Supplement

Figure S1: (a) Data points represent hourly radiation measurements (W m⁻²) from the ship (DOY 193.1 - 193.6 during SPACES) converted into photosynthetic active radiation (PAR, μmol m⁻² s⁻¹), blue line is the fitted data using a sine function. (b) Calculated PAR over the course of a day depending on depth by applying Beer-Lambert's law.

Figure S2: Example of two $E_dPAR(\theta+)$ depth profile measurements during ASTRA-OMZ. Data points are 1m binned data of station 6 (black) and station 15 (red). The line is calculated from $E_dPAR(\theta+)$ profile by applying Beer-Lambert's law using a station specific attenuation coefficient K_d obtained from the $E_dPAR(\theta+)$ depth profile measurement at the corresponding station during ASTRA-OMZ.

10

15 Figure S3: Single literature laboratory chl-a normalized isoprene production rates P_{chloro} (µmol isoprene (g chl-a)⁻¹ h⁻¹) (Table 2) as a log squared function of light intensity I (µmol m⁻² s⁻¹).

Figure S4: Example of calculated P_{chloro} values (µmol isoprene (g chl-a)⁻¹ day⁻¹) for each PFT at station 9 during SPACES depending on the depth in the water column.

Figure S5: Contribution of each of the three most abundant PFTs to the total phytoplankton chl-a concentration at each station during SPACES (upper panel), OASIS (middle panel), and ASTRA-OMZ (bottom panel).

25