
Dear Dr. Marilaure Grégoire, Associate Editor 
 
Thank you for your time and effort considering our manuscript for publication. 
 
Please find below our responses to both reviewers’ comments (starting on pages 2 and 8 
of this pdf) followed by the revised manuscript (starting on page 14 of this pdf), which 
shows our tracked modifications. 
 
Best regards, 
Daniel Kaufman, Marjorie Friedrichs, John Hemmings, Walker Smith 
	



Response to ‘Interactive comment on “Assimilating bio-optical glider data during a 
phytoplankton bloom in the southern Ross Sea” by Daniel E. Kaufman et al.’ by 
M.E. Gharamti that was received and published: 1 September 2017 
 
 
Dear M.E. Gharamti, 
 
We greatly appreciate your valuable and constructive comments, which will help us 
improve and clarify the manuscript and presentation of the parameter selection and 
optimization procedures in particular. In response to your questions and suggestions, 
please find our answers and proposed changes (in blue) following each of your comments 
below. All line numbers refer to the original submitted manuscript. 
 
We thank you again for your review. 
 
Sincerely, 
Daniel Kaufman, Marjorie Friedrichs, John Hemmings, Walker Smith 
 
 
The article presents a DA study in the Ross Sea, a region of the southern ocean. The 
authors use bio-optical glider data to reduce the model-data misfit of Chl concentration 
and POC. In the process, 8 different uncertain parameters are identified and optimized 
with incoming observations. The authors provide a thorough assessment of the DA 
system by changing the spatial and temporal resolution of the observations. This is 
performed in an effort to understand the impact of the number and type of observations 
(e.g., cruise and satellite) on the resulting biogeochemical modeling skill.  
 
I think the paper is well-written, clear and nicely organized. The authors tackle an 
interesting problem that researchers within the DA-marine ecology community have been 
investigating for a while. Although the results from such a small domain and a 1D model 
can not be generalized for large-scale problems (the authors recognize this), the article 
presents novel research points especially those of the parameter optimization. I have few 
minor comments (below), otherwise I don’t see any reason for not publishing this article. 
It would be good to address the comments below in the manuscript before publishing.  
 
Thank you for your positive comments. 
 
1- Section 2.2: I would like to see how the observational error variance is parameter- 
ized. I believe the observational mapping operator is quite nonlinear. So, what proce- 
dure did the authors follow to find both \sigma_chlˆ2 and \sigma_pocˆ2 (twin and real 
experiments)?  
 
The procedure we used was simply to calculate the inverse of the standard deviation, 
similar to other assimilation efforts (e.g. in Experiment #1 in Hemmings and Challenor, 
2012; Friedrichs et al., 2006; Xiao and Friedrichs, 2014b).  This definition of sigma was 
used for both the twin experiments described in section 2.5.3 (where the sigma was 



calculated from the synthetic dataset) as well as the real assimilation experiments 
described in section 2.6 (where sigma was calculated from the particular observation set 
assimilated in each case). 
 
You may notice that the second reviewer raised a similar question, and we there also 
indicate our proposed text for section 2.3, referencing other assimilation studies that have 
used standard deviations to weight the misfit contributions. Specifically, we propose 
modifying the text on lines 126-128 as follows: “where 𝑁 is the number of observation 
points, 𝑥! is the simulated value of either chlorophyll or POC at the ith observation point 
and 𝑦! is its observed value; 𝜎 is the standard deviation of the specific observation set 
assimilated in a particular experiment. Using the standard deviation of the observations to 
define a characteristic scale of variation for each variable is a technique used in previous 
studies (e.g. Friedrichs et al., 2006; Xiao and Friedrichs, 2014). It is designed to weight 
the relative misfit contribution of each variable appropriately when there are insufficient 
data to define a comprehensive error model. Such a model would require reliable 
information about the uncertainty associated with observation errors (instrument error 
and error of representativeness) and non-parametric errors in the simulation such as 
forcing errors (Schartau et al., 2017). The use of different cost function weighting 
schemes in plankton modelling including the characteristic scale technique is explored in 
more detail by Hemmings and Challenor (2012).” 
 
2- Maybe I missed it but it would be good to provide a discussion on the computational 
cost of the genetic algorithm. Obviously, the authors are using some kind of hybrid 
algorithm (genetic + Powell) but I’m pretty sure these (non-gradient based) won’t be as 
useful in large scale models. For instance, if the biogeochemical parameters are spatially 
varying then the degrees of freedom in the system will significantly increase. I’m not so 
much familiar with the algorithm the authors are using, so it would be good to see how 
does it compare computationally to an EnKF for example.  
 
To facilitate comparison with other assimilation methods, including EnKF, we propose 
including the number of model evaluations (approximately 4000 - 5000) in the text as 
described below. The number of evaluations and therefore the computational cost for our 
method is typically higher than EnKF, because our method is designed for a more 
comprehensive investigation of the parameter space. We think including computational 
cost in terms of run times in the manuscript would be of limited value because it would 
then also be necessary to report all hardware specs, which may be too much info and 
regardless, the hardware will probably be out-of-date in just a few years. 
 
You are correct that these optimization methods won't be as useful in large-scale models 
when applied directly. However, the parameters identified in a 1D model by these 
techniques can be used in larger 3D models, and this has been shown to improve those 
larger models (e.g. see the review in section 7.2 of Schartau et al., 2017). Furthermore, 
you are correct to point out that allowing parameters to vary spatially would increase the 
degrees of freedom in the system with further implications for the practicality of our 
method. However, the method is not intended for estimating spatially varying parameters 
but for estimating parameters that are spatially uniform over as large a domain as 



possible.	Given the increased model degrees of freedom associated with spatially varying 
parameters and the consequent increased risk of over-fitting, it is unclear to what extent 
allowing parameters to vary spatially would be useful. The issue is discussed in detail in 
Schartau et al (2017). 
 
We propose adding a paragraph at the end of section 4.1 to make the above points clear to 
the reader: “The high number of model evaluations in each optimization case (roughly 
4000 – 5000) makes such direct optimization impractical for large-scale models; 
however, the parameters identified in a 1D model by these techniques can be used in 
larger models, and indeed locally optimized parameters have been previously shown to 
improve the skill of 3D models in other regions (Oschlies and Schartau, 2005; Kane et 
al., 2011; McDonald et al., 2012; St-Laurent et al., 2017). It is expected that the 
optimized parameter values found in the one-dimensional assimilation experiments 
described here will be of value in a future 3D biogeochemical modeling analysis of the 
Ross Sea and, through model inter-comparisons, provide a basis for examining the 
dependence of these parameter values on model structure and level of complexity, as has 
been done elsewhere (Friedrichs et al., 2007; Bagniewski et al., 2011; Ward et al., 2013; 
Irby et al., 2016).” 
 
3- Section 2.4: I know it’s mentioned somewhere, but it would be good to state that the 
algorithm selects random parameters within a range. After all, the chosen parameters 
need to be physically meaningful.  
 
This is a good point, and yes, the selection of values from within the range for each 
parameter is discussed in section 2.5.1. Nevertheless, it is understandable for the reader to 
be wondering about it earlier in section 2.4.  To help the reader, we propose adding a 
sentence at line 147 that provides a brief clarification and cross-references section 2.5.1: 
“The constituent parameter values are selected randomly from within a pre-determined 
range of allowable values (Sect. 2.5.1).” 
 
4- Lines 168-170: I am not sure what the authors mean by this sentence. Consider 
rephrasing.  
 
In order to clarify the meaning of this sentence, we propose rephrasing it to: “Ideally, 
optimal values are identified for all parameters in a model, however, uncertainty in the 
parameter estimates from an algorithmic optimization increases as the number of 
parameters included in that optimization increases (Friedrichs et al., 2007; Ward et al., 
2010).” 
 
5- Section 2.5.2: I think adding a small appendix section summarizing the differences 
between a MC and a Latin Hypercube sampling would be useful for the reader.  
 
This is a good idea. We propose adding an appendix titled “Appendix A: Latin hypercube 
sampling (Sect. 2.5.2)” and inserting a cross-reference to this appendix on line 199. The 
proposed appendix would have the following suggested text: 



“Latin hypercube sampling (LHS) and Monte Carlo sampling are both techniques 
that can be used to randomly draw a finite number of samples from input distributions in 
order to approximate a full multidimensional distribution. The LHS incorporates 
stratified random sampling, i.e. in each dimension each sample is drawn randomly from 
within a different interval (also called a stratification or layer) of the distribution (McKay 
et al., 1979). Intervals are chosen with reference to the probability distribution such that 
each represents an equally probable range. In contrast, Monte Carlo sampling proceeds in 
each dimension with each sample drawn randomly from the entire distribution. Stratified 
random sampling with intervals of uniform probability ensures a good representation of 
the distribution, reducing the risk of samples being clustered in one or a small number of 
areas. In LHS sampling, if the sample size is n, each dimension is divided into n intervals 
such that in multi-dimensional space each interval of each dimension is sampled once and 
once only. This is based on the idea of a Latin square in which an individual symbol 
appears once in each row and each column. It ensures a good representation of the 
distribution is achieved for all dimensions.” 
 
