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I would like to thank you the authors for the meticulous review and response to the comments on 
the first manuscript version. In this new version authors have addressed most of the issues raised 
during the interactive revision process including additional information that helps to understand 
methods and results, as is the case for the temporal analysis of the canopy N field measurements and 
the improved statistical processes. However I still see some weak points in the paper: 
 
Thank you for your kind words 
 
1. In my opinion authors have not jet provided a proper justification on the usefulness of the 
statistical analysis using resampled MTCI images to lower spatial resolution. In fact, there is a kind 
of contradiction in the manuscript between this analysis and the information provided by the 
authors in the introduction and discussion about the future potential of canopy N estimation form 
RS using new generation of sensor with improved spatial resolution. I would find the analysis useful 
if the authors wanted to demonstrate that sensors with lower spatial resolution can be potentially 
used to obtain global estimations of canopy N, but, as this is not the case, I would find more 
convenient to undertake an analysis that allows to demonstrate the sensitivity of the statistical 
relationships found to the field data (sample size and distribution). This is an important issue raised 
by the authors in the discussion (section4-5). Ground canopy N observations are necessary to 
calibrate and validate models at regional-global scales. In this context, an interesting (and I would 
say feasible) output of this work could be a sensitivity analysis on the model performance according 
to field data availability. 
 
All analyses in the manuscript use MTCI data at the original 1 km resolution. In Sections 2.3.3 and 
3.2, however, we included an additional analysis using resampled MTCI data. We would like to 
explain here why we did this additional analysis where both data sets (MTCI and forest plots) were 
resampled to the same lower spatial resolutions. The objective of our study is not to prove the 
usefulness of the resampled MTCI images, but rather to investigate the relationship between the 
MTCI product (1 km) and canopy N from forest plots at regional scale. We realize that our analysis 
is based on data at different spatial scale. We therefore resampled (in the additional analysis 
mentioned above) the datasets to the same support size to be able to study the relationship between 
MTCI and canopy N independently of the initial difference in support size. When the relationship 
between our resampled datasets is analyzed, the results show that the correlation between our 
datasets is still present. Given the similarity in the relationship between canopy N values and MTCI 
values at the original and lower spatial resolutions, the confidence in the relationship is increased. 
 
This was not clearly explained in the manuscript. In the revised manuscript, a paragraph was added 
in the Material and Methods part, section 2.3.2 (Line 242 – 250):  
 
This was done because of the initial difference in support size between MTCI spatial resolution and the forest plots size (i.e. 1 

km and 6 m, respectively). This enabled us to investigate the relationships between MTCI and canopy N data when the spatial 

discrepancy was accounted for.independently of differences in initial support size.  The statistical basis of this approach is that 

we bring both datasets (forest plots and MTCI values) to the same support size or representative area (Bierkens, 2000). By 
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averaging out forest plot values within this support size, we calculate the mean of the canopy N value at that support size. By 

resampling the MTCI values to that same support size, the obtained result consist of a mean of the MTCI value at that support 

size. We then regressed the expected canopy N values (at the new support size) against the expected MTCI values (at the new 

support size). 

 
We do not see a contradiction between resampling both our datasets to the same support size and 
our statement that the advent of sensors with high spatial resolution is expected to improve the 
observed relationship. Given that the sample size of the forest plots (6 m) will unlikely be larger in 
the future, using higher spatial resolution data is the only way to decrease the initial scale 
discrepancy between the forests plots size and the original pixel size.  
 
We think that a sensitivity analysis of the global vegetation model performance according to field 
data density and distribution is important to assess the validity of the model output, however, it is 
outside of the scope of our study and study objectives, mainly because we do not have the enormous 
amount of plot data that would be required to do a proper sensitivity analysis. To still take your 
comment into account, we have now mentioned this aspect regarding model validation in the 
revised version of the manuscript in the future perspective section 4.5 (Line 459 – 461):   
 
Obtaining reliable ground based canopy N data over larger areas and for diverse and globally distributed vegetation types 

would also be necessary to calibrate and validate global vegetation models, as the model performance will depend on the 

ground data availability and distribution. 

 
2. I still miss in the discussion a more “quantitative” consideration on the potential of the results 
obtained to feed global vegetation models. Authors argue in their response that their study 
contributes to the ongoing discussion on canopy N estimations on larger areas using RS but this is, 
in my opinion, a quite diffuse argument. I would expect a more detailed discussion on how much the 
estimations should be improved to provide useful input to those models (what is the uncertainty in 
canopy N that can be considered acceptable for the models? And specifically for Mediterranean 
environments?) 
 
We have included a consideration about how foliar nitrogen prediction in the model LPJ-Guess could 
benefit from canopy N estimates from remote sensing in section 4.5 (Line 461 – 465): 
Remotely sensed canopy N estimates would support calibration of such models. In a recent study the global vegetation model 

LPJ-Guess was able to simulate the differences in foliar nitrogen between different PFTs but not within one PFT (Fleischer et 

al., 2015). In this context, improving remotely sensed canopy N estimates for homogeneous vegetation types would be a 

beneficial development for such models. 

 
3. In the discussion authors compare their results (in terms of r2) with other works were similar 
relationships have been found between canopy N and vegetation indices but they do not mention 
that other studies do not include the temporal dimension. Temporal variability of vegetation due to 
phenology should not be ignored when estimates are based in secondary relationships as is the case 
with N vs vegetation indices and, therefore, studies that including or not this temporal dimension 
are not fully comparable. 



4 

 

 
We agree that phenology is important and should not be ignored. To address the temporal 
dimension, we 1) analyzed the influence of the temporal discrepancy between the plot sampling 
campaign and the period of MTCI acquisition data in the inter-annual variation of canopy N (Fig. A1). 
The graph shows that this inter-annual variation is not strong. 2) Forest plots are linked to a 10 year 
average of MTCI values measured during the same month, i.e. plots measured in July are linked to a 
10 years average of MTCI values measured at the same location in July. In this case, the influence of 
phenology is thus present in both the plot data and the remote sensing data. We think that the main 
influence of using data from a forest inventory that was carried out during the whole growing season 
over several years is that the range of canopy N values included is larger.  
Regarding the studies we reference and compare our results to, the canopy at the forest sites are 
indeed sampled once or during a short period (Cho et al., 2013;Ramoelo et al., 2012;Wang et al., 
2016), the studies carried out in crops (Tian et al., 2011;Li et al., 2014) were sampled during the 
whole growing season over several years.   
 
A mention was added to the manuscript, section 4.2.1 (Line 358- 360):  
In these comparisons, it should be taken into account that most previous studies were based on a short sampling campaign 

while our study incorporates canopy N data from a forest inventory that was carried out during the entire growing season and 

therefore includes differences in phenology. 

 
I have also some comments addressing technical/formal issues referred to 
manuscript version 3: 
 
Abstract line 12. Remote sensing and vegetation indices are not excluding terms, I would 
recommend rephrasing. 
This was replaced by: “Remotely sensed vegetation indices” 
 
Abstract line 19. I would say “original” instead of “initial higher” 
This was replaced at the mentioned occurrence and later in text 
 
Section 2.2.1 Authors mention that “all foliar cohorts in the canopy were included in the leaf sample” 
but, was the % of new-old leaves in the crown taken into account during the sampling or the data 
processing? The N content can greatly differ depending on the leaf age so, in certain phonological 
periods this need to be considered to obtain an accurate estimation of canopy N. 
 
The % of new-old leaves in the crown was not taken into account. During the sampling campaign, all 
the foliar cohorts were pooled together in the same sample and this percentage was not recorded. 
As all the foliar cohorts present on the selected sampled branches are included, we expect that the 
measurements still represent the plot canopy N value with acceptable accuracy.  
 
Section 2.2.2. I think authors should mention here Sentinel-3 OLCI sensor as the most direct 
inheritor of MERIS ENVISAT. 
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This was edited in the text, section 2.2.2. (Line 200 – 205):  
While the ESA ENVISAT satellite mission producing MERIS data came to an end in 2012, MERIS 
products and MTCI in particular are still relevant because the new ESA Sentinel-2 and Sentinel-3 
satellite missions haves improved band settings compared to those of MERIS. and increased the spatial 
resolution to 20 m MTCI can be calculated from Sentinel-2 reflectance data with increased spatial 
resolution to 20 m  (Drusch et al., 2012). The Sentinel-3 mission also releases a level 2 chlorophyll 
product, the OLCI Terrestrial Chlorophyll Index (OTCI), which calculation is directly based on MTCI. 
OTCI continues the time series already available for MTCI (Dash and Vuolo, 2010;Vuolo et al., 2012).  
Section 2.3.1 line 207. It is not clear why you need to resample the landcover map to the MTCI images 
resolution. If I properly understand you just want to identify and mask the field plots that changed 
from forest to other non forest covers. If so, you would just mask those field plots located in a 
landcover map pixel classified as those covers excluded from the analysis. 
 
We decided to resample the Globcover landcover map (with an original resolution of 300 m) to MTCI 
original spatial resolution of 1 km before using it as a selection criterion for our forest plots to be on 
the safe side regarding plot selection and leave out plots located on heterogeneous MTCI pixels. For 
example, if one plot was located in the only 300 m natural vegetation area of the 1 km MTCI pixel, 
e.g. a small forest patch surrounded by agricultural crops, the MTCI pixel value would also be 
influenced by the non-forested area surrounding the plot. Resampling the Globcover landcover map 
was carried out using the majority option. That way, by using the resampled landcover map (1 km) 
as the selection criterion, we make sure that the plot located in the isolated vegetation patch is 
excluded. Also, the number of plots selected for both the analysis with and without resampling of 
MTCI pixels, i.e. the analysis at the original spatial resolution of 1 km and the analysis at the 
resampled spatial resolution, is equal. The difference in the results cannot be attributed to the 
difference in the plots selected.  
However, when the analysis is conducted using the original landcover map instead of the resampled 
landcover map, the number of plot selected is almost the same (n = 866 instead of n = 846) and the 
relationships observed between the variables are almost not affected and we thus propose to leave 
out these results as they provide negligible additional information that could be relevant for the 
interpretation of our results.  
 
Line 222. In the title of this section and all through the manuscript I recommend to replace “initial 
higher” by “original 1Km” spatial resolution. 
This has been done. 
 
Line 281. Authors mean here statistically significant? 
Yes, this has been replaced 
 
Line 288. P-value of this relationship? 
The p-value was added:  
Quercus ilex (r2 = 0.10, p-value < 0.000, n = 160). 
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Lines 407-408. Consider rephrasing to avoid repetition 
(addition…adding..additional) 
The sentence has been changed to (Line 456 – 458):  
In addition to more detailed remote sensing data, supplementary ground based canopy N observations 
could better constrain the regression models as well.  
 
