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Abstract. 

Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity 

(TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal 

regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a 5 

particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands 

attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and 

endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef 

system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, 

threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in 10 

different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can 

capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this 

regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of 

coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate 

concentration. We find that regionally parameterised models capture local variability better than more general 15 

coastal or open ocean parameterised models. The strongest contribution to model improvement came through 

incorporating temperature as an input variable as well as salinity. Further improvements were achieved through 

the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate 

constituting the minimum model in most cases. These results provide an approach that can be applied to satellite 

Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal 20 

waters.  
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1 Introduction 

Ocean acidification (OA), the reduction in oceanic pH caused by the oceans’ uptake of anthropogenic CO2 

emissions, is a global phenomenon predicted to impact entire marine ecosystems, from microbial primary 

producers to top predators (Mostofa et al., 2016). Calcifying marine organisms generally show evidence of 

stress under ocean acidification scenarios, although the effects can vary widely, are species specific, and may 5 

depend on physiological traits (Comeau et al. 2017; Edmunds et al. 2016; Azevedo et al., 2015; Jokeil, 2016). 

Calcifying organisms potentially affected include corals, calcifying algae, molluscs, foraminifera, echinoderms, 

crustaceans, and bryozoans. In a high CO2 world, elevated ocean CO2 concentrations may stimulate 

photosynthesis (Gattuso et al., 2014) but may also decrease nitrogen fixation, leading to an overall decline in  

primary productivity (Hong et al. 2017), with uncertain but most-likely detrimental impacts on trophic 10 

interactions (Nagelkerken and Connell, 2015). Furthermore, the collapse of habitat builders such as corals, 

coralline algae and molluscs would have destructive impacts on entire marine ecosystems. Mesocosm and 

laboratory experiments have shown the majority of calcifying corals tested experience large declines in 

calcification and growth under OA scenarios (Gattuso et al., 2014).   

 15 

Australia’s coastline is over 36,000 km long, spanning ~33 degrees of latitude, from the tropics to the Southern 

Ocean. This coastline comprises unique and diverse marine ecosystems with high levels of endemism, of which 

the most famous is the Great Barrier Reef, the largest coral reef system on the planet and described as one of the 

seven natural wonders of the world (Mongin et al., 2016). The World Heritage-listed Ningaloo Reef system and 

remote reef systems of the Kimberley and Pilbara coasts in Western Australia are other examples of Australia’s 20 

vulnerable coral habitats. Elsewhere, sponges, bryozoans, molluscs and crustaceans contribute a significant 

calcifying fauna, including some commercially significant species of abalone and scallop. Tracking and 

predicting the rate of progression of OA in these systems, to inform local management actions, requires the 

development of robust, and cost-effective methods of monitoring the marine carbonate system at synoptic 

scales.  25 

 

Fundamental to understanding the rate of OA and oceanic uptake of CO2 is a requirement to quantify the 

buffering capacity of seawater, which is a direct function of its total alkalinity (TA). Waters with higher TA are 

less prone to rapid change in ocean pH and may provide refuge for marine biodiversity in the face of OA. TA is 

conservatively related to salinity due to convective mixing and the addition or removal of freshwater to a water 30 

mass (Cai et al., 2010; Jiang et al., 2014; Lee et al., 2006; Millero et al., 1998). This relationship has been 

exploited to predict alkalinity at the global scale from historical databases of ocean salinity (Lee et al., 2006; 

Millero et al., 1998).  While this works well for open ocean regions, alkalinity in coastal regions can be 

significantly more variable due to a wide range of freshwater end-points in the TA-salinity relationship and the 

contribution of various processes that are non-conservative with salinity (e.g. dissolved organic inputs and 35 

biological processes such as calcification and organic matter production). Thus, these relationships may not be 

robust in coastal regions (Bostock et al., 2013; Cai et al., 2010).  

