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ABSTRACT

For Central Europe in addition to rising temperatures an increasing variability of
precipitation is predicted. This will increase the probability of drought periods in the
Alps, where water supply has been sufficient in most areas so far. For Alpine
grasslands, community specific imprints on drought responses are merely
understood. In a replicated mesocosm experiment we compared evapotranspiration
(ET) and biomass productivity of two differently drought-adapted alpine grassland
communities during two artificial drought periods divided by extreme precipitation
events using high precision small lysimeters. The drought adapted vegetation type
showed a high potential to utilize even scarce water resources combined with a low
potential to translate atmospheric deficits into higher water conductance with
biomass production staying below those measured for the non-drought-adapted
type. The non-drought-adapted type, in contrast, showed high water conductance
potential with strongly increasing ET rates when environmental conditions became
less constraining. With high rates even at dry conditions, this community appears not
to be optimized to save water and might experience drought effects earlier and
probably stronger. In summary, the vegetation’s reaction to two co-varying gradients
of potential evapotranspiration and soil water content revealed a clear difference of
vegetation development and between water-saving and water-spending strategies

regarding evapotranspiration.
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INTRODUCTION

Comprehensive alterations in the climate system of the earth are projected for
the future decades. Due to increased greenhouse gas concentrations in the
atmosphere, the global average temperature is predicted to rise. These changes in
the energy budget of the atmosphere are suggested to propagate alterations in
atmospheric circulation and modify precipitation patterns worldwide (IPCC, 2013;
Knapp et al., 2008; Solomon et al., 2009). Such variations can result in changes of
the spatial distribution of precipitation and thereby affect average values of rainfall
locally. However, concurrent changes in the temporal occurrence of rainfall events
are predicted to increase the variability of rainfall with longer intervals in between
and more extreme events. This will lead to stronger variability in soil water availability
and longer droughts (IPCC, 2013, 2012).

The water balance in terrestrial ecosystems is dominantly controlled by plant
processes. It is suggested that up to 80% of the terrestrial water loss to the
atmosphere is mediated through plant transpiration (Jasechko et al., 2013).
Consequently, it is assumed that plants will experience drought stress more
frequently, which may constrain primary productivity as it is substantially controlled
by the supply of water (Knapp et al., 2008). These direct effects of limited water
provision to the system will be accompanied by increased water demand in a warmer
world, leading to more negative water balances, which will accentuate drought
effects on vegetation processes (Heimann and Reichstein, 2008). However,
structure and functionality of the ecosystems - defining rates of evapotranspiration -
are also subject to local climatic conditions. Hence, a direct feedback mechanism is
established, which might amplify or dampen the global and local consequences of
climatic change on ecosystems (Heimann and Reichstein, 2008).

Defining productivity-precipitation relationships of ecosystems is of main
interest, because functional changes in soil-plant-atmosphere interface, which
control water fluxes into the atmosphere, will inherently be affected by the
manifestation of that relationship. However, beyond the direct implications of limited
water availability on biomass production and growth, indirect mechanisms define this
relationship. The abundance of individual plant species in the community and
resulting functional structure of that community will adjust, optimising water use

according to different life-history strategies by competitive interactions (Pefuelas et
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al., 2004). In turn, immediate vegetation responses to fluctuations in precipitation
patterns and the strength of interaction with productivity functions will strongly
depend on the functional composition of the community and ecosystem considered.
Therefore, intrinsic characteristics of vegetation will impose another layer of
complexity for defining the interactive feedbacks in the relationship between water
budget and productivity.

The impact of shifting precipitation regimes can only be predicted inaccurately if
the crucial components of the ecosystem water budget - soils, plants and the
atmosphere - are evaluated separately and isolated. Due to the complex interactions
and processes at different spatio-temporal scales the response of ecosystems to
shifts in the water regime are preferably examined in an integrative manner on the
system level (Silva, 2015). Manipulative experiments are a well suited option for
investigating the effects imposed by changes in precipitation frequency and intensity
below and above the natural range on the ecosystem level (Estiarte et al., 2016).
Since we currently lack knowledge needed to validate the projections for
consequences of future changes in rainfall regimes, insights from such integrative
investigations are highly valuable for providing important benchmarks of model
based assessments (Estiarte et al., 2016).

Numerous studies were performed to reveal the responses of temperate
grasslands to climatic changes and droughts (Poorter et al. 2012, Reichstein et al.
2013). While investigations on responses of above- and belowground carbon fluxes
targeted Alpine systems (Bahn et al. 2009, Hasibeder et al. 2015, Ingrisch et al.
2017), only few studies addressed components of the ecosystem water budget (De
Boeck et al., 2016). While the Alps did not often experience droughts during the past
(van der Schrier et al., 2007), the region has undergone exceptionally fast climatic
changes during the late 19" through early 21% century (Auer et al., 2007; Beniston,
2005; Bohm et al., 2001; Ciccarelli et al., 2008; Rebetez and Reinhard, 2008). Water
availability, especially in the light of future climatic changes in European Alps in the
next 100 years (IPCC, 2007), is already seen as a limited and valuable resource with
the potential of socio-economical conflicts. Therefore, the importance of agricultural
management with a potentially higher water demand as a consequence of sprinkling
becomes evident. Considering the fundamental role Alpine systems have to water
accumulation and freshwater supply for large parts of Europe (Messerli et al., 2004,
Viviroli et al., 2003) it seems surprising that the responses of ecosystems in the Alps
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to changes in precipitation have not drawn more scientific attention. However, while
projections suggest only moderate variations of yearly average rainfall in the Alps,
significant alterations within the temporal occurrence of rainfall events with a
decrease in summer precipitation and increases from winter through spring are
implied (Beniston, 2012; Beniston et al., 2007). The decrease of water supply during
warmer summer months will potentially increase the frequency and intensity of
drought events in the near and longer future in Alpine ecosystems (Gobiet et al.,
2014).