6- Section 2.5.3: Why optimizing more parameters (>8) was not successful? Any reason 
for this, statistical one perhaps? Is it because the parameters maybe spatially varying and 
this assumption is relaxed in the objective function? Or could it be due to the choice of 
the observational error variance? On another note, how to make sure it’s not a drawback 
from the optimization algorithm itself? A paragraph addressing this is needed here. I 
could not find an explanation for such a behavior myself.  
 
The primary reason for unsuccessfully optimizing more parameters is that many model 
parameters are correlated.  Previous studies have also followed a procedure to reduce the 
set of optimizable parameters, particularly to avoid optimizing highly correlated 
parameters. For examples of these procedures, see Xiao and Friedrichs, 2014b, Friedrichs 
et al. 2006 (or 2007). 
 
To help any reader wondering similarly about limiting the number of optimized 
parameters and to clarify that this is not a drawback of this specific optimization 
algorithm, we propose adding the following paragraph in section 2.5.3 (line 222): 
“There is a limit to the number of parameters that can be independently constrained by 
the available observations because varying different parameters can often have similar 
effects on the cost function. Optimizing a larger set increases the potential for correlation 
between the effects of different parameters, reducing the algorithm’s effectiveness in 
identifying unique optimal parameter sets. This, combined with the increased potential 
for over-fitting associated with the greater model degrees of freedom, can reduce the 
ability of an optimized model to reproduce independent data sets (Matear et al., 1995; 
Friedrichs et al., 2007; Xiao and Friedrichs et al., 2014b). The limitation on the number 
of optimizable parameters applies to both µGA and variational adjoint optimizations 
(Ward et al., 2010). In fact, rather than being a function of the optimization algorithm, it 
is dependent on the available data and the design of the cost function. A larger or richer 
observation set can help to constrain more parameters. The impact of cost function design 
is more complicated because an improved cost function may allow for greater uncertainty 



in the observations and/or non-parametric uncertainty in the simulation, leading to 
weaker but more realistic constraints on the parameters (Hemmings & Challenor, 2012).” 
 
In addition, we propose modifying the first sentence of section 2.5.3 (line 213) to read: 
“After selecting the 21 potentially optimizable parameters, Numerical Twin Experiments 
(NTEs) were conducted to identify an optimizable subset by evaluating…” 
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Response to ‘Interactive comment on “Assimilating bio-optical glider data during a 
phytoplankton bloom in the southern Ross Sea” by Daniel E. Kaufman et al.’ by 
Anonymous Referee #2 that was received and published: 5 September 2017 
 
 
Dear Reviewer #2, 
 
We greatly appreciate your time and effort spent reviewing our manuscript. According to 
your constructive feedback, we propose changes to clarify aspects of model setup, 
optimization method, and conclusions. Please find our responses (in blue) following each 
of your comments below. All line numbers refer to the original submitted manuscript. 
Thank you again for your review. 
 
Sincerely, 
Daniel Kaufman, Marjorie Friedrichs, John Hemmings, Walker Smith 
 
 
Review comments for the manuscript: “Assimilating bio-optical glider data during a 
phytoplankton bloom in the southern Ross Sea (bg-2017-258)” by Daniel E. Kaufman, 
Marjorie A. M. Friedrichs, John C. P. Hemmings, and Walker O. Smith Jr.  
 
The authors present a data assimilation study that optimizes parameters in a one- 
dimensional biogeochemical model using glider observations in the southern Ross Sea. 
They show insensitivity of the result to the geographical location of observations, but the 
optimizing parameters is sensitive to the sampling frequency.  
 
The paper is overall well-written, but I hope the reviewers be able to address comments 
that I have.  
 
–  The procedure can be clarified more. This study utilizes a one-dimensional model for 
3D observations. Does the cost function use all the observations and estimate one set of 
the parameter? Or is there an optimized parameter set for each location? If the first 
approach is used, do you expect that the optimized parameter values represent the 
distribution of those obtained by the second approach?  
  
As described on line 258 and in Table 2, the cost function uses all of the observations for 
experiment #1A. To make this clearer, we propose modifying the sentence in the abstract 
on line 16 to read “Assimilation of data from the entire glider track …” 
 
We do find that the optimized parameter values from the first approach (using all 
observations) represent those obtained by the second approach (using observations from 
different locations), as described in the latitudinal (Expt. 1b) and longitudinal (Expt. 1c) 
experiments and shown in Table 4. 
 
–  The authors argue that the data assimilation performance is sensitive to the observation 
sampling frequency due to “mesoscale variability”. Mesoscale variability also means the 



variation in space with the scale of O(100km). But it is odd to see that the geographical 
region does not show a big impact on the performance. Could the author comment on 
this?   
 
Here we define mesoscale variability as “days-weeks, 1-10 km” (line 59). We had no a 
priori expectation that the geographical regions would show minor differences in model 
solutions, however we believe that the minor differences are reasonably explained in 
section 4.2, and especially in this section’s last paragraph. Although in situ observations 
from previous studies have shown spatial differences on these scales, it has been unclear 
whether the differences were due to temporal or spatial variations. The assimilation 
experiments in this study suggest that variability observed on the mesoscale in this 
geographical region may be more likely due to temporal patterns than spatial differences. 
Therefore, one could expect that assimilating these different locations would show a 
bigger impact if the observation times concurrently varied, such as is demonstrated in the 
cruise-based and satellite-based assimilation cases. On larger scales, however, it is likely 
that the importance of spatial variability would be greater. For instance, the distinct 
spatial differences observed by satellites are generally across scales larger than the 1-10 
km discussed here.   
   
–  By construction, the role of advection is not considered in this study. Can authors 
comment on the role of advection in this region? Do authors think the insensitivity of the 
assimilation performance to the geographical location of observations is related to the 
omission of advection?   
 
Previous studies have suggested that horizontal transport and eddies may be important 
near island land masses and the Ross Ice Shelf (Gerringa et al., 2015; Li et al., 2017). In 
this region of the Ross Sea particularly, moorings and modeling have indicated moderate 
westward currents close to the ice shelf (Keys et al., 1990); nevertheless, advection 
appears to be weaker as one moves farther from the shelf edge (Dinniman et al., 2003). 
 
One cannot rule out the possibility that the sensitivity of the optimizations to the 
observations’ location could be affected by adding advection to the model. However, this 
would likely only be the case if there were, in reality, strong horizontal velocity 
gradients, i.e. differences in advection between the observation locations. A more 
thorough examination of the role of horizontal advection on modeled dynamics of the 
phytoplankton assemblage is beyond the scope of the current study, but would be 
benefitted greatly by contemporaneous and co-located mooring and/or ship-based current 
measurements. 
   
–  line 85. The effort on estimating biological state variables can be listed here. (e.g., 
Song, H., C. A. Edwards, A. M. Moore and J. Fietcher, 2016: Data assimilation in a 
coupled physical-biogeochemical model of the California Current System using an 
incremental lognormal 4-dimensional variational approach: Part 3, Assimilation in a 
realistic context using satellite and in situ observations. Ocean Model., 106, 159-172.)   
 
It is a good idea to reference Song et al. 2016 here. 



   
–  section 2.1: What is the vertical resolution of the model?   
 
To clarify this, we propose adding details of the model setup to section 2.1, on line 108: 
“The model is configured to focus on dynamics within the euphotic zone with a vertical 
resolution of 5 m from the ocean surface to 200 m.” 

–  line 114: The full name of BCO-DMO can be given.   
 
Absolutely. We will expand the acronym to the full name. 
   
–  line 115: 5-m vertical binning is done using averages? or weighted average?   
 
Vertical binning of the glider data was accomplished using averages, and to clarify this 
we propose modifying the sentence to read: “Data spanning the upper 200 m of the water 
column were binned by means into hourly, 5-m vertical bins.  
   
–  Equation for the cost function shows that the observational error covariance is 
estimated using the standard deviation of the observations. Is this right? I think using 
standard deviation may overestimate the observational error if the blooms dominate the 
chloro- phyll variability. If the error levels of the instruments are known, why not use 
these values?   
 