 

To address this limitation, additional proxy variables have been incorporated into predictive alkalinity models to 

account for processes that affect TA non-conservatively (Jiang et al., 2014). For example, seawater temperature 40 
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has been used to help account for mixing between water masses (Jiang et al., 2014; Lee et al., 2006) and 

associated nutrient changes. To account for primary production, chlorophyll-a (CHL) (Hales et al., 2012), 

dissolved oxygen or nitrate (N) have featured in such models (Bostock et al., 2013; Brewer and Goldman, 1976; 

Lee et al., 2008). However, there is still uncertainty about which proxies are the most robust to use, with the 

choice often being influenced by availability and location. In the literature, CHL is rarely used in linear 5 

regression (LR) models for TA, but rather N is included as a third explanatory variable after salinity (S) and 

temperature (T). This is not only because N directly affects TA, but also that several other processes that 

influence TA variability can co-vary with N, making it a useful proxy (Hieronymus and Walin, 2013). 

Nonetheless, an important factor in considering such proxies is their amenity to broad-scale measurement. 

While N can be measured in situ using UV absorption sensors deployable on autonomous platforms (Johnson 10 

and Coletti, 2002), it cannot be measured directly from satellite instruments as it lacks an electromagnetic 

signature (Sarangi, 2011). There are, however, well developed remote sensing algorithms for retrieval of 

oceanic surface CHL concentration from satellites, suggesting a possible advantage for the use of CHL as an 

explanatory variable over N. 

 15 

There has been little investigation of the distribution of TA in Australian coastal waters due to sparse 

availability of measurements. Global (Lee et al., 2006; Millero et al., 1998) and regional (Lenton et al., 2015) 

algorithms have been applied to the oceans surrounding Australia but little progress has been made in 

investigating variability in TA and its drivers in Australia’s coastal waters. In this paper we analyse a seven year 

time series of observations from nine National Reference Stations (NRS) around Australia in order to quantify 20 

the suitability of a range of conservative and non-conservative regression models to predict TA in Australian 

coastal waters at local and national scales. An important consideration of this work is the ability to scale up 

predictions to synoptic scales, thus we focus on proxy variables that can be measured from satellite Earth 

observation or autonomous in situ technologies such as gliders.  

 25 
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2 Data and Methods 

2.1 National Reference Station (NRS) Data 

As part of Australia’s Integrated Marine Observing System (IMOS), time series data for nutrient and carbon 

variables are routinely measured at nine National Reference Stations (NRS) located around the Australian 

coastline (Lynch, Morello et al. 2014, Fig. 1). Measurements are made, processed, and quality controlled using 5 

consistent methods across all stations, as described by Morello, Galibert et al. (2014), and are available from the 

Australian Ocean Data View (AODV) portal (https://imos.aodn.org.au). For this study, time series of 

temperature (T), salinity (S), total alkalinity (TA), chlorophyll-a (CHL) concentration and nitrate (N) 

concentration were used. These measurements were made at monthly-to-quarterly frequency as some NRS were 

established later than others and were sampled at different frequencies. One outlier, measured at the Maria 10 

Island NRS on the 14/02/2013 at 10m, was removed (S=23.15). The sampling points used for each NRS are 

presented as a time series in Supplementary Fig. 1.  

 

Sampling and measurement protocols were undertaken according to the National Reference Stations 

Biogeochemical Operations Handbook (2016) and the Pre­Run Check and Field Sampling CTD Procedural 15 

Guide (2014), available for download from the IMOS website 

(http://imos.org.au/moorings_documentation.html). Triplicate samples of TA, S, N, and CHL were collected 

from Niskin bottles at 10m depth intervals. TA samples were poisoned with mercury chloride solution upon 

collection. All samples were then taken back to the laboratory for analysis. TA was determined by an automated 

open cell potentiometric titration using 0.1 M HCl as the titrant. The data for S used in this work was collected 20 

from bottle salinity data measured by a Guildline Autosal 8400B salinometer using conductivity ratios. CHL 

data was collected from filtered phytoplankton biomass, analysed using HPLC. The phytoplankton biomass was 

collected over the whole water column at the sample site thus the value used is an integrated CHL value. 

Finally, N was measured using a Lachat 8000 flow injection analyser with detection limit of 0.1 µM. The 

resulting data were quality controlled (QC) and flagged according to the National Reference Stations 25 

Biogeochemical Operations handbook (2016). Only results flagged 1 or 2 were used. 