For unravelling ecosystem water fluxes at the soil-plant-atmosphere interface,
the lysimeter methodology provides the precise and realistic means. They also allow
to decompose the driving sub-processes: evapotranspiration (ET), precipitation (P)
and drainage below the rooting zone (Peters et al.,, 2014). Even quantifying
interception would be possible by comparing the increase of lysimeter weight and
soil water content during precipitation. This was however not a focus of this
experiment as interception is estimated to account for less than 10% of rainfall
during the growing season based on Wohlfahrt et al. (2006). By avoiding systematic
errors prone to traditional measurement systems, the determination of the net water
balance is highly accurate and robust (Schrader et al., 2013). If embedded into a
surrounding ecosystem, automated lysimeter units, which do not need access to
perform manual weighing, measure water fluxes with a minimum of disturbance to
the natural boundary layer and microclimatic conditions. Such implementations of
autonomous weighable high precision lysimeters provide unprecedented realism to
the description of ecosystem water balances, especially when filling of the lysimeters
was performed to maintain natural soil layering and the connectivity of pores, while
keeping potential impacts on the vegetation community low. Over the recent years,
several of these units have been established over Europe, e.g. a network of 126
lysimeters at 12 sites has been established to monitor climate change induced
alterations in hydrological cycling within the TERENO project in Germany (Bogena et
al.,, 2006; Zacharias et al., 2011). However, the large dimensions (1m diameter/
volume) and the corresponding economic efforts for their establishment did mostly
eliminate the possibility for replicated manipulative experiments employing fully
integrated lysimeters.

In a common garden experiment we used a network of automated small scale

lysimeters to emerge community specific differences in the temporal dynamics of soll
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water depletion and evapotranspiration. Two different Alpine grassland communities
were subjected to contrasting levels of water availability. Sheltered from natural
precipitation, soil water content was manipulated by applying two distinct irrigation
regimes: one providing water in regular intervals and another exposing the
corresponding experimental units to extended periods of drought. Changing
atmospheric demand of water vapour driven by the natural variability of air
temperature and humidity coupled to the manipulated water availability in the soil
allowed to investigate and reveal vegetation specific conductance properties and
water utilisation patterns. For this study we hypothesize that the vegetation adapted
to local, humid conditions and characterized by high biomass and a water spending
strategy will keep transpiration rates high while soil water availability is decreasing
until a sudden decline near wilting point. As a consequence it will also continue to
produce biomass until the break point. In contrary, the water saving strategy of the
drought-adapted vegetation will lead to a continuous decrease of transpiration and

biomass production with decreasing soil water availability.
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MATERIAL & METHODS

Characteristics of the experimental field site and lysimeter installation

The study site of the experiment was established during early summer 2014 in
the LTER-Austria site ‘Stubai’ (valley bottom meadow) Neustift im Stubaital (A). The

site for the garden-experiment was located on the valley floor at 972 m a.s.l.
(WGS84: N47.115833, E11.320556) in a meadow used for hay production.

Table 1 Summary of site conditions and vegetation properties

Matsch/Mazia (M) — transplant

site Stubai (S) — study site location o
origin
o Neustift im Stubaital, ]
municipality ] ) Mals/Malles, Vinschgau/Italy
Wipptal/Austria
elevation/ altitude (m a.s.l.) 970 1570
longitude/ latitude 47°07'05"N 11°19'17“E 46°41'19“N 10°34'42"E
average temperature (°C) 6.5 6.6
average precipitation (mm) 1097.0 526.7
growing season length (no of
days with average 224 190

temperature of at least 5 °C)

land-use hay meadow/ 3cuts per yr/ hay meadow/ 2cuts per yr/ fertilized
fertilized with cow dung with cow dung
soil type gleyed Cambisol (A-Bv-Go) Cambisol (Ah-Bv-C)

soil classification

loamy sand to sandy silt

loam to sandy loam

soil physical parameters in different soil depth

0.05m 0.15m 0.25m 0.05m 0.15m 0.25m

soil texture (%)

sand 31 31 34 25 34 40

silt 58 63 61 43 45 43

clay 11 6 6 32 21 17
soil organic matter content
% 3.6 1.3 0.7 7.4 3.9 2.3
plant available water (vol%) 32 39 39 34 33 27
phytosociological Poo trivialis - Alopecuretum Ranunculo bulbosi-Arrhenatherum
classification pratensis (Regel 1925) (Ellmauer)
species inventory Achillea millefolium, Carum carvi, |Achillea millefolium, Anthoxanthum
(responsible for 90% of total | Pimpinella major, Poa trivialis, odoratum, Anthriscus sylvestris,
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plant cover in the lysimeter) [Ranunculus acris, Rumex acetosa, |Carum carvi, Festuca rubra,
Taraxacum officinale, Trifolium Leontodon hispidus, Lotus
pratense corniculatus, Poa trivialis, Primula
veris, Taraxacum officinale,
Trifolium montanum, Trifolium

pratense, Veronica officinalis

abundance of functional graminoids forbs legumes | graminoids forbs legumes

groups (%, mean +s.d.) 142+55 67.8+10.2 14.1+9.0/49.2+25.1 28.3+20.118.8+17.9

For this experiment six plots of 3.5 x 3.5 m were established. Traversing the
corresponding area, each plot was defined by installing half-cylindrical metal frames.
In the centre of each plot these frames providing the base for the rain sheltering
reached a height of approx. 2.5 m. In each corner at the outer plot margin four
irrigation sprinklers pointing towards the centre of the plot were set up. The irrigation
system described in detail by (Newesely et al., 2015) was used to simulate
precipitation during periods of experimental manipulation of water provision to the
system.

