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Dear M.E. Gharamti, 
 
We greatly appreciate your valuable and constructive comments, which will help us 
improve and clarify the manuscript and presentation of the parameter selection and 
optimization procedures in particular. In response to your questions and suggestions, 
please find our answers and proposed changes (in blue) following each of your comments 
below. All line numbers refer to the original submitted manuscript. 
 
We thank you again for your review. 
 
Sincerely, 
Daniel Kaufman, Marjorie Friedrichs, John Hemmings, Walker Smith 
 
 
The article presents a DA study in the Ross Sea, a region of the southern ocean. The 
authors use bio-optical glider data to reduce the model-data misfit of Chl concentration 
and POC. In the process, 8 different uncertain parameters are identified and optimized 
with incoming observations. The authors provide a thorough assessment of the DA 
system by changing the spatial and temporal resolution of the observations. This is 
performed in an effort to understand the impact of the number and type of observations 
(e.g., cruise and satellite) on the resulting biogeochemical modeling skill.  
 
I think the paper is well-written, clear and nicely organized. The authors tackle an 
interesting problem that researchers within the DA-marine ecology community have been 
investigating for a while. Although the results from such a small domain and a 1D model 
can not be generalized for large-scale problems (the authors recognize this), the article 
presents novel research points especially those of the parameter optimization. I have few 
minor comments (below), otherwise I don’t see any reason for not publishing this article. 
It would be good to address the comments below in the manuscript before publishing.  
 
Thank you for your positive comments. 
 
1- Section 2.2: I would like to see how the observational error variance is parameter- 
ized. I believe the observational mapping operator is quite nonlinear. So, what proce- 
dure did the authors follow to find both \sigma_chlˆ2 and \sigma_pocˆ2 (twin and real 
experiments)?  
 
The procedure we used was simply to calculate the inverse of the standard deviation, 
similar to other assimilation efforts (e.g. in Experiment #1 in Hemmings and Challenor, 
2012; Friedrichs et al., 2006; Xiao and Friedrichs, 2014b).  This definition of sigma was 
used for both the twin experiments described in section 2.5.3 (where the sigma was 



calculated from the synthetic dataset) as well as the real assimilation experiments 
described in section 2.6 (where sigma was calculated from the particular observation set 
assimilated in each case). 
 
You may notice that the second reviewer raised a similar question, and we there also 
indicate our proposed text for section 2.3, referencing other assimilation studies that have 
used standard deviations to weight the misfit contributions. Specifically, we propose 
modifying the text on lines 126-128 as follows: “where 𝑁 is the number of observation 
points, 𝑥! is the simulated value of either chlorophyll or POC at the ith observation point 
and 𝑦! is its observed value; 𝜎 is the standard deviation of the specific observation set 
assimilated in a particular experiment. Using the standard deviation of the observations to 
define a characteristic scale of variation for each variable is a technique used in previous 
studies (e.g. Friedrichs et al., 2006; Xiao and Friedrichs, 2014). It is designed to weight 
the relative misfit contribution of each variable appropriately when there are insufficient 
data to define a comprehensive error model. Such a model would require reliable 
information about the uncertainty associated with observation errors (instrument error 
and error of representativeness) and non-parametric errors in the simulation such as 
forcing errors (Schartau et al., 2017). The use of different cost function weighting 
schemes in plankton modelling including the characteristic scale technique is explored in 
more detail by Hemmings and Challenor (2012).” 
 
2- Maybe I missed it but it would be good to provide a discussion on the computational 
cost of the genetic algorithm. Obviously, the authors are using some kind of hybrid 
algorithm (genetic + Powell) but I’m pretty sure these (non-gradient based) won’t be as 
useful in large scale models. For instance, if the biogeochemical parameters are spatially 
varying then the degrees of freedom in the system will significantly increase. I’m not so 
much familiar with the algorithm the authors are using, so it would be good to see how 
does it compare computationally to an EnKF for example.  
 
To facilitate comparison with other assimilation methods, including EnKF, we propose 
including the number of model evaluations (approximately 4000 - 5000) in the text as 
described below. The number of evaluations and therefore the computational cost for our 
method is typically higher than EnKF, because our method is designed for a more 
comprehensive investigation of the parameter space. We think including computational 
cost in terms of run times in the manuscript would be of limited value because it would 
then also be necessary to report all hardware specs, which may be too much info and 
regardless, the hardware will probably be out-of-date in just a few years. 
 