 

Profiling SeaBird 19+ SEACAT Conductivity, Temperature, and Depth (CTD) instruments were used for 

continuous measurements of T, which were then binned into 1m depth intervals. Measurements were quality 

controlled according to the Australian National Moorings Network (ANMN) Standardised Profiling CTD Data 30 

Processing Procedures Appendix 4, using the SBE Data Processing-Win32 software and the IMOS MATLAB 

toolbox, before they were uploaded to the portal (procedures and toolbox available at 

https://github.com/aodn/imos-toolbox). In this study, only TA measurements from the upper 60 m of the water 

column were used, and only CTD measurements sampled within one hour and 1 m vertically of bottle sampling 

were used in our analyses. 35 

2.2 Linear regression (LR) analysis 

General and regional models were constructed from LR analysis using the four base models (BM) shown below 

and the lm() function in R. General models refer to those derived from a combined dataset collected from all 
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nine NRS. Regional models refer to those derived from data collected from singular NRS. In total, 40 models 

were derived (the 4 base models applied to 1 general coastal model and 9 regional models).  

 

𝐵𝑀1: 𝑇𝐴 = 𝑎𝑆 + 𝑑 

𝐵𝑀2: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑑 

𝐵𝑀3: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑐𝑙𝑜𝑔 𝐶𝐻𝐿 + 𝑑 

𝐵𝑀4: 𝑇𝐴 = 𝑎𝑆 + 𝑏𝑇 + 𝑐𝑙𝑜𝑔 𝑁 + 𝑑 

where T is water temperature, S is salinity, CHL is chlorophyll-a concentration, N is nitrate concentration, and 

a-d are constants calculated via LR. 5 

 

Some of the regional NRS data sets had small numbers of observations (n) for some variables, which is not ideal 

for LR (Table S1-S5), particularly the Ningaloo, Darwin, and Esperance NRS. For BM4, the number of 

observations used in LR analysis was significantly reduced at Yongala and Kangaroo Island NRS, with only 

four NRS possessing a robust number of observations (n ≥ 30*[number of explanatory variables]). The results of 10 

these models are still presented although they should be considered to be less robust than those for stations with 

higher n. For the combined data set, Shapro-Wilk normality tests rejected the hypothesis that S, T, log[N], and 

log[CHL] were each individually normally distributed. It is rare for such data to resemble a normal distribution 

closely and it was concluded that the symmetrical distributions of S, T log[CHL], and log[N] were acceptable to 

proceed with LR analysis.  15 

 

All residuals showed evidence of being normally distributed, appearing trendless, and homoscedastic, as should 

be seen for LR. Some quantile-quantile (Q-Q) plots (not presented) showed evidence of outliers, however the 

decision was made not to remove these apparent outliers due to the small size of some data sets.  

2.2 Open ocean model (Lee et al. 2006) 20 

In order to compare the performance of the models tested with an open ocean ‘base’ model, TA was 

reconstructed from an implementation of the model of Lee et al. (2006) using observed S and T measurements 

collected at the nine NRS. The open ocean model is a quadratic model and has one dynamic geographical 

boundary through Australian coastal waters, which varies seasonally with T. Like BM2, the number of 

observations able to be modelled by the open ocean model was restricted by temperature. The numbers of 25 

observations used for the open ocean model are given in Supplementary Table 2. 

2.2 Statistical analysis 

Three statistical measures and one test were utilised in order to compare models, assess their robustness and 

determine the minimum model, which is the model that minimises information loss from the observations.  

1. Residual standard error (RSE) was calculated as a measure of the error in a model, when compared to 30 

observations. By multiplying by the appropriate standard z-value, 1.96 from the standard normal distribution, 

we obtain an approximation of the 95% confidence error (CE) associated with the model. These estimates are 

not reliable for models with n < 30, which will have a larger CE in accordance with the central limit theorem. 
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2. Bootstrapped Kolmogorov–Smirnov (KS) tests were employed in order to test the hypothesis that 

reconstructed alkalinity values are drawn from the same distribution as observations. These were tested at a 5% 

significance level. As both data sets in the KS tests came from the same environment (same sample of water) the 

test had to be bootstrapped (Kleijen, 1999).  P-values are shown in Supplementary Table 5. 

