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Comments to the Author: 
Dear Dr. Kaufman, 
Two reviewers have reviewed the revised version of your manuscript, "Assimilating 
bio-optical glider data during a phytoplankton bloom in the southern Ross Sea", and 
your response to their comments. They both found that you adequately addressed 5 
their concerns and I agree with them. Based on that I suggest that your manuscript 
be accepted for publications in Biogeosciences provided that you address the minor 
comments here below. 
Thank you for submitting your manuscript to Biogeosciences.  
With kind regards 10 
Marilaure Grégoire 
 
Dear Marilaure Grégoire, 
Thank you very much for your careful review of our manuscript, and for providing 
detailed comments. Please find below our manuscript changes and responses (in 15 
blue) to your comments. 
 
Sincerely, 
Daniel Kaufman, Marjorie Friedrichs, John Hemmings, Walker Smith 
 20 
 
Comments: 
 
Line 19: please correct the units and add a minus in front of the exponent “2”. It 
should be 104 g C m-2 y-1 25 
 
Corrected. 
 
Line 65; please mention after Phaeocystis Antarctica, “ (P.antarctica)” 
 30 
Added. 
 
 Line 396: I would say “Phytoplankton growth and sinking rates” instead of 
“phytoplankton rates” because this does not concern all rates.  
 35 
This line has been modified as suggested. 
 
 Line 399: ‘the initial hand-tuned simulation” You mean the “No 
Assimilation” experiment? “Optimal simulation” you mean “Full 
Assimilation” experiment ? Please clarify and uniformize throughout the 40 
manuscript in order to avoid confusion.  
 
Thank you for proposing this clarification. The text has been changed to say “Full 
Assimilation” and “No Assimilation.” We have similarly clarified the text on lines 324 
and 407, which now reference the “No Assimilation case” and “Full Assimilation,” 45 
respectively. 
 
Line 410: growth rates are not in m/day but /day. Please correct. 
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Corrected. 50 
 
 Table 2, legend. Please clarify where the time is given. According to my 
understanding the first column refers to the type of experiments performed or 
simulation name as used in Table 3 and not to the Time as currently mentioned. 
 55 
The wording has been simplified so that it neither duplicates the information in the 
column headers nor implies a one-to-one relationship with the column headers.  
Now it says "Spatio-temporal resolution of glider-based observations..." 
 
Table 3, legend: Please clarify the period over which the time averaging has been 60 
performed (length of simulation and then converted into annual mean values?). I 
do not understand why the footnote (“costs represent means +/- one std”) related 
to the cost is put for the first column. I would have put that in the legend for 
clarity. Finally, for helping the reader, I would briefly explain what are the 
“predictive costs” and “assimilative costs” (a few words are enough)  65 
 
As suggested, we have added the parenthetical clarification, “(over the length of 
the simulation, representing yearly rates)”. The footnote has been moved into the 
table caption with the following text to distinguish between the two costs: “Costs 
provide a measure of the misfit between a particular model simulation and 70 
observations, and the costs shown represent mean ± one standard deviation of 
assimilative runs. The assimilative and predictive costs are computed from the 
assimilated and unassimilated data, respectively.” 
 
 Figure 5: You mention “For reference, model results for the Full Assimilation case 75 
(orange lines), and glider data (black lines) with shading (gray) representing one 
standard deviation are included in each panel.” However, the orange curve in each 
graph is not always the full assimilation case but rather the central lat/lon band 
assimilation case. Besides, please clarify how the standard deviation is computed. 
 80 
To correct this, we have removed the unnecessary text so that the caption for 
Figure 5 (a-f) says: "For reference, glider data (black lines) with shading (gray) 
representing one standard deviation (from the upper 50 m) are included in each 
panel." 
 85 
 
An additional typo was fixed on line 385: “maximum” 
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Abstract. The Ross Sea is a region characterized by high primary productivity in comparison to 

other Antarctic coastal regions, and its productivity is marked by considerable variability both 10 

spatially (1-50 km) and temporally (days to weeks). This variability presents a challenge for 

inferring phytoplankton dynamics from observations that are limited in time or space, which is 

often the case due to logistical limitations of sampling. To better understand the spatiotemporal 

variability of Ross Sea phytoplankton dynamics and determine how restricted sampling may 

skew dynamical interpretations, high-resolution bio-optical glider measurements were 15 

assimilated into a one-dimensional biogeochemical model adapted for the Ross Sea. Assimilation 

of data from the entire glider track using the micro-genetic and local search algorithms in the 

Marine Model Optimization Testbed improves model-data fit by ~50%, generating rates of 

integrated primary production of 104 g C m-2 y-1 and export at 200 m of 27 g C m-2 y-1. 