Figure 1. I would recommend to add a couple of zoom windows showing the 
MERIS MTCI 1 km grid on areas with high and low density of field sampling 
points. 

This has been added on the map of Catalonia (Figure 1): 
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Figure 1. Map showing the forest plots (n = 846) location in the region of Catalonia, north eastern Spain. Two zoom windows are 

included showing the density of the plots, one with high density and one with low density, relatively to the MTCI 1 km pixel grid.  

DBF = Deciduous Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest. 
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Associate Editor Decision: Publish subject to minor revisions (review by editor) (01 Mar 2018) by Sönke Zaehle 
Comments to the Author: 
Dear authors,  
my apologies for the delay in coming to a decision. I failed to find a second reviewer, therefore I reviewed the 
manuscript myself. I believe that the manuscript can be publishable in Biogeosciences, if you decided to further 
revise the manuscript according to the suggestions and comments by reviewer #1 and my comments below. 
Best wishes, 
Sönke 
 
While I find that the manuscript has improved, I still see need for further improvements 
Major comments: 
My main worry with this manuscript is still that the authors state that they show their relationships to be robust 
against spatial upscaling, while they leave out the critical scale jump from the plot level to the 1km resolution 
level. I don’t think that this invalidates the results of the study per se, but I do believe that the design of this 
study is unsuitable to make claims about the scalability of the results, because for this one would need to 
address the scaling from the proximity of the forest plots to the 1km as well. 
 
All analyses in the manuscript use MTCI data at the original 1 km resolution. In Sections 2.3.3 and 3.2, however, 
we included an additional analysis using resampled MTCI data. We would like to explain here why did this 
additional analysis where both data sets (MTCI and plot samples) were resampled to the same lower spatial 
resolutions. The objective of our analysis was not to make claims about the scalability of the results. Our main 
objective was to study the relationship between the MTCI time series (1 km) and canopy N data from forest plots 
(6 m). As our two datasets present a difference in scale, in the additional analysis mentioned above, we 
resampled the two datasets to the same support size to be able to study the relationship between MTCI and 
canopy N independently of the initial difference in support size. The results show that the correlation between 
MTCI and canopy N after resampling is not strongly influenced by the resampling. Given the similarity in the 
relationship between canopy N values and MTCI values at the original and lower spatial resolutions, the 
confidence in the relationship is increased. 
 
This was not clearly explained in the manuscript. In the revised manuscript, a paragraph was added in the 
Material and Methods part to make it more clear, section 2.3.2 (Line 242 – 250):  
 
This was done because of the initial difference in support size between MTCI spatial resolution and the forest plots 

size (i.e. 1 km and 6 m, respectively). This enabled us to investigate the relationships between MTCI and canopy N 

data when the spatial discrepancy was accounted for. The statistical basis of this approach is that we bring both 

datasets (forest plots and MTCI values) to the same support size or representative area (Bierkens et al., 2000). By 

averaging out forest plot values within this support size, we calculate the mean of the canopy N value at that 

support size. By resampling the MTCI values to that same support size, the obtained result consist of a mean of the 

MTCI value at that support size. We then regressed the expected canopy N values (at the new support size) against 

the expected MTCI values (at the new support size). 
 
We have also downscaled the claims about the scalability of the results.  
In the result part, section 3.2, we have replaced (Line 298 – 299): 
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This was done to investigate the relationship between MTCI and canopy N data independently of difference in 

support size  

By: 
This was done to investigate the relationship between MTCI and canopy N data when the initial spatial 

discrepancy between the two datasets was accounted for.  
 
In the discussion part section 4.1, we have removed part of the text where the claims were too strong (Line 342 – 
344): 
This showed that, when the spatial discrepancy between the original datasets, i.e. 6 m and 1 km, was taken into 

account, MTCI and canopy N data were linked and that the MTCI-canopy N relationship was not strongly affected 

by the resampled spatial resolution.    

 

The use of the word detection is inappropriate. The paper demonstrates a sometimes significant log-linear 
correlation between these two variables, but does not attempt to disentangle the possible signal from canopy 
nitrogen from confounding factors, it does therefore not allow for a detection of canopy N trends. 
 
The word “detection” was replaced when it appeared in text when describing the results we obtained (but not 
when describing results obtained by others, e.g. in the Introduction part).  
 
The results of the manuscript are presented in a misleading fashion, because it states that (L221) that MTCI and 
canopy values are related via linear regression, whereas infact the authors use a log-linear regression. This needs 
to be made clear at every instance (for ease of writing possible by introducing two new symbols referrring to the 
log-transformed canopy values), since this affects the interpretation of the regression (i.e. the connection is not 
linear as written in the text) as well of the r2 value. I would also expect a reasoning as to why the authors believe 
that the use of a log-linear relationship between MTCI and canopy N is to be expected. 
 
The mentions to linear regression have been converted to “log-linear regression” when it appeared in text.  
 
We use a log normal relationship because the canopy N concentration show outliers at higher values, as shown 
by its distribution (Figure 3 in the manuscript). Several phenomena in nature show outliers towards higher 
values, compared to lower values, in particular when bounded to values > 0 (Limpert et al., 2001).  
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Figure 2. The upper right part of this figure shows the Pearson correlation matrix between canopy N[%] (%N), canopy N[area] (g m-2) and foliar biomass 

(g m-2) variables for the whole dataset, n = 841. The diagonal presents the histograms of the variables on the x-axis, while the y-axis represents the 

number of counts. The lower left part of this figure represents the scatterplots between the variables. PFT = Plant Functional Type, DBF = Deciduous 

Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest.  

Moreover, the log transformation of the canopy N variables was carried out to fulfill linear regression 
assumptions. This is mentioned in the section 2.3.4 “Statistical analysis” (Line 267-269): 
Preliminary analysis showed that using a natural logarithm transformation (log) of the canopy N variables was 

necessary to fulfil linear regression model assumptions, namely normality and homogeneity of variance of the 

residuals. 

This is also mentioned in the section 3.1 “Descriptive statistics” (Line 293-294): 
As canopy N[%] and canopy N[area] distributions are positively skewed, a logarithmic transformation was applied to 

these variables to fulfil linear model assumptions. 
 
The correlation between the variables was stronger when the canopy N variables were log-transformed and the 
scatterplots did not show a linear pattern without log-transforming the variables. 
 
The reference list is incomplete (e.g. Bontemps 2011 and ESA 2010 are missing). 
 
Our apologies, we updated and rechecked the reference list. 
 
Minor comments: 
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please carefully check the usage of hyphen and punctuation. 
 
L 10: I find this sentence confusing, because canopy concentration and content are nothing else then leaf 
concentration and content accumulated to canopy scale. Why then is it necessary to point to processes at “leaf 
and canopy scales”  
 
This mention has been removed. 
 
L 17 specify whether the unit is per unit leaf area or per unit ground area 
 
N g m-2 of ground area was added.  
 
L20 here and thereafter (as noted above): note that this is a significant, log-linear relationship. 
This has been changed. 
 
L25: starting with “, ultimately…” should be removed, because the paper, while showing that a log-linear 
correlation exists, does not provide the ground for such a mapping.  
The sentence part has been removed 
 
L31: “such as” before Zaehle & Friend. 
This has been added 
 
L64:68: irrelevant here, can be removed. 
This was removed 
 
L72ff: It seems to me that this paragraph would be better suited to follow L48, with the redundant sentences at 
the beginning of the paragraph currently beginning in L49 removed. 
The paragraph has been replaced. I do not see which sentence are redundant. 
 
L96-100 can be removed  
This has been removed 
 
L154 how was fbiom determined? 
This question is a bit confusing because the “fbiom” mention appears in the section where we explain how the 
foliar biomass was measured (Line 169 – 177). Fbiom was replaced by “foliar biomass” in the equation 1 to make 
it clearer.  
 
L202: Rather: forest plots for which the dominant vegetation type of the gridcell in the MTCI data-set did not 
correspond to forest were excluded? 
This was changed by: “The Globcover 2009 land cover map was used to exclude forest plots for which the 
dominant vegetation type of the MTCI pixel did not correspond to natural vegetation.” (Line 231 – 232). 
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L203: Sentence beginning with “It was downloaded”. Remove sentence as add reference to previous sentence. 
Both references are missing in the reference list. 
This was done  
 
L211-215: This does not explain, why this aggregation study was performed. Of course you average across more 
forest plots when aggregating, but you also average across more MTCI grid-cells. I do not see why this would 
increase the confidence in the regression analysis. Please be more explicit as to why this should be of interest. 

 
We have now explained in more detail why we performed the resampling for both our datasets in the section 

2.3.2 (Line 242 – 250):  

This was done because of the initial difference in support size between MTCI spatial resolution and the forest 
plots size (i.e. 1 km and 6 m, respectively). This enabled us to investigate the relationships between MTCI and 
canopy N data when the spatial discrepancy was accounted for. The statistical basis of this approach is that we 
bring both datasets (forest plots and MTCI values) to the same support size or representative area (Bierkens et 
al., 2000). By averaging out forest plot values within this support size, we calculate the mean of the canopy N 
value at that support size. By resampling the MTCI values to that same support size, the obtained result consist 
of a mean of the MTCI value at that support size. We then regressed the expected canopy N values (at the new 
support size) against the expected MTCI values (at the new support size). 

 
We resampled the datasets to the same lower spatial resolution to be able to study the relationship between 

MTCI and canopy N independently of the initial difference in support size. 

L290-294. Not necessary. Please remove, 
This was removed.  
 
L296-303. This partially repeats the results section. Isn’t the more relevant question to discuss uncertainties in 
the upscaling of 6m plots to 1km resolution? 
 
The discussion section was changed to mention the existence of such uncertainties. We have also downscaled 
the claims about the scalability of the results (Line 335 – 342):  
 
This pre-analysis was undertaken to study the MTCI-canopy N relationships when taking the discrepancy between 

MTCI original spatial resolution (1 km) and the size of the forest plots (diameter of 6 m) into account. By 

resampling both datasets to a lower spatial resolution, i.e. 5 km, 10 km, 15 km and 20 km, the obtained values 

were less impacted by small-scale variations because they were obtained by averaging several values over a 

larger area. The results showed that the relationship between MTCI and canopy N data was significant and 

consistent across the resampled spatial resolutions investigated: 5 km, 10 km, 15 km and 20 km. This, however, 

does not give any indication about the uncertainties resulting from the initial spatial discrepancy between both 

datasets and about the influence of such uncertainties on the MTCI-canopy N relationship. 
 
L321 and all other places: is the R2 the adjusted r2 to account for the large variance in sample size? 
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The r2 values were replaced by the adjusted r2 in the tables, graphs and when it appeared in the text. For most 
of these values, the difference between the r2 and the adjusted r2 was small.  
 