3. The Akaike Information Criterion (AIC) measures the relative quality of statistical models and is 5 

particularly useful when models with different numbers of variables are being compared. In calculating AIC 

there is a trade-off between the goodness-of-fit and the complexity of the model, adding an extra level of 

analysis compared to RSE. Using AIC values, the relative probability of minimising information loss 

(RPMIL) for each model can be determined, which allows a more intuitive and robust method for comparing 

models, allowing the minimum model to be determined with some level of certainty.  10 
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3. Results 

3.1 Open ocean model (Lee et al. 2006) 

Figure 2 shows the differences between modelled and in situ TA observations using the open ocean model at the 

nine NRS. All nine NRS showed RSE less than 14 µmolkg-1. The model performed particularly well at the 

Kangaroo Island NRS, predicting TA with an average difference of - 0.70 µmolkg-1 (i.e. lower than in- situ 5 

observations) with a residual standard error (RSE) of 5.40 µmolkg-1. However, the model underperformed 

significantly at the Darwin and Yongala NRS, while also overestimating at the remaining six NRS. At the 

Darwin NRS, on average the model predicted TA to be 20.28 µmolkg-1 lower than observed values while at the 

Yongala NRS on average the model predicted TA of 14.65 µmolkg-1 above observed values.  

3.2 Kolgorov-Smirnov (KS) tests 10 

Table 1 shows results of KS tests between respective models and observed TA with a 95% confidence level. The 

statistical distribution of TA was only successfully modelled for all NRS using regionally developed algorithms 

that include N, T and S, and not by general models for all Australian waters. Nonetheless, regional models that 

only use S were also able to significantly reproduce the statistical distribution of TA, with the exception of the 

North Stradbroke Island, Maria Island, and Yongala NRS. At a regional level, observations from the Maria 15 

Island and North Stradbroke Island NRS were successfully modelled with BM2, BM3, and BM4, but the 

Yongala NRS was only successfully modelled with BM4. All NRS that were successfully modelled regionally 

by BM1, were also successfully modelled regionally by all other base models. 

3.3 95% Confidence Errors (CE) 

95% CE are shown in Fig. 3. The combined general model showed a marked decrease in error over BM1-BM2, 20 

and comparable errors over BM2-BM4. Regionally, most NRS exhibited similar errors over the four base 

models, with the exceptions being Darwin and Ningaloo. The Darwin NRS showed particularly high errors over 

the 4 base models. Lowest errors were given by BM3 (Darwin, Esperance, Ningaloo, North Stradbroke Island, 

Port Hacking Bay, Yongala) or BM4 (Kangaroo Island, Maria Island, general coastal). Overall, errors were 

highest for the Darwin and Yongala regional models, and the general coastal models, with 95% CE >10 µmolkg-25 
1. All other models had 95% CE < 10 µmolkg-1 for BM2-BM4. 

3.4 AIC and RPMIL 

AIC values and RPMIL are displayed in Fig. 4 and Fig. 5 respectively. AIC values are clearly higher for BM1 in 

all cases. Little difference in AIC is seen between BM2 and BM3. AIC values indicate that BM4 is clearly the 

minimum model, with the exception of the Port Hacking Bay NRS, which shows similar AIC values at BM3 30 

and BM4. When transforming AIC values to RPMIL, a higher value indicates a higher probability of that 

particular model representing the minimum model. Results are presented with the exclusion of BM4 as this is 

obviously the minimum model, having the lowest AIC at all stations except Port Hacking Bay NRS. At Port 

Hacking Bay, BM3 is the minimum model with BM4 having a RPMIL of 0.08 (ST6). Notably of BM1-BM3, 

BM3 has the highest RPMIL for all models.  35 
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4 Discussion 

This paper presents a comparison of different linear regression (LR) models for the prediction of alkalinity in 

Australian coastal waters. We show that including not only salinity (S) but also temperature (T), and either 

chlorophyll (CHL) or nitrate (N) concentration in these models can significantly improve their performance. In 

other regions, a simple linear TA-S dependence has often been assumed when estimating TA for use in 5 

calculations of other carbonate parameters (Bates et al., 2006; Hales et al., 2012; Lee et al., 2008; Majkut et al., 

2014). In Australian waters, this approach has also been utilised at a continental scale (Lenton et al., 2015; 

Takahashi, T., et al. 2014; Lenton et al., 2012), but not yet at a regional scale within coastal waters. Despite the 

wide application of such regression approaches in estimating TA, little investigation has been undertaken on the 

sensitivity of TA estimates to different input variables in coastal waters. This is surprising given the wider range 10 

of processes that can influence TA in coastal waters beyond a simple water-mass mixing model, such as variable 

inputs of nutrients and dissolved organic material, and their influence on primary production.  