The misfit contributions are weighted by using the inverse of the standard deviation, 
similar to other assimilation efforts (e.g. in Experiment #1 in Hemmings and Challenor, 
2012; Friedrichs et al., 2006; Xiao and Friedrichs, 2014). If the aim were to estimate 
observational error, then the increase in variance due to the bloom would indeed likely 
lead to over-estimation. However the aim here is to weight the misfit contributions of 
chlorophyll and POC, and there is less impact of the bloom on these relative weights. 
Generally, a more sophisticated treatment of uncertainty in both the observations and the 
model is desirable as indicated by Hemmings & Challenor (2012), but such a treatment is 
beyond the scope of the present study and may not be practical with the available data. It 
makes sense therefore to initially employ a simple well-established method as we have 
done, but we recognize that it does have its limitations. 
 
You may notice that the first reviewer raised a similar question as well, and we there also 
indicate our proposed text for section 2.3, referencing other assimilation studies that have 
used standard deviations to weight the misfit contributions. Specifically, we propose 
modifying the text on lines 126-128 as follows: “where 𝑁 is the number of observation 
points, 𝑥! is the simulated value of either chlorophyll or POC at the ith observation point 
and 𝑦! is its observed value; 𝜎 is the standard deviation of the specific observation set 
assimilated in a particular experiment. Using the standard deviation of the observations to 
define a characteristic scale of variation for each variable is a technique used in previous 
studies (e.g. Friedrichs et al., 2006; Xiao and Friedrichs, 2014). It is designed to weight 
the relative misfit contribution of each variable appropriately when there are insufficient 
data to define a comprehensive error model. Such a model would require reliable 



information about the uncertainty associated with observation errors (instrument error 
and error of representativeness) and non-parametric errors in the simulation such as 
forcing errors (Schartau et al., 2017). The use of different cost function weighting 
schemes in plankton modelling including the characteristic scale technique is explored in 
more detail by Hemmings and Challenor (2012).” 
   
–  section 2.4: Personally, it is not easy to digest this method. Maybe a diagram can help 
me and readers to understand the assimilation procedure better.   
 
We appreciate the difficulty in understanding this section without a high level overview. 
Although we do not believe a full diagram is necessary, we propose two changes to this 
section to offer the reader a broader view of the method, rather than its current focus on 
technical details. 
 
First, to clarify what is being done, rather than how, we propose changing the title of this 
section from “Implementation of micro-genetic algorithm and direction set algorithm” to 
“Cost function minimization.” 
 
Second, we propose adding a paragraph to the beginning of this section that summarizes 
the role of the two algorithms: 
“Model parameters were optimized in MarMOT by finding the minimum of the cost 
function (Sect. 2.3) through a combination of the micro-genetic algorithm (µGA) and 
Powell’s non-gradient direction set algorithm. The µGA runs first and identifies sets of 
parameter values that produce low cost values; this is achieved by "evolving" a 
population of various parameter sets over successive iterations, called generations. The 
low-cost parameter sets identified by the µGA are then used as starting points for the 
direction set method, which performs successive linear searches to identify nearby lower 
cost solutions.” 
  
   
–  lines 244–245: Can you provide the number for the difference? If these two cases (50 
m vs 200 m) are not significantly different, I would rather present the one with 200 m. Is 
it because of the computational time? (Also I hope the authors say something about the 
speed of this data assimilation calculation).   
 
There is a relatively minor (~14%) difference between the results of the assimilation 
down to 50 m compared to 200 m. The trends and major conclusions of the study are 
likely not strongly affected by this choice. Conducting the assimilations for the upper 50 
m avoided issues related to assimilating many low values of chlorophyll and POC, and 
also enabled a direct comparison of these results with the results of Kaufman et al. (2017) 
who similarly focused on the upper 50m concentrations. Computational time did not play 
a role in the decision to present results for the upper 50 m. 
 
In further response to your question about computational cost, along with reviewer #1, 
we propose adding the number of model evaluations conducted for the assimilation 
experiments to the end of section 4.2, with the text: “The high number of model 



evaluations in each optimization case (roughly 4000 – 5000) makes such direct 
optimization impractical for large-scale models; however, the parameters identified in a 
1D model by these techniques can be used in larger models, and indeed locally optimized 
parameters have been previously shown to improve the skill of 3D models in other 
regions [Oschlies and Schartau, 2005; Kane et al., 2011; McDonald et al., 2012; St-
Laurent et al., 2017].” 

   
–  section 2.6.2: Are there any changes in spatial coverage between “glider”, “cruise” and 
“satellite” data cases? If they have the same spatial coverages, naming this way may 
confuse readers because it is obvious that their spatial coverages are significantly 
different.   
 
As mentioned (on line 418), these cases alter both spatial and temporal resolution, and 
therefore they don’t have identical spatial coverage. As such, we feel these names are 
appropriate. 
   
–  lines 474–476: Do authors have any ideas why satellite-derived data underestimates 
carbon export? 
 
This is addressed earlier in the manuscript on line 424: “The lower estimates of carbon 
export occurred because the optimal diatom fraction for fast-sinking detritus obtained via 
the assimilation of surface-only data (0.62 ± 0.14) was significantly lower than that 
obtained via the assimilation of data throughout the upper 50 m (Expt. 2a: 0.86 ± 0.05; 
Expt. 2b: 0.86 ± 0.11).”  
 
–  lines 480–483: I think the phrases after “and it is” are not necessary. Please consider to 
remove them.   
 
Excellent idea. We agree and will take out the phrase starting with “and it is”, and we 
will also remove the unnecessary “Ross Sea” on line 478. 
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Abstract. The Ross Sea is a region characterized by high primary productivity in comparison to 

other Antarctic coastal regions, and its productivity is marked by considerable variability both 10 

spatially (1-50 km) and temporally (days to weeks). This variability presents a challenge for 

inferring phytoplankton dynamics from observations that are limited in time or space, which is 

often the case due to logistical limitations of sampling. To better understand the spatiotemporal 

variability of Ross Sea phytoplankton dynamics and determine how restricted sampling may 

skew dynamical interpretations, high-resolution bio-optical glider measurements were 15 

assimilated into a one-dimensional biogeochemical model adapted for the Ross Sea. Assimilation 

of data from the entire glider track using the micro-genetic and local search algorithms in the 

Marine Model Optimization Testbed improves model-data fit by ~50%, generating rates of 

integrated primary production of 104 g C m2 y-1 and export at 200 m of 27 g C m-2 y-1. 

Assimilating glider data from three different latitudinal bands and three different longitudinal 20 

bands results in minimal changes to the simulations, improves model-data fit with respect to 

unassimilated data by ~35%, and confirms that analyzing these glider observations as a time 

series via a one-dimensional model is reasonable on these scales. Whereas assimilating the full 

glider data set produces well-constrained simulations, assimilating subsampled glider data at a 

frequency consistent with cruise-based sampling, results in a wide range of primary production 25 

and export estimates. These estimates depend strongly on timing of the assimilated observations, 

due to the presence of high mesoscale variability in this region. Assimilating surface glider data 

subsampled at a frequency consistent with available satellite-derived data results in 40% lower 

carbon export, primarily resulting from optimized rates generating more slowly sinking diatoms. 

This analysis highlights the need for strategic consideration of impacts of data frequency, 30 
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duration, and coverage when combining observations with biogeochemical modeling in regions 

with strong mesoscale variability. 

  35 
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1 Introduction 
Phytoplankton blooms in the Ross Sea are responsible for some of the highest rates of 

productivity in the Southern Ocean (Arrigo et al., 2008), and yet the phytoplankton assemblage 

exhibits considerable spatiotemporal variability (DiTullio and Smith, 1996; Hales and Takahasi, 

2004; Smith et al., 2010). This heterogeneity, and the spatial/temporal limitations of observations 40 

due to logistical challenges of sampling, may affect the inferred phytoplankton dynamics and 

produce biases in productivity or export estimates. The magnitude of the underlying ecosystem 

variability that contributes to these potential biases is not well understood, nor is it well known 

how the use of different observational platforms in the Ross Sea might affect the inferred 

dynamics. Acquiring data with an appropriate resolution is important for assessing 45 

phytoplankton variability in the Ross Sea (Hales and Takahashi, 2004).  