This was also mentioned in the revised manuscript (Line 270 – 271): 
All the coefficients of determination (r2) presented are the adjusted r2 to account for the differences in sample 

sizes. 
 
L323: the use of may is not appropriate here. Either the correlation is mainly driven by the deciduous and mixed 
plots, or it is not. No need for speculation. 
The sentence was changed:  
This indicates that, the relationship observed for all the forest plots was mainly driven by DBF and mixed plots. 
(Line 366) 
 
L362: Does this not suggest that the nitrogen signal is confounded by other factors, therefore limiting the ability 
to “detect” nitrogen with MTCI? 
We have modified the sentence to stress that the biomass was a confounder of the MTCI-canopy N relationship 
in (Line 407 - 408): 
This suggests that biomass had an influence on and was a confounder of the MTCI-canopy N log-linear 

relationship. 
 
And in Line 417 – 418:  
In this context, our analysis showed that the PFTs of the plots and the biomass had an influence on the MTCI 

canopy N relationship in a specific type of ecosystem, namely Mediterranean forests. 
 
L380 I don’t understand what you want to say here that is new compared to the preceeding sentences. 
I was trying to summarize the preceding sentences. The sentence was removed. 
 
L387: “…might reveal laborious”. Please be more explicit, do you mean to say that this is infeasible? 
The sentence was changed (Line 434 – 437):  
However, due to the different treatments required as well as the limited swath width associated with the high 

spatial resolution (from 3 m to 30 m for Hyspex airborne and Hyperion spaceborne sensors, respectively, Wang et 

al., 2016;Smith et al., 2003), applying imaging spectrometry at a broader scale, although feasible, might reveal 

time-consuming. 
 
Reference 
Limpert, E., Stahel, W. A., and Abbt, M.: Log-normal Distributions across the Sciences: Keys and CluesOn the 
charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to 
characterize log-normal distributions, which can provide deeper insight into variability and probability—normal 
or log-normal: That is the question, BioScience, 51, 341-352, 10.1641/0006-
3568(2001)051[0341:LNDATS]2.0.CO;2, 2001. 
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Regional detectionRemote sensing of canopy nitrogen at regional scale 

in Mediterranean forests using the spaceborne MERIS Terrestrial 

Chlorophyll Index  

Yasmina Loozen1, Karin T. Rebel1, Derek Karssenberg2, Martin J. Wassen1, Jordi Sardans3,4 and Josep 5 

Peñuelas3,4, Steven M. De Jong2 

1Copernicus Institute of sustainable development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands 
2Physiscal geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands 
3CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain 
4CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain  10 

Correspondence to: Yasmina Loozen (y.m.a.loozen@uu.nl)  

Abstract. Canopy nitrogen (N) concentration and content are linked to several vegetation processes. at leaf and canopy levels. 

Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While 

there is ample C data available to constrain the models, widespread N data are lacking. Remote sensing and Remotely sensed 

vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and 15 

forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In 

this paper we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging 

Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from ESA ENVISAT at 1 km spatial resolution and 

both canopy N concentration (%N) and canopy N content (N g m-2 of ground areag m-2) from a Mediterranean forests inventory 

in the region of Catalonia, NE of Spain. The relationships between the datasets were studied after resampling both datasets to 20 

lower spatial resolutions (20 km, 15 km, 10 km and 5 km) and at the initial higheroriginal spatial resolution of 1 km. The results 

at the higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N 

concentration and content, r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional 

type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots 

(r2 = 0.254 and r2 = 0.474, respectively), the relationship between MTCI and canopy N content was strongest for evergreen 25 

needleleaf trees (r2 = 0.1920). At the species level, canopy N concentration was strongly related to MTCI for European Beech 

plots (r2 = 0.6971). These results present a new perspective on the application of MTCI time series for canopy N detection., 

ultimately leading towards the generation of canopy N maps that can be used to constrain global vegetation models.   

Keywords: vegetation index, MERIS, foliar nitrogen concentration, foliar nitrogen content, plant functional types, 

Mediterranean forest, remote sensing 30 
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1 Introduction  

Canopy nitrogen (N) concentration is an essential state variable in regional (Ollinger and Smith, 2005) and global vegetation 

models including both the carbon (C) and the N cycles (such as Zaehle and Friend, 2010;Smith et al., 2014). This variable has 

been linked to several vegetation traits and processes at the leaf and canopy levels. At the leaf level, leaf N concentration, which 

represents the leaf N status expressed as a percentage of leaf dry matter (%N, N g 100g-1 DM), has been related to photosynthetic 35 

capacity (Evans, 1989;Reich et al., 1995;Reich et al., 1997;Reich et al., 1999;Wright et al., 2004), specific leaf area, leaf life 

span (Reich et al., 1999;Wright et al., 2004) and light use efficiency (Kergoat et al., 2008). Leaf N concentration expressed on 

a leaf area basis, also called leaf N content (N g m-2), has also been linked with chlorophyll content, Rubisco content (Evans, 

1989) and photosynthetic capacity (Evans, 1989;Reich et al., 1995). At stand scale, canopy nitrogen concentration, which 

represents the leaf N concentration averaged over the stand canopy, has also been found to correlate with above ground Net 40 

Primary Productivity (NPP) (Reich, 2012), while canopy N content has been linked with the canopy light use efficiency (Green 

et al., 2003). 

Given their links to many vegetation processes, leaf and canopy N variables could be used to constrain N cycle modules in 

global vegetation models. At the global scale, ample data is available to constrain models for the C cycle; however, data to 

constrain the N cycle are limited. Currently, canopy N data are not widely available and canopy N sampling campaigns are 45 

time-consuming and thus expensive tasks. Moreover, upscaling from local sampling campaign measurements represents an 

additional limitation. In this perspective, local, regional or even global remotely sensed canopy N estimates will be a valuable 

addition, enabling us to collect information in a less time intensive and expensive manner than traditional on-field sampling 

campaigns. Such near global canopy N estimates will be beneficial as input in global vegetation models or to calibrate and 

validate these models.  50 

Remote detection of foliage N status has been extensively studied at the leaf scale (Hansen and Schjoerring, 2003;Ferwerda et 

al., 2005;Li et al., 2014) and few studies have investigated the processes underlying the relationships between vegetation indices 

and foliar N (Pacheco-Labrador et al., 2014). Detection of foliage N status with vegetation indices is attributed to the strong 

link between foliar nitrogen and chlorophyll content (Schlemmer et al., 2013) and is often based on the NIR and red-edge region 

of the spectrum, hence similar to the ones used for chlorophyll detection (Filella and Penuelas, 1994;Dash and Curran, 55 

2004;Clevers and Gitelson, 2013). At canopy level, however, spectral reflectance is a complex function of vegetation cover, 

plant activity, water content, illumination angle, viewing angle and atmospheric composition (Kumar et al., 2006) and it is not 

straightforward to disentangle the influence of nitrogen from other contributions in the spectra. It is thus not clear how the 

relationships observed at the leaf level translate at the canopy level. The mechanisms possibly modifying the remote sensing of 

foliage N status at the canopy scale are still not clearly understood (Ollinger, 2011). High correlation between canopy N and 60 

both NIR reflectance and albedo has been reported in boreal forests (Ollinger et al., 2008). However, the mechanism behind 

these findings is still controversial. Knyazikhin et al. (2013) argued that the observed correlation solely resulted from canopy 

structural differences between broad and needleleaf forests and was thus spurious. Other authors, although agreeing that canopy 
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structure was a confounding factor to account for, stated that the NIR – canopy N relationship was not necessarily spurious and 

stemmed from an association between canopy N and structural traits (Ollinger et al., 2013;Townsend et al., 2013). Canopy traits 65 

are interrelated (Wright et al., 2004) and have been known to covary due to evolutionary convergence, as stated by Ollinger 

(2011). 

Different remote sensing techniques have been applied to detect canopy N in terrestrial vegetation. Imaging spectrometry has 

proven efficient in improving N sensing capabilities at the local scale. Imaging spectrometry images are acquired from either 

airborne or spaceborne sensors and are analysed with different methods, including partial least squares regression (PLS), 70 

continuum removal, spectral unmixing or vegetation indices (Smith et al., 2003;Ollinger et al., 2008;Huber et al., 2008;Martin 

et al., 2008;Schlerf et al., 2010;Wang et al., 2016). Among other techniques, ratios or normalized differences of reflectance 

bands in the Red and Near Infrared (NIR) regions of the spectrum, the so called vegetation indices (VI) (Glenn et al., 2008), are 

one of the most straightforward methods for canopy N detection. Combined with in situ hyperspectral devices, vegetation 

indices have been extensively used for leaf or canopy N detection in agricultural systems (Peñuelas et al., 1994;Filella et al., 75 

1995;Hansen and Schjoerring, 2003;Tian et al., 2011;Schlemmer et al., 2013;Li et al., 2014). Vegetation indices have also been 

applied to airborne or spaceborne acquired imagery in natural environments (Ramoelo et al., 2012;Wang et al., 2016).   

A particular vegetation index, the MERIS Terrestrial Chlorophyll Index (MTCI) has been proposed for detecting canopy N 

(Clevers and Gitelson, 2013). MTCI was originally computed from three reflectance bands from the Medium Resolution 

Imaging Spectrometer (MERIS) aboard the European Space Agency (ESA) ENVISAT satellite at a spatial resolution of 1 km. 80 

However, it can also be obtained from other sensors’ reflectance data and a similar product will be available from the ESA 

Sentinel-2 satellite mission (Drusch et al., 2012). It was first developed to estimate chlorophyll content (Dash and Curran, 2004, 

2007). Since then, other applications of this index have been described, among which the possibility to estimate Gross Primary 

Productivity (GPP) from natural (Harris and Dash, 2010, 2011;Boyd et al., 2012) and cultivated lands (Peng and Gitelson, 

2011). Furthermore, MTCI has been used to discriminate between C3 and C4 grasses (Foody and Dash, 2007) and to monitor 85 

vegetation phenology at the sub-regional (Boyd et al., 2011) and continental scales (Rodriguez-Galiano et al., 2015;Crabbe et 

al., 2016). Regarding canopy N detection, most studies were carried out in agricultural crops using MTCI values computed from 

in situ hyperspectral reflectance data (Tian et al., 2011;Clevers and Gitelson, 2013;Li et al., 2014). A few were directed towards 

sensing N concentration in natural environments using airborne data, e.g. in temperate forests (Wang et al., 2016), or spaceborne 

data, for example in grasslands (Ramoelo et al., 2012;Ullah et al., 2012) or sub-tropical forests (Cho et al., 2013). 90 