In the centre of each plot two small-scale lysimeters with 0.3 m diameter and
0.3 m depth were installed in collaboration with, and supervised by the employees of
the manufacturer (Smart-Field-Lysimeter, UMS/Meter Group Munich, Germany).
Every lysimeter was filled with a soil-vegetation monolith by cutting the hollow
cylindrical lysimeter blank into an undisturbed patch of the corresponding ecosystem.
This compression free procedure allowed to remain the original and unaffected
stratification of the soil and to conserve the natural composition of pore spaces within
the monolith. The filled lysimeter blanks were subsequently excavated and cut
horizontally at a depth of 0.3m. With 90 % of root biomass distributed above 0.2 m in
both investigated vegetation types, a lysimeter depth of 0.3 m was assumed to be
sufficient. The bottom of the lysimeter was closed with a tension controlled hydraulic
boundary connected to a bi-directional pumping system to regulate water flow into
and out of the lysimeter. After inserting soil moisture, temperature (EC-5 Small Soll
Moisture Sensor, Decagon Devices, USA) and matrix potential probes (MPS-2,
Decagon Devices, USA) at 0.05, 0.15 and 0.25m depth into the lysimeter monolith,
each system was placed on a weighing platform (accuracy of 0.005 kg, PL-50,

UMS/Meter Group Munich, Germany). Two of these lysimeter units were installed in
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the centre of every experimental plot within a two by two squared grid of 1.2m edge
length with their relative position to each other assigned randomly.

The two monoliths in every plot were excavated from different types of
vegetation, one containing a mesocosm of the meadow surrounding the
experimental field site (S, Table 1), and another one which was excavated and
transplanted from a meadow in Matsch/Mazia with contrasting environmental and
biotic properties to those of the study site (M, Table 1). The Stubai grassland is
classified as Poo trivialis - Alopecuretum pratensis with a community of low
complexity: abundant Poaceae accompanied by some herb species (Wohlfahrt et al.,
2008). The meadow is actively managed, cut two to three times each year and
fertilized with cow manure in spring and autumn (approximately 0.35 kg dry matter
per m2, Table 1). The local climate is dominated by high total precipitation values,
especially in the summer. The vegetation of second origin (Matsch/Mazia) is
characterised by the traditional, more extensive use of the corresponding system.
The Matsch Valley has a dry inneralpine climate with a mean precipitation of 527 mm
per year and a mean temperature of 6.6 °C (Hydrographical Department of the
Autonomous Province of Bozen-South Tyrol). The vegetation is a dry hay meadow
(Ranunculo bulbosi - Arrhenatherum, Ellmauer) on loam to sandy loam. The site is
fertilized with cow dung and cut two times each year. The excavation location of the
replicate lysimeters was optimized according to the presence of representative and
joint species in the respective vegetation patches. After installing the local and
transplanted lysimeter mesocosms during early summer 2014 into the experimental
plots, the vegetation surrounding the lysimeters was allowed to recover from
disturbances of necessary soil works required to wire the fully automated measuring
system until spring 2015.This extensive recovery period of more than 8 months
including the winter season and the initial growth phase until the first harvest in the
actual measuring year should provide a sufficient acclimatisation and regeneration of

both vegetation and soil in the lysimeters and prevent a bias between vegetation

types.

At the field site, all experimental plots and the vegetation in the lysimeters was
managed (cut, fertilized) concurrently to land-use scheme of the surrounding
meadow. The experimental period started in the last third of June 2015 during the re-

growth interval after the first cut at the beginning of June. With beginning of the
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experiment on June 10" 2015 rain shelters were closed using a UV permeable
transparent polythene film (Lumisol Clear AF, 88% - 92% light transmittance). Air
temperature (on average 0.26 K higher in the shelter) and humidity (+0.11 %) were
hardly affected by the shelters while radiation was reduced by 25% and wind speed
by 50% even though shelters were left open on the sides facing the main wind
direction and closed down to just 0.5 m above the soil level on the lateral sides to
minimize shielding of the wind. Concurrently with closing of the rain shelters (10/06)
precipitation was provided from the irrigation sprinklers mimicking average rain fall
amounts and intensities for the 30 year period between 1970 through 2000.Over a
period of 52 days (20/06-10/08) the plots of the experiment were subjected to control
watering within the two different irrigation schemes (Fig. 1), one providing water on a
regular basis (REG) and one with extended drought periods (D). However, due to
technical problems the watering scheme stayed below the intended amounts for
approximately the first half of the experimental period making manual compensation
occasionally necessary (starting on 15/07). Automated irrigation was programed to
occur around mid-night in order to avoid immediate transpiration from the surface
and allow the provided water to penetrate into the soil compartment. Manual
adjustments and checks on the precipitation simulator were usually performed during
day-time. The lysimeter mesocosms in the treatments with regular watering (REG)
received approx. 117 kguzo per m?, those in the treatments with extended drought
periods an average of 65 kgn2o per m2 throughout the duration of the experiment and
according to the scheme presented in Fig. 1.
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256 Fig 1. A) Schematic overview of the experimental design and plot setup; B)
257  Manipulation of water availability for individual lysimeters of the two vegetation types
258 (Stubai (S) & Matsch/Mazia (M)) by contrasting irrigation schemes - one providing
259  water on a regular basis (REG, solid lines), one with extended drought periods (D,
260 dashed lines)