Over the past several decades, biogeochemistry in the Ross Sea has been observed by 

ship and satellite, providing data at different temporal and spatial resolutions. Since Ross Sea 

phytoplankton became a focus of scientific research in the late 1970s, water column 

measurements have primarily come from research vessels (e.g., El-Sayed et al., 1978; Smith and 50 

Nelson, 1985; Vaillancourt et al., 2003). Typically, sampling stations are separated by tens of 

kilometers (Hales and Takahashi, 2004), and although vessels may return to resample a station, 

they typically do not return more than once or twice in a single year. During the 1990s, the use of 

remote sensing was expanded to look more closely at the Ross Sea bloom (Arrigo and McClain, 

1994), and satellite retrievals have continued to provide valuable insights into characteristics of 55 

the phytoplankton assemblage (Arrigo et al., 1998; Arrigo and van Dijken, 2004; Peloquin and 

Smith, 2007; Schine et al., 2015). Satellite observations offer a synoptic view of spatial regions 

at frequencies that are within the time scale of biological changes (e.g. growth); however, the 

presence of sea ice and clouds often obscures remote-sensing measurements in the Ross Sea 

(Arrigo et al., 1998).  60 

At the mesoscale (days-weeks, 1-10 km), gliders are a relatively new and effective means 

to characterize phytoplankton variability, and the development of ice-avoidance algorithms has 

enabled the use of gliders in the Ross Sea for these purposes. For example, a glider equipped 

with bio-optical sensors was directed along a section near 76° 40′ S in austral summer 2010 - 

2011 and provided valuable estimates of biomass variability on short time scales (Kaufman et al., 65 

2014). Estimates of the POC:Chl ratio from the glider optical sensors suggested a transition from 
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a Phaeocystis antarctica to a diatom-dominated assemblage over several days (Kaufman et al., 

2014; Thomalla et al., 2017). Moreover, Jones and Smith (2017) used glider observations from 

austral summer 2012-2013 to distinguish three phases of the Ross Sea bloom and identified high 

frequency (hours) associations between wind-driven mixing and biomass. A perennial challenge 70 

when using glider data (as well as ship-based data), however, is separating the effects of time and 

space (Kaufman et al., 2014; Little, 2016). 

Numerical models are another approach for examining phytoplankton variability in the 

remote Ross Sea, providing an effective means for coordinating knowledge and understanding 

the underlying system complexities (Leonelli, 2009; Vallverdú, 2014). Furthermore, numerical 75 

simulations offer the ability for experimental manipulations that would be impractical or 

impossible in the real system. Such manipulations were implemented in the scenario experiments 

described by Kaufman et al. (2017a) to investigate how projected climate changes might alter the 

dynamics of the phytoplankton assemblage. These experiments showed that earlier availability of 

low light resulting from sea ice reduction was the primary driver of projected increases in 80 

production and export and composition change over the next century. 

Data assimilation, which refers to methodologies that systematically combine a 

mathematical model with observations, is often used in biogeochemical applications (Hofmann 

and Friedrichs, 2001, 2002) to improve estimates of model parameters that are frequently poorly 

known (Lawson et al., 1995, 1996; Matear, 1995; Fennel et al., 2001; Friedrichs, 2002; Schartau 85 

and Oschlies, 2003; Hemmings et al., 2004; Bagniewski et al., 2011; Doron et al., 2013; Xiao 

and Friedrichs, 2014a,b; Melbourne-Thomas et al., 2015; Song et al., 2016; Gharamti et al., 

2017, Schartau et al., 2017). This entails a smoothing or optimization procedure, in which 

elements of the model are adjusted to minimize differences between the model output and the 

observations. Typically, an aggregate measure of the differences between observations and 90 

model output is provided by calculation of a cost function, defined as the model-data misfit, and 

an optimization algorithm searches for model parameters that minimize the value of this cost 

function. 

In this study, data assimilation is used to obtain an optimal representation of Ross Sea 

lower trophic levels. Specifically, observations from an autonomous glider are assimilated into a 95 

biogeochemical model of the Ross Sea (Kaufman et al., 2017a) to better understand the spatial 

and temporal variability of phytoplankton in this region. Assimilation experiments also examine 
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how the space and time characteristics of observational sampling frequency impacts the ability of 

observations to produce optimal system representations.  

2 Methods 100 

2.1 One-dimensional biogeochemical model 

Numerical experiments were conducted with the Model of Ecosystem Dynamics, nutrient 

Utilisation, Sequestration and Acidification for the Ross Sea (MEDUSA-RS; Kaufman et al., 

2017a), a regionally adapted version of MEDUSA-1.0 (Yool et al., 2011). Three phytoplankton 

groups are represented in the MEDUSA-RS model: colonial P. antarctica, solitary P. antarctica, 105 

and diatoms. Phytoplankton growth in the model is temperature dependent as well as limited by 

light and nutrient availability. Colonial P. antarctica, diatoms, and detritus all sink at distinct 

rates. The model handles the sinking of large detrital particles implicitly as a fast-sinking group 

to avoid issues related to the scale of the model time step and to avoid the need for an additional 

tracer. A ballast scheme is used to allow inorganic materials to “protect” a variable fraction of 110 

the sinking organic material from degradation. The model is configured to focus on dynamics 

within the euphotic zone with a vertical resolution of 5 m from the ocean surface to 200 m. A full 

description of the model and its set-up within the Marine Model Optimization Testbed 

(MarMOT; Hemmings and Challenor, 2012), as well as the physical forcings derived from glider 

observations, are documented in Kaufman et al. (2017a,b).  115 

2.2 Data for assimilation 

In situ observations used for the assimilation experiments came from an iRobot Seaglider 

equipped with a Wet Labs ECO Puck sensor and are available in the Biological and Chemical 

Oceanography Data Management Office data repository (http://www.bco-

dmo.org/dataset/568868). Glider dives from 22 November 2012 to 01 February 2013 covered a 120 

horizontal area spanning 76.83 - 77.44 ˚S and 168.9 - 171.97 ˚E (Fig. 1). Data spanning the 

upper 200 m of the water column were binned by means into hourly, 5-m vertical bins. 

Concentrations of chlorophyll (Chl) and particulate organic carbon (POC) were derived, 

respectively, from fluorescence and optical backscatter counts measured by the sensor and 

converted using regression equations (Kaufman et al., 2017a). These bio-optical quantities were 125 

used for calculating model-data misfits during assimilation. 
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2.3 Cost function 

The ‘cost function’ (J), defined as a measure of misfit between a particular model 

simulation and observational data, is computed as a weighted average of the squared differences 130 

between simulated and observed values: 

𝒥 =
1
𝑁 (

1
𝜎!!!!

𝑥!,!!! − 𝑦!,!!!
! +

1
𝜎!"#! 𝑥!,!"# − 𝑦!,!"#

!)
!

!!!

 

where 𝑁 is the number of observation points, 𝑥! is the simulated value of either chlorophyll or 

POC at the ith observation point and 𝑦! is its observed value; σ is the standard deviation of the 

specific observation set assimilated in a particular experiment. Using the standard deviation of 

the observations to define a characteristic scale of variation for each variable is a technique used 135 

in previous studies (e.g. Friedrichs et al., 2006; Xiao and Friedrichs, 2014). It is designed to 

weight the relative misfit contribution of each variable appropriately when there are insufficient 

data to define a comprehensive error model. Such a model would require reliable information 

about the uncertainty associated with observation errors (instrument error and error of 

representativeness) and non-parametric errors in the simulation such as forcing errors (Schartau 140 

et al., 2017). The use of different cost function weighting schemes in plankton modelling 

including the characteristic scale technique is explored in more detail by Hemmings and 

Challenor (2012).  

2.4 Cost function minimization 

Model parameters were optimized in MarMOT by finding the minimum of the cost 145 

function (Sect. 2.3) through a combination of the micro-genetic algorithm (µGA) and Powell’s 

non-gradient direction set algorithm. The µGA runs first and identifies sets of parameter values 

that produce low cost values; this is achieved by "evolving" a population of various parameter 

sets over successive iterations, called generations. The low-cost parameter sets identified by the 

µGA are then used as starting points for the direction set method, which performs successive 150 

linear searches to identify nearby lower cost solutions.  

Genetic algorithms, including the µGA, are a subtype of computational methods known 

as evolutionary algorithms, so-called because of their inspiration from, and metaphoric 

relationship to, biological evolution. Described using this metaphor, a genetic algorithm 

procedure modifies a population of candidate solutions over successive generations by variation 155 

and selection processes to converge on a single solution or solution area. GAs have several 
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advantages for optimization, including their intrinsic parallelism, suitability for systems with 

multiple local minima, and their generalizability (Bajpai and Kumar, 2010; Ward et al., 2010). 

The µGA uses three steps to transition from one generation to the next, described following the 

biological metaphor as: selection, crossover, and resampling (Krishnakumar, 1990; Črepinšek et 175 

al., 2013). An advantage of the µGA is its reduced risk of premature convergence, resulting from 

reinitializating after each convergence, and generating new random populations while 

maintaining the best fit individual from the previous set (Schmitt, 2001).  