Remote detection of foliage N status has been extensively studied at the leaf scale (Hansen and Schjoerring, 2003;Ferwerda et 

al., 2005;Li et al., 2014) and few studies have investigated the processes underlying the relationships between vegetation indices 

and foliar N (Pacheco-Labrador et al., 2014). Detection of foliage N status with vegetation indices is attributed to the strong 

link between foliar nitrogen and chlorophyll content (Schlemmer et al., 2013) and is often based on the NIR and red-edge region 

of the spectrum, hence similar to the ones used for chlorophyll detection (Filella and Penuelas, 1994;Dash and Curran, 95 

2004;Clevers and Gitelson, 2013). At canopy level, however, spectral reflectance is a complex function of vegetation cover, 

plant activity, water content, illumination angle, viewing angle and atmospheric composition (Kumar et al., 2006) and it is not 



19 

 

straightforward to disentangle the influence of nitrogen from other contributions in the spectra. It is thus not clear how the 

relationships observed at the leaf level translate at the canopy level. The mechanisms possibly modifying the remote detection 

of foliage N status at the canopy scale are still not clearly understood (Ollinger, 2011). High correlation between canopy N and 100 

both NIR reflectance and albedo has been reported in boreal forests (Ollinger et al., 2008). However, the mechanism behind 

these findings is still controversial. Knyazikhin et al. (2013) argued that the observed correlation solely resulted from canopy 

structural differences between broad and needleleaf forests and was thus spurious. Other authors, although agreeing that canopy 

structure was a confounding factor to account for, stated that the NIR – canopy N relationship was not necessarily spurious and 

stemmed from an association between canopy N and structural traits (Ollinger et al., 2013;Townsend et al., 2013). Canopy traits 105 

are interrelated (Wright et al., 2004) and have been known to covary due to evolutionary convergence, as stated by Ollinger 

(2011). 

In this context, there are several knowledge gaps that we would like to address in this paper. First, although 1 km spatial 

resolution spaceborne MTCI time series are available from the ESA, MTCI has mainly been employed to detect canopy N in 

agricultural applications with in situ devices and rarely in a broader range of natural ecosystems and scales using spaceborne 110 

data. Due to its almost global coverage, MTCI time series could be applied to estimate canopy N over a larger spatial extent 

Moreover, Mediterranean forests have specific functional characteristic due to their great forest ecosystems diversity, influenced 

by contrasting climatic and topographic conditions, and their high tree species richness (Vilà-Cabrera et al., 2018). However, 

to our knowledge, limited research has been conducted to sense canopy N in Mediterranean ecosystems (Serrano et al., 2002) 

and even more so in Mediterranean forests. In addition, although in a temperate forest the reflectance spectrum of individual 115 

plant functional types (PFT) has been shown to be different (Wang et al., 2016), the relationship between MTCI and canopy N 

has seldom been studied and compared between PFTs. Moreover, investigating the influence of PFTs on this relationship might 

give further insight into the influence of structural effects in canopy N detection. Finally, the difference between sensing canopy 

N concentration (N[%], %N) and canopy N content (N[area], g m-2) has rarely been investigated. The relationship between MTCI 

and both N concentration (N[%], %N) and canopy N content (N[area], g m-2) of these variables has been studied separately (Clevers 120 

and Gitelson, 2013;Wang et al., 2016), but very few analyses (Mirik et al., 2005;Ullah et al., 2012) have compared the ability 

to detect canopy N concentration and canopy N content simultaneously, especially in forest ecosystems.  

The objective of our study is thus to investigate the relationship between the spaceborne MTCI remote sensing product and 

canopy N in Mediterranean forests at the regional scale. More specifically, the relationships between MTCI and both canopy N 

concentration and canopy N content are investigated and compared. We then also examine these relationships per PFT and at 125 

the species level. 

Remote sensingDetection of canopy N is often limited to local scale studies due to the spatial restrictions associated with N data 

acquisition in the field and treatment of high spatial resolution remote sensing imagery with limited spatial coverage (Lepine et 

al., 2016). Our case-study exploits the broadly and readily available MTCI time series at 1 km spatial resolution from the ESA 

ENVISAT mission and combines it with canopy N data, both concentration and content, from 846 forest plots measured between 130 

1988 and 2001 by the Catalonian National Forest Inventory (Gracia et al., 2004). First, we develop a methodology to overcome 
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the time discrepancy between our two sets of data. Next, both data sets are resampled to the same, lower, spatial resolutions, 

i.e. 5 km, 10 k, 15 km and 20 km, in order to overcome the initial spatial discrepancy between MTCI spatial resolution (1 km) 

and the size of the forest plots (6 m). Subsequently, we analyse the relationship between MTCI and both canopy N concentration 

and canopy N content variables, both at the resampled and initial spatial resolutions. The relationships at the initial spatial 135 

resolution are then stratified according to the PFT of the plots. The results are presented and discussed. Finally, we address the 

implications for future research and draw a conclusion.  

2 Material and methods 

2.1 Study area  

Our study area corresponds to the region of Catalonia (Fig. 1) which is located in north eastern Spain and has a spatial extent of 140 

32,114 km2 (Sardans et al., 2011). While the region is characterised by a Mediterranean climate, the presence of the Pyrenees 

to the northwest and the Mediterranean Sea to the east creates contrasting climate conditions with an altitudinal gradient from 

north to south and a continental gradient from west to east. Following this pattern, the mean annual temperature varies from 

1 °C in the north to 17 °C in the south (Sardans et al., 2011). While mean annual precipitation (MAP) is 1400 mm in the 

Pyrenees, in the south, the MAP is lower than 350 mm (Sardans et al., 2011), leading to seasonal drought (Lana and Burgueño, 145 

1998) and fires (González and Pukkala, 2007), impacting the vegetation (Liu et al., 2015). 

2.2 Data collection 

2.2.1 Canopy N data  

The canopy N data used in this research was collected by the Ecological and Forestry Applications Research Centre (CREAF), 

Universitat Autònoma de Barcelona. The data included 2300 closed canopy forest plots sampled between 1988 and 2001 by the 150 

Catalonian National Forest Inventory (Gracia et al., 2004). 

The forest plots (Fig. 1) had a minimum diameter of 6 m, which varied depending on the tree density in order to include between 

15 and 25 trees with a diameter at breast height (DBH) of at least 5 cm. The DBH was recorded for all the trees present on the 

plot with a DBH of minimum 5 cm. The plots were investigated for canopy N concentration (N[%], %N) defined as g of N per 

100 g of leaf dry matter. The leaf samples were collected from the upper central part of the crown using extensible loppers. All 155 

foliar cohorts present in the canopy were included in the leaf sample. Each leaf sample was constituted by the leaves of at least 

three different trees of the dominant tree species in the canopy. The species dominance was determined by the tallest individual. 

A proportion of 96% of the plots included in this analysis were monospecific (Sardans et al., 2011). 4% of the plots (n = 30) 

had two codominant species. For these plots, two leaf samples were collected, one for each of the codominant species found on 

the plots.  160 
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The leaf samples were dried and then ground using a Braun Mikrodismembrator-U (B. Braun Biotech International, Melsungen, 

Germany). They were analysed for foliar N concentration using the combustion technique coupled to gas chromatography using 

a Thermo Electron Gas Chromatograph (model NA 2100, CE Instruments-Thermo Electron, Milan, Italy) (Gracia et al., 2004). 

To scale from leaf to canopy level, we used the leaf nitrogen concentration averaged over three individuals as the plot level 

value (Schlerf et al., 2010). We did not weight the average by species abundance (Smith and Martin, 2001) as only 4% of the 165 

plots had two different species.  

Along with the canopy N[%] data, we used foliar biomass data (dry matter g per square meter of ground area, g m-2) acquired 

during the same forest inventory (n = 2286). The foliar biomass data were obtained for each plot from allometric equations 

relating the diameter at breast height to the leaves dry weight. The allometric equations were species specific (Sardans et al. 

(2015), Table A1). The foliar biomass data were used to calculate canopy N content (N[area], g of N per m-2 of ground) for each 170 

plot following Eq. (1): 

canopy 𝑁[𝑎𝑟𝑒𝑎] =
canopy 𝑁[%] ∗ 𝑓𝑜𝑙𝑖𝑎𝑟 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑓𝑏𝑖𝑜𝑚

100
,              (1)  

where 𝑐𝑎𝑛𝑜𝑝𝑦 𝑁[𝑎𝑟𝑒𝑎] is the canopy N content (N g per square meter of ground area, g m-2), 𝑐𝑎𝑛𝑜𝑝𝑦 𝑁[%] is the canopy N 

concentration (%N) and fbiomthe foliar biomass is the foliar biomassexpressed in (dry matter g per square meter of ground area, 

g m-2). 175 

For the plots with two codominant species, the concentration measurements were done separately. The obtained foliar N 

concentration and biomass values were then averaged to obtain a single canopy N[%] and canopy[area] value for each plot with 

two codominant species. Among these 30 plots with codominant species, 16 plots had codominant species from different PFT. 

Their PFT is thus labelled as mixed while the plots with several codominant species from the same PFT are labelled according 

to their PFTs. 180 

Catalonian forests include both deciduous and evergreen broadleaf as well as evergreen needleleaf tree species. These three 

PFTs are referred to as Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF) and Evergreen Needleleaf Forest 

(ENF), respectively. The main tree species are Pinus halepensis Mill., Pinus sylvestris L., Quercus ilex L., Pinus uncinata 

Ramond ex DC., Pinus nigra J.F. Arnold, Quercus suber L., Quercus cerrioides Willk. & Costa., Quercus petraea Liebl. and 

Fagus sylvatica L. These species accounted for 92% of the sampled forest plots. The 15 tree species included in this analysis 185 

are listed in Table 1. Plots with a rare dominant tree species, i.e. species that were detected in only one single plot, were excluded 

from the analysis. This applied to plots with these dominant species: Abies alba Mill., Fraxinus augustifolia Vahl, Fraxinus 

excelsior L., Pinus radiata D. Don, Populus nigra L., Populus tremula L., Quercus robur L.  

