
Ocean acidification of a coastal Antarctic marine microbial
community reveals a critical threshold for CO2 tolerance in
phytoplankton productivity
Stacy Deppeler1, Katherina Petrou2, Kai G. Schulz3, Karen Westwood4,5, Imojen Pearce4,
John McKinlay4, and Andrew Davidson4,5

1Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
2School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
3Centre for Coastal Biogeochemistry, Southern Cross University, Military Rd, East Lismore, NSW, 2480, Australia
4Australian Antarctic Division, Department of the Environment and Energy, 203 Channel Highway, Kingston, Tasmania
7050, Australia
5Antarctic Climate and Ecosystems Cooperative Research Centre, Private Bag 80, Hobart, Tasmania 7001, Australia

Correspondence to: Stacy Deppeler (stacy.deppeler@utas.edu.au)

Abstract.

High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of

ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed

an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641

µatm in six 650 l minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a5

change in primary productivity, bacterial productivity, and the accumulation of Chlorophyll a (Chl a) and particulate organic

matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mecha-

nisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified

in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥1140 µatm negatively affected photosynthetic

performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary produc-10

tion (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C:N ratios.

Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concen-

trating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2

treatments ≥953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial

productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all15

treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined

with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on

the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in

bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased

organic matter remineralisation and further declines in carbon sequestration.20
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1 Introduction

The Southern Ocean (SO) is a significant sink for anthropogenic CO2 (Metzl et al., 1999; Sabine et al., 2004; Frölicher et al.,

2015). Approximately 30% of anthropogenic CO2 emissions have been absorbed by the world’s oceans, of which 40% has been

via the SO (Raven and Falkowski, 1999; Sabine et al., 2004; Khatiwala et al., 2009; Takahashi et al., 2009, 2012; Frölicher5

et al., 2015). While ameliorating CO2 accumulation in the atmosphere, increasing oceanic CO2 uptake alters the chemical

balance of surface waters, with the average pH having already decreased by 0.1 units since pre-industrial times (Sabine et al.,

2004; Raven et al., 2005). If anthropogenic emissions continue unabated, future concentrations of CO2 in the atmosphere are

projected to reach ∼930 µatm by 2100 and peak at ∼2000 µatm by 2250 (Meinshausen et al., 2011; IPCC, 2013). This will

result in a further reduction of the surface ocean pH by up to 0.6 pH units, with unknown consequences to the marine microbial10

community (Caldeira and Wickett, 2003). High-latitude oceans have been identified as amongst the first regions to experience

the negative effects of ocean acidification, causing potentially harmful reductions in the aragonite saturation state and a decline

in the ocean’s capacity for future CO2 (Sabine et al., 2004; Orr et al., 2005; McNeil and Matear, 2008; Fabry et al., 2009; Hauck

and Völker, 2015). Marine microbes play a pivotal role in the uptake and storage of CO2 in the ocean, through phytoplankton

photosynthesis and vertical transport of biological carbon to the deep ocean (Longhurst, 1991; Honjo, 2004). As the buffering15

capacity of the SO decreases over time, the biological contribution to total CO2 uptake is expected to increase in importance

(Hauck et al., 2015; Hauck and Völker, 2015). Thus, it is necessary to understand the effects of high CO2 on the productivity

of the marine microbial community if we are to predict how they may affect ocean biogeochemistry in the future.

Phytoplankton primary production provides the food source to higher trophic levels and plays a critical role in the seques-

tration of carbon from the atmosphere into the deep ocean (Azam et al., 1983, 1991; Longhurst, 1991; Honjo, 2004; Fenchel,20

2008; Kirchman, 2008). In Antarctic waters it is restricted to a short summer season and is characterised by intense phyto-

plankton blooms that can reach over 200 mg Chl a m−2 (Smith and Nelson, 1986; Nelson et al., 1987; Wright et al., 2010).

Relative to elsewhere in the SO, the continental shelf around Antarctica accounts for a disproportionately high percentage of

annual primary productivity (Arrigo et al., 2008a). In coastal Antarctic waters, seasonal CO2 variability can be up to 450 µatm

over a year (Gibson and Trull, 1999; Boyd et al., 2008; Moreau et al., 2012; Roden et al., 2013; Tortell et al., 2014). Sea ice25

forms a barrier to outgassing of CO2 in winter, causing supersaturation of the surface water to ∼500 µatm. Intense primary

productivity in summer rapidly draws down CO2 to <100 µatm, making this region a significant CO2 sink during summer

months (Hoppema et al., 1995; Ducklow et al., 2007; Arrigo et al., 2008b).

Ocean acidification studies on individual phytoplankton species have reported differing trends in primary productivity and

growth rates. Increased CO2 enhanced rates of primary productivity (Wu et al., 2010; Trimborn et al., 2013) and growth30

(Sobrino et al., 2008; Tew et al., 2014; Baragi et al., 2015; Chen et al., 2015; King et al., 2015) in some diatom species, while

others have been shown to remain unaffected (Chen and Durbin, 1994; Sobrino et al., 2008; Berge et al., 2010; Trimborn

et al., 2013; Chen et al., 2015; Hoppe et al., 2015; King et al., 2015; Bi et al., 2017). In contrast, CO2-related declines in
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primary productivity and growth rate have also been observed (Barcelos e Ramos et al., 2014; Hoppe et al., 2015; King et al.,

2015; Shi et al., 2017), suggesting that responses to ocean acidification are largely species-specific. These differing responses

among phytoplankton species may also cause changes in the composition of phytoplankton communities (Trimborn et al.,

2013). It is difficult to extrapolate the response of individual species to natural communities, as monospecific studies exclude

interactions among species and trophic levels. Estimates of CO2 tolerance under laboratory conditions may also be influenced5

by experimental acclimation periods (Trimborn et al., 2014; Hennon et al., 2015; Torstensson et al., 2015; Li et al., 2017a),

differences in experimental conditions (e.g. nutrients, light climate) (Hoppe et al., 2015; Hong et al., 2017; Li et al., 2017b),

methods of CO2 manipulation (Shi et al., 2009; Gattuso et al., 2010), as well as region-specific environmental adaptations

(Schaum et al., 2012). Thus, investigations on natural communities are essential in order to better understand the outcome of

these complex interactions.10

The effects of ocean acidification on natural Antarctic phytoplankton communities is currently not well understood (Petrou

et al., 2016; Deppeler and Davidson, 2017). Tolerance to CO2 levels up to ∼800 µatm have been reported for natural coastal

communities in the West Antarctic Peninsula and Prydz Bay, East Antarctica (Young et al., 2015; Davidson et al., 2016).

Although in Prydz Bay, when CO2 levels exceeded 780 µatm, primary productivity declined and community composition

shifted toward smaller, picoeukaryotes (Davidson et al., 2016; Thomson et al., 2016; Westwood et al., submitted). In contrast,15

Ross Sea phytoplankton communities responded to CO2 levels ≥750 µatm with an increase in primary productivity and

abundance of large chain-forming diatoms, suggesting that as CO2 increases in this region, diatoms may increase in dominance

over the prymnesiophyte Phaeocystis antarctica (Tortell et al., 2008b; Feng et al., 2010). The paucity of information regarding

the ocean acidification response of these Antarctic coastal phytoplankton communities highlights the need for further research

to determine region-specific tolerances and potential tipping points in community productivity and composition in Antarctica.20

Bacteria play an essential role in the microbial food web through the remineralisation of nutrients from sinking particles

(Azam et al., 1991) and as a food source for heterotrophic nanoflagellates (Pearce et al., 2010). Bacterial populations respond

to increases in phytoplankton primary productivity by increasing their productivity and abundance, with maximum abundance

often occurring after the peak of the phytoplankton bloom (Pearce et al., 2007). High CO2 levels have been observed to have

either no effect on abundance and productivity (Grossart et al., 2006; Allgaier et al., 2008; Paulino et al., 2008; Baragi et al.,25

2015; Wang et al., 2016) or increase growth rate and production only during the post-bloom phase of an experiment (Grossart

et al., 2006; Sperling et al., 2013; Westwood et al., submitted). Thus, bacterial communities appear to be relatively tolerant to

ocean acidification, with bacterial growth indirectly affected by ocean acidification responses of the phytoplankton community

(Grossart et al., 2006; Allgaier et al., 2008; Engel et al., 2013; Piontek et al., 2013; Sperling et al., 2013; Bergen et al., 2016).