In this µGA implementation, optimizations begin with a population of five individual 

parameter sets randomly generated for the first µGA generation. The constituent parameter 180 

values are selected randomly from within a pre-determined range of allowable values (Sect. 

2.5.1). An evaluation of the cost function for each model solution indicates the ‘fitness’ of each 

individual. A binary tournament procedure is then followed to select parents from this population 

for the next generation. The most-fit individuals (i.e., those with the lowest cost function values) 

are paired with one another and undergo recombination of the bits representing parameter values. 185 

After each generation, the proportion of bits differing from those of the fittest individual is 

calculated to determine whether the population can be deemed converged (though this does not 

necessarily indicate closeness in parameter space). After the threshold for convergence has been 

achieved, the population is reinitialized to random individuals, although the fittest individual is 

maintained. The µGA is terminated upon the first convergence occurring after a minimum 190 

number of generations has been reached. 

Once convergence has been achieved after a minimum number of µGA generations, 

Powell’s non-gradient direction set algorithm performs a local search using the µGA solutions as 

starting points. The direction set method performs sequential minimizations in iterative 

directions, updating the search direction after each iteration (Powell, 1964; Press et al., 1992). 195 

Although the µGA is well suited for global search problems partly because of its stochasticity, 

Powell’s direction set algorithm is well suited to searching for a local optimum. Brent’s method, 

which combines root-bracketing with secant and inverse quadratic interpolation (Brent, 1973), is 

used to numerically locate cost minima between neighboring function evaluations along each 

direction identified by the Powell algorithm. The direction set algorithm stops when a cost 200 

function minimum is located or when a maximum number of iterations is reached. The optimized 

parameter values are those that generated the cost function minimum. 
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2.5 Selection of parameters to be optimized 

Ideally, optimal values are identified for all parameters in a model, however, uncertainty 

in the parameter estimates from an algorithmic optimization increases as the number of 205 

parameters included in that optimization increases (Friedrichs et al., 2007; Ward et al., 2010). 

Although the optimization of more parameters generally lowers the assimilated cost, the 

increasing potential for equifinality with more parameters means the optimization may find 

equivalent low-cost solutions with substantially different parameter values. Therefore, before 

assimilating observations and optimizing parameters, a subset of “free” or “optimizable” model 210 

parameters must be chosen. In this study, the parameters to be optimized are selected through a 

three-step process: defining a range of permitted values for every parameter (Sect. 2.5.1), 

identifying the parameters to which model outputs are most sensitive (Sect. 2.5.2), and 

evaluating how many of these sensitive parameters can be reasonably optimized when 

assimilating the available data (Sect. 2.5.3). Initial values for each parameter, prior to the 215 

assimilation, were set to values identified in Kaufman et al. (2017a). 

2.5.1 Parameter ranges 

Upper and lower bounds of the allowable range for each free parameter were defined 

loosely following Hemmings et al. (2015). Bounds were set to be geometrically symmetric 

(factor of four for rates; factor of five for half-saturation concentrations) around the initial 220 

values. For fractional parameter values, limits were set to +/- 0.25 their initial values, although 

not allowed to exceed 0.05 or 0.95. Ranges for parameters not expressed as fractions were log-

transformed for sampling purposes. 

2.5.2 Sensitivity Analysis 

Parameters to which model outputs are highly sensitive are important and useful to 225 

optimize. In contrast, it is futile to optimize parameters to which model outputs of interest are not 

sensitive; no amount of varying these parameters will result in improved model performance. 

Therefore, the first criterion used to designate a parameter as optimizable was the sensitivity of 

model outputs to the values of that parameter. Model sensitivities were evaluated for assimilated 

variables (Chl and POC) and carbon fluxes of interest (primary production (PP) and carbon 230 

export at 200 m). To quantify the sensitivities of these outputs to each of the 80 parameters in the 

model, a series of runs were conducted following the approach of Hemmings et al. (2015). Each 

run used a unique sample of parameter values drawn from within the specified parameter ranges 
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(Section 2.5.1) using a Latin hypercube. This approach provides more even coverage of the 

parameter space than Monte Carlo sampling methods that can result in clustered values and 

unsampled regions (Appendix A). One thousand values were drawn from sequential intervals 

throughout the range for each parameter. Using this technique, unique parameter sets were 240 

constructed such that over the course of all runs, the full range of values for each parameter was 

represented. 

The model was run 1000 times, each time using one of the unique parameter sets 

resulting from Latin hypercube sampling of the full parameter space. Sensitivity was quantified 

by evaluating the amount of variance in the output diagnostics explained by each parameter (i.e., 245 

by computing the coefficient of determination (r2) between each parameter and each of the four 

output variables of interest; Fig. 2). All four model outputs (Chl, POC, PP, and export) were 

most sensitive (r2 ≥ 0.01) to attenuation of blue-green light by phytoplankton pigments, diatom 

maximum growth rate, and C:Chl ratio for solitary P. antarctica. Three additional parameters 

(maximum growth rate of P. antarctica colonies, maximum growth rate of solitary P. antarctica, 250 

and microzooplankton maximum grazing rate) exhibited r2 ≥ 0.01 for both chlorophyll and POC. 

The 21 parameters with r2 ≥ 0.01 (Fig. 2) were selected for further evaluation (Sect. 2.5.3). 

2.5.3 Using twin experiments to select optimizable subset 

After selecting the 21 potentially optimizable parameters, Numerical Twin Experiments 

(NTEs) were conducted to identify an optimizable subset by evaluating the extent to which 255 

known values of sensitive parameters could be recovered given the data available for 

assimilation. The implementation of NTEs involves four primary steps (Hofmann and Friedrichs, 

2001). First, the chosen model is run forward in time to create a simulation using a known, “true” 

parameter set. Second, output from this simulation is sub-sampled to create a so-called 

“synthetic” data set. Third, the synthetic dataset is then assimilated to optimize model 260 

parameters. Fourth, the optimized parameter set is compared to the true parameter set. The 

assimilation is successful if the optimized values recover the true parameters used to generate the 

assimilated synthetic data.  

There is a limit to the number of parameters that can be independently constrained by the 

available observations because varying different parameters can often have similar effects on the 265 

cost function. Optimizing a larger set increases the potential for correlation between the effects 

of different parameters, reducing the algorithm’s effectiveness in identifying unique optimal 
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parameter sets. This, combined with the increased potential for over-fitting associated with the 

greater model degrees of freedom, can reduce the ability of an optimized model to reproduce 270 

independent data (Matear et al., 1995; Friedrichs et al., 2007; Xiao and Friedrichs et al., 2014b). 

The limitation on the number of optimizable parameters applies to both µGA and variational 

adjoint optimizations (Ward et al., 2010). In fact, rather than being a function of the optimization 

algorithm, it is dependent on the available data and the design of the cost function. A larger or 

richer observation set can help to constrain more parameters. The impact of cost function design 275 

is more complicated because an improved cost function may allow for greater uncertainty in the 

observations and/or non-parametric uncertainty in the simulation, leading to weaker but more 

realistic constraints on the parameters (Hemmings & Challenor, 2012). 

The procedure followed here for determining the subset of optimizable parameters is 

similar to that used by Friedrichs et al. (2007). First, a reference simulation was generated using 280 

the initial parameter set, and chlorophyll and POC estimates from this reference simulation were 

subsampled to generate a synthetic data set. Starting with a parameter space defined by the set of 

21 parameters deemed sensitive in the Latin hypercube tests (Fig. 2), a series of sequential NTEs 

was then performed with a progressively smaller number of optimized parameters: after each 

NTE, the optimized parameter that was most different from its ‘true’ value was removed from 285 

the optimizable parameter set. Thus, after each NTE the number of optimized parameters was 

reduced by one. The series of NTEs was evaluated to identify the largest parameter set for which 

the original parameter values were recoverable and the cost function remained essentially zero. 

From this analysis (Fig. 3), it was determined that optimizing eight parameters would be ideal 

(Table 1), because values of these eight parameters were recovered much better than larger 290 

parameter sets and model-data misfit (cost) remained low. 

2.6 Assimilation experiments 

The µGA optimization procedure was used to assimilate glider data in two sets of 

experiments that explored aspects of spatiotemporal variability and data availability. Estimates of 

depth- and time-integrated PP and time-integrated carbon export at 200 m were computed from 295 

the full model simulation in each experiment.  

2.6.1 Experiment #1 

The first set of experiments examined the differences in model simulations resulting from 

assimilating Chl and POC data from different spatial regions. In Experiment #1a, glider 
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observations were assimilated from the upper 50 m of the full temporal and spatial domain, 300 

referred to hereafter as the “Full Assimilation” case (Table 2). (Comparisons showed only minor 

differences between assimilating data from the upper 50 m vs. the full upper 200 m). 

