10732, 2016. 

Morello, E.B., Galibert, G., Smith, D., Ridgway, K.R., Howell, B., Slawinski, D., Timms, G.P., Evans, K. and 15 
Lynch, T.P: Quality control (QC) procedures for Australia’s National Reference Station’s sensor 
data—comparing semi-autonomous systems to an expert oceanographer, Methods in Oceanography, 9, 
17-33, 2014. 

Mostofa, K. M. G., Liu, C.-Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D., Arakaki, T., Yoshioka, 
T., Hayakawa, K., Konohira, E., Tanoue, E., Akhand, A., Chanda, A., Wang, B., and Sakugawa, H.: 20 
Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems, 
Biogeosciences, 13, 1767-1786, 2016. 

Nagelkerken, I., and Connell, S. D.: Global alteration of ocean ecosystem functioning due to increasing human 
CO2 emissions, Proc. Natl. Acad. Sci. U.S.A., 112, 13272-13277, 2015. 

Oke, P.R. and Sakov, P.: Assessing the footprint of a regional ocean observing system. J. Marine Syst., 105, 30-25 
51, 2012. 

Sarangi, R.K.,: Remote-Sensing-Based Estimation of Surface Nitrate and Its Variability in the Southern 
Peninsular Indian Waters, Int. J. Oceanogr., 2011, 172731, 2011. 

Schalles, J. F.: Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in 
coastal, in: Remote sensing of aquatic coastal ecosystem processes, 9, Richardson, L.L., and LeDrew, 30 
E.F., Springer, 27-79, 2006. 

Shadwick, E. H., Thomas, H., Azetsu-Scott, K., Greenan, B. J., Head, E., and Horne, E.: Seasonal variability of 
dissolved inorganic carbon and surface water pCO 2 in the Scotian Shelf region of the Northwestern 
Atlantic, Mar. Chem., 124, 23-37, 2011. 

Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T., Sweeney, C., and 35 
Munro, D. R.: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation 
in the global surface ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125, 
2014. 

 

 40 

 

 

 

 

 45 

 

 

 

 

 50 

 

 



19 
 

Figures 

 
 

Figure 1: A depiction of a two end-member mixing model that contains an open ocean end-member (O) and a 
variable fresh-water end member (FW). Solid lines indicate different conservative mixing lines. Point A lies in the 5 
conservative mixing region, however an arrow indicates how it can be perturbed away from conservative mixing 
predictions by a non-conservative change in TA to Point A’.  Thus, there are three distinct modes of variability; FW 
variability, conservative mixing, and non-conservative changes in TA. The mixing of two oceanic end members in 
coastal regions it also very likely, further complicating the problem, and extending the region of variability, indicated 
by the addition of O’ in the model, and associated mixing lines (dashed lines). 10 
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Figure 2: Map displaying the positions of nine national reference stations (NRS) 
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 5 

Figure 3: Plots of the Residual TA measurements for the nine NRS for The open ocean model. The mean 
residual is shown as a black line the height of the box corresponds to one standard deviation, and the 
extremities of the whiskers show maxima and minima. 
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Figure 4: 95% Confidence Errors for each of the four models tested at the coastal level and regional level for the nine 
NRS. Hollow bars indicate results obtained from algorithms developed from a low number of observations. 
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Figure 5: AIC values for each of the four models tested at the coastal level and regional level for the nine 
NRS. Hollow bars indicate results obtained from algorithms developed from a low number of 
observations. 5 
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Figure 6: 2-D MDS plot showing observations (circles) that report TA, S, T and CHL measurements at one time 
stamp. The median geometric position of each NRS is overlaid on the graph (triangles).  

 

 5 

 

 

 

 

 10 

 

 

 

 



25 
 

 
Figure 7: Results from K-S tests, as described in Section 2.5. Links symbolise that the TA distributions at a particular 

NRS can be modelled by regressions trained from connected NRS, to significantly similar distributions. The shape of 

the node represents the minimum model of each NRS; circles indicate BM3 is the minimum model, while squared 

indicate BM4 is the minimum model. 5 
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Figure 8: Time series for salinity, TA and residual errors for BM2-BM4 at the Yongala NRS. 
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Tables 