Mesocosm experiments are an effective way of monitoring the community response of microbial assemblages to environ-30

mental changes. Experiments examining multiple species and trophic levels can provide responses that differ significantly from

mono-specific studies. Numerous mesocosm studies have now been performed, assessing the effect of ocean acidification on

natural marine microbial communities around the world (e.g. Kim et al., 2006; Hopkinson et al., 2010; Riebesell et al., 2013;

Paul et al., 2015; Bach et al., 2016; Bunse et al., 2016). Studies in the Arctic reported increases in phytoplankton primary

productivity, growth, and organic matter concentration at CO2 levels ≥800 µatm under nutrient-replete conditions (Bellerby35
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et al., 2008; Egge et al., 2009; Engel et al., 2013; Schulz et al., 2013), whilst the bacterial community was unaffected (Grossart

et al., 2006; Allgaier et al., 2008; Paulino et al., 2008; Baragi et al., 2015). These studies also highlight the importance of

nutrient availability on the community response to elevated CO2, with substantial differences in primary and bacterial produc-

tivity, Chlorophyll a (Chl a), and elemental stoichiometry observed between nutrient-replete and nutrient-limited conditions

(Riebesell et al., 2013; Schulz et al., 2013; Sperling et al., 2013; Bach et al., 2016).5

Previous community-level studies investigating the effects of ocean acidification on natural coastal marine microbial com-

munities in East Antarctica reported declines in primary and bacterial productivity when CO2 levels exceeded 780 µatm

(Westwood et al., submitted). To build upon the results of Westwood et al. (submitted), a similar experimental design was

utilised, with a natural marine microbial community from the same region exposed to CO2 levels ranging from 343 to 1641

µatm in 650 l minicosms. The methods were refined in our study to include an acclimation period to the CO2 treatment under10

low light. Rates of primary productivity, bacterial productivity, and the accumulation of particulate organic matter (POM) were

examined to ascertain whether the threshold for tolerance to CO2 was similar to that reported by Westwood et al. (submitted),

or if acclimation affected the community response to high CO2. Photophysiological measurements were also undertaken to

assess underlying mechanisms that caused shifts in phytoplankton community productivity.

2 Methods15

2.1 Minicosm setup

Natural microbial assemblages were incubated in six 650 l polythene tanks (minicosms) housed in a temperature controlled

shipping container (Fig. 1). All minicosms were acid washed with 10% vol:vol AR HCl, thoroughly rinsed with MilliQ water,

and given a final rinse with seawater from the sampling site before use. The minicosms were filled with seawater taken amongst

decomposing fast ice in Prydz Bay, at Davis Station, Antarctica (68◦ 35’ S 77◦ 58’ E) on 19th November 2014. Water was20

transferred by helicopter in multiple collections using a 720 l Bambi Bucket to fill a 7000 l polypropylene holding tank.

Seawater was gravity fed into the minicosm tanks through Teflon lined hosing fitted with an in-line 200 µm Arkal filter to

exclude metazooplankton. All minicosms were filled simultaneously to ensure uniform distribution of microbes in all tanks.

The ambient water temperature at the time of sampling in Prydz Bay was -1.0 ◦C. Tanks were temperature controlled to an

average temperature of 0.0 ◦C, with a maximum range of ± 0.5 ◦C, through cooling of the shipping container and warming with25

two 300W aquarium heaters (Fluval) that were connected to a temperature control program via Carel temperature controllers.

The contents of each tank were gently mixed by a shielded high density polyethylene auger, rotating at 15 rpm, and each tank

was covered with a sealed acrylic lid.

Each tank was illuminated on a 19:5 hr light:dark cycle by two 150W HQI-TS/NDL (Osram) metal halide lamps (transmis-

sion spectra: www.osram.com.au/media/resource/hires/335357/powerstar-hqi-ts-excellence-70-w-and-150-w—the-latest-innovation-30

in-quartz-tec.pdf). The light output was filtered by a light-scattering filter and a one quarter colour temperature (CT) blue filter

(Arri) to convert the tungsten lighting to a daylight spectral distribution, attenuating wavelengths<500 nm by ∼20% and>550

nm by ∼40% (Davidson et al., 2016).
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Similar to Schulz et al. (2017) the fugacity of carbon dioxide (fCO2) in each tank was raised to the target concentration in

a step-wise manner over the first 5 days of the incubation (Fig. 2, see below). During this acclimation, phytoplankton growth

in the tanks was slowed by attenuating the light intensity to 0.9 ± 0.2 µmol photons m−2 s−1 using two 90% neutral density

(ND) filters (Arri).

At the conclusion of this CO2 acclimation period, the light intensity was increased for 24 hrs through replacement of the5

two 90% ND filters with one 60% ND filter. The final light intensity was achieved on day 7 with a one quarter CT blue and a

light-scattering filter, which proved to be saturating for photosynthesis (see below).

Unless otherwise specified, samples were taken for analyses on days 1, 3, and 5 during the CO2 acclimation period and every

2 days from day 8 to 18.

2.2 Carbonate chemistry measurements and calculations10

Samples for carbonate chemistry measurements were collected daily from each minicosm in 500 ml glass stoppered bottles

(Schott Duran) following the guidelines of Dickson et al. (2007). Sub-samples for dissolved inorganic carbon (DIC, 50 ml

glass stoppered bottles) and pH on the total scale (pHT , 100 ml glass stoppered bottles) measurements were gently pressure

filtered (0.2 µm) with a peristaltic pump at a flow rate of ∼30 ml min−1, similar to Bockmon and Dickson (2014).

DIC was measured by infra-red absorption on an Apollo SciTech AS-C3 analyzer equipped with a LICOR LI-7000 detector15

using triplicate 1.5 ml samples. The instrument was calibrated (and checked for linearity) within the expected DIC concen-

tration range with five sodium carbonate standards (Merck Suprapur) that were dried for 2 hours at 230 ◦C and prepared

gravimetrically in milliQ water (18.2 MΩ cm−1) at 25 ◦C. Furthermore, daily measurements of certified reference material

batch CRM127 (Dickson, 2010) were used for improved accuracy. Volumetrically measured DIC was converted to µmol kg−1

using calculated density derived from known temperature and salinity. The typical precision among triplicate measurements20

was <2 µmol kg−1.

pHT was measured spectrophotometrically (GBC UV-Vis 916) in a ten centimetre thermostated (25 ◦C) cuvette using the

pH indicator dye m-cresol purple (Acros Organics, 62625-31-4, Lot A0321770) following the approach described in Dickson

et al. (2007), which included changes in sample pH due to dye addition. Contact with air was minimized by sample delivery,

dye addition, and mixing via a syringe pump (Tecan, Cavro XLP6000). Dye impurities and instrument performance were25

accounted for by applying a constant off-set (+0.003 pH units), determined by the comparison of measured and calculated pHT

(from known DIC and total alkalinity (TA), including silicate and phosphate) of CRM127. Typical measurement precision for

triplicates was 0.001 for higher and 0.003 for lower pH treatments. For further details see Schulz et al. (2017).