Observations from different spatial areas of the glider track were also assimilated. Observations 

from the glider track were divided into three latitudinal bands (Northern, Central, and Southern 

bands) as well as into three longitudinal areas constituting Eastern, Central, and Western bands. 305 

Glider data from each of these three latitudinal and longitudinal bands were assimilated in 

Experiment #1b and #1c, respectively (Table 2, Fig. 4), resulting in three cost functions for each 

of these esperiments. 

2.6.2 Experiment #2 

The second set of experiments investigated the assimilation of data at different 310 

resolutions mimicking different data sources. In Experiment #2a, glider data were subsampled at 

~12-hour intervals (Table 2). The subsampling was repeated 12 times, with each iteration offset 

from the previous by +1, 2, 3... 11 hours, to generate a series of 12 glider observation sets. The 

assimilation of these 12 time series yields the “Glider Assimilation” case. In Experiment #2b, 

glider data were subsampled at a reduced temporal resolution similar to cruise sampling (Table 315 

2). Sampling during cruise missions often takes place for a few days in one location before 

moving elsewhere, and the ship sometimes returns to the first location after a number of weeks. 

To roughly mimic this sampling pattern, daily vertical profiles (again down to 50 m) were 

assimilated for three days in a row, starting from the first day of available glider data (22 Nov), 

and then three days of data were assimilated two weeks later. Shifting this pattern forward one 320 

week at a time generated a series of eight cruise-based observation sets for assimilation in this 

“Cruise Based Assimilation” case. In Experiment #2c, glider data were assimilated only from the 

upper 5 m surface layer to produce a data set resembling satellite-derived data. These data were 

then subsampled at two-week intervals, to represent typical data return from remote sensing 

observations of ocean color in the Ross Sea, where the availability of satellite image retrieval is 325 

frequently limited by excessive, though variable, cloud cover (Arrigo and van Dijken, 2004). The 

two-week subsampling pattern covered the entire period of glider data (22 Nov - 1 Feb), and was 

sequentially shifted forward one day at a time to generate a series of 14 satellite-based 

observation sets for assimilation in this “Satellite-Based Assimilation” case (Table 2). 
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2.7 Predictive Cost Assessment  330 

In addition to the assimilative cost (𝒥!) calculated during the optimization procedure 

using assimilated data, a predictive cost (𝒥!) was calculated to assess model-data misfit 

computed using the unassimilated data in each experiment. Because predictive costs represent 

model-data misfit from unassimilated data only (Friedrichs et al., 2006; Ward et al., 2010), it is 

an objective measure of the skill of an optimized model in reproducing observations at different 335 

points in time or space (Gregg et al., 2009). In this case, the aim of these experiments is to assess 

the skill of each optimized simulation regardless of which subset of the available data is 

assimilated. By computing the mean and median predictive cost for each experiment (other than 

the Full Assimilation case), the skill of the resulting simulations can be compared directly with 

one another. 340 

3 Results 
3.1 Experiment #1 

Assimilation of the glider data over the full temporal and spatial domain (Full 

Assimilation case) improves the model-data fit of both Chl and POC (Fig. 5a,b) and reduces the 

cost by nearly half (47%) compared to the a priori simulation without assimilation (Table 3). 345 

Average Chl and POC concentrations in the upper 50 m are both slightly lower (8% and 12%, 

respectively) in the optimized simulation. The contribution of each phytoplankton group to total 

chlorophyll remains similar to the No Assimilation case (Fig. 6a,c), but colonial P. antarctica 

carbon is lower and diatom carbon is higher in December and early January (Fig. 6b,d). 

Compared to the No Assimilation case, PP is only slightly lower (7%), whereas export flux is 350 

nearly 50% higher (Table 3; Fig. 7). Compared to their initial values, colonial P. antarctica 

parameters change the most as a result of the optimization, with reductions between 40-70% for 

the colonial P. antarctica maximum growth rate, maximum sinking rate and C:Chl ratio (Table 

4). In contrast, the diatom maximum growth rate and C:Chl ratio increased (~10% and 20% 

respectively).  355 

Chlorophyll and POC time-series exhibit only minor differences between latitudinal band 

experiments when data from the northern, central, and southern sections are assimilated 

independently (Fig. 5c,d) or when data from the eastern, central western sections are assimilated 

(Fig. 5e,f). Specifically, the optimal simulations for Chl and POC exhibit similar seasonal cycles 

across the three latitudinal and longitudinal bands, with only slightly higher Chl and POC 360 
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concentrations when assimilating data from the southern band (Fig. 5c,d) and higher Chl from 

the western band (Fig. 5e,f). Mean costs are much lower for the latitudinal and longitudinal 

experiments than for the No Assimilation case, and only slightly higher than the Full 

Assimilation case (Table 3). This indicates that data sampled from within only one spatial band 

improved the match between modeled and observed variables in the unassimilated areas as well. 365 

Average estimates of PP and export in both the latitudinal and longitudinal experiments are only 

slightly less (< 5%) than the Full Assimilation estimate (Fig. 7, Table 3).  

3.2 Experiment #2 

Assimilation of data subsampled at a frequency one-twelth that of the original glider data 

(Expt. 2a) results in twelve model simulations, all of which are similar to the Full Assimilation 370 

case, with Chl and POC time series closely following the observed seasonal pattern (Fig. 8a,b). 

Mean assimilative and predictive costs in the Glider Assimilation case are close to the cost of the 

Full Assimilation case (Table 3). Mean PP and export estimates are also close to estimates from 

the Full Assimilation case. The mean optimal parameter values obtained from the Glider 

Assimilation case are generally within one standard deviation of the optimal values from the Full 375 

Assimilation case (Table 4). 

Assimilation of data subsampled with a frequency typical of cruise observations (Expt. 

2b) results in a wide range of solutions, with several Chl and POC time series exhibiting 

markedly different peak bloom timings (Fig. 8c,d). Two of the solutions yield substantially 

higher concentrations of POC in November, and Chl peaks range from mid-November to early 380 

January. The mean predictive cost from this experiment (1.24) is roughly three times the 

assimilative cost for the Full Assimilation case (0.41) and three times the predictive cost for the 

Glider Assimilation case (0.43; Table 3). The PP estimates from the Cruise-based Assimilation 

case span a broad range (92 to 156 g C m-2 y-1) around the Full Assimilation estimate but are 

generally higher (Fig. 7a). This experiment similarly yields a very large range of export estimates 385 

(11 to 33 g C m-2 y-1) encompassing the results from Experiment #1 (Fig. 7b). Optimal parameter 

values obtained from the Cruise-based Assimilation case are generally less well constrained 

(higher standard deviations) than the Glider Assimilation case (Table 4). 

Assimilation of data subsampled as satellite-based observations from the surface layer 

(Expt. 2c) results in Chl and POC concentrations generally higher than the Full Assimilation case 390 

(Fig. 8e,f). The predictive costs are similar on average to those of the Cruise-based Assimilation 
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experiment; however, there is less variation (Table 3). The median integrated production is 

higher (9%) than the Full Assimilation estimate and the Cruised-based Assimilation estimate 

(Fig. 7a; Table 3); however, the range of PP estimates for this Satellite-based Assimilation case 

is smaller than those for the Cruise-based Assimilation case (Fig. 7a). Most notably, despite 395 

generally higher PP and higher POC concentrations, carbon export from the Satellite-based 

Assimilation case is substantially lower (41%) than the Full Assimilation estimate (Fig. 7b; 

Table 3). In fact, export estimates from individual runs in this experiment are all lower (-19% to 

-56%) than the Full Assimilation estimate (Fig. 7b). Again, the range of export estimates is 

smaller for the Satellite-based Assimilation than for the Cruise-based Assimilation. When 400 

assimilating data at a resolution similar to that of satellite-based observations, mean optimal 

parameter values were similar to those obtained in the Glider Assimilation and Cruise-based 

Assimilation cases, with the exception of the fast detritus sinking fraction for diatoms, which was 

significantly lower in the Satellite-based Assimilation case (0.62 ± 0.14) than in the other 

experiments (Glider Based Assimilation Case: 0.86 ± 0.05). In contrast to this sinking parameter 405 

for mortality from diatoms, the mean maxmimum sinking rate of colonial P. antarctica in the 

Satellite-based case was not significantly different than its value in either the Full Assimilation 

or Cruise-based cases (Table 4). Standard deviations of optimal parameters for the Satellite-

based Assimilation case were generally similar to or lower than those for the Cruise-based 

Assimilation case, except for the C:Chl ratio for diatoms, which produced a very high optimal 410 

value and was particularly poorly constrained (375±187 gC gChl-1; Table 4). 