 

LR is well recognised as a useful predictive tool for spatial extrapolation, particularly in comparison to neural 

networks which are proven to have less predictive power in extrapolation (Lefèvre et al., 2008). Given the goal 15 

of enabling predictions of TA in areas of sparse in situ measurements, we restricted the range of input variables 

in three base models (BM) to those available with broad coverage from satellite Earth observation, namely T, S, 

and CHL as a proxy for processes related to primary production (including nutrient contributions to TA). 

Additionally, a fourth BM that included nitrate (N) rather than CHL was included for comparison. We included 

nitrate, due to its direct effect on TA, as well as its co-variation with other nutrients which directly affect TA.  20 

 

A log transformation was applied to CHL to account for its well-described, log-normal distribution in the ocean 

(Campbell et al., 1998) and to satisfy the normality assumption of LR analysis. The same transformation is 

applied to N as it was strongly right skewed. The technology does not currently exist to remotely sense nitrate 

from satellites, so BM4 is not useful when considering algorithms that can be applied to Earth observation. 25 

Nonetheless, BM4 can be utilised with data from autonomous platforms equipped with nitrate sensors, such as 

gliders and biogeochemical profiling floats, thus was regarded important to include in this work. Nitrate levels 

in some ecosystems, such as coral reefs, can often be lower than detection limits. This was a challenge with the 

data set used in this study and provides another limitation to BM4.  

 30 

It was found from AIC values that using S alone as a predictor for TA does not give the most informative 

results, and that the addition of T to the model substantially increases the information of the model. This is 

found at all NRS locations, and between the general and regional models. This conclusion is not as strongly 

reflected in model errors (Fig 2) due to the substantial decreases in observations seen between the four models, 

and such AIC values are important to consider within model comparisons. Thus we recommend that as a 35 

minimum, T be included in regression models for the estimation of TA in Australian coastal waters. 

 

Further, AIC values indicated that the addition of a third variable increased the information of the model, 

however, the decrease was less in comparison to the decreases observed when adding T as a predictor. BM4 was 

the minimum model for estimating TA in Australian coastal waters, at all stations except North Stradbroke 40 
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Island, where BM3 was the minimum model. Probabilistically, the addition of another predictor does add 

information (decreases in AIC observed over all NRS locations). However, BM4 was shown to increase model 

errors at 5 NRS (Darwin, Esperance, North Stradbroke Island, Rottnest Island, and Yongala) even though BM4 

was the minimum model at these locations. This result is likely due to large differences between the numbers of 

observations available for BM4 and BM3 at these NRS, which increased RSE values in BM4.   5 

 

KS tests showed that regionally-modelled TA values, constructed from BM4, were statistically similar to NRS 

observations, at all stations. It should be noted that although the number of data points was low for some of 

these stations, this should not affect the result of the general model KS tests. Although BM3 was the minimum 

model at the North Stradbroke Island NRS, KS tests indicated that BM4 still produced values close to observed 10 

TA at this location.  Thus the addition of another predictor is advantageous in modelling TA in Australian 

coastal waters, with the addition of N achieving better results over CHL.  

 

A major finding relates to the use of globally-parameterised open ocean algorithms for modelling TA. It has 

been shown that such algorithms often fail in coastal waters due to the strong influence that coastal processes 15 

have on the distribution of TA (Bostock et al., 2013;Cai et al., 2010). Our results confirmed that such open 

ocean models are not necessarily optimal for predicting TA in coastal waters and their use can result in large 

systematic errors in some regions (Fig. 2). Nonetheless, the use of a global model at the Kangaroo Island NRS 

appears to be consistent with regional parameterisations, and is further supported by KS tests. KS tests also 

suggest that the Lee et al. (2006) algorithm performs reasonably at Ningaloo. However, this result is due largely 20 

to the low number of observations obtained at the Ningaloo NRS and the large amount of scatter in 

observations, which reduces the sensitivity of the result. Examination of RSE values shows systematic error 

(bias) is introduced when the open ocean model is used.  