Carbonate chemistry speciation was calculated from measured DIC and pHT . In a first step, at in situ measured salinities

(WTW197 conductivity meter), practical alkalinity (PA) was calculated at 25 ◦C using the dissociation constants for carbonic30

acid determined by Mehrbach et al. (1973) as refitted by Lueker et al. (2000). Then, total carbonate chemistry speciation was

calculated from measured DIC and calculated PA for in situ temperature conditions.
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2.3 Carbonate chemistry manipulation

The fCO2 in the minicosms was adjusted by additions of 0.22 µm-filtered natural seawater that was saturated by bubbling with

AR grade CO2 for ≥30 mins. In order to keep fCO2 as constant as possible throughout the experiment, pH in each minicosm

was measured with a portable, NBS-calibrated probe (Mettler Toledo) in the morning before sampling and the afternoon, to

estimate the necessary amount of DIC to be added. The required volume of CO2 enriched seawater was then transferred into5

1000 ml infusion bags and added to the individual minicosms at a rate of about 50 ml min−1. After reaching target levels, the

mean fCO2 levels in the minicosms were 343, 506, 634, 953, 1140, and 1641 µatm (Table S1).

2.4 Light irradiance

Average light intensity in each minicosm tank was calculated by measuring light intensity in the empty tanks at three depths

(top, middle, and near-bottom) and across each tank (left, middle, and right) using a Biospherical Instruments’ Laboratory10

Quantum Scalar Irradiance Meter (QSL-101). The average light irradiance received by phytoplankton within each tank was

calculated following the equation of Riley (1957) (Table 1). Incoming irradiance (Īo) was calculated as the average light

intensity across the top of the tank. The average vertical light attenuation (Kd) was calculated as the slope from regression of

the natural log of light intensity at all three depths, and mixed depth (Zm) was the depth of the minicosm tanks (1.14 m).

Changes in vertical light attenuation due to increases in Chl a concentration throughout the experimental period were calcu-15

lated from the equation in Westwood et al. (submitted); Kd(biomass) = 0.0451157 × Chl a (mg m−3). Total light attenuation

Kd(total) in each tank at each sampling day was calculated by addition of Kd and Kd(biomass).

2.5 Nutrient analysis

No nutrients were added to the minicosms during the experiment. Macronutrient samples were obtained from each minicosm

following the protocol of Davidson et al. (2016). Seawater was filtered through 0.45 µm Sartorius filters into 50 ml Falcon20

tubes and frozen at -20 ◦C for analysis in Australia. Concentrations of ammonia, nitrate plus nitrite (NOx), soluble reactive

phosphorus (SRP), and molybdate reactive silica (Silica) were determined using flow injection analysis by Analytical Services

Tasmania following Davidson et al. (2016).

2.6 Elemental analysis

Samples for POM analysis, particulate organic carbon (POC) and particulate organic nitrogen (PON), were collected following25

the method of Pearce et al. (2007). Equipment for sample preparation was soaked in Decon 20 (Decon Laboratories) for >2

days and thoroughly rinsed in MilliQ water before use. Forceps and cutting blades were rinsed in 100% acetone between

samples. Seawater was filtered through muffled 25 mm Sartorius Quartz microfibre filters until clogged. The filters were folded

in half and frozen at -20 ◦C for analysis in Australia. Filters were thawed and opposite one-eighth sub-samples were cut and

transferred into a silver POC cup (Elemental Analysis Ltd). Inorganic carbon was removed from each sample through addition30

of 20 µl of 2N HCl to each cup and drying at 60 ◦C for 36 hrs. When dry, each cup was folded shut, compressed into a pellet,

6



and stored in desiccant until analysed at the Central Science Laboratory, University of Tasmania, using a Thermo Finnigan EA

1112 Series Flash Elemental Analyser.

2.7 Chlorophyll a

Seawater was collected from each minicosm and a measured volume was filtered through 13 mm Whatman GF/F filters (maxi-

mum filtration time of 20 min). Filters were folded in half, blotted dry, and immediately frozen in liquid nitrogen for analysis in5

Australia. Chlorophyll a (Chl a)Pigments were extracted, analysed by HPLC, and quantified following the methods of Wright

et al. (2010). Chl a was extracted from filters with 300 µl dimethylformamide plus 50 µl methanol, containing 140 ng apo-

8’-carotenal (Fluka) internal standard, followed by bead beating and centrifugation to separate the extract from particulate

matter. Extracts (125 µl) were diluted to 80% with water and analysed on a Waters HPLC using a Waters Symmetry C8 column

and a Waters 996 photodiode array detector. Chl a was identified by its retention time and absorption spectra compared to a10

mixed standard sample from known cultures (Jeffrey and Wright, 1997), run daily before samples. Peak integrations were per-

formed using Waters Empower software, checked manually for corrections, and quantified using the internal standard method

(Mantoura and Repeta, 1997).

2.8 14C primary productivity

Primary productivity incubations were performed following the method of Westwood et al. (2010), based on the technique of15

Lewis and Smith (1983). This method incubated phytoplankton for 1 hr, minimising respiratory losses of photo-assimilated
14C so that the uptake nearly approximated gross primary productivity (e.g. Dring and Jewson, 1982; González et al., 2008;

Regaudie-de gioux et al., 2014). Samples were analysed for total organic carbon (TO14C) content, thereby including any
14C-labelled photosynthate leaked to the dissolved organic carbon (DO14C) pool (Regaudie-de gioux et al., 2014).

For all samples, 5.92 MBq (0.16 mCi) of 14C-sodium bicarbonate (NaH14CO3, PerkinElmer) was added to 162 ml of20

seawater from each minicosm, creating a working solution of 37 kBq ml−1. Aliquots of this working solution (7 ml) were then

added to glass scintillation vials and incubated for 1 hr at 21 light intensities, ranging from 0 - 1412 µmol photons m−2 s−1.

The temperature within each of the vials was maintained at -1.0 ± 0.3 ◦C through water cooling of the incubation chamber.

The reaction was terminated with the addition of 250 µl of 6N HCl and the vials were shaken for 3 hours at 200 rpm to

remove dissolved inorganic carbon. Duplicate time zero (T0) samples were set up in a similar manner to determine background25

radiation, with 250 µl of 6N HCl added immediately to quench the reaction without exposure to light. Duplicate 100% samples

were also performed to determine the activity of the working solution for each tank. For each 100% sample, 100 µl of working

solution was added to 7 ml 0.1M NaOH in filtered seawater to bind all 14C. For radioactive counts, 10 ml Ultima Gold LLT

scintillation cocktail (PerkinElmer) was added to each scintillation vial, shaken, and decays per minute (DPM) were counted

in a PerkinElmer Tri-Carb 2910TR Low Activity Liquid Scintillation Analyzer with a maximum counting time set at 3 min.30

DPM counts were converted into primary productivity following the equation of Steemann Nielsen (1952) (Table 1), using

measured DIC concentrations (varying between ∼2075 - 2400 µmol kg−1) and normalised to Chl a using minicosm Chl a con-

centration (see above). Photosynthesis versus irradiance (PE) curves were modelled for each treatment following the equation
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of Platt et al. (1980) using the Phytotools package in R (Silsbe and Malkin, 2015; R Core Team, 2016). Photosynthetic parame-

ter estimates included the light-saturated photosynthetic rate (Pmax), maximum photosynthetic efficiency (α), photoinhibition

rate (β), and saturating irradiance (Ek). Modelled Chl a-specific primary productivity (csGPP14C) was calculated following the

equation of Platt et al. (1980) using average minicosm light irradiance (Ī). Gross primary production rates (GPP14C) in each

tank were calculated from modelled csGPP14C and Chl a concentration (see above). Calculations and units for each parameter5

are presented in Table 1.

2.9 Gross community productivity

Community photosynthesis and respiration rates were measured using custom-made mini-chambers. The system consisted of

four, 5.1 ml glass vials with oxygen sensor spots (Pyroscience) attached on the inside of the vials using non-toxic silicon

glue. The vials were sealed, ensuring any oxygen bubbles were omitted and all vials were stirred continuously using small10

Teflon magnetic fleas to allow homogenous mixing of gases within the system during measurements. To improve the signal

to noise ratio, seawater from each minicosm was concentrated above a 0.8 µm, 47 mm diameter polycarbonate membrane

filter (Poretics) with gentle vacuum filtration and re-suspended in seawater from each minicosm CO2 treatment. Each chamber

was filled with the cell suspension and placed in a temperature controlled incubator (0.0 ± 0.5 ◦C). Light was supplied via

fluorescent bulbs above each chamber and light intensity calibrated using a 4π sensor. Oxygen optode spots were connected15

to a FireSting O2 logger and data acquired using FireSting software (PyroScience). The optode was calibrated according to

the manufacturer’s protocol immediately prior to measurements using a freshly prepared sodium thiosulfate solution (10%

w/w) and agitated filtered seawater (0.2 µm) at experimental temperature for 0% and 100% air saturation values, respectively.