4 Discussion 
4.1 Ross Sea simulation resulting from assimilation of glider data 

Data assimilation is a valuable tool for efficiently utilizing limited observational data in 

remote regions like the Ross Sea. In this study, glider data consisting of both fluorescence-415 

derived chlorophyll and backscatter-derived POC were assimilated into a one-dimensional 

marine biogeochemical model developed for the Ross Sea. Eight ecosystem parameters, 

including phytoplankton rates and C:Chl ratios, were optimized resulting in a simulation with a 

50% reduced model-data misfit. This optimal simulation yielded lower P. antarctica carbon 

concentrations and higher diatom carbon concentrations, resulting in higher carbon export 420 

compared to those generated by the initial hand-tuned simulation (Kaufman et al., 2017a), 

despite slightly lower estimates of overall annual primary production. Changes in chlorophyll 
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concentrations of diatoms and P. antarctica were minor. This optimal simulation was obtained 

largely via changes in the C:Chl ratios: the colonial P. antarctica ratio of C:Chl was lower and 

the diatom C:Chl was higher than in the original simulation. Although modified from their initial 425 

values, the relative differences between these optimized C:Chl ratios for P. antarctica and 

diatoms are consistent with shipboard measurements of C:Chl ratios, which found higher C:Chl 

in diatom-dominated waters compared to P. antarctica-dominated waters: ~200 vs. 90 g C g Chl-

1 (DiTullio and Smith, 1996), and ~50-100 vs. 20-50 g C g Chl-1 (Mathot et al., 2000). Although 

the authors are not aware of any specific estimates in the literature for the fraction of diatom 430 

mortality that becomes fast-sinking detritus, other optimal rate paramaters are consistent with 

those previously reported in the literature. For example, the optimized growth rates (0.29 - 0.4 m 

d-1) are similar to measured values in the Ross Sea (Smith and Gordon, 1997; Smith et al., 1999; 

Mosby and Smith, 2015), and the optimized sinking rate of P. antarctica colonies (14 m d-1) is 

similar to previous estimates (Asper and Smith, 1999; Asper and Smith, 2003; Smith et al., 435 

2011). 

The high number of model evaluations in each optimization case (roughly 4000 – 5000) 

makes such direct optimization impractical for large-scale models; however, the parameters 

identified in a 1D model by these techniques can be used in larger models, and indeed locally 

optimized parameters have been previously shown to improve the skill of 3D models in other 440 

regions (Oschlies and Schartau, 2005; Kane et al., 2011; McDonald et al., 2012; St-Laurent et al., 

2017). It is expected that the optimized parameter values found in the one-dimensional 

assimilation experiments described here will be of value in a future 3D biogeochemical modeling 

analysis of the Ross Sea and, through model inter-comparisons, provide a basis for examining 

the dependence of these parameter values on model structure and level of complexity, as has 445 

been done elsewhere (Friedrichs et al., 2007; Bagniewski et al., 2011; Ward et al., 2013; Irby et 

al., 2016).  

4.2 Spatial variation within the glider track 

Phytoplankton in the Ross Sea exhibit both spatial and temporal variability. Cruise 

transects across the continental shelf show a marked spatial variability in both the east-west and 450 

north-south direction over short periods of time (Smith et al., 2013). Within the Ross Sea 

Polynya, ship-based observations show biochemical gradients that suggest patchiness of 

phytoplankton dynamics on the mesoscale (Hales and Takahashi, 2004; Smith et al., 2017). 
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Nutrient pools have been found to exhibit gradients from both north to south and east to west 

(DiTullio and Smith, 1996; Sedwick et al., 2011; Smith et al., 2013; Marsay et al., 2014), and 455 

phytoplankton assemblage composition is not necessarily uniform across longitudes (DiTullio 

and Smith, 1996; Garrison et al., 2003; Smith et al., 2013). In addition, cold and fresh eddies 

have been observed along the ice shelf edge potentially reshaping the phytoplankton assemblage 

on short time (<10 days) and space (<20 km) scales (Li et al., 2017).  

When analyzing glider data in regions characterized by high mesoscale variability, it is 460 

often not apparent whether observed patterns represent spatial or temporal variability. As 

Rudnick (2016) discusses, “Because gliders can occupy lines, their data can be viewed as 

traditional sections, such as those measured from a ship. However, because high-frequency 

variability is projected onto a spatial structure, it is sometimes more convenient to think of the 

data as a time series from a mooring.” This ambiguity led Kaufman et al. (2014) to concede 465 

“both spatial and temporal gradients may have played a role in the observed variability” when 

analyzing physical-biological relationships from glider data in the southern Ross Sea. 

Although both temporal and spatial gradients may be present, observations can be 

presented as either primarily spatial or temporal patterns with simple tests guiding the decision. 

For example, a comparison of means and standard deviations across spatial sections and time 470 

periods was previously used to identify time as the dominant dimension of variability in the 

2012-2013 glider observations (Jones and Smith, 2017). In this study, a similar conclusion was 

reached, using a very different methodology. The assimilation of glider data from six different 

sub-areas of the study region (separated latitudinally or longitudinally by ~20 km) indicated that 

the seasonal cycle is similar in phase throughout the region of the glider track. The assimilation 475 

of glider data from each of the nine regions yielded similar estimates of POC and Chl, generally 

within the variance of the glider observations (gray areas of Fig. 5c-f), and similar estimates of 

temporally averaged primary productivity and export. This further supports the approach of 

using the glider data as a time series and suggests that temporal patterns at this scale play a 

greater role than spatial patterns in structuring variability of the phytoplankton assemblage. 480 

Moreover, the similarity between predictive and assimilative costs when assimilating the 

latitudinal and longitudinal bands of data suggests that the parameters are not being over-fit for 

these experiments. Thus, temporally resolved observations in any of these regions might be 

expected to provide similar constraints on modeled temporal patterns of the phytoplankton.  

Author
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4.3 Differences between assimilating glider, satellite-derived, and cruise-based data 

Results from experiments that assimilated data at different spatial and temporal 

resolutions suggest that assimilating only surface observations, as are typically available from 

remote-sensing platforms, underestimates carbon export and more weakly constrains estimates of 

productivity relative to assimilation of depth-resolved glider data. The lower estimates of carbon 490 

export occurred because the optimal diatom fraction for fast-sinking detritus obtained via the 

assimilation of surface-only data (0.62 ± 0.14) was significantly lower than that obtained via the 

assimilation of data throughout the upper 50 m (Expt. 2a: 0.86 ± 0.05; Expt. 2b: 0.86 ± 0.11). 

These results highlight the importance of assimilating subsurface measurements and of modeling 

diatom aggregation when estimating carbon export; similar findings were reported in 1D 495 

biogeochemical optimization experiments using data from Lagrangian floats in the North 

Atlantic (Bagniewski et al., 2011). Experimental results also indicate that the assimilation of 

satellite-derived data provides a weaker constraint on productivity estimates, as seen by the 

larger range of estimates (114 ± 11 gC m-2 y-1), as compared to the assimilation of glider data 

(104 ± 2 gC m-2 y-1). Although not statistically significant, the higher productivity estimates 500 

generated by the assimilation of satellite-derived data is consistent with those of Gregg (2008), 

who found that assimilation of satellite-based chlorophyll estimates into a three-dimensional 

global biogeochemical model overestimated primary production. In contrast, results from 

assimilating satellite-derived chlorophyll concentrations into a one-dimensional model in the 

equatorial Pacific produced underestimates of primary productivity compared to in situ 505 

observations (Friedrichs, 2002).  

Although both chlorophyll and POC were assimilated in the present study, chlorophyll 

alone has been the dominant satellite data product used in biogeochemical assimilation, although 

other data types are available and can impact the assimilation results. For instance, a study 

investigating the assimilation of different types of satellite-derived data, including POC and size-510 

fractionated chlorophyll, found that assimilation of satellite-derived POC estimates worsened the 

model estimates of chlorophyll, whereas the assimilation of chlorophyll did not substantially 

impact the POC estimates (Xiao and Friedrichs, 2014b). Additionally, satellite-based sampling 

bias could be reduced by concurrently assimilating export flux data derived from sediment trap 

measurements (Friedrichs et al., 2007), or by assimilating satellite measurements such as remote-515 

sensing reflectance directly (Jones et al., 2016). It is also worth noting that when assimilating 
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actual satellite data, the biases suggested by this study resulting from assimilation of only surface 

data would be compounded with biases inherent in the satellite retrieval algorithms (Saba et al., 

2011; Stukel et al., 2015). 