2.2.2 MTCI product   

The MERIS Terrestrial Chlorophyll Index (MTCI) was first developed to estimate chlorophyll content in canopies. MTCI is 190 

sensitive to high chlorophyll content while presenting low sensitivity to soil brightness (Curran and Dash, 2005). Its calculation, 

presented in Eq. (2), is based on three reflectance bands, located around the red edge point (REP) (Dash and Curran, 2004):  



22 

 

𝑀𝑇𝐶𝐼 =  
𝑅𝑏𝑎𝑛𝑑10 − 𝑅𝑏𝑎𝑛𝑑9

𝑅𝑏𝑎𝑛𝑑9 −  𝑅𝑏𝑎𝑛𝑑8

  =  
𝑅753.75 − 𝑅708.75

𝑅708.75 − 𝑅681.25

               (2) 

where 𝑅𝑏𝑎𝑛𝑑8, 𝑅𝑏𝑎𝑛𝑑9 and 𝑅𝑏𝑎𝑛𝑑10 represent the 8th, 9th and 10th bands of MERIS, respectively. Following MERIS standard 

bands settings, the centres of the bands were located at 681.25 nm, 708.75 nm and 753.75 nm on the electromagnetic spectrum.  195 

While the ESA ENVISAT satellite mission producing MERIS data came to an end in 2012, MERIS products and MTCI in 

particular are still relevant because the new ESA Sentinel-2 and Sentinel-3 satellite missions haves improved band settings 

compared to those of MERIS. and increased the spatial resolution to 20 m MTCI can be calculated from Sentinel-2 reflectance 

data with increased spatial resolution to 20 m  (Drusch et al., 2012). The Sentinel-3 mission also releases a level 2 chlorophyll 

product, the OLCI Terrestrial Chlorophyll Index (OTCI), which calculation is directly based on MTCI. OTCI continues the 200 

time series already available for MTCI (Dash and Vuolo, 2010;Vuolo et al., 2012). The Sentinel-2 mission will also release a 

chlorophyll product  that will continue the time series already available for MTCI. In this study, we put emphasis on ENVISAT-

MERIS as our field data are closer to the MERIS acquisition period. 

MTCI level 3 imagery was obtained from the NERC Earth Observation Data Centre (NEODC, 2015) for the region of Catalonia 

between 2002 and 2012. The original data were provided by the European Space Agency and then processed by Airbus Defence 205 

and Space. The original MERIS reflectance images, following ENVISAT specifications, have a revisit time of three days and a 

spatial resolution of 300 m. Compared to the original reflectance images, the MTCI processed imagery has been corrected for 

atmospheric influences and cloud cover (Curran and Dash, 2005) and is available as an either weekly or monthly averaged 

product almost globally (Curran et al., 2007). The spatial resolution of the processed data is approximately 1 km. As there is no 

temporally averaged product available at full resolution, we chose to carry out this analysis with the MTCI monthly averaged 210 

processed imagery. This was done to decrease the uncertainty resulting from the use of single daily reflectance values. An MTCI 

time series of 10 years is available almost globally. One MTCI monthly averaged imagery product covering the entire study 

area was obtained for every month between June 2002 and March 2012, except for October 2003, when no valid product was 

available.  

2.3 Data handling 215 

2.3.1 Methodology to link canopy N data to MTCI values 

There is a discrepancy between the timing of the ground truth sampling and the satellite image acquisition period. While the 

plot sampling campaigns were carried out between 1988 and 2001, the ENVISAT satellite mission was launched in 2002 and 

ended in 2012. To overcome the discrepancy, MTCI images were averaged by month over the 10 years of the satellite mission 

period. This process yielded twelve MTCI averaged images, one for each month. The averaged MTCI images were then linked 220 

to the forest plots based on the forest plot coordinates and sampling month, as the exact sampling date was known for each plot. 

The period between the 1st of June and the 31st of October was determined to be the growing season after a pre-analysis, where 

we studied yearly temporal variation of MTCI in several locations and forest types in Catalonia. This extended period was 

chosen to encompass the different vegetation phenology types corresponding to the contrasted climate conditions in this region. 



23 

 

The forest plots sampled outside of the growing season were excluded from the analysis. The inter-annual variation of canopy 225 

N[%] data was analysed for each month included in the analysis to ensure that the ground data could be related with MTCI data 

(Figure A1). The Globcover 2009 land cover map was used to exclude forest plots for which the dominant vegetation type of 

the MTCI pixel did not correspond to natural vegetation. to exclude forest plots located on unsuitable land surface. The 

Globcover map was created by ESA using MERIS reflectance data from 2009 (Bontemps et al., 2011). The Globcover mapIt 

was downloaded from the ESA data user elements website (ESA, 2010). This map comprises 22 land cover classes and has a 230 

spatial resolution of 300 m. Using this map, we excluded forest plots that had undergone a land cover change since the sampling 

period and did not have a natural vegetation cover any more at the time of remote sensing image acquisition. To do so, the 

landcover map was first resampled to a spatial resolution of 1 km to be in accordance with MTCI spatial resolution. Then, the 

plots located on land area classified as either rainfed cropland, mosaic between croplands and natural vegetation, sparse 

vegetation or artificial surfaces were excluded from the analysis.    235 

2.3.2 Relationship between MTCI and canopy N data at lower spatial resolution 

In a first step, the relationships between MTCI and canopy N data values were investigated after resampling both datasets to 

the same, lower, spatial resolution. The resampled spatial resolutions were 5 km, 10 km, 15 km, and 20 km. This was done 

because of the initial difference in support size between MTCI spatial resolution and the forest plots size (i.e. 1 km and 6 m, 

respectively). This enabled us to investigate the relationships between MTCI and canopy N data when the spatial discrepancy 240 

was accounted for.independently of differences in initial support size.  The statistical basis of this approach is that we bring 

both datasets (forest plots and MTCI values) to the same support size or representative area (Bierkens et al., 2000). By averaging 

out forest plot values within this support size, we calculate the mean of the canopy N value at that support size. By resampling 

the MTCI values to that same support size, the obtained result consist of a mean of the MTCI value at that support size. We 

then regressed the expected canopy N values (at the new support size) against the expected MTCI values (at the new support 245 

size). 

The monthly averaged MTCI images obtained previously (section 2.3.1) were resampled successively to 5 km, 10 km, 15 km, 

and 20 km. Beforehand, the Globcover 2009 land cover map was used to exclude from the resampling computation the MTCI 

pixels located on land surface without natural vegetation cover. As for the forest plots, MTCI pixels whose land cover class 

corresponded to rainfed cropland, mosaic between croplands and natural vegetation, sparse vegetation or artificial surfaces were 250 

excluded from the upscaling analysis. Forest plots data were then averaged per month over the newly obtained pixel. The 

relationship between the resampled MTCI values and canopy N data was analysed using log-linear regression.  

2.3.3 Relationship between MTCI and canopy N data at initial higheroriginal spatial resolution (1 km) 

In a second step, the relationships between MTCI and canopy N data, both canopy N[%] and canopy N[area], were examined at 

the original spatial resolution of 1 km. This allowed us to investigate the influence of PFT and species on the relationships as 255 
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this information was lost in the resampling process. The relationships between MTCI and canopy N at 1 km-spatial resolution 

were analysed with log-linear regression for the whole dataset, for each PFT separately as well as for individual species. 

2.3.4 Statistical analysis 

After applying the selection criteria as explained in the section 2.3.1, i.e. plots measured between June 1st and October 31st, 

exclusion of plots with infrequent species and selection based on Globcover 2009, 846 forest plots were available for analysis, 260 

including 841 plots with foliar biomass and canopy N content information. Descriptive statistics of canopy N[%], foliar biomass 

and canopy N[area] were produced for each of the tree species and PFT included in the analysis. The log-linear regressions 

between MTCI and canopy N were performed for both resampled and non-resampled datasets. Preliminary analysis showed 

that using a natural logarithm transformation (log) of the canopy N variables was necessary to fulfil linear regression model 

assumptions, namely normality and homogeneity of variance of the residuals. The minimum number of data points needed to 265 

carry out the linear regression analysis was fixed at 10. All the coefficients of determination (r2) presented are the adjusted r2 to 

account for the differences in sample sizes. We calculated the Relative Root Mean Square Error of cross-validation (RRMSEcv, 

%) using the leave-one-out cross validation method (Clevers and Gitelson, 2013). Its calculation is presented in Eq. (3) following 

(Yao et al., 2010):  

𝑅𝑅𝑀𝑆𝐸𝑐𝑣 =  √
1

𝑛
× ∑(𝑃𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

     ×
100

𝑂�̅�

         (3) 270 

where 𝑃𝑖  represents the predicted value, 𝑂𝑖  , the observed value, �̅�𝑖  the mean of all observed value and n the total number of 

measurement. Resampling both datasets as well as linking the plots to the MTCI pixels was done with the PCRaster software 

(Karssenberg et al., 2010). The statistical analyses were performed in the R environment (R Development Core Team, 2014) 

and the ggplot2 package was used for the graphics (Wickham, 2009).   

3 Results 275 

3.1 Descriptive statistics  

Descriptive statistical analysis of canopy N[%], canopy N[area] and foliar biomass were performed for each tree species included 

in the dataset (Table 1). The four most abundant species (Pinus halepensis, Pinus sylvestris, Quercus ilex and Pinus uncinata) 

dominated 667 plots i.e. almost 80% of the plots. The cumulated abundance percentages of ENF, EBF and DBF species were 

equal to 66 %, 22 % and 9 %, respectively. From this data, it is clear that the forests plots were mainly dominated by ENF 280 

species. On average, Pinus uncinata plots had the highest biomass values while Quercus suber plots showed the lowest mean 

value for this variable. Descriptive statistics were also analysed by PFT. The mean canopy N[%] was lowest for ENF species, 

0.97 %N, and highest for DBF trees, 2.17 %N (Fig. 2a). Canopy N[%] value ranges were equal to 1.91 %N, 2.06 %N , 1.68 %N 

and 1.42 %N for DBF, EBF, ENF and mixed plots, respectively. The canopy N[area] statistics were analysed by PFT as well (Fig. 
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2b) and the averaged canopy N[area] values ranged from 1.82 g m-2 to 4.61 g m-2. A Pearson correlation matrix (Fig. 3) was 285 

computed between the variables for the whole dataset. The correlation between each pair of variables was significant and the 

correlation between canopy N[area] and foliar biomass was strongest (r = 0.88). This result was expected as the foliar biomass 

was included in the N[area] calculation. This matrix also shows distribution histograms of the three variables. As canopy N[%] and 

canopy N[area] distributions are positively skewed, a logarithmic transformation was applied to these variables to fulfil linear 

model assumptions. Correlation matrices for each DBF, EBF and ENF plots are presented in the Appendix (Fig. A 2 – 4).  290 

3.2 Relationship between MTCI and canopy N data at lower spatial resolution 

The relationships between MTCI and both canopy N[%] and canopy N[area] were studied after resampling both datasets to the 

same, lower, spatial resolution. This was done to investigate the relationship between MTCI and canopy N data when the initial 

spatial discrepancy between the two datasets was accounted for.  independently of differences in support size. The results 

showed that the log-linear relationships between MTCI and either canopy N[%] or canopy N[area] were all highly significant 295 

(p<0.000). Moreover, the relationship between MTCI and canopy N[%] was always stronger than the relationship for MTCI and 

canopy N[area] for each resampling factor. The r2 values of the relationship between MTCI and canopy N[%] were equal to 0.33, 

0.37, 0.34 and 0.42 for 5 km, 10 km, 15 km and 20 km resampled spatial resolution, respectively. The r2 values of the relationship 

between MTCI and canopy N[area] were equal to 0.20, 0.20, 0.1920 and 0.187 at 5 km, 10 km, 15 km and 20 km spatial resolution. 