 

Although KS tests show that TA is best modelled regionally, the general coastal models could still be used 25 

effectively. The general coastal models do not perform well at some locations (Table 1), but generally low RSE 

was observed when these models included temperature. The general coastal model, when T was included, 

achieved RSE < 9 µmol kg-1. This RSE was comparable to using the Lee et al. (2006) model (8.6 µmolkg-1) 

when temperature was included, thus the general coastal models will be able to be used with a greater level of 

confidence for Australian coastal waters as they eliminate systematic biases.  30 

 

Yongala NRS was the only NRS not successfully modelled regionally by BM3 according to KS tests. When 

looking at residuals, a large seasonality component is unaccounted for by BM3. The Yongala NRS is located 

next to the Great Barrier Reef, so it seems plausible that the extra seasonality component seen in the data could 

be attributed to calcification processes or benthic biological nitrogen uptake on the reef. The mouth of the 35 

Burdekin River is also located close to the Yongala NRS, so the residuals could also be capturing a changing 

freshwater endpoint in the model as the riverine input changed seasonally. Indeed, the seasonality in the 

residuals was seen to co-vary with seasonal freshening in salinity data (SF2). All of these processes affect TA 

signals directly, so a clear signal may be seen in the data (Brewer and Goldman, 1976; Cai et al., 2010; Jiang et 

al., 2014; Shadwick et al., 2011), but cannot be monitored via remote sensing (or BM3). In fact, when N was 40 
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used instead of CHL (BM4), the seasonality disappeared and was replaced by a more random distribution of 

residuals, although it should be noted that the data here was sparse (n=56). Additionally, when the residuals of 

BM3 were plotted alongside salinity, there is clear evidence of co-variability which points towards a changing 

riverine endpoint at that location. Thus, the N at the Yongala NRS is a proxy for riverine alkalinity inputs , 

which is not represented by CHL. This example both highlights a challenge faced when considering the future 5 

of remotely sensed TA, and adds additional justification that BM4 is the best model for predicting TA out of the 

four models tested. 

 

The regional dependence of regression relationships for the prediction of TA in this study highlights a large 

limitation to broad-scale predictions of the progression of ocean acidification in vulnerable coastal regions, 10 

namely the paucity of high quality TA observations available for development of suitable algorithms. Australia 

has benefited from the establishment of national reference stations as part of an Integrated Marine Observing 

System (IMOS) that takes consistent time series observations around the coast. Nonetheless, TA observations 

have only been collected since 2009, so the temporal range of this data is minimal. Spatially, the data is also 

limited to only nine locations around a 36,000 km long coastline. For the Ningaloo, Darwin, Kangaroo Island, 15 

and Esperance stations, the number of available observations was particularly low resulting in models for these 

locations being statistically less robust. The Ningaloo and Esperance NRS were removed in 2015 due to budget 

constraints, removing the opportunity for extending these relationships in future (Note also that this leaves only 

one reference station monitoring the western third of Australia’s coastal environment). For many parts of the 

world, even this level of observation is not currently achievable, increasing the challenges of monitoring the 20 

progress and impacts of ocean acidification over coming decades. 

 

A promising opportunity lies in the application of regional relationships to satellite Earth observation data, a 

direction that so far has been investigated little. Recent advances in Earth observation mean that salinity, 

temperature, and chlorophyll-a are able to be remotely sensed using a range of passive (visible spectrum 25 

radiometry) and active (microwave and radar) sensors on orbital satellites (Land et al., 2015). This opens up 

avenues for exploitation of LR models developed from in situ data to enable synoptic-scale monitoring of TA 

variability and other carbonate system parameters. While such approaches have been successfully trialled for 

open oceans (Lee et al., 2006; Millero et al., 1998), less effort has been invested on its application at the coastal 

scale. The success of this application will depend largely on the resolution of the satellite data that the algorithm 30 

is applied to, the accuracy of the algorithm itself and the ability to quantify associated errors, increasing the need 

for high quality in situ measurements. Satellite observations are vulnerable to inaccuracies in coastal waters due 

to factors including cloud cover, the presence of coloured dissolved organic matter (CDOM) and suspended 

sediments, the presence of both marine and terrestrial aerosols, land adjacency effects, and the electromagnetic 

complexity of coastal signals (in both optical and radio wave spectrum) (Schalles, 2006;Land et al., 2015). 35 