Assimilating cruise-based data in the highly variable Ross Sea may also yield potentially 520 

large errors in primary production, as well as in carbon export estimates, depending on which 

specific days are sampled. Estimates of bloom timing from the assimilation of cruise-based 

observations may also vary substantially (Fig. 8c,d). This echoes the results of a series of 

reduced resolution data interpolations, from which Hales and Takahashi (2004) reported that 

cruise-based observations in the Ross Sea were likely able to capture average conditions well, 525 

but miss some mesoscale phenomena. Likewise, a subsampling analysis of physical-biological 

correlations from 2010 Ross Sea glider data demonstrated the possibility of lower resolution data 

obscuring or biasing biogeochemical interpretations (Kaufman et al., 2014). The results provided 

by the data assimilative study described here can be used to help guide decisions of when and 

how long to sample certain locations in the Ross Sea; this is especially important given the 530 

limitations of ship-based sampling in such a remote region (Smith et al., 2014). In fact, the use of 

data collection from other sampling platforms may decrease the pressure to conduct repeated 

transects by ship, and allow limited vessel-time to be used for more thorough process-based 

investigations uniquely-suited for research vessels.  

5 Summary and Conclusions 535 

A series of experiments investigating spatiotemporal variability of the phytoplankton 

assemblage and potential effects of assimilating data from different observation platforms 

highlighted the benefits and challenges of combining data and biogeochemical models in the 

Ross Sea. The assimilation of glider data reduced model-data misfit by 50%, and resulted in 

reduced depth-integrated primary production and higher carbon export at 200 m. Additional 540 

experiments for different spatial regions reduced predictive costs with respect to unassimilated 

data by ~35%, suggested that the model parameters were well constrained, and implied that 

using glider data as time series in these local studies is a reasonable approach. This may further 

suggest the value of using moorings or buoys, or even deploying gliders in a “virtual mooring” 

mode. However, the effects of mesoscale variability were apparent when assimilating data at a 545 

frequency characteristic of cruise-based sampling, which resulted in a wide range of primary 

production and export estimates depending on the sampling times. Results of assimilating data 
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characteristic of satellite-based sampling suggest that assimilating satellite-derived data will 

result in underestimated carbon export. These findings can be used to help avoid potential 

sources of error when using ship-based or satellite-based observations alongside the 550 

development, calibration, or running of biogeochemical models. The combination of high-

resolution glider data and modeling in this study underscores the importance of considering how 

the timing at which observations are collected affect the subsequent interpretations.  

Author
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Data Availability. Data from the autonomous glider are available from the BCO-DMO data 

repository (http://www.bco-dmo.org/dataset/568868), and other data to support this article 

are available at W&M Publish (https://doi.org/10.21220/V5RT5C) and upon request from 

the authors (dkauf42@gmail.com, marjy@vims.edu). 

 565 

Appendix A: Latin hypercube sampling (Sect. 2.5.2)  

Latin hypercube sampling (LHS) and Monte Carlo sampling are both techniques that can 

be used to randomly draw a finite number of samples from input distributions in order to 

approximate a full multidimensional distribution. The LHS incorporates stratified random 

sampling, i.e. in each dimension each sample is drawn randomly from within a different interval 570 

(also called a stratification or layer) of the distribution (McKay et al., 1979). Intervals are chosen 

with reference to the probability distribution such that each represents an equally probable range. 

In contrast, Monte Carlo sampling proceeds in each dimension with each sample drawn 

randomly from the entire distribution. Stratified random sampling with intervals of uniform 

probability ensures a good representation of the distribution, reducing the risk of samples being 575 

clustered in one or a small number of areas. In LHS sampling, if the sample size is n, each 

dimension is divided into n intervals such that in multi-dimensional space each interval of each 

dimension is sampled once and once only. This is based on the idea of a Latin square in which an 

individual symbol appears once in each row and each column. It ensures a good representation of 

the distribution is achieved for all dimensions. 580 
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Table 1: Eight parameters optimized in this analysis. 
 
Parameter Name Initial value 

(Kaufman et 
al., 2017a) 

Bounds 
(lower, 
upper) 

Diatom max growth rate at 0˚C 0.375 (d-1) 0.09375, 1.5 
P. antarctica solitary cells C:Chl ratio 30 (gC gChl-1) 7.5, 120 
P. antarctica colonies max growth rate at 0˚C 0.5 (d-1) 0.125, 2 
P. antarctica solitary cells max growth rate at 0˚C 0.5 (d-1) 0.125, 2 
Diatom C:Chl ratio 150 (gC gChl-1) 37.5, 600 
Fast detritus sinking fraction of diatom losses 0.75 0.5, 0.95 
P. antarctica colonies max sinking rate 20 (m d-1) 5, 80 
P. antarctica colonies C:Chl ratio 40 (gC gChl-1) 10, 160 
 
 
  870 
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Table 2: Time, depth, and time-space resolution of glider-based observations of Chl and POC 
assimilated for each experiment. 
 
Experiment Depth 

(m) 
Temporal Resolution Spatial Area(s) 

Expt 1a: Full Assimilation 0 - 50  Hourly Full glider track 
Expt 1b: Latitudinal Assim. 0 - 50  Hourly North, Central, South 

Latitudinal bands 
Expt 1c: Longitudinal Assim. 0 - 50  Hourly East, Central, West 

Longitudinal bands 
Expt 2a: Glider Assimilation 0 - 50 ~ twice per day, separated 

at a minimum of 12 hours.   
Full glider track 

Expt 2b: Cruise-based Assim. 0 - 50  3 days in a row, and then 
another 3 consecutive 
days two weeks later 

Full glider track 

Expt 2c: Satellite-based Assim. 0 - 5  1 day every two weeks Full glider track 
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Table 3: Depth- and time-integrated primary production (PP), carbon export flux at 200 m, and 
costs for the No Assimilation run (cost = 0.77), Experiment #1 and #2. 
 
Simulation name PP  

(g C m-2 y-1) 
Export 
(g C m-2 y-1) 

Predictive 
Cost (𝓙𝑷) 

Assim. 
Cost (𝓙𝑨) 

No assimilation 111.7 18.8 - - 
Expt 1a: Full Assimilation 104.2 27.2 - 0.41 
Expt 1b: Latitudinal Assim. 101.8* ±3.3 26.1 ±2.1 0.49 ±0.13 0.43 ±0.14 
Expt 1c: Longitudinal Assim. 103.2 ±2.1 26.9 ±2.1 0.50 ±0.10 0.46 ±0.13 
Expt 2a: Glider Assim. 103.7 ±1.8 27.0 ±1.2 0.43 ±0.01 0.43 ±0.03 
Expt 2b: Cruise-based Assim. 113.1 ±22.3 24.8 ±6.6 1.24 ±0.95 0.52 ±0.19 
Expt 2c: Satellite-based Assim. 114.1 ±10.7 16.7 ±2.7 1.04 ±0.36 0.26 ±0.16 
* costs represent mean ± one standard deviation of assimilative runs. 
 880 
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Table 4: Initial parameter values (No Assimilation) and optimal parameter values after 
conducting the Full Assimilation, Glider, Cruise-based, and Satellite-based Assimilation 
experiments  885 
 
Parameter Name Initial 

Value 
Expt 1a 
Full 
Assimilation  

Expt 2a 
Glider* 

Expt 2b 
Cruise- 
based* 

Expt 2c 
Satellite- 
based* 

Diatom max growth rate at 
0˚C (d-1) 

0.375 0.40 0.43 ±0.01 0.42 ±0.15 0.41 ±0.09 

P. antarctica solitary cells 
C:Chl ratio (gC gChl-1) 

30 29.7 25.84 ±5.16 37.3 ±26.7 51.5 ±26.8 

P. antarctica colonies max 
growth rate at 0˚C (d-1) 

0.5 0.29 0.22 ±0.10 0.45 ±0.58 0.29 ±0.17 

P. antarctica solitary cells 
max growth rate at 0˚C (d-1) 

0.5 0.39 0.45 ±0.06 0.75 ±0.70 0.79 ±0.51 

Diatom C:Chl ratio (gC 
gChl-1) 

150 176.4 166.6 ±50.17 252.4 ±164.28 374.86 ±187.82 

Fast detritus sinking fraction 
of diatom losses 

0.75 0.87 0.86 ±0.05 0.86 ±0.11 0.62 ±0.14 

P. antarctica colonies max 
sinking rate (m d-1) 

20 10.7 10.1 ±3.66 20.1 ±20.5 12.8 ±9.27 

P antarctica colonies C:Chl 
ratio (gC gChl-1) 

40 14.0 14.2 ±2.29 42.7 ±41.6 34.3 ±26.5 

* mean ± one standard deviation of assimilative runs. 
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