You are correct that these optimization methods won't be as useful in large-scale models 
when applied directly. However, the parameters identified in a 1D model by these 
techniques can be used in larger 3D models, and this has been shown to improve those 
larger models (e.g. see the review in section 7.2 of Schartau et al., 2017). Furthermore, 
you are correct to point out that allowing parameters to vary spatially would increase the 
degrees of freedom in the system with further implications for the practicality of our 
method. However, the method is not intended for estimating spatially varying parameters 
but for estimating parameters that are spatially uniform over as large a domain as 



possible.	Given the increased model degrees of freedom associated with spatially varying 
parameters and the consequent increased risk of over-fitting, it is unclear to what extent 
allowing parameters to vary spatially would be useful. The issue is discussed in detail in 
Schartau et al (2017). 
 
We propose adding a paragraph at the end of section 4.1 to make the above points clear to 
the reader: “The high number of model evaluations in each optimization case (roughly 
4000 – 5000) makes such direct optimization impractical for large-scale models; 
however, the parameters identified in a 1D model by these techniques can be used in 
larger models, and indeed locally optimized parameters have been previously shown to 
improve the skill of 3D models in other regions (Oschlies and Schartau, 2005; Kane et 
al., 2011; McDonald et al., 2012; St-Laurent et al., 2017). It is expected that the 
optimized parameter values found in the one-dimensional assimilation experiments 
described here will be of value in a future 3D biogeochemical modeling analysis of the 
Ross Sea and, through model inter-comparisons, provide a basis for examining the 
dependence of these parameter values on model structure and level of complexity, as has 
been done elsewhere (Friedrichs et al., 2007; Bagniewski et al., 2011; Ward et al., 2013; 
Irby et al., 2016).” 
 
3- Section 2.4: I know it’s mentioned somewhere, but it would be good to state that the 
algorithm selects random parameters within a range. After all, the chosen parameters 
need to be physically meaningful.  
 
This is a good point, and yes, the selection of values from within the range for each 
parameter is discussed in section 2.5.1. Nevertheless, it is understandable for the reader to 
be wondering about it earlier in section 2.4.  To help the reader, we propose adding a 
sentence at line 147 that provides a brief clarification and cross-references section 2.5.1: 
“The constituent parameter values are selected randomly from within a pre-determined 
range of allowable values (Sect. 2.5.1).” 
 
4- Lines 168-170: I am not sure what the authors mean by this sentence. Consider 
rephrasing.  
 
In order to clarify the meaning of this sentence, we propose rephrasing it to: “Ideally, 
optimal values are identified for all parameters in a model, however, uncertainty in the 
parameter estimates from an algorithmic optimization increases as the number of 
parameters included in that optimization increases (Friedrichs et al., 2007; Ward et al., 
2010).” 
 
5- Section 2.5.2: I think adding a small appendix section summarizing the differences 
between a MC and a Latin Hypercube sampling would be useful for the reader.  
 
This is a good idea. We propose adding an appendix titled “Appendix A: Latin hypercube 
sampling (Sect. 2.5.2)” and inserting a cross-reference to this appendix on line 199. The 
proposed appendix would have the following suggested text: 



“Latin hypercube sampling (LHS) and Monte Carlo sampling are both techniques 
that can be used to randomly draw a finite number of samples from input distributions in 
order to approximate a full multidimensional distribution. The LHS incorporates 
stratified random sampling, i.e. in each dimension each sample is drawn randomly from 
within a different interval (also called a stratification or layer) of the distribution (McKay 
et al., 1979). Intervals are chosen with reference to the probability distribution such that 
each represents an equally probable range. In contrast, Monte Carlo sampling proceeds in 
each dimension with each sample drawn randomly from the entire distribution. Stratified 
random sampling with intervals of uniform probability ensures a good representation of 
the distribution, reducing the risk of samples being clustered in one or a small number of 
areas. In LHS sampling, if the sample size is n, each dimension is divided into n intervals 
such that in multi-dimensional space each interval of each dimension is sampled once and 
once only. This is based on the idea of a Latin square in which an individual symbol 
appears once in each row and each column. It ensures a good representation of the 
distribution is achieved for all dimensions.” 
 
6- Section 2.5.3: Why optimizing more parameters (>8) was not successful? Any reason 
for this, statistical one perhaps? Is it because the parameters maybe spatially varying and 
this assumption is relaxed in the objective function? Or could it be due to the choice of 
the observational error variance? On another note, how to make sure it’s not a drawback 
from the optimization algorithm itself? A paragraph addressing this is needed here. I 
could not find an explanation for such a behavior myself.  
 