Oxygen concentration was recorded until a linear change in rate was established for each pseudoreplicate (n = 4).

Measurements were first recorded in the light (188 µmol photons m−2 s−1) and subsequently in the dark, with the initial20

steeper portion of the slope used for a linear regression analysis to determine post-illumination (PI) respiration rate. Gross com-

munity productivity (GCPO2
) was then calculated from dark PI respiration (RespO2

) and net community production (NCPO2
)

rates and normalised to Chl a concentration (csGCPO2 , Table 1). Chl a content for each concentrated sample was determined

by extracting pigments in 90% chilled acetone and incubating in the dark at 4 ◦C for 24 hr. Chl a concentrations were deter-

mined using a spectrophotometer (Cary50:Varian) and calculated according to the equations of Jeffrey and Humphrey (1975),25

modified by Ritchie (2006).

2.10 Chlorophyll a fluorescence

Photosynthetic efficiency of the microalgal community was measured via Chl a fluorescence using a Pulse Amplitude Modu-

lated fluorometer (Water PAM, Walz). A 3 ml aliquot from each minicosm was transferred into a quartz cuvette with continuous

stirring to prevent cells from settling. To establish an appropriate dark adaptation period, several replicates were measured after30

5, 10, 15, 20 and 30 min of dark adaptation, with the latter having the highest maximum quantum yield of PSII (Fv/Fm).

Following dark adaptation, minimum fluorescence (F0) was recorded before application of a high intensity saturating pulse

of light (saturating pulse width = 0.8 s; saturating pulse intensity >3,000 µmol photons m−2 s−1), where maximum fluo-
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rescence (Fm) was determined. The maximum quantum yield of PSII was calculated from these two parameters (Schreiber,

2004). Following Fv/Fm, a five-step steady state light curve (SSLC) was conducted with each light level (130, 307, 600, 973,

1450 µmol photons m−2 s−1) applied for 5 min before recording the light-adapted minimum (Ft) and maximum fluorescence

(Fm′ ) values. Each light step was spaced by a 30 sec dark ’recovery’ period, before the next light level was applied. Three

pseudoreplicate measurements were conducted on each minicosm sample at 0.1 ◦C. Non-photochemical quenching (NPQ) of5

Chl a fluorescence was calculated from Fm and Fm′ measurements. Relative electron transport rates (rETR) were calculated

as the product of effective quantum yield (∆F/Fm′ ) and actinic irradiance (Ia). Calculations and units for each parameter are

presented in Table 1.

2.11 Community carbon concentrating mechanism activity

To investigate the effects of CO2 on carbon uptake, two inhibitors for carbonic anhydrase (CA) were applied to the 343 and10

1641 µatm treatments on day 15: ethoxzolamide (EZA, Sigma), which inhibits both intracellular carbonic anhydrase (iCA) and

extracellular carbonic anhydrase (eCA), and acetazolamide (AZA, Sigma), which blocks eCA only. Stock solutions of EZA (20

mM) and AZA (5 mM) were prepared in milliQ water, and the pH adjusted using NaOH to minimise pH changes when added to

the samples. Before fluorometric measurements were made, water samples from the 343 and 1641 µatm CO2 treatments were

filtered into ≥10 and <10 µm fractions and aliquots were inoculated either with 50 µl of milliQ water adjusted with NaOH15

(control) or 50 µM final concentration of chemical inhibitor (EZA and AZA). Fluorescence measurements of size fractionated

control- and inhibitor-exposed cells were performed using the Water-PAM. A 3 ml aliquot of sample was transferred into a

quartz cuvette, with stirring, and left in the dark for 30 min before maximum quantum yield of PSII (Fv/Fm) was determined

(as described above). Actinic light was then applied at 1450 µmol photons m−2 s−1 for 5 min before effective quantum yield

of PSII (∆F/Fm′ ) was recorded. Three pseudoreplicate measurements were conducted on each minicosm sample at 0.1 ◦C.20

2.12 Bacterial abundance

Bacterial abundance was determined daily using a Becton Dickinson FACScan or FACSCalibur flow cytometer fitted with a 488

nm laser following the protocol of Thomson et al. (2016). Samples were pre-filtered through a 50 µm mesh (Nitex), stored at

4 ◦C in the dark, and analysed within 6 hr of collection. Samples were stained for 20 min with 1:10,000 dilution SYBR-Green

I (Invitrogen) (Marie et al., 2005) and PeakFlow Green 2.5 µm beads (Invitrogen) were added to the sample as an internal25

fluorescence standard. Three pseudoreplicate samples were prepared from each minicosm seawater sample. Samples were run

for 3 min at a low flow rate (∼12 µl min−1) and bacterial abundance was determined from side scatter (SSC) versus green

(FL1) fluorescence bivariate scatter plots. The analysed volume was calibrated to the sample run time and each sample was run

for precisely 3 min, resulting in an analysed volume of 0.0491 and 0.02604 ml on the FACSCalibur and FACScan, respectively.

The volume analysed was then used to calculate final cell concentrations.30
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2.13 Bacterial productivity

Bacterial productivity measurements were performed following the Leucine incorporation by microcentrifuge method of Kirch-

man (2001). Briefly, 70 nM 14C-Leucine (PerkinElmer) was added to 1.7 ml seawater from each minicosm in 2 ml polyethylene

Eppendorf tubes and incubated for 2 hr in the dark at 4 ◦C. Three pseudoreplicate samples were prepared from each minicosm

seawater sample. The reaction was terminated by the addition of 90 µl 100% trichloroacteic acid (TCA, Sigma) to each tube.5

Duplicate background controls were also performed following the same method, with 100% TCA added immediately before

incubation. After incubation, samples were spun for 15 min at 12,500 rpm and the supernatant was removed. The cell pellet

was resuspended into 1.7 ml ice-cold 5% TCA and spun again for 15 min at 12,500 rpm and the supernatant removed. The cell

pellet was then resuspended into 1.7 ml ice-cold 80% ethanol, spun for a further 15 min at 12,500 rpm and the supernatant re-

moved. The cell pellet was allowed to dry completely before addition of 1 ml Ultima Gold scintillation cocktail (PerkinElmer).10

The Eppendorf tubes were placed into glass scintillation vials and DPMs were counted in a PerkinElmer Tri-Carb 2910TR

Low Activity Liquid Scintillation Analyzer with a maximum counting time of 3 min.

DPM counts were converted to 14C-Leucine incorporation rates following the equation in Kirchman (2001) and used to

calculate gross bacterial production (GBP14C), following Simon and Azam (1989). Bacterial production was divided by total

bacterial abundance to determine cell-specific bacterial productivity within each treatment (csBP14C). Calculations and units15

for each parameter are presented in Table 1.

2.14 Statistical analysis

The minicosm experimental design measured the microbial community growth in six unreplicated fCO2 treatments. Therefore,

sub-samples from each minicosm were within-treatment pseudoreplicates and thus, only provide a measure of the variability

of the within-treatment sampling and measurement procedures. We use pseudoreplicates as true replicates in order to provide20

an informal assessment of differences among treatments, noting that results must be treated as indicative and interpreted

conservatively.