Table 1: Latitude and mean distributions of parameters at each NRS. Means are presented for each 

variable with associated standard deviations  
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NRS Lattitude TA S T CHL N 
Darwin -12.4 2265 (40) 34.07(0.68) 28.78(2.53) 0.688(0.687) 0.590(0.348) 
Esperance -33.9333 2337 (11) 35.62(0.14) 18.26(1.69) 0.267(0.058) 0.378(0.155) 
Kangaroo Island -35.8322 2355(11) 35.84(0.19) 16.78(1.57) 1.083(1.561) 0.324(0.197) 
Maria Island -42.5967 2324 (7) 35.31(0.15) 14.49(2.02) 2.369(1.316) 0.666(0.492) 
Ningaloo -21.99 2281(8) 34.80(0.13) 25.77(2.41) 0.514(0.449) 0.380(0.141) 
North Stradbroke 
Island 

-27.345 2324(12) 35.48(0.21) 22.56(2.45) 2.917(2.432) 0.263(0.313) 

Port Hacking Bay -34.1192 2326(9) 35.47(0.13) 18.92(2.02) 2.439(2.271) 0.688(0.408) 
Rottnest Island -32 2327(14) 35.49(0.22) 20.73(1.50) 0.514(0.328) 0.306(0.125) 
Yongala -19.3085 2296(32) 35.19(0.60) 25.86(2.37) 0.308(0.206) 0.248(0.145) 
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Table 2: Results for the K-S tests for differences in distribution. 
✓= statistically similar to observations 
✗  = statistically different to observations 
* algorithms developed with low numbers of observations employed (n < 30xnumber of explanatory 5 
variables) 
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NRS Base Model 1 
 

Base Model 2 
 

Base Model 3 
 

Base Model 4 Lee et al. 
(2006) 

Regional  General  Regional General Regional  General Regional  General  

Darwin ü û ü û ü* û ü* û û 

Esperance ü û ü* ü ü* ü ü* ü û 

Kangaroo 
Island 

ü û ü û ü*	 û ü* û ü 

Maria Island û û ü ü ü ü ü ü û 

Ningaloo ü û ü* ü ü* ü ü* ü ü 

North 
Stradbroke 
Island 

û û ü û ü û ü ü û 

Port Hacking 
Bay 

ü û ü ü ü*	 ü ü ü û 

Rottnest 
Island 

ü ü ü û ü û ü ü û 

Yongala û û û û ü û ü* û û 
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 5 
Table 3: Author recommendations for the modelling of TA in the locality of the nine NRS. Recommendations are 
based on a critical analysis of models using a number of statistical results, as reasoned in the text. Results are 
presented alongside minimum model predictions (from AIC) and the maximum effect on MAE, when BM2 is instead 
employed. 

 10 

 

	
	
 
 15 
 
 
 
 
 20 
	
	
	

 

NRS	 Scale	 Recommended 
BM 

Max effect 
on MAE 
using BM2 

Reasoning 

Darwin Regional	 BM3	
4.08	

Minimum	model	with	agreeing	RSE	and	MAE	

Esperance Regional	 BM4	

-0.23	

Minimum	model	with	agreeing	RSE	and	MAE	

Kangaroo Island Regional	 BM4	
0.80	

Minimum	model	with	agreeing	RSE	and	MAE	

Maria Island Regional	 BM4		
0.32	

RSE	and	MAE	contradict	minimum	model	and	
indicate	that	BM4	is	the	best	model	

Ningaloo Regional	 BM4	

0.06	

Minimum	model	with	agreeing	RSE	and	MAE	

North Stradbroke 
Island 

Regional	 BM3	

0.27	

Minimum	model	with	agreeing	RSE	and	MAE 

Port Hacking Bay Regional	 BM3	

0.04	

Minimum	model	with	agreeing	RSE	and	MAE 

Rottnest Island Regional	 BM3	

-0.02	

RSE	and	MAE	contradict	minimum	model	and	
indicate	that	BM4	is	the	best	model,	although	
the	use	of	BM2-4	is	comparable. 

Yongala Regional	 BM2	 NA	 RSE	and	MAE	contradict	minimum	model	and	
indicate	that	BM2	is	the	best	model.	 

C1 Synoptic	 BM2	 NA	 RSE	and	MAE	contradict	minimum	model	and	
indicate	that	BM2	is	the	best	model.	This	makes	
sense	as	the	three	members	have	different	
minimum	models	but	are	all	successfully	
modeled	by	BM2	at	a	regional	scale.	

C2 Synoptic	 BM2	 NA	 The	Esperance	NRS	displays	a	different	minimum	
model,	so	it	is	not	advised	to	use	this	cluster	at	
with	BM3.	