The relationship between MTCI and canopy N[%] at 20 km spatial resolution is shown in Figure 6. Table 2 shows the number 300 

of plots per pixel for different pixel sizes (km). As expected, the number of plots per pixel increased with the pixel size, with a 

mean of 4.1 plots at 20 km spatial resolution. The descriptive statistics of the number of different PFT, species and sampling 

years per pixel spatial resolution are provided in the Appendix (Table A 2 – A 4). 

3.3 Relationship between MTCI and canopy N data at originalhigher spatial resolution (1 km) 

3.3.1 Relationship between MTCI and canopy N concentration 305 

The relationships between MTCI and canopy N data were studied at the initial higheroriginal spatial resolution (1 km). The 

results showed that the log-linear regression between MTCI and canopy N[%] for the whole dataset (n = 846) was highly 

significant (p<0.000) and had an r2 value of 0.32 and an RRMSEcv value of 18.7 % (Table 3, Fig. 5a). The relationship between 

MTCI and Canopy N[%] was also investigated for each PFT individually (Fig. 5b-e). For DBF plots, the relationship between 

MTCI and canopy N[%] had an r2 value of 0.254 (n = 80) and was significant. However, although statistically significant, the r2 310 

of the relationship between MTCI and canopy N[%] for EBF and ENF plots were lower and equal to 0.032 (n = 186) and 0.10 

(n = 564), respectively.  

The relationship between MTCI and canopy N[%] was also significant for one individual species, Fagus sylvatica. The proportion 

of explained variance for this species was equal to 0.6971 (n = 15). This result, although obtained on a restricted number of 
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plots, showed that the significant relationships between MTCI and canopy N[%] not only existed when all DBF plots were 315 

included but also held for one individual DBF species.   

3.3.2 Relationship between MTCI and canopy N content 

Significant relationships between MTCI and canopy N[area] were found for the whole dataset as for EBF and ENF plots (Table 

3). The scatterplots between MTCI and canopy N[area] are presented in Figure 6. The proportion of explained variance was higher 

for ENF plots compared to the other PFTs and compared to the overall relationship across all plots. The relationship between 320 

MTCI and canopy N[area] was also investigated for 10 individual species and one of them showed significant relationships: 

Quercus ilex (r2 = 0.10, p-value < 0.000, n = 160). 

4 Discussion 

Our aim was to explore the relationship between the MTCI vegetation index and both canopy N[%] and canopy N[area] in 

Mediterranean forests at the regional scale in Catalonia, north eastern of Spain. This was done by using the ESA spaceborne 325 

MTCI remote sensing product and canopy N data from a forest inventory. The relationship was first investigated using MTCI 

and canopy N data resampled to the same, lower, spatial resolution. The relationship was then investigated across all plots and 

by PFT at MTCI initial spatial resolution of 1 km. 

4.1 Relationship between MTCI and canopy N data at lower spatial resolution 

This pre-analysis was undertaken to study the MTCI-canopy N relationships when takingindependently of the discrepancy 330 

between MTCI original spatial resolution (1 km) and the size of the forest plots (diameter of 6 m) into account. By resampling 

both datasets to a lower spatial resolution, i.e. 5 km, 10 km, 15 km and 20 km, the obtained values were less impacted by small-

scale variations because they were obtained by averaging several values over a larger area. The results showed that the 

relationship between MTCI and canopy N data was significant and consistent across the resampledall spatial resolutions 

investigated: 5 km, 10 km, 15 km and 20 km. This, however, does not give any indication about the uncertainties resulting from 335 

the initial spatial discrepancy between both datasets and about the influence of such uncertainties on the MTCI-canopy N 

relationship. This showed that, when the spatial discrepancy between the original datasets, i.e. 6 m and 1 km, was taken into 

account, MTCI and canopy N data were linked and that the MTCI-canopy N relationship was not strongly affected by the 

resampled spatial resolution.    



27 

 

4.2 Relationship between MTCI and canopy N data at originalhigher spatial resolution (1 km) 340 

4.2.1 Canopy N concentration detection  

The overall relationship between MTCI and canopy N[%] at 1 km spatial resolution for all the forest plots (n = 846) was 

significant and the r2 value was equal to 0.32 (Table 3, Fig. 5). This result showed that canopy N[%] could be related to MTCI 

in Mediterranean forests. The performance of the MTCI vegetation index to detect canopy N[%] in Mediterranean vegetation 

was similar to the results obtained from previous studies using spaceborne MTCI at higher spatial resolution. For example, 345 

using MTCI computed from the spaceborne RapidEye sensor at 5 m spatial resolution, it was possible to detect canopy N [%] in 

grassland savannah and sub-tropical forest with similar coefficients of determination, r2 = 0.35 and r2 = 0.52, respectively 

(Ramoelo et al., 2012;Cho et al., 2013). However, while there is a consensus regarding MTCI ability for in situ leaf or canopy 

N[%] detection in a variety of crops using handheld spectrometers (Tian et al., 2011;Li et al., 2014), there is no general agreement 

about MTCI ability for canopy N[%] detection across vegetation and sensor types at larger scales. For example, MTCI computed 350 

from airborne data at 3 m spatial resolution could not be related to canopy N[%] from a mixed temperate forest (Wang et al., 

2016). In this context our finding brings new insight into MTCI N[%] sensing capabilities at a much coarser spatial resolution (1 

km) compared to what has been done before. In these comparisons, it should be taken into account that most previous studies 

were based on a short sampling campaign while our study incorporates canopy N data from a forest inventory that was carried 

out during the entire growing season and therefore includes differences in phenology.   355 

Investigating the influence of the PFTS on the overall relationship highlighted the difference between DBF, EBF and ENF types 

of vegetation regarding canopy N[%] detection by spaceborne MTCI. The relationships between MTCI and canopy N[%] were 

significant for all the PFT taken separately (p-value<0.05). However, a higher proportion of variance was explained for DBF 

and mixed plots (r2 = 0.245 and r2 = 0.447 for DBF and mixed plots, respectively) compared to the other plant functional types 

(r2 = 0.10 and r2 = 0.032 for ENF and EBF trees, respectively) and the relationship between MTCI and canopy N[%] was especially 360 

weaker for EBF plots. This indicates thatTherefore, the relationship observed for all the forest plots wasmay be mainly driven 

by DBF and mixed plots. This result is different from what was observed by Ollinger et al. (2008) in boreal forests, where 

canopy N[%] was related to NIR reflectance for both broadleaf and needleleaf plots taken separately. Moreover, the results 

obtained for ENF tree species are surprising as previous studies investigating the relationship between foliar N[%] and in situ 

measured spectra reported higher r2 values, r2 = 0.59 and r2 = 0.81 in spruce and pine forest, respectively (Stein et al., 365 

2014;Schlerf et al., 2010). The differences in scale and methodology might explain the divergent results compared to previous 

findings. Indeed, in our study, the analysis is carried out at a much coarser spatial resolution using spaceborne data compared 

to the fine spatial scale obtained with in situ devices. Moreover, most of these studies were carried out in temperate forests and 

studies investigating canopy N[%] detection in Mediterranean regions are scarce. When investigating the relationship between 

canopy N[%] and MTCI at the species level, we also found that it was significant for Fagus sylvatica plots (r2 = 0.6971).   370 

In the literature, the relationship between MTCI and canopy N[%] is often not stratified by PFT or species (Sullivan et al., 

2013;Wang et al., 2016). In this study, we showed that investigating this relationship for each PFT taken separately yielded 
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additional insight. Indeed, to our knowledge the difference in explained variance between DBF and other PFTs in MTCI and 

canopy N[%] relationship has not been observed before. Moreover, the results observed for Fagus sylvatica plots (n = 15) were 

consistent with the stronger relationship observed for DBF plots. 375 

4.2.2 Canopy N content detection  

The relationship between MTCI and canopy N[area], which was obtained by combining canopy N concentration values with 

biomass data, was significant across all plots (n = 841) (Table 4, Fig. 6). Although the r2 value was lower for the relationship 

between MTCI and canopy N[area] (r2 = 0.17) than for the relationship between MTCI and canopy N[%] (r2 = 0.32), it is interesting 

to note that canopy N[area] can be related to spaceborne MTCI as remotely sensed detection of canopy N[area] is rarely investigated 380 

in forest environments (Mirik et al., 2005). In comparison, previous studies conducted in grasslands reported higher prediction 

accuracy e.g. by using spaceborne MTCI at 300 m spatial resolution or a simple ratio-type vegetation index computed from 

airborne imagery at 1 m spatial resolution, canopy N[area] was detected with r2 values equal to 0.29 and 0.66, respectively (Mirik 

et al., 2005;Ullah et al., 2012). 

The relationship between MTCI and canopy N[area] was only significant for ENF and EBF plots (Fig. 6b-e), with a higher 385 

proportion of explained variance for ENF plots (r2 = 0.1920). However, when this relationship was investigated at the species 

scale, significant results were found for Quercus ilex (EBF) plots. This is accordance with a previous study examining the 

remote sensingdetection of canopy N[area] in Quercus ilex trees by MTCI computed from in situ spectra (r2 = 0.43) (Pacheco-

Labrador et al., 2014). 

4.3 Comparing results obtained for canopy N concentration and canopy N content detection 390 

This analysis highlighted the difference between canopy N expressed as a percentage of leaf dry matter (canopy N[%]) and on 

an area basis (canopy N[area]) regarding the log-linear relationship withdetection by spaceborne  MTCI for the different PFTs. 