A linear or curved (quadratic) regression model was fitted to each CO2 treatment over time using the Stats package in R (R

Core Team, 2016) and an omnibus test of differences between the trends in productivity among CO2 treatments over time was

assessed by ANOVA. This analysis ignored the repeated measures nature of the data set, which could not be modelled due to the25

low number of time points and an absence of replication at each time. For the CCM activity measurements, differences between

treatments were tested by one-way ANOVA, followed by a post-hoc Tukey’s test to determine which treatments differed. The

significance level for all tests was set at < 0.05.
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3 Results

3.1 Carbonate chemistry

The fCO2 of each treatment was modified in a step-wise fashion over 5 days to allow for acclimation of the microbial com-

munity to the changed conditions. Target treatment conditions were reached in all tanks by day 5, ranging from 343 to 1641

µatm, equating to an average pHT of 8.1 to 7.45 (Fig. 2, Table S1), respectively. The initial seawater was calculated to have an5

fCO2 of 356 µatm and a PA of 2317 µmol kg−1, from a measured pHT of 8.08 and DIC of 2187 µmol kg−1 (Fig. S1, Table

S2). One minicosm was maintained close to these conditions (343 µatm) throughout the experiment as a control treatment.

3.2 Light climate

The average light irradiance for all CO2 treatments is presented in Table S3. During the CO2 acclimation period (days 1-5) the

average light irradiance was 0.9 ± 0.2 µmol photons m−2 s−1 and was increased to 90.5 ± 21.5 µmol photons m−2 s−1 by10

day 8. The average vertical light attenuation (Kd) across all minicosm tanks was 0.92 ± 0.2. Increasing Chl a concentration

over time in all CO2 treatments increased Kd(total) from 0.96 ± 0.01 on day 1 to 3.53 ± 0.28 on day 18, resulting in a decline

in average light irradiance within the minicosms from 86.61 ± 20.5 to 35.97 ± 9.3 µmol photons m−2 s−1 between days 8-18.

3.3 Nutrients

Nutrient concentrations were similar across all treatments at the beginning of the experiment (Table S2) and did not change15

during the acclimation period (days 1-5). Ammonia concentrations were initially low (0.95 ± 0.18 µM) and fell rapidly to

concentrations below the limits of detection beyond day 12 in all treatments (Fig. S2). No differences in draw-down between

CO2 treatments were observed, and thus it was excluded from further analysis. NOx fell from 26.2 ± 0.74 µM on day 8

to concentrations below detection limits on day 18 (Fig. 3a), with the slowest draw-down in the 1641 µatm treatment. SRP

concentrations were initially 1.74 ± 0.02 µM and all CO2 treatments followed a similar draw-down sequence to NOx, reaching20

very low concentrations (0.13 µM) on day 18 in all treatments (Fig. 3b). In contrast, silica was replete in all treatments

throughout the experiment falling from 60.0 ± 0.91 µM to 43.6 ± 2.45 µM (Fig. 3c). Draw-down of silica was exponential

from day 8 onwards and followed a similar pattern to NOx and SRP, with the highest silica draw-down in the 634 µatm and

the least in the 1641 µatm treatment.

3.4 Particulate organic matter25

Particulate organic carbon (POC) and nitrogen (PON) concentrations were initially low, 4.7 ± 0.15 and 0.5 ± 0.98 µM respec-

tively, and increased after day 8 in all treatments (Fig. 4a-b). The accumulation of POC and PON was effectively the reciprocal

of the draw-down of nutrients (see above), being lowest in the high CO2 treatments (≥1140 µatm) and highest in the 343 and

643 µatm treatments. Rates of POC and PON accumulation were both affected by nutrient exhaustion, with declines in the

343 and 634 µatm treatments between days 16 to 18. POC and PON concentrations on day 18 were highest in the 953 µatm30
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treatment. The ratio of POC to PON (C:N) was similar for all treatments, declining from 8.0 ± 0.38 on day 8 to 5.7 ± 0.28

on day 16 (Fig. 4c). The slowest initial decline in C:N ratio occurred in the 1641 µatm treatment, displaying a prolonged lag

until day 10, after which it decreased to values similar to all other treatments. Nutrient exhaustion on day 18 coincided with an

increase in the C:N ratio in all treatments, with C:N ratios >10 in the 343, 634, and 953 µatm treatments and lower C:N ratios

(8.6-6.7) in the 506, 1140, and 1641 µatm treatments.5

3.5 Chlorophyll a

Chl a concentrations were low at the beginning of the experiment, 0.91 ± 0.16 µg l−1 and increased in all treatments after

day 8 (Fig. 5a). Chl a accumulation rates were similar amongst treatments ≤634 µatm until day 14, with slightly higher Chl

a concentration in the 506 and 634 µatm treatments on day 16 compared to the control treatment. By day 18, only the 503

µatm treatment remained higher than the control. Chl a accumulation rates in the 953 and 1140 µatm treatments were initially10

slow but increased after day 14, with Chl a concentrations similar to the control on days 16-18. The highest CO2 treatment

(1641 µatm) had the slowest rates of Chl a accumulation, displaying a lag in growth between days 8-12, after which Chl a

concentration increased but remained lower than the control. Rates of Chl a accumulation slowed between days 16 and 18 in

all treatments except 1641 µatm, coinciding with nutrient limitation. At day 18, the highest Chl a concentration was in the 506

µatm exposed treatment and lowest at 1641 µatm.15

The omnibus test among CO2 treatments of trends in Chl a over time indicated that the accumulation of Chl a in at least

one treatment differed significantly from that of the control (F5,23 = 5.45, p = 0.002; Table S4). Examination of individual

coefficients from the model revealed that only the highest CO2 treatment, 1641 µatm, was significantly different from the

control at the 5% level.

3.6 14C primary productivity20

During the CO2 and light acclimation phase of the experiment (days 1-8) all treatments displayed a steady decline in the

maximum photosynthetic rate (Pmax) and the maximum photosynthetic efficiency (α) to levels on day 8 approximately half of

those at the beginning of the experiment, suggesting cellular acclimation to the light conditions (Fig. S3a-b). Thereafter, relative

to the control, Pmax and α were lowest in CO2 levels ≥953 µatm and ≥634 µatm, respectively. Rates of photoinhibition (β)

and saturating irradiance (Ek) were variable and did not differ among treatments (Fig. S3c-d). The average Ek across all25

treatments was 28.7 ± 8.6 µmol photons m−2 s−1, indicating that the light intensity in the minicosms was saturating for

photosynthesis (see above) and not inhibiting (β < 0.002 mg C (mg Chl a)−1 (µmol photons m−2 s−1)−1 h−1).

Chl a-specific primary productivity (csGPP14C) and gross primary production (GPP14C) was low during the CO2 acclimation

(days 1-5) and increased with increasing light climate after day 5. Rates of csGPP14C in treatments ≥634 µatm CO2 were

consistently lower than the control between days 8-16, with the lowest rates in the highest CO2 treatment (1641 µatm) (Fig.30

6a). Rates of GPP14C in treatments ≤953 were similar between days 8-16, with the 343 (control), 506, and 953 µatm treatments

increasing to 46.7 ± 0.34 µg C l−1 h−1 by day 18 (Fig. 5b). Compared to these treatments, GPP14C in the 634 µatm treatment
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was lower on day 18, only reaching 39.7 µg C l−1 h−1, possibly due to the concurrent limitation of NOx in this treatment on

day 16 (see above).

The omnibus test among tanks of the trends in CO2 treatments over time indicated that GPP14C in at least one treatment

differed significantly from the control (F5,23 = 4.95, p = 0.003; Table S5). Examination of the significance of individual curve

terms revealed this manifested as differences between the 1140 and 1641 µatm treatments and the control group at the 5% level.5

No other curves were different from the control. In particular, GPP14C in the 1641 µatm treatment was much lower until day

12, after which it increased steadily until day 16. Between days 16-18, a substantial increase in GPP14C was observed in this

treatment, subsequently resulting in a rate on day 18 that was similar to the 1140 µatm treatment (36.3 ± 0.08 µg C l−1 h−1).

Although, these treatments never reached rates of GPP14C as high as the control.