261

262 Automated measurements
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In the centre of each of the six plots a microclimate station measuring air
temperature and relative humidity (height: 1m; U23-002 HOBO® External
Temperature/Relative Humidity Data Logger, Onset Computer Corporation, USA),
solar radiation (height: 1m; S-LIB-M003, Solar Radiation Sensor, Onset Computer
Corporation, USA), wind speed (height: 1 m; DAVIS® Standard Anemometer 7911,
Davis Instruments, USA) and soil water content 0.05 and 0.2m below the ground (S-
SMA-MO005, Soil Moisture Smart Sensor — 0.2 m ECH20® probes, Decagon, USA)
was installed. The corresponding measurements were logged for every ten minutes
interval (HOBO Microstation® Data Logger; Onset Computer Corporation, USA).

For each of the lysimeter, weight data were recorded every minute, data
received from matric potential, soil temperature and water content sensors (each in
0.05, 0.15 and 0.25 m depth) in ten minutes intervals. The hydraulic boundary at the
bottom of each lysimeter was connected to a reservoir of drainage water with the
corresponding container also being placed on a balance. A bi-directional pumping
system allowed the adjustment of the water content at the lower boundary of the
lysimeter by transferring water either from the drainage container into the lysimeter
or the contrary direction. This implementation allowed to adjust the water levels at
bottom of the lysimeter according to a reference matric potential measured at the
same depth in the natural unaffected soil column of the respective experimental

plots.

Manual measurements of biomass development

Variability of water flux from vegetation canopies to the atmosphere has two
components: a) the variation in standing biomass and b) the water vapour release
activity per unit biomass. Therefore, decomposing and addressing these two factors
independently is advisable, especially when functionally different communities with
differing biomasses are being compared. However, non-destructive biomass
estimation of complex stands in the field can be challenging with respect to desired
accuracy. In order to generate robust estimates different methodologies were
combined in the current experiment. Measurements of maximum and average
canopy height (Machado et al., 2002) were supplemented with a pin point procedure
(Jonasson, 1988) and measurements of projected area (Lati et al., 2013) for biomass
estimation in the lysimeters. For measuring pin contacts a thin metal rod was

lowered through a plate placed above down to the lysimeter. Pin measurements
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were replicated in seven (out of 21) randomly assigned positions for each lysimeter
and point in time. Pin contacts were referenced within three height classes (0-20, 20-
40, 40+ cm above the ground) and by functional group identity of the plants. For the
determination of projected area of the lysimeter canopies the methodology proposed
by Tackenberg (2007) was adapted. Digital images of the lysimeter stands in front of
a white half-cylindrical background were scaled according to a size standard in each
picture, converted to a black-white colour scheme, before black pixels were
enumerated. On average, biomass of the lysimeters was estimated for every third
day through the period of the experiment. The different methods for non-destructive
biomass estimation were calibrated against weighted biomass at the harvests prior
and subsequent to the experiment (10/06 and 10/08). Based on these calibrations
the biomass development in the Ilysimeters was predicted throughout the
experimental period.

Data processing and statistics

To calculate the water mass fluxes at the soil-vegetation-atmosphere interface
of the upper lysimeter boundary, weight differentials of the drainage reservoir and
the lysimeters were summarized and subsequently cleared for spikes and signals of
implausible strength (Schrader et al., 2013). The latter was necessary because the
sensitive weighing elements are susceptible to environmental noise or accidental
interference by other experimental proceedings (e.g. biomass estimation), while
providing a high accuracy and temporal resolution. The combined weight signal was
separated into irrigation induced weight gain of the lysimeter units and weight loss
caused by evapotranspiration from the upper lysimeter boundary. Subsequently,
daily totals were calculated for both mass differentials.

A soil-specific calibration of the soil moisture and the MPS-2 sensors is a
necessary prerequisite to achieve its highest degree of absolute accuracy in soll
water content (SWC) measurements. A substrate moisture retention curve (pF vs.
volumetric water content) and the hydraulic conductivity as a function of pF (log10 of
the matric potential) were determined for both types of soil-vegetation monoliths (M,
S). The soil hydraulic parameters were determined in the laboratory, using the
method of (Schindler, 1980) with the HYPROP system (UMS/Meter Group Munich,
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Germany). Using the soil specific moisture retention curve, absolute SWC was
corrected based on soil matrix potential data. To summarize the time course of water
availability in the soil of each lysimeter unit, the average values of SWC of both
layers between 0.05 - 0.15m and 0.15 — 0.25m were integrated and summarized on
a daily basis.

The evaporative demand of the atmosphere is expressed by the reference crop
evapotranspiration (ETy). It represents the evapotranspiration from a standardized
vegetated surface and was calculated in this study after the FAO Penman-Monteith
standard method (Allen et al., 1998). ET, integrates the most important atmospheric
components (solar radiation, temperature, VPD and wind velocity) defining the
atmospheric water demand. Daily averages were used as a summed up explanatory
parameter to capture the atmospheric draw of water vapour from the lysimeter
vegetation for further analysis.