The primary reason for unsuccessfully optimizing more parameters is that many model 
parameters are correlated.  Previous studies have also followed a procedure to reduce the 
set of optimizable parameters, particularly to avoid optimizing highly correlated 
parameters. For examples of these procedures, see Xiao and Friedrichs, 2014b, Friedrichs 
et al. 2006 (or 2007). 
 
To help any reader wondering similarly about limiting the number of optimized 
parameters and to clarify that this is not a drawback of this specific optimization 
algorithm, we propose adding the following paragraph in section 2.5.3 (line 222): 
“There is a limit to the number of parameters that can be independently constrained by 
the available observations because varying different parameters can often have similar 
effects on the cost function. Optimizing a larger set increases the potential for correlation 
between the effects of different parameters, reducing the algorithm’s effectiveness in 
identifying unique optimal parameter sets. This, combined with the increased potential 
for over-fitting associated with the greater model degrees of freedom, can reduce the 
ability of an optimized model to reproduce independent data sets (Matear et al., 1995; 
Friedrichs et al., 2007; Xiao and Friedrichs et al., 2014b). The limitation on the number 
of optimizable parameters applies to both µGA and variational adjoint optimizations 
(Ward et al., 2010). In fact, rather than being a function of the optimization algorithm, it 
is dependent on the available data and the design of the cost function. A larger or richer 
observation set can help to constrain more parameters. The impact of cost function design 
is more complicated because an improved cost function may allow for greater uncertainty 



in the observations and/or non-parametric uncertainty in the simulation, leading to 
weaker but more realistic constraints on the parameters (Hemmings & Challenor, 2012).” 
 
In addition, we propose modifying the first sentence of section 2.5.3 (line 213) to read: 
“After selecting the 21 potentially optimizable parameters, Numerical Twin Experiments 
(NTEs) were conducted to identify an optimizable subset by evaluating…” 
 
 
 
 
Additional literature cited in responses: 

Bagniewski, W., Fennel, K., Perry, M. J., and D’Asaro, E. A.: Optimizing models of the 
North Atlantic spring bloom using physical, chemical and bio-optical observations 
from a Lagrangian float, Biogeosciences, 8(5), 1291–1307, doi:10.5194/bg-8-1291-
2011, 2011. 

Irby, I. D., Friedrichs, M. A. M., Friedrichs, C. T., Bever, A. J., Hood, R. R., Lanerolle, 
L. W. J., Li, M., Linker, L., Scully, M. E., Sellner, K., Shen, J., Testa, J., Wang, H., 
Wang, P., Xia, M.: Challenges associated with modeling low-oxygen waters in 
Chesapeake Bay: a multiple model comparison, Biogeosciences, 13(7), 2011–2028, 
doi:10.5194/bg-13-2011-2016, 2016. 

Kane, A., Moulin, C., Thiria, S., Bopp, L., Berrada, M., Tagliabue, A., Crépon, M., 
Aumont, O., and Badran, F.: Improving the parameters of a global ocean 
biogeochemical model via variational assimilation of in situ data at five time series 
stations, J. Geophys. Res. Ocean., 116(6), 1–14, doi:10.1029/2009JC006005, 2011. 

McDonald, C. P., Bennington, V., Urban, N. R., and McKinley, G. A.: 1-D test-bed 
calibration of a 3-D Lake Superior biogeochemical model, Ecol. Modell., 225, 115–
126, doi:10.1016/j.ecolmodel.2011.11.021, 2012. 

McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods for 
Selecting Value of Input Variables in the Analysis of Output from a Computer Code, 
Technometrics, 21(2), 239–245, 1979. 

Oschlies, A., and Schartau, M.: Basin-scale performance of a locally optimized marine 
ecosystem model, J. Mar. Res., 63(2), 335–358, doi:10.1357/0022240053693680, 
2005. 

St-Laurent, P., Friedrichs, M.A.M., Najjar, R.G., Martins, D.K., Herrmann, M., Miller, 
S.K., and Wilkin, J.: Impacts of atmospheric nitrogen deposition on surface waters 
of the western North Atlantic mitigated by multiple feedbacks. J. Geophys. Res. 
Ocean., in press September 2017. 



Thomalla, S. J., Racault, M., Swart, S., and Monteiro, P. M. S.: High-resolution view of 
the spring bloom initiation and net community production in the Subantarctic 
Southern Ocean using glider data, ICES J. Mar. Sci. J. du Cons., 72(6), 1999–2020, 
doi:10.1093/icesjms/fsv105, 2015. 

 