3.7 Gross community productivity10

Productivity of the phytoplankton community increased over time in all CO2 treatments, however there were clear differ-

ences in the timing and magnitude of this increase between treatments (Fig. 6b). A CO2 effect was evident on day 12,

where Chl a-normalised gross O2 productivity rates (csGCPO2
) increased with increasing CO2 level, ranging from 19.5 -

248 mg O2 (mg Chl a)−1 h−1. After day 12, the communities in CO2 treatments ≤634 µatm continued to increase their rates

of csGCPO2 until day 18 (97.7 ± 17.0 mg O2 (mg Chl a)−1 h−1). The 953 and 1140 µatm CO2 treatments peaked on day 1215

(90.4 and 126 mg O2 (mg Chl a)−1 h−1, respectively) and then declined on day 14 to rates similar to the control treatment. In

contrast, the 1641 µatm treatment maintained high rates of csGCPO2
from days 12-14 (258 ± 13.8 mg O2 (mg Chl a)−1 h−1),

coinciding with the recovery of photosynthetic health (Fv/Fm, see below) and the initiation of growth in this treatment (see

above). After this time, rates of csGCPO2
declined in this treatment to rates similar to the control. Despite these differences in

csGCPO2
, there was no significant difference between GCPO2

among CO2 treatments (Fig. 5c).20

3.8 Community photosynthetic efficiency

Community maximum quantum yield of PSII (Fv/Fm) showed a dynamic response over the duration of the experiment (Fig.

7). Values initially increased during the low light CO2 adjustment period, but declined by day 8 when irradiance levels had

increased. Between days 8-14, differences were evident in the photosynthetic health of the phytoplankton community across the

CO2 treatments, although by day 16 these differences had disappeared. Steady state light curves revealed that the community25

photosynthetic response did not change with increasing CO2. Effective quantum yield of PSII (∆F/Fm′ ) and NPQ showed

no variability with CO2 treatment (Fig. S5, S6). There was however, a notable decline in overall NPQ in all tanks with time,

indicating an adjustment to the higher light conditions. Relative electron transport rates (rETR) showed differentiation with

respect to CO2 at high light (1450 µmol photons m−2 s−1) on days 10-12. However, as seen with the Fv/Fm response, this

difference was diminished by day 18 (Fig. S7).30
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3.9 Community CCM activity

There was a significant decline in the effective quantum yield of PSII (∆F/Fm′ ) with the addition of the iCA and eCA inhibitor

EZA to both the large (≥10 µm, p = 0.02) and small (<10 µm, p < 0.001) size fractions of the phytoplankton community

exposed to the control (343 µatm) CO2 treatment (Fig. 8a). The addition of EZA to cells under high CO2 (1641 µatm) had

no effect on ∆F/Fm′ for either size fraction. However, in the case of the small cells under high CO2 (Fig. 8b), ∆F/Fm′ was5

the same as that measured in the control CO2 in the presence of EZA. The addition of AZA, which inhibits eCA only, had no

effect for either CO2 treatments in the large celled community. In contrast, there was a significant decline in ∆F/Fm′ in the

smaller fraction in the control CO2 treatment (p < 0.001), but no effect of AZA addition under high CO2. Again, the high CO2

cells exhibited the same ∆F/Fm′ as those measured under the control CO2 in the presence of AZA.

3.10 Bacterial abundance10

During the 8 day acclimation period, bacterial abundance in treatments ≥634 µatm increased with increasing CO2, reach-

ing 26.0-32.4 x 107 cells l−1, and remaining high until day 13 (Fig. 9a). Between days 7-13, bacterial abundances in CO2

treatments ≥953 were higher than the control. In contrast, abundance remained constant in treatments ≤506 µatm (20.6 ±
1.4 x 107 cells l−1) until day 11. Cell numbers rapidly declined in all treatments after day 12, finally stabilising at 0.5 ± 0.2

x 107 cells l−1. An omnibus test among CO2 treatments of the trends in bacterial abundance over time showed that changes in15

abundance in at least one treatment differed significantly from the control (F5,185 = 9.78, p < 0.001; Table S6). Examination of

individual coefficients from the model revealed that CO2 treatments ≥953 µatm were significantly different from the control

at the 5% level.

3.11 Bacterial productivity

Gross bacterial production (GBP14C) was low in all CO2 treatments (0.2 ± 0.03 µg C l−1 h−1) and changed little during20

the first 5 days of incubation (Fig. 9b). Thereafter it increased, coinciding with exponential growth in the phytoplankton

community. The most rapid increase in GBP14C was observed in the 634 µatm treatment, resulting in a rate twice that of all

other treatments by day 18 (2.1 µg C l−1 h−1). No difference was observed among other treatments, all of which increased to

an average rate of 1.1 ± 0.1 µg C l−1 h−1 by day 18. Cell-specific bacterial productivity (csBP14C) was low in all treatments

(1.2 ± 0.5 fg C l−1 h−1) until day 14, with slower rates in treatments ≥953 µatm, likely due to high cell abundances observed25

in these treatments (Fig. S8). It then increased from day 14, coinciding with a decline in bacterial abundance. Rates of csBP14C

did not differ among treatments until day 18, when the rate in the 634 µatm treatment was higher than all other treatments (0.5

pg C cell−1 l−1 h−1).
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4 Discussion

Our study of a natural Antarctic phytoplankton community identified a critical threshold for tolerance of CO2 between 953 and

1140 µatm, above which photosynthetic health was negatively affected and rates of carbon fixation and Chl a accumulation

declined. Low rates of primary productivity also led to declines in nutrient uptake rates and POM production, although there

was no effect of CO2 on C:N ratios, indicating that ocean acidification effects on the phytoplankton community did not modify5

POM stoichiometry. Assessing the temporal trends of Chl a, GPP14C, and PON against CO2 treatment revealed that the down-

turn in these parameters occurred between 634 and 953 µatm fCO2 and could be discerned following ≥12 days incubation

(Fig. 10). On the final day of the experiment (day 18), this CO2 threshold was less clear and likely confounded by the effects of

nutrient limitation (Westwood et al., submitted). In contrast, bacterial productivity was unaffected by increased CO2. Instead,

their production coincided with increased organic matter supply from phytoplankton primary productivity. In the following10

sections these effects will be investigated further, with suggestions for possible mechanisms that may be driving the responses

observed.

4.1 Ocean acidification effects on phytoplankton productivity

The results of this study suggest that exposing phytoplankton to high CO2 levels can decouple the two stages of photosynthesis

(but also see discussion below). At CO2 levels ≥1140 µatm, Chl a-specific oxygen production (csGCPO2
) increased strongly15

yet displayed the lowest rates of Chl a-specific carbon fixation (csGPP14C, Fig. 6). This mismatch in oxygen production

and carbon fixation is likely due to the two-stage process in the photosynthetic fixation of carbon (reviewed in Behrenfeld

et al., 2004). In the first stage, light-dependent reactions occur within the chloroplast, converting light energy (photons) into the

cellular energy products, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH), producing

O2 as a by-product. This cellular energy is then utilised in a second, light-independent pathway, which uses the carbon-20

fixing enzyme RuBisCo to convert CO2 into sugars through the Calvin Cycle. However, under certain circumstances the

relative pool of energy may also be consumed in alternative pathways, such as respiration and photoprotection (Behrenfeld

et al., 2004; Gao and Campbell, 2014). Increases in energy requirements for these alternate pathways have been demonstrated,

where measurements of maximum photosynthetic rates (Pmax) and photosynthetic efficiency (α) display changes that result

in no change to saturating irradiance levels (Ek) (Behrenfeld et al., 2004, 2008; Halsey et al., 2010). This "Ek-independent25

variability" was evident in our study, where decreases in Pmax and α were observed in the high CO2 treatments, while Ek

remained unaffected (Fig. S3).