Non-destructive estimates for the standing biomass in the lysimeters were
calibrated at the harvests before and after the experimental period. Nine different
regression models were generated for the different estimation techniques individually
and in combinations. Based on the prediction of these models biomass was
estimated for every measurement (total of 16) during the experiment. The biomass
development in the different lysimeters followed a non-linear trajectory. To generate
a consensus time-course describing the growth progression in every lysimeter, a
general additive mixed model smoother was fitted for each unit (gamm-function in
the mgcv-package, R Development Core Team, 2015) with the different prediction
methodologies defining random (observer) - effects. The flexibility of the time course
defined with these smoothers was constrained by allowing a maximum of five knots
for these smoothers. Granting an approximate average of three measurement points
per knot (16 to 5) successive sampling points were capable to change the trend of
biomass progression while implausible fluctuation were prevented. Based on these
models, standing biomass was predicted on a dry weight basis for every lysimeter
entity and each day of the experiment.

For the evaluation of evapotranspiration responses mixed effects models were
fitted using the nlme-package (Pinheiro et al., 2017). All these models included the
identity of the different vegetation types (categorical) in full factorial combination with
additional covariates defining the fixed part of the model as detailed below. To reveal
the drivers of variation in daily ET rates and separate the effects of variation in
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biomass (DW —dry weight) and evapotranspiration rates per unit biomass (ET/DW)
among the different monoliths, a log-log-scaling method was applied on the formula
ET = ET/DW x DW based on the methodology provided by (Renton and Poorter,
2011). This procedure allows decomposing the importance of different factors of
sources in the variation of a synergistically (multiplicative) defined trait and is not
meant to establish a statistical relationship between independent parameters. For
summarizing the time courses of SWC and ET, the day of the experiment and the
two irrigation schemes were considered as additional categorical variates. For
modelling the response surface of ET along the two dimensions of ETo and SWC,
the latter two and all possible interactions with vegetation type were defined as
continuous covariates for the fixed part of the model. However, all models included a
random intercept for the experimental plot in which the data were collected. Nested
within the random effect for the plot, the lysimeter identity was included as another
random effect to fully represent the dependence structure in the hierarchical design
of the experiment. Where they were found to significantly improve the model fit,
lysimeter specific response to continuous covariates in the fixed part were included
as random slopes (see Table 2). Further, to account for autocorrelative errors
according to the time-series origin of the data, a continuous autocorrelation structure
(corCARL1 in nlme-package) was defined by the day of the experiment. All statistical
analysis presented here were performed using the R statistical programming

language (R Development Core Team, 2015).
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390 lines, D - dashed lines; bold lines: treatment average; shaded area: standard

391  deviation, thin lines: individual plots); S: Stubai, M: Matsch/Mazia.

392
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The average air temperature during the course of the experiment was 17.5 °C (x
3.1°C - standard deviation). Among the different plots no systematic variation of
temperature, relative humidity and solar radiation was measured by the microclimate
stations underneath the shelters. Summarizing the different atmospheric
components defining rates of ET, ET, was calculated. During the duration of
experiment the average daily ETo was 3.26 kguzo m™? d™ (£ 1.95 SD) with a minimum
at 0.75 and a maximum of 6.4 kgioo m? d™. However, since ETy is subject to short-
term natural variation of the underlying environmental parameters, fluctuations
between consecutive days were found to be very pronounced and no temporal trend

was revealed over the period of the experiment (Fig. 2).
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Fig 3: Dynamics of daily average ET over the course of the experiment for two
different vegetation types (S & M, Table 1) subjected to contrasting irrigation regimes
(REG - solid lines, D - dashed lines; shaded area — standard deviation); S: Stubai, M:
Matsch/Mazia.

During the time of the experiment the two contrasting irrigation schemes led to
distinct SWC dynamics within the respective mesocosms (Fig. 2). Since SWC in all
lysimeters was high at the beginning of the experiment the value initially decreased
in all plots irrespective of treatment indicating that the water irrigated on plots with
regular irrigation did not fully compensate the loss of water by ET of the

corresponding communities. The first clear effects of different irrigation became
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apparent in the lysimeters with the M-type of vegetation only after applying
approximately two weeks of drought. In the lysimeters with the S-type of vegetation
the variability of SWC was far stronger, a distinct difference between watering
schemes could be observed there only after the start of additional manual watering.
After approximately one month, SWC in both vegetation types revealed clear effects
of the contrasting irrigation strategies. At that time, SWC of both treatments was
restored to similar values observed during the initial stages of the experimental
period in order to avoid distress in the drier mesocosms. Rates of daily ET from the
lysimeters were varying very strongly through the period of the experiment and did
not reveal a general temporal trend (Fig. 3). As the canopy height and biomass of
both vegetation types was clearly higher than the reference vegetation assumed for
ETo, the average evapotranspirative water loss for the lysimeter unit during the
duration of the experiment also surpassed ETo with 4.9 kg0 m™ d*. Subject to the
atmospheric water vapour pressure deficit the recorded fluxes were characterised by
a similar unsteadiness as the variability of the underlying environmental parameters
would suggest. During the first third of the experiment ET of the S-type lysimeters
was on average higher than the M-type, afterwards no clear difference between
vegetation types could be detected.. A clear difference of ET between contrasting
irrigation regimes was only found during periods of strong divergence of SWC
among the two treatments (approx. 15/07 to 25/07) during the rest of the
experimental period ET on the drought regime was only slightly lower than in the

regular one.

200

150

biomass [gpy X M?]