Canopy N[%] of DBF and mixed plots showed higher correlation with MTCI compared to EBF and ENF plots while the 

relationship between canopy N[area] of ENF plots with MTCI was stronger than for any other PFTs. These differences between 

the log-linear relationship between MTCI and either canopy N[%] and canopy N[area] detection by remote sensing can be related 395 

to previous findings showing that canopy N[area] but not canopy N[%] could be detected by MTCI in grassland (Ullah et al., 2012) 

and by a simple ratio index in heterogeneous rangelands (Mirik et al., 2005) at various spatial scales, 300 m and 1 m, 

respectively. In the literature, canopy N[%] is more often used to detect N state of foliage in forest while canopy N[area] is regularly 

employed in grasslands but also in crops (Clevers and Gitelson, 2013;Schlemmer et al., 2013). Our results showed that, for ENF 

plots, when biomass was accounted for, as in canopy N[area], the relationship between MTCI and canopy N[area] was stronger 400 

compared to canopy N[%].  This suggests that biomass had an influence on and was a confounder of the MTCI-canopy N log-

linear relationship. 
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4.4 Possible confounding factors of the MTCI canopy N relationship 

The relationships between MTCI and both canopy N[%] and canopy N[area] were influenced by the PFT of the plots. The 

relationship between MTCI and canopy N[%] was stronger for DBF and mixed plots compared to EBF and ENF plots while the 405 

opposite was true for the MTCI-canopy N[area] relationship. In the ongoing discussion about the mechanisms underlying the 

remote sensingdetection of canopy N, some authors argued that the difference in structural properties between different PFTs 

was a confounding factor of the observed relationship between canopy N and remote sensing data, rendering it spurious 

(Knyazikhin et al., 2013). Other authors suggested that the role of canopy structure as confounding factor can be explained by 

an indirect association between canopy N and canopy structure resulting from convergent adaptive processes (Ollinger et al., 410 

2013;Townsend et al., 2013). In this context, our analysis showed that the PFTs of the plots and the biomass had an influence 

on the MTCI canopy N relationship in a specific type of ecosystem, namely Mediterranean forests. Other confounding factors 

associated with N availability that might affect the observed relationship possibly include biomass, biomass allocation, leaf area 

index (LAI), water availability, soil type. The data from the forest inventory used in this analysis, i.e. the Catalonian National 

Forest Inventory, were extensively studied, showing that water availability was the most limiting factor in this region. Water 415 

availability was positively correlated with both the N[area] and N[%] in leaves, as well as with foliar and total above-ground 

biomass through MAP (Sardans et al., 2011;Sardans and Peñuelas, 2013). The MAP also influenced the PFT distribution as 

DBF plots were located in wetter areas than EBF plots, which were found in wetter sites than ENF plots. Regarding the influence 

of PFT on the foliar biomass, DBF plots had on average 45% less foliar biomass than EBF or ENF plots (Sardans and Peñuelas, 

2013). This shows that canopy N[%] and canopy N[area] were interrelated to biomass, PFT and MAP.   420 

4.5 Perspectives for future applications  

The methodology applied in this paper is different from the usual methodology implemented to detect canopy N concentration 

in forests. Remote sensing of N in forest canopies by hyperspectral sensors is often coupled with intensive forest sampling 

measurements. This method has been effective at detecting canopy N concentration locally in a vast range of environments 

(Serrano et al., 2002;Smith et al., 2002;Townsend et al., 2003;Ollinger et al., 2008;Wang et al., 2016). Applying this technique 425 

at larger scales has already been explored. For example, Martin et al., (2008) compiled 137 field plots data from previous studies 

in various forest types and investigated the possibility to find a common detection algorithm. However, due to the different 

treatments required as well as the limited swath width associated with the high spatial resolution (from 3 m to 30 m for Hyspex 

airborne and Hyperion spaceborne sensors, respectively, Wang et al., 2016;Smith et al., 2003), applying imaging spectrometry 

at a broader scale, although feasible,  might reveal laboriousmight reveal time-consuming. Depending on the sensors as well as 430 

on the extent of the study area, this might involve correcting the acquired images for atmospheric influences and cloud cover as 

well as combining several images into a larger scale image. A recent study in northern temperate forests explored the effect of 

spatial resolution on canopy N[%] estimation. The results showed that, although the prediction accuracy was reduced compared 

to what was achieved using PLS regression at higher spatial resolution, it was still possible to estimate canopy N[%] with r2 
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between 0.34 and 0.81 using various vegetation indices computed from MODIS reflectance data at 500 m spatial resolution 435 

(Lepine et al., 2016). In this context, the methodology applied in this article could be a valuable alternative to explore remote 

sensing of canopy N detection at larger scale. Using published data from an extensive field plot inventory, we were able to relate 

both canopy N[%] and canopy N[area] to MTCI at 1 km spatial resolutiondifferent spatial resolutions. Although the relationships 

found were modest, our study contributes to the ongoing discussion about how to remotely sense canopy N over larger area. As 

MTCI time series (1 km) are readily and almost globally available, it could eventually be possible to assess our approach at a 440 

broader scale in different types of biomes. The results obtained for DBF species and Fagus sylvatica in particular suggest that 

this method may be efficient at estimating canopy N in temperate forests. If the strength of the relationship between MTCI and 

canopy N can further be improved, this could lead to canopy N monitoring possibilities at regional scale. In this context, the 

new sensors OLCI, onboard Sentinel- 3 satellite, and especially MSI, onboard Sentinel- 2 satellite might be promising due to 

their higher spatial resolution, from 10 to 60 m for Sentinel Sentinel-2. They have bands well positioned to compute the MTCI 445 

vegetation index. Although the OLCI Terrestrial Chlorophyll Index (OTCI), i.e. the successor of the MTCI for the OLCI sensor, 

is already included in the OLCI level 2b reflectance image, no level 3 product (mosaicked over larger areas and temporally 

averaged hence similar to the MTCI time series used in this analysis) is available yet. In addition to more detailed remote sensing 

data, adding supplementaryadditional ground based canopy N observations could better constrain to the regression models could 

better constrain these models as well. It would in particular be promising to use canopy N data over larger scale areas and for 450 

more diverse and globally distributed vegetation types.  Obtaining reliable ground based canopy N data over larger areas and 

for diverse and globally distributed vegetation types would also be necessary to calibrate and validate global vegetation models, 

as the model performance will depend on the ground data availability and distribution. Remotely sensed canopy N estimates 

would also the calibration of such models. In a recent study, the global vegetation model LPJ-Guess was able to simulate the 

differences in foliar nitrogen between different PFTs but not within one PFT (Fleischer et al., 2015). In this context, improving 455 

remotely sensed canopy N estimates for homogeneous vegetation types would be a beneficial development for such models.      

5 Conclusion  

In this study, we investigated the relationship between spaceborne MTCI from ENVISAT and both canopy N[%] and canopy 

N[area] at regional scale in Mediterranean forests. We found significant results across all plots both when the original data were 

resampled to 5 km, 10 km, 15 km and 20 km and for the original spatial resolution of 1 km. The relationship between MTCI 460 

and canopy N data was also significant for some individual PFTs and species. The r2 values were 0.32 and 0.17 for the overall 

relationships between MTCI and either canopy N[%] or canopy N[area], respectively. We highlighted the differences between 

PFTs and both canopy N[%] and canopy N[area]: the relationship between MTCI and canopy N[%] was stronger for DBF and mixed 

plots while canopy N[area] was more linked to MTCI for ENF plots. Such differences in relationships between MTCI and either 

canopy N[%] or canopy N[area] were already observed in grasslands ecosystem. Our results showed that MTCI could be related 465 

to canopy N for some individual PFTs, indicating an influence of the PFTs on the MTCI-canopy N relationship. The 
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methodology developed in this study could be investigated at larger scales in different types of ecosystem. While this could 

already be undertaken using the ENVISAT MTCI 10 years time series as it is almost globally available, ESA new Sentinel-2 

satellite launched on 23 June 2015 yields reflectance data at improved spatial and temporal resolution than ENVISAT-MERIS. 

Canopy N estimates collected through larger scales applications could be exploited in vegetation modelling studies including 470 

both the C and N cycles.   

6 Data availability 

The canopy data used in this study can be obtained from the TRY Plant Trait Database (https://www.try-

db.org/TryWeb/Home.php, dataset 91) or by directly contacting the authors. 

7 Appendix A 475 

This appendix presents the inter-annual variation of canopy N[%] (Fig. A 1), the correlation matrices for DBF (Fig. A2), EBF 

(Fig. A3) and ENF plots (Fig. A3) as well as the tables representing the allometric relationships between foliar biomass and 

diameter at breast height (DBH, Table A 1), the number of PFT (Table A 2), the number of species (Tables A 3) and the number 

of sampling years (Table A 4) per resampled pixel, by pixel spatial resolution 
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Figure 3. Map showing the forest plots (n = 846) location in the region of Catalonia, north eastern Spain. Two zoom windows are 

included showing the density of the plots, one with high density and one with low density, relatively to the MTCI 1 km pixel grid.  700 
DBF = Deciduous Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest. 
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Figure 4. Boxplot of (a) canopy nitrogen (N) concentration (canopy N[%], %N) for Deciduous Broadleaf Forest plots (DBF, n = 80), 

Evergreen Broadleaf Forest plots (EBF, n = 186), Evergreen Needleleaf Forest plots (ENF, n = 564) and mixed forest plots (mixed, 705 
n = 16); (b) canopy N content (canopy N[area], g m-2) for Deciduous Broadleaf Forest plots (DBF, n = 80), Evergreen Broadleaf Forest 

plots (EBF, n = 186), Evergreen Needleleaf Forest plots (ENF, n = 563) and mixed forest plots (mixed, n = 12); 
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Figure 5. The upper right part of this figure shows the Pearson correlation matrix between canopy N[%] (%N), canopy N[area] (g m-2) 710 
and foliar biomass (g m-2) variables for the whole dataset, n = 841. The diagonal presents the histograms of the variables on the x-

axis, while the y-axis represents the number of counts. The lower left part of this figure represents the scatterplots between the 

variables. PFT = Plant Functional Type, DBF = Deciduous Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen 

Needleleaf Forest, mixed = mixed forest.  
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Figure 6. Scatterplot between the MERIS Terrestrial Chlorophyll Index (MTCI) (-) and canopy nitrogen concentration (canopy N[%], 

%N) after resampling the datasets to 20 km-spatial resolution (n = 204). 
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Figure 7. Scatterplot and log-linear regression line between the MERIS Terrestrial Chlorophyll Index (MTCI) (-) and canopy nitrogen 

(N) concentration (canopy N[%], %N) for (a) whole dataset (n = 846); (b) Deciduous Broadleaf Forest plots (DBF, n = 80); (c) 725 
Evergreen Broadleaf Forest plots (EBF, n = 186); (d) Evergreen Needleleaf Forest plots (ENF, n = 564); (e) mixed forest plots (n = 16). 

PFT = Plant functional type. The grey shading represents the prediction intervals (95 %). Canopy N[%] variable was log transformed 

to fulfil linear model assumptions.  
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Figure 8. Scatterplot and log-linear regression line between the MERIS Terrestrial Chlorophyll Index (MTCI) (-) and canopy N 

content (canopy N[area], g m-2) for (a) whole dataset (n = 841); (b) Deciduous Broadleaf Forest plots (DBF, n = 80); (c) Evergreen 

Broadleaf Forest plots (EBF, n = 186); (d) Evergreen Needleleaf Forest plots (ENF, n = 563); (e) mixed forest plots (n = 12). 