This highlights an important tipping point in the phytoplankton community’s ability to cope with the energetic requirements

for maintaining efficient productivity under high CO2. While studies on individual phytoplankton species have reported decou-

pling of the photosynthetic pathway under conditions of stress, to date, no studies on natural phytoplankton communities have30

reported this response. Under laboratory conditions, stresses such as nutrient limitation (Halsey et al., 2010) or a combination

of high CO2 and light climate (Hoppe et al., 2015; Liu et al., 2017) have been shown to induce such a response, where isolated

phytoplankton species possess higher energy requirements for carbon fixation. In our study, the phytoplankton community
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experienced a dynamic light climate due to continuous gentle mixing of the minicosm contents, and although nutrients weren’t

limiting, the phytoplankton in the higher CO2 treatments did show lower csGPP14C rates (Fig. 6a), which could be linked to

higher energy demand for light-independent processes. Since nutrients were replete and not a likely source of stress, it follows

that CO2 and light were likely the only sources of stress on this community.

Increased respiration rates could account for the decreased carbon fixation rates measured. Thus far, respiration rates are5

commonly reported as either unaffected or lower under increasing CO2 (Hennon et al., 2014; Trimborn et al., 2014; Spilling

et al., 2016). This effect is generally attributed to declines in cellular energy requirements, via processes such as down-

regulation of CCMs, which can result in observed increases to rates of production (Spilling et al., 2016). Despite this, decreased

growth rates have been linked to enhanced respiratory carbon loss at high CO2 levels (800-1000 µatm) (Gao et al., 2012b). The

contribution of community respiration rates to csGCPO2 was high and increased with increasing CO2 (Fig. S4). However, res-10

piration rates were generally proportional to the increase in O2 production (i.e, the ratio of production to respiration remained

constant across CO2 conditions), making it unlikely to be a significant contributor to the decline in carbon fixation. Instead,

high respiration rates were possibly a result of heterotrophic activity.

It has been suggested that the negative effects of ocean acidification are predominantly due to the decline in pH and not

the increase in CO2 concentration (e.g. McMinn et al., 2014; Coad et al., 2016). A decline in pH with ocean acidification15

increases the hydrogen ion (H+) concentration in the seawater and is likely to make it increasingly difficult for phytoplankton

cells to maintain cellular homeostasis. Metabolic processes, such as photosynthesis and respiration, impact on cellular H+

fluxes between compartments, making it necessary to temporarily balance internal H+ concentrations through H+ channels

Taylor2012. Under normal oceanic conditions (pH ∼8.1), when the extracellular environment is above pH 7.8, excess H+

ions generated within the cell are able to passively diffuse out of the cell through these H+ channels. However, a lowering20

of the oceanic pH below 7.8 is likely to halt this passive removal of internal H+, requiring the utilisation of energy-intensive

proton pumps (Taylor et al., 2012), and thus potentially reducing the energy pool available for carbon fixation. While not well

understood, these H+ channels may also perform important cellular functions, such as nutrient uptake, cellular signalling,

and defense (Taylor et al., 2012). Our results are consistent with this idea of a critical pH threshold, as significant declines in

GPP14C were observed in treatments ≥1140 µatm (Fig. 10), the CO2 treatments where the pH ranged from 7.69-7.45 (Fig. 2).25

Despite the initial stress of high CO2 between days 8-12, the phytoplankton community displayed a strong ability to adapt to

these conditions. The CO2-induced reduction in Fv/Fm showed a steady recovery between days 12 and 16, with all treatments

displaying similar high Fv/Fm at day 16 (0.68-0.71). This recovery in photosynthetic health suggests that the phytoplankton

community was able to acclimate to the high CO2 conditions, possibly through cellular acclimation, changes in community

structure, or most likely, a combination of both. Cellular acclimations were observed in our study. A lowering of NPQ and30

a minimisation of the CO2-related response to photoinhibition (rETR) at high light intensity suggested that PSII was being

down-regulated to adjust to a higher light climate (Fig. S6, S7). Decreased energy requirements for carbon fixation were also

observed in the photosynthetic pathway, resulting in increases to GPP14C and Chl a accumulation rates (Fig. 5). Acclimation

to increased CO2 has been reported in a number of studies, resulting in shifts in carbon and energy utilisation (Sobrino et al.,

2008; Hopkinson et al., 2010; Hennon et al., 2014; Trimborn et al., 2014; Zheng et al., 2015). Numerous photophysiological35
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investigations on individual phytoplankton species also report species-specific tolerances to increased CO2 (Gao et al., 2012a;

Gao and Campbell, 2014; Trimborn et al., 2013, 2014) and a general trend toward smaller-celled communities with increased

CO2 has been reported in ocean acidification studies globally (Schulz et al., 2017). Changes in community structure were

observed with increasing CO2, with taxon-specific thresholds of CO2 tolerance (Hancock et al., submitted). Within the diatom

community, the response was also related to size, leading to an increase in abundance of small (<20 µm) diatoms in the higher5

CO2 treatments (≥953 µatm). Therefore, the community acclimation observed is likely driven by an increase in growth of

more tolerant species.

It is often suggested that the down-regulation of CCMs help to moderate the sensitivity of phytoplankton communities to

increasing CO2. The carbon-fixing enzyme RubisCO has a low affinity for CO2 that is compensated for through CCMs that

actively increase the intracellular CO2 (Raven, 1991; Badger, 1994; Badger et al., 1998; Hopkinson et al., 2011). This process10

requires additional cellular energy (Raven, 1991) and numerous studies have suggested that the energy savings from down-

regulation of CCMs in phytoplankton could explain increases in rates of primary productivity at elevated CO2 levels (Tortell

et al., 2000; Tortell and Morel, 2002; Cassar et al., 2004; Tortell et al., 2008b, 2010; Trimborn et al., 2013; Young et al.,

2015). In Antarctic phytoplankton communities, Young et al. (2015) showed that the energetic costs of CCMs are low and

any down-regulation at increased CO2 would provide little benefit. We found that the CCM component carbonic anhydrase15

(CA) was utilised by the phytoplankton community at our control CO2 level (343 µatm), and was down-regulated at high CO2

(1641 µatm, Fig. 8). Yet we saw no promotion of primary productivity that coincided with this down-regulation. Thus, our

data support the previous studies showing that increased CO2 may alleviate energy supply constraints but does not necessarily

lead to increased rates of carbon fixation (Rost et al., 2003; Cassar et al., 2004; Riebesell, 2004).

Furthermore, size-specific differences in phytoplankton CCM utilisation were observed. The absence of eCA activity in20

the large phytoplankton (≥10 µm, Fig. 8a) suggests that bicarbonate (HCO−
3 ) was the dominant carbon source used by this

fraction of the phytoplankton community (Burkhardt et al., 2001; Tortell et al., 2008a). This is not surprising as direct HCO−
3

uptake has been commonly reported among Antarctic phytoplankton communities (Cassar et al., 2004; Tortell et al., 2008a,

2010). On the other hand, the small phytoplankton (<10 µm, Fig. 8b) seem to have used both iCA and eCA, implying carbon

for photosynthesis was sourced through both extracellular conversion of HCO−
3 to CO2 and direct HCO−

3 uptake (Rost et al.,25

2003). Despite these patterns, CCM activity in this study was only determined via Chl a fluorescence, and therefore direct

measurement of light-dependent reactions in photosynthesis. This imposes limitations to the interpretability of this particular

data set, as CA is involved primarily in carbon acquisition, which occurs during photosynthetic reactions that are independent

of light.

The presence of iCA has also been proposed as a possible mechanism for increased sensitivity of phytoplankton to decreased30

pH conditions. Satoh et al. (2001) found that the presence of iCA caused strong intracellular acidification and inhibition of

carbon fixation when a CO2-tolerant iCA-expressing algal species was transferred from ambient conditions to very high CO2

(40%). Down-regulation of iCA through acclimation in a 5% CO2 treatment eliminated this response, with similar tolerance

observed in an algal species with low ambient iCA activity. Thus, the down-regulation of iCA activity at high CO2, as was seen
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in our study, may not only decrease cellular energy demands but may also be operating as a cellular protection mechanism,

allowing the cell to maintain intracellular homeostasis.