100

20/06 30/06 10/07 20/07 30/07 10/08 30/06 10/07 20/07 30/07 10/08



438
439
440
441

442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

Fig 4: Predictions of biomass development for the two vegetation types (S: Stubai,
M: Matsch/Mazia, Table 1) subjected to contrasting irrigation regimes (REG - solid
lines, D - dashed lines; shaded area — standard deviation) throughout the duration of

the experiment based on non-destructive measurements

The prediction of biomass development combined from the different non-
invasive estimation methods suggested distinct growth trajectories for the two
vegetation types in interaction with the two irrigation regimes. The mesocosms with
communities belonging to the local S-type revealed larger biomass increment during
early stages of the experiment irrespective of the applied irrigation regime. However,
with increasing duration of the experiment, growth dynamics started diverging in
treatments with contrasting water provision, with biomass differences peaking at the
mid-time of the experimental period. After that peak, the prediction of dry weight
suggested a decline in standing biomass for both water regimes in the S-
communities. Towards the end of the experiment, biomasses of communities in the
different water treatments converged to similar values. This pattern of vegetation
development indicates that the early irrigation rates of the REG treatment were
indeed too low and the manual compensation came too late for a regular
development of the vegetation. Thus, also the S-type lysimeters subjected to the
REG-treatment suffered a drought related early peak of biomass and subsequent
senescence with just a short delay to the D-treatment. A different pattern of biomass
development was detected for the transplanted mesocosms (M). From the beginning
of the experiment growth processes of the different irrigation treatments yielded
distinct trajectories. In the treatment experiencing regular water provision the
biomass gain per unit time was stronger than in the mesocosms being subjected to
irregular watering. That pattern was consistent throughout the experiment, with a
strictly monotonic increase of standing biomass in the M communities of well-
watered plots. In contrast, the vegetation of the M-type in the plots with restricted
watering growth started stagnating during the second half of the experimental period.
Unlike the S-type, at the end of the investigation period, biomasses in the M-type

communities were clearly distinct according to the different watering regimes, with
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the standing mass in the regularly watered plots approximating double the amount

compared to the treatment with restricted water provision.

log (ET/pw)

log ET

Fig 5: Log-log scaling for the two factors defining variability of ET: ET rates per unit
dry weight (ET/DW) and standing biomass (=dry weight, DW) for the two different
vegetation types (S & M, Table 1) subjected to contrasting irrigation regimes (REG -
solid lines, D - dashed lines; shaded area — standard deviation), red line indicates a
reference function with the slope of 1. X-axes of the sub-plots have the same limits

and units as the corresponding main plots.

Variability of ET is subject to variation in evapotranspiration rates per unit
biomass (ET/DW) and the variation in the standing biomass. Hence, when
comparing rates of ET differentiating both underlying components will provide deeper
insights on how the vegetation interface of different communities mediates the water
flux from the soil. A strong positive correlation of total daily ET and ET/DW was
found (Fig 5). The log-log-scaling of ET/DW with ET revealed a slope of 0.998
arguing that variation in ET rates measured during the course of this experiment is
almost exclusively defined by the variation in ET rates per unit biomass (100% = 1).

This relationship was independent of vegetation type and irrigation scheme.



488  However, variations of biomass did not have an effect on the variability of total ET
489 rates (Fig. 5).
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491  Fig 6 A) 3D plots: response surface of ET per unit DW (ET/DW) along the two-

492  dimensional variation of ETo and SWC for the two different vegetation types (S:

493  Stubai, M: Matsch/Mazia, Table 1); B) projections of ET/DW response along ET, and
494  SWC at maximum/minimum value of the particular other (red: S-communities, grey:
495  M-communities)

496 After revealing ET/DW as the most important driver in defining variation in the
497 rates of total ET from the lysimeter mesocosms, the effect of combined variation in
498 ETo and SWC on rates of ET per unit biomass was modelled in dependence of the
499  vegetation type (ET/DW = f(EToxSWCxvegetation type)).On the entire field site, on
500 average the daily sums of ET, ranged from -0.75 to a maximum of 6.4 kguzo m? d*,
501  while within the individual plots daily average values ranged from -0,86 to 7,2 of 6.4

502  kguzo M2 The averaged SWC realized during the duration of the experiment



503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529

covered a range from approximately 12-47% (Fig. 5). Both, ETo and SWC had a
highly significant and positive effect on achieved rates of ET/DW (Fig. 6, Table 2).
However, as implied by a significant synergistic interaction of ETo and SWC, rates of
ET/DW increased stronger if SWC and ET, increased concurrently than the
individual gradients of either would imply (Fig 6.). With increasing ET, the response
of ET/DW was stronger the higher SWC was. However, there was a significant
difference how both vegetation types responded within the landscape of
environmental drivers defining ET/DW (Table 2). The local (S) vegetation had higher
rates of ET/DW - when both ETp, and SWC were low - than the transplanted
vegetation type (M), suggesting a higher base rate of ET/DW. On the low end of
investigated SWC the M-vegetation had a stronger response to ET, than the local S-
vegetation. Despite that stronger response of the transplanted vegetation (M) along
the ET, gradient at low SWC, the maximum rates of ET/DW converted to similar
values due to the higher base flux at low ETy/ low SWC in the S-vegetation. In turn,
under conditions of high soil water availability the ETo-response of the S-type was
much more pronounced than in the M-type. A similar pattern was found comparing
the SWC-response of both vegetation types for the range of different ET, values
realized during the experiment. At low ET, the M-type vegetation responded stronger
to variations in SWC, while there was almost no response in the S-type. However, at
high ETo the response of the S-type to increasing SWC was again much more
pronounced than in lysimeters with the M-type. Because of the higher rates of
ET/DW at low ETo/SWC and the overall increased response potential of the S-type
vegetation, the ET/DW values achieved in the M-communities stayed below those
found in the local vegetation for almost the entire range of combinations between

ETo, and SWC investigated in this experiment.