Future planned sensors with higher spatial and spectral resolution may help reduce these current limitations. For 

illustrative purposes only, therefore, we have used inputs from satellite remote sensing to make a first estimate 

for average TA at the scale of the Australian continent using the general coastal model for BM3 (Figure 6).  
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The chemistry of the ocean is dynamic and varies between seasons and years, as well as through direct uptake of 

anthropogenic CO2 emissions, and the influence of changing water temperature and salinity from climate 

forcing. Empirically-parameterised algorithms for TA may therefore require regular retuning to remain robust 

through time. The presence of ocean acidification will change TA through increasing carbonate dissolution over 

time (Cross et al., 2013), a process which cannot be estimated from any of the proxy variables explored in this 5 

paper. This might change the required algorithm inputs significantly and increase uncertainties in algorithms 

over time. As such, on-going in situ monitoring for alkalinity and other carbonate system parameters will 

continue to be required to support synoptic scale approaches to monitoring the progression of ocean 

acidification. 
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5 Conclusion 

In addressing the two main applications of the results of this paper, we have defined two different minimum sets 

of variables for the prediction of TA in coastal waters: S, T, and log[CHL] for applications to satellite Earth 

observations, and S, T, and log[N] for in situ applications. We find that the influence of biological responses on 

the distribution of TA can be significant at some locations in Australian coastal waters, and must be considered 5 

when estimating TA. Finally, we have shown that when predicting TA from ocean observations, the use of T as 

a predictor will improve the model significantly and the addition of a third predictor offers further improvement. 

With this information and the models presented in this paper, more informed decisions can be made about 

modelling TA in Australian and other coastal waters, assisting efforts to track the progress of ocean 

acidification. 10 
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Code Availability 

No special code was required to model the data, and data processing can easily be followed by the methodology 

given. Thus no code is required to accompany this publication but can be requested. 

 5 

Data Availability 

Open access at https://imos.aodn.org.au.  
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Figures 

 
Figure 1: Map displaying the positions of nine national reference stations (NRS) 
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Figure 2: Plots of the Residual TA measurements for the nine NRS, as calculated by subtracting observed TA values 
from those modelled by the open ocean model of Lee et al. (2006). The mean residual is shown as a black line the 
height of the box corresponds to one standard deviation, and the extremities of the whiskers show maxima and 
minima. 
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Figure 3: 95% Confidence Errors for each of the four models tested at the coastal level and regional level for the nine 
NRS. Hollow bars indicate results obtained from algorithms developed from a low number of observations. 25 
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Figure 4: AIC values for each of the four models tested at the coastal level and regional level for the nine 15 
NRS. Hollow bars indicate results obtained from algorithms developed from a low number of 
observations. 
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Figure 5: Relative probabilities of minimising information loss for each of the four models tested at the 
coastal level and regional level for the nine NRS. Hollow bars indicate results obtained from algorithms 10 
developed from a low number of observations. 
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Figure 6: Average distribution of TA around the Australian coast for May 2015, based on the 
extrapolation of the general regression of BM3. The figure was constructed using the general model 
presented in Table S3 implemented with satellite-derived MODIS 4km monthly averaged sea surface 5 
temperature, MODIS 4km monthly averaged chlorophyll-a (NASA Earth Data portal: 
https://earthdata.nasa.gov/) and SMOS 0.25 degree monthly averaged sea surface salinity (Barcelona 
Expert Center data portal: http://cp34-bec.cmima.csic.es/) data products. 
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Tables 

Table 1: Results for the K-S tests for differences in distribution. 
✓= statistically similar to observations 
✗  = statistically different to observations 5 
* algorithms developed with low numbers of observations employed (n < 30xnumber of explanatory 
variables) 
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NRS Base Model 1 
 

Base Model 2 
 

Base Model 3 
 

Base Model 4 Lee et al. 
(2006) 

Regional  General  Regional General Regional  General Regional  General  

Darwin ü û ü û ü* û ü* û û 

Esperance ü û ü* ü ü* ü ü* ü û 

Kangaroo 
Island 

ü û ü û ü û ü* û ü 

Maria Island û û ü ü ü ü ü ü û 

Ningaloo ü û ü* ü ü* ü ü* ü ü 

North 
Stradbroke 
Island 

û û ü û ü û ü ü û 

Port Hacking 
Bay 

ü û ü ü ü ü ü ü û 

Rottnest 
Island 

ü ü ü û ü û ü ü û 

Yongala û û û û û û ü* û û 

Biogeosciences Discuss., doi:10.5194/bg-2017-221, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 1 June 2017
c© Author(s) 2017. CC-BY 3.0 License.