PFT = Plant functional type. The grey shading represents the prediction intervals (95 %). Canopy N[area] variable was log transformed 735 
to fulfil linear models assumptions. 
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Table 1. Descriptive analysis of canopy nitrogen (N) concentration (N[%], g 100g-1), foliar biomass (g m-2) and canopy N content (N[area], g m-2) by tree species. PFT = Plant Functional Type, 

DBF = Deciduous Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest, min = minimum, max = maximum, mean = average, 

sd = standard deviation, a codominant plots refer to the plots where two tree species were dominant in the canopy, b foliar biomass data was lacking for five of the plots. Foliar biomass and 740 
canopy N content statistics are thus measured on a restricted number of plots.  

Species PFT 
Number 

of plots 

Abundance 

(% of total 

number of 

plots) 

Canopy N[%] (g 100g-1) Foliar biomass (g m-2) Canopy N[area] (g m-2) 

min max mean sd min max mean sd min max mean sd 

Castanea sativa DBF 14 1.7 1.62 2.81 2.08 0.36 18.13 425.90 203.46 123.49 0.40 11.99 4.25 2.89 

Fagus sylvatica DBF 15 1.8 1.22 3.13 2.28 0.61 49.94 279.86 173.54 68.70 1.21 7.40 3.96 1.95 

Pinus halepensis ENF 240 28.4 0.56 1.57 0.90 0.19 9.58 827.80 197.23 145.54 0.09 7.29 1.77 1.33 

Pinus nigra ENF 37 4.4 0.56 1.28 0.89 0.19 32.25 923.98 294.29 224.32 0.23 8.87 2.67 2.18 

Pinus pinaster ENF 5 0.6 0.82 1.08 0.93 0.13 271.75 718.87 501.67 211.53 2.30 7.69 4.75 2.25 

Pinus pinea ENF 5 0.6 0.75 1.06 0.95 0.14 103.28 275.50 179.74 66.80 1.08 2.91 1.71 0.75 

Pinus sylvestris ENF 198 23.4 0.67 2.14 1.11 0.20 10.48 828.63 326.44 181.20 0.10 12.86 3.65 2.22 

Pinus uncinata ENF 69 8.2 0.46 1.33 0.87 0.19 183.59 1744.50 687.22 345.21 1.41 16.97 5.92 3.25 

Quercus canariensis  DBF 3 0.4 1.97 2.78 2.25 0.46 122.11 197.85 160.32 37.87 2.41 5.51 3.71 1.61 

Quercus faginea DBF 4 0.5 1.49 2.11 1.82 0.31 10.34 419.14 233.47 187.01 0.17 8.83 4.64 4.09 

Quercus humilis DBF 9 1.1 1.53 3.11 2.41 0.42 56.12 337.33 142.65 92.11 1.21 8.64 3.33 2.19 

Quercus cerriodes DBF 17 2.0 1.44 2.80 2.07 0.37 12.97 834.68 262.24 237.49 0.29 15.42 5.06 4.31 

Quercus ilex EBF 160 18.9 0.81 2.87 1.32 0.26 16.63 1033.31 378.23 238.61 0.22 16.61 4.95 3.23 

Quercus petraea DBF 17 2.0 1.37 2.70 2.21 0.41 20.45 741.42 279.96 229.78 0.32 15.37 5.98 4.66 

Quercus suber EBF 23 2.7 1.25 2.08 1.55 0.21 26.26 219.05 110.49 55.65 0.40 4.34 1.72 0.96 

Codominanta mixed 30 (25)b 3.5 0.92 2.54 1.45 0.41 23.45 342.58 153.70 77.39 0.33 5.74 2.06 1.02 
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Table 2. Descriptive statistics of the number of plots per pixel, for different spatial resolution (km, pixel length). min = 

minimum, max = maximum, mean = average, sd = standard deviation. 

Spatial resolution (km) 
Number of plots per pixel 

min max mean sd 

5 1 6 1.44 0.77 

10 1 11 2.19 1.53 

15 1 15 3.11 2.59 

20 1 22 4.09 3.74 

 750 
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Table 3. Observed log-linear regression equations between the MERIS Terrestrial Chlorophyll Index (MTCI) (-) and canopy nitrogen concentration (CN[%], %N) for different subgroups. 

Number of plots (n), determination coefficient (r2), p-value and Relative Root Mean Square Error of cross-validation (RRMEcv). PFT = Plant Functional type, DBF = Deciduous Broadleaf 

Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest. 755 

group n log-linear regression 
95% confidence 

interval intercept 

95% confidence 

interval slope 
r2 p-value RRMSEcv 

overall 846 MTCI = 2.18 + 0.79 log(CN[%]) [2.15, 2.20] [0.71, 0.87] 0.32 < 0.000 17.0 

DBF 80 MTCI = 2.07 + 0.95 log(CN[%]) [1.78, 2.36] [0.59, 1.32] 0.254 < 0.000 12.7 

EBF 186 MTCI = 2.39 + 0.29 log(CN[%]) [2.31, 2.48] [0.04, 0.54] 0.032 0.021 12.4 

ENF 564 MTCI = 2.13 + 0.61 log(CN[%]) [2.10, 2.17] [0.46, 0.76] 0.10 < 0.000 19.2 

mixed 16 MTCI = 2.05 + 1.35 log(CN[%]) [1.63, 2.46] [0.53, 2.17] 0.474 0.003 12.4 
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Table 4. Observed log-linear regressions equations between the MERIS Terrestrial Chlorophyll Index (MTCI) (-) and canopy nitrogen content (CN[area], g m-2) for different subgroups. Number 760 
of plots (n), determination coefficient (r2), p-value and Relative Root Mean Square Error of cross-validation (RRMEcv). PFT = Plant Functional type, DBF = Deciduous Broadleaf Forest, 

EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed forest. 

group n log-linear regression 
95% confidence interval 

intercept 

95% confidence interval 

slope 
r2 p-value RRMSEcv 

Overall 841 MTCI = 2.08 + 0.20 log(CN[area]) [2.04, 2.12] [0.17, 0.23] 0.17 <0.000 18.7 

DBF 80 MTCI = 2.72 + 0.06 log(CN[area]) [2.58, 2.87] [-0.04, 0.15] 0.0203 0.263 14.7 

EBF 186 MTCI = 2.39 + 0.07 log(CN[area]) [2.32, 2.46] [0.02, 0.12] 0.04 0.005 12.4 

ENF 563 MTCI = 1.94 + 0.20 log(CN[area]) [1.91, 1.99] [0.17, 0.24] 0.219 <0.000 18.2 

mixed 12 MTCI = 2.43 + 0.34 log(CN[area]) [2.05, 2.82] [-0.26, 0.95] 0.1405 0.236 12.8 
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11 Appendix 

 

Figure A1. Inter-annual variation of canopy N[%] (%N) for each month included in the analysis. The numbers 6 – 10 (right 

side of the figure, row numbers) refer to the month of June, July, August, September and October, respectively. 770 
DBF = Deciduous Broadleaf Forest, EBF = Evergreen Broadleaf Forest, ENF = Evergreen Needleleaf Forest, mixed = mixed 

forest. Each point represents an observation at a forest plot. Note that the forest plots were not sampled multiple times, hence 

the inter-annual variation encompasses both temporal variation and spatial variation. 
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Figure A 2. The upper right part of this figure shows the Pearson correlation matrix between canopy N[%] (%N), canopy N[area] 

(g m-2) and foliar biomass (g m-2) variables for deciduous broadleaf forest plots (DBF), n = 80. The diagonal presents the 

histogram of the variable on the x-axis, while the y-axis represents the number of counts. The lower left part of this figure 780 
represents the scatterplots between the variables.   
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Figure A 3. The upper right part of this figure shows the Pearson correlation matrix between canopy N[%] (%N), canopy N[area] 785 
(g m-2) and foliar biomass (g m-2) variables for evergreen broadleaf forest (EBF) plots, n = 186. The diagonal presents the 

histogram of the variable on the x-axis, while the y-axis represents the number of counts. The lower left part of this figure 

represents the scatterplots between the variables.   
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Figure A 4. The upper right part of this figure shows the Pearson correlation matrix between canopy N[%] (%N), canopy N[area] 

(g m-2) and foliar biomass (g m-2) variables for evergreen needleleaf forest (ENF) plots, n = 563. The diagonal presents the 

histogram of the variable on the x-axis, while the y-axis represents the number of counts. The lower left part of this figure 795 
represents the scatterplots between the variables. 
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Table A1. Allometric relationships between foliar biomass and DBH for the different species included in this analysis. 

DBH = Diameter at breast height (cm). Adapted from (Sardans and Peñuelas, 2015). 

Species 
Foliar biomass  = a · DBHb 

a b n r² 

Castanea sativa 0.032 1.669 86 0.49 

Fagus sylvatica 0.026 1.546 285 0.66 

Pinus halepensis 0.037 1.656 2420 0.65 

Pinus nigra 0.022 1.870 1641 0.65 

Pinus pinaster 0.034 1.848 169 0.67 

Pinus pinea 0.014 2.029 335 0.72 

Pinus sylvestris 0.036 1.651 2755 0.66 

Pinus uncinata 0.087 1.410 770 0.62 

Quercus canariensis  0.120 1.322 36 0.57 

Quercus faginea 0.197 0.943 170 0.40 

Quercus humilis 0.047 1.462 595 0.59 

Quercus cerrioides 0.023 1.805 138 0.73 

Quercus ilex 0.063 1.576 2151 0.60 

Quercus petraea 0.014 1.888 121 0.73 

Quercus suber 0.026 1.446 314 0.55 
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Table A 2. Descriptive statistics of the number of plant functional types (PFT) per pixel, by pixel spatial resolution (km). 805 
min = minimum, max = maximum, mean = average, sd = standard deviation. 

Spatial resolution (km) 
Number of PFT per pixel 

min max mean sd 

5 1 3 1.08 0.29 

10 1 4 1.22 0.48 

15 1 4 1.34 0.61 

20 1 4 1.45 0.69 
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Table A 3. Descriptive statistics of the number of species per pixel, by pixel spatial resolution (km). min = minimum, 

max = maximum, mean = average, sd = standard deviation. 810 

Spatial resolution (km) 
Number of species per pixel 

min max mean sd 

5 1 4 1.14 0.41 

10 1 4 1.38 0.67 

15 1 4 1.58 0.85 

20 1 6 1.79 1.07 
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Table A 4. Descriptive statistics of the number of sampling years per pixel, by pixel spatial resolution (km). min = minimum, 

max = maximum, mean = average, sd = standard deviation.  815 

Spatial resolution (km) 
Number of sampling years per pixel 

min max mean sd 

5 1 2 1.02 0.15 

10 1 3 1.07 0.26 

15 1 3 1.10 0.33 

20 1 3 1.14 0.40 

 