Contrary to the high CO2 treatments, the phytoplankton community appeared to tolerate CO2 levels up to 953 µatm, iden-

tifying a CO2 threshold. Between days 8-14 we observed a small and insignificant CO2-related decline in Fv/Fm, GPP14C,

and Chl a accumulation between the 343-953 µatm treatments (Fig. 7, 10). Tolerance of CO2 levels up to ∼1000 µatm has5

often been observed in natural phytoplankton communities in regions exposed to fluctuating CO2 levels. In these communities,

increasing CO2 often had no effect on primary productivity (Tortell et al., 2000; Tortell and Morel, 2002; Tortell et al., 2008b;

Hopkinson et al., 2010; Tanaka et al., 2013; Sommer et al., 2015; Young et al., 2015; Spilling et al., 2016) or growth (Tortell

et al., 2008b; Schulz et al., 2013), although an increase in primary production has been observed in some instances (Riebesell,

2004; Tortell et al., 2008b; Egge et al., 2009; Tortell et al., 2010; Hoppe et al., 2013; Holding et al., 2015). These differing10

responses may be due to differences in community composition, nutrient supply, or ecological adaptations of the phytoplankton

community in the region studied. They may also be due to differences in the experimental methods, especially the range of CO2

concentrations employed (Hancock et al., submitted); the mechanism used to manipulate CO2 concentrations; the duration of

the acclimation and incubation; the nature and volume of the mesocosms used; and the extent to which higher trophic levels

are screened from the mesocosm contents (see Davidson et al., 2016).15

Previous studies in Prydz Bay report a tolerance of the phytoplankton community to CO2 levels up to 750 µatm (Davidson

et al., 2016; Thomson et al., 2016; Westwood et al., submitted). Although these experiments differed in nutrient concentration,

community composition, and CO2 manipulation from ours, when taken together, these studies demonstrate consistent CO2

effects throughout the Antarctic summer season and across years in this location. The most likely reason for this high tolerance

is that these communities are already exposed to highly variable CO2 conditions. CO2 naturally builds beneath the sea ice in20

winter, when primary productivity is low (Perrin et al., 1987; Legendre et al., 1992), and is rapidly depleted during spring and

summer by phytoplankton blooms, resulting in annual fCO2 fluctuations between ∼50-500 µatm (Gibson and Trull, 1999;

Roden et al., 2013). Thus, variable CO2 environments appear to promote adaptations within the phytoplankton community to

manage the stress imposed by fluctuating CO2.

Changes in POM production and C:N ratio in phytoplankton communities can have significant effects on carbon sequestra-25

tion and change their nutritional value for higher trophic levels (Finkel et al., 2010; van de Waal et al., 2010; Polimene et al.,

2016). We observed a decline in particulate organic matter production (POM) at CO2 levels ≥1140 µatm (Fig. 10), while

changes in organic matter stoichiometry (C:N ratio) appeared to be predominantly controlled by nutrient consumption (Fig.

4). Increases in POM production were similar to Chl a accumulation, with declines in high CO2 treatments (≥1140µatm) due

to low rates of primary productivity. Carbon overconsumption has been reported in some natural phytoplankton communities30

exposed to increased CO2, resulting in observed or inferred increases in the particulate C:N ratio (Riebesell et al., 2007; Engel

et al., 2014). While in our study the C:N ratio did decline to below the Redfield Ratio during exponential growth, it remained

within previously reported C:N ratios of coastal phytoplankton communities in this region (Gibson and Trull, 1999; Pasquer

et al., 2010). However, as we did not analyse the elemental composition of dissolved inorganic matter, carbon overconsumption

cannot be completely ruled out (Kähler and Koeve, 2001). Therefore, it is difficult to say whether or not changes in primary pro-35
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ductivity will affect organic matter stoichiometry in this region, particularly as any resultant long-term changes in community

composition to more CO2-tolerant taxa may also have an effect (Finkel et al., 2010).

4.2 Ocean acidification effects on bacterial productivity

In contrast to the phytoplankton community, bacteria were tolerant of high CO2 levels. The low bacterial productivity and

abundance of the initial community is characteristic of the post-winter bacterial community in Prydz Bay where their growth is5

limited by organic nutrient availability (Pearce et al., 2007). Whilst an increase in cell abundance was observed at CO2 levels

≥634 µatm (Fig. 9a), it was possible that this response was driven by a decline in grazing by heterotrophs (Thomson et al.,

2016; Westwood et al., submitted) instead of a direct CO2-related promotion in bacterial growth. The subsequent decline in

abundance was likely due to top-down control from the heterotrophic nanoflagellate community, which displayed an increase in

abundance at this time (Hancock et al., submitted). Bacterial tolerance to high CO2 has been reported previously in this region10

(Thomson et al., 2016; Westwood et al., submitted) and has also been reported in numerous studies in the Arctic (Grossart et al.,

2006; Allgaier et al., 2008; Paulino et al., 2008; Baragi et al., 2015; Wang et al., 2016), suggesting that the marine bacterial

community will be resilient to increasing CO2.

While we detected an increase in bacterial productivity, this response appeared to be correlated with an increase in Chl a

concentration and available POM, rather than CO2. Bacterial productivity was similar among all CO2 treatments, except for15

a final promotion of productivity at 634 µatm on day 18 (Fig. 9b). This promotion of growth may be linked to an increase in

diatom abundance observed in this treatment (Hancock et al., submitted). The coupling of bacterial growth with phytoplankton

productivity has been reported by numerous studies on natural marine microbial communities (Allgaier et al., 2008; Grossart

et al., 2006; Engel et al., 2013; Piontek et al., 2013; Sperling et al., 2013; Bergen et al., 2016). Thus, it is likely that the bacterial

community was controlled more by grazing and nutrient availability than by CO2 level.20

5 Conclusions

These results support the identification of a tipping point in the marine microbial community response to CO2 between 953

and 1140 µatm. When exposed to CO2 ≥634 µatm, declines in growth rates, primary productivity, and organic matter pro-

duction were observed in the phytoplankton community and became significantly different when ≥1140 µatm. Despite this,

the community displayed the ability to adapt to these high CO2 conditions, down-regulating CCMs and likely adjusting other25

intracellular mechanisms to cope with the added stress of low pH. However, the lag in growth and subsequent acclimation to

high CO2 conditions allowed for more tolerant species to thrive (Hancock et al., submitted).

Conditions in Antarctic coastal regions fluctuate throughout the seasons and the marine microbial community is already

tolerant to changes in CO2 level, light availability, and nutrients (Gibson and Trull, 1999; Roden et al., 2013). It is possible that

phytoplankton communities already exposed to highly variable conditions will be more capable of adapting to the projected30

changes in CO2 (Schaum and Collins, 2014; Boyd et al., 2016). Although, this will likely also include adaptation at the

community level, causing a shift in dominance to more tolerant species. This has been observed in numerous ocean acidification
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experiments, with a trend in community composition favouring picophytoplankton and away from large diatoms (Davidson

et al., 2016; Reviewed in Schulz et al., 2017). Such a change in phytoplankton community composition may have flow on

effects to higher trophic levels that feed on Antarctic phytoplankton blooms. It could also have a significant effect on the

biological pump, with decreased carbon draw-down at high CO2, causing a negative feedback on anthropogenic CO2 uptake.

Coincident increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop,5

resulting in increased organic matter remineralisation and further declines in carbon sequestration.
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Figure 1. Minicosm tanks filled with seawater in temperature controlled shipping container.
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Figure 2. (a) fCO2 and (b) pHT conditions within each of the minicosm treatments over time. Grey shading indicates CO2 and light

acclimation period.
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Figure 3. Nutrient draw-down within each of the minicosm treatments over time. (a) Nitrate + nitrite (NOx), (b) soluble reactive phosphorus

(SRP), and (c) molybdate reactive silica (Silica). Grey shading indicates CO2 and light acclimation period.
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Figure 5. Phytoplankton biomass accumulation and community primary production in each of the minicosm treatments over time. (a)

Chlorophyll a (Chl a) concentration, (b) 14C-derived gross primary production (GPP14C), and (c) O2-derived gross community productivity

(GCPO2 ). Error bars display one standard deviation of pseudoreplicate samples. Grey shading indicates CO2 and light acclimation period.
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