Table 2 Parameter and parameter interactions affecting the ET,.SWC landscape of
ET

Parameter F-value p-value
ETo 341.31 <0.001
SWC 28.09 <0.001
vegetation type 2.81 0.154
ETo x SWC 37.20 <0.001
ET, x vegetation type 1.24 0.265
SWC x Vegetation type 2.74 0.098
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Fig 7: Productivity of two vegetation types (x standard error, Stubai - red &
Matsch/Mazia - grey; Table 1) subjected to contrasting irrigation schemes (Fig 1),
right panel: dry matter productivity of two vegetation types (see above) as function of

accumulated evapotranspiration over the experimental duration

Comparing the productivity of the two vegetation types among the two irrigation
treatments revealed a contrasting response for the DW productivity (Fig. 7, left
panel). For the local S-Type the biomass gain over the experimental period did not
show a strong dependence on the applied watering regime. Due to the insufficient
irrigation mentioned before the productivity of the S-type stayed well below from
what would be expected for the vegetation outside the experimental site in both
treatments. For the M-communities, however, productivity was on average more than
two fold higher in the plots experiencing regular water provision compared to those
exposed to extended periods of drought.

Integrated over the entire experimental period, the biomass productivity per unit
water usage was significantly higher for the transplanted mesocosms M (Fig 7, right
panel). The data suggested a productivity increase of 2.6gpw per kg of water for the
M vegetation. In contrast, for the S-type mesocosms the average increase of
productivity per 1kg of evapotranspiration was approximately only 0.16gpw per kg but

was strongly influenced by highly variable productivity of the two lysimeters with the
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highest accumulated ET (Neglecting this one observation, productivity in the S-
vegetation was around 0.91gpw per kg of water). This pattern suggests that biomass
generation in the M-type vegetation is strongly dependent on ET and therefore water
availability. For the S-type vegetation the early decrease of biomass in both
treatments and the high variability of productivity at high ET made it difficult to

assess an integrated trend in water use efficiency for the entire experimental period.

DISCUSSION

It is intuitive to understand, that ETo and SWC impose independent and
interacting effects on water fluxes from the soil to the atmosphere with one of either
constraining the total rates of ecosystem ET (Kim and Verma, 1991; Perez et al.,
2006). Beyond the effects of these abiotic drivers, the measurements of the present
experiment reveal a community specific signal in the definition of ecosystem water
exchange. The community specific configuration of the soil-plant-atmosphere
interface is instinctively acknowledged if distinct vegetation types are compared.
Water fluxes from the system will to some degree always scale with productivity and
total biomass of the vegetation (Zeppel et al., 2014 and references therein). This
relationship will drive variation in ET of contrasting biomes together with
environmental parameters affecting the availability and the atmospheric demand of
water.

However, results of this experiment reveal that vegetation specific differences
have a component, which defines ecosystem water flux beyond the impact of
variations in total biomass. Such differences will be important to understand and to
consider if communities of the same type need to be evaluated with respect to their
particular impact on the hydrological regulation of the ecosystem. The response of
water fluxes along co-operating gradients of SWC and ET, indicated divergence in
the conductance potential of the two alpine grassland communities, which were
independent from the biomass present. At low SWC lower values of ET/DW for the
M-type vegetation indicate a better ability to control water loss in dry conditions event
though the difference to the S-type diminishes with increasing ETy. Conversely,
under conditions of high soil water availability water fluxes from the S-type

responded much stronger to increases of ET, suggesting a higher overall
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conductance potential. Similar implications were revealed along the gradient of soll
water availability. SWC variations had almost no effect on the S-type communities
when the atmospheric draw was small, while the M-type mesocosm still mediated
fluxes to the atmosphere. Under high ETy however, the divergence in the response
of ET between S & M-communities to varying SWC suggests that, from starting at
similar rates, ET of the S-type increased far stronger the less soil water became
limiting. These differences between the two vegetation types indicate different
strategies in the water utilisation. For the M-type this strategy may be summarized by
overall lower ET rates than for the S-type for most environmental scenarios included
within the experimental period and a stronger control of transpiration especially at
low SWC. . This implies an overall conservative and water saving strategy. For the
S-communities, in contrast, which show high water conductance potential with
strongly increasing ET rates when environmental conditions become less
constraining, an acquisitive strategy is suggested. With high rates even at base level
this community appear not to be optimized to save water and might experience
drought effects earlier and probably stronger, when water availability becomes
limiting. There might be some dampening effect of soil hydrological properties event
though the slightly higher amount of plant available water for the S-type might be
offset by a finer texture and higher organic matter content regarding soil water
storage capacity. The different pattern of SWC with an earlier distinction between
REG- and D-Treatment after the first 2-3 weeks of the experiment are more likely
caused by the lower ET of the M-type vegetation during this period. Although soil
hydrological properties play a role in the community specific conductance potential of
soil water to the atmosphere, differences found for the investigated two different
vegetation types turned out to be not decisive in this context.

Sharing a common environment, the differences in biomass-independent
conductance potential between the two Alpine grassland communities are likely to
have a foundation in a contrasting physiological, functional and structural
organisation of the vegetation. Functional divergence in water utilisation,
evapotranspiration and other aspects of hydrological regulation of ecosystems (e.g.
infiltration, surface run-off) between communities can be manifested by the
frequency distribution in the values of particular traits (Diaz et al., 2013). Canopy
complexity - density and size, growth form composition, composition and diversity of

vascular structures, stomatal density and conductance mediate community specific
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differences in the evapotranspiration aboveground (de Bello et al.,, 2010)
Belowground, the structure and depth of the individual rooting systems is an
important determinant for the water utilisation potential of communities (Knapp et al.,
2008). Along the variation and composition of these traits water usage and
consequently also drought resistance of contrasting communities is defined. The
differences in the two vegetation types suggest high exploitation potential for scarce
soil water, probably facilitated by a higher priority on water exploitation in the soil in
the M-mesocosms and, conversely, a stronger importance on aboveground
structures mediating light capture and gas-exchange, leading to an increased
response potential of ET for atmospheric triggers in the local S-communities.

The clear vegetation response to variable water availability observed in the
present experiment is not common in studies targeting Alpine grasslands (de Bello et
al., 2010). Based on multi-annual measurements of evapotranspiration at 16 sites in
the Austrian Alps, it was suggested, that even during years with low annual
precipitation Alpine grasslands do not experience water stress (Wieser et al., 2008).
Gilgen and Buchmann (2009) could not conclude on a general drought response of
grasslands in Switzerland, while acknowledging a site-specific impact with
communities receiving less annual precipitation being more susceptible to drought
stress than those at higher rainfall levels. Also arguing for a co-defined and
interactive manifestation in the effects of varying water availability, a strong drought
response of Alpine grassland functioning was revealed under scenarios of co-
occurring heat waves (De Boeck et al., 2016). A modelling study for grassland
ecosystems in the Austrian- and French Alps suggested a higher vulnerability to
drought for communities with a water spending strategy targeting on water provision
of the ecosystems in general (Leitinger et al., 2015). However, it seems
inappropriate to synthesize a general summary on the response of Alpine grasslands
to variations in water availability given the small body of research performed.
Considering the different spatio-temporal scales, the range of parameters measured,
and the management and biodiversity spectrum of different grassland types in the
Alps, drawing broad and universal generalisation yet becomes unrewarding. For
experiments with contrasting treatments the practicalities of manipulating water
availability potentially also need to be considered for the interpretation of the results.

Drought scenarios are usually generated by rain-out shelters using a UV-
permeable, transparent film for roofing. If compared to unroofed controls,
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temperature differences and attenuation of photosynthetically active radiation
reducing total productivity will have to be expected as pure artefacts of the sheltering
(Vogel et al., 2013). However, even if both treatments are sheltered, differential
irrigation may not immediately lead to the realisation of varying water availabilities.
The beginning of the present experiment was marked by the establishment of the
rain-out shelters and the omission of irrigation in the treatments with irregular
watering (D). From this point, it took approximately two weeks for the SWC of both
irrigation schemes to diverge significantly in M-type mesocosms, for the S-type even
longer. Therefore, regular irrigation and, respectively, its omission can, counter-
intuitively, only be an indicator of contrasting water availability. The establishment of
drought conditions in the strict sense of a depleted soil water reservoir is realized by
the interaction of pre-treatment SWC, standing biomass and atmospheric effects.
Variations in vegetation water status have to be defined in context of water
availability (supply) and physiology, phenology and the leaf-to-air evaporative
gradient (Gilbert and Medina, 2016). The beginning of the experiment was
characterized by combination of days with consistently high averages of ETo, and
high SWC in all mesocosms. This combination led to high ET and a decrease of
SWC for all experimental units. Due to the parallel decline of SWC irrespective the
watering regime applied, the water availability differentiation among the treatments
was delayed. For such reasons, it was argued to define variations in water
availability not purely on the basis of contrasting regimes of water input (i.e. irrigated
vsS. non-irrigated) if these are not causing systematic variations in soil moisture
(Kramer, 1983). Defining water supply based on the continuous range of SWC rather
than discrete irrigation treatments considers soil type specific characteristics of
matric potential and hydraulic conductivity. Also practical problems with realizing
discrete treatments of water availability in the field (i.e. precipitation entry to
sheltered plots due to heavy winds, spatio-temporal variation in the effectiveness of
automated irrigation) will be migrated by referencing ecosystem responses to
gradients of water supply. Defining vegetation responses along continuous ranges of
environmental factors will further yield stronger information about the response

surface of the system and improves model building and testing (Beier et al., 2012).

CONCLUSION
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Irrespective the variability of different water availabilities within the two irrigation
regimes, mesocosms subjected to regular watering (REG) had on average a higher
productivity than those with irregular and in total less irrigation. However, significant
differences between the different communities were found in the response to
variations in the water supply (Fig 7). Relating total productivity to the amount of
evapotranspirative water release over the experimental period revealed a higher
biomass gain per unit water in the M-type communities. The higher water use
efficiency in the biomass production of these mesocosms together with their overall
stronger water saving strategy reinforces their optimisation to scarce water supply.
For the local S-communities, in contrast, the low biomass differential per unit water
consumption indicates a high potential to conduct water from the soil to the
atmosphere and that productivity of this vegetation is probably not often constrained
by water availability in its natural context. Brilli et al. (2011) expect from a water
spending strategy to have a cooling feedback in terms of climate warming. Hence,
the optimization of future grassland management could play a crucial role by
adapting species composition. Furthermore, understanding the specific hydraulic
conductance potential of soil water for varying grassland ecosystems is a
prerequisite to achieve maximum agricultural yield in a future environment. However,
a negative feedback for water provision services (i.e. down-stream water users) has
to be expected. Further decisive changes remain debatable: How will ‘water
spending’ plant communities adapt if droughts occur more frequently and possibly
with higher intensities (Bahn et al., 2014; Reichstein et al., 2013). To what extent
play — at least initially - physiological and morphological changes a role or is there an

immediate shift to a better adapted community?
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