Assimilating glider data from three different latitudinal bands and three different longitudinal 20 

bands results in minimal changes to the simulations, improves model-data fit with respect to 

unassimilated data by ~35%, and confirms that analyzing these glider observations as a time 

series via a one-dimensional model is reasonable on these scales. Whereas assimilating the full 

glider data set produces well-constrained simulations, assimilating subsampled glider data at a 

frequency consistent with cruise-based sampling, results in a wide range of primary production 25 

and export estimates. These estimates depend strongly on timing of the assimilated observations, 

due to the presence of high mesoscale variability in this region. Assimilating surface glider data 

subsampled at a frequency consistent with available satellite-derived data results in 40% lower 

carbon export, primarily resulting from optimized rates generating more slowly sinking diatoms. 

This analysis highlights the need for strategic consideration of impacts of data frequency, 30 
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duration, and coverage when combining observations with biogeochemical modeling in regions 

with strong mesoscale variability. 
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1 Introduction 35 

Phytoplankton blooms in the Ross Sea are responsible for some of the highest rates of 

productivity in the Southern Ocean (Arrigo et al., 2008), and yet the phytoplankton assemblage 

exhibits considerable spatiotemporal variability (DiTullio and Smith, 1996; Hales and Takahasi, 

2004; Smith et al., 2010). This heterogeneity, and the spatial/temporal limitations of observations 

due to logistical challenges of sampling, may affect the inferred phytoplankton dynamics and 40 

produce biases in productivity or export estimates. The magnitude of the underlying ecosystem 

variability that contributes to these potential biases is not well understood, nor is it well known 

how the use of different observational platforms in the Ross Sea might affect the inferred 

dynamics. Acquiring data with an appropriate resolution is important for assessing 

phytoplankton variability in the Ross Sea (Hales and Takahashi, 2004).  45 

Over the past several decades, biogeochemistry in the Ross Sea has been observed by 

ship and satellite, providing data at different temporal and spatial resolutions. Since Ross Sea 

phytoplankton became a focus of scientific research in the late 1970s, water column 

measurements have primarily come from research vessels (e.g., El-Sayed et al., 1978; Smith and 

Nelson, 1985; Vaillancourt et al., 2003). Typically, sampling stations are separated by tens of 50 

kilometers (Hales and Takahashi, 2004), and although vessels may return to resample a station, 

they typically do not return more than once or twice in a single year. During the 1990s, the use of 

remote sensing was expanded to look more closely at the Ross Sea bloom (Arrigo and McClain, 

1994), and satellite retrievals have continued to provide valuable insights into characteristics of 

the phytoplankton assemblage (Arrigo et al., 1998; Arrigo and van Dijken, 2004; Peloquin and 55 

Smith, 2007; Schine et al., 2015). Satellite observations offer a synoptic view of spatial regions 

at frequencies that are within the time scale of biological changes (e.g. growth); however, the 

presence of sea ice and clouds often obscures remote-sensing measurements in the Ross Sea 

(Arrigo et al., 1998).  

At the mesoscale (days-weeks, 1-10 km), gliders are a relatively new and effective means 60 

to characterize phytoplankton variability, and the development of ice-avoidance algorithms has 

enabled the use of gliders in the Ross Sea for these purposes. For example, a glider equipped 

with bio-optical sensors was directed along a section near 76° 40′ S in austral summer 2010 - 

2011 and provided valuable estimates of biomass variability on short time scales (Kaufman et al., 

2014). Estimates of the POC:Chl ratio from the glider optical sensors suggested a transition from 65 
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a Phaeocystis antarctica (P. antarctica) to a diatom-dominated assemblage over several days 

(Kaufman et al., 2014; Thomalla et al., 2017). Moreover, Jones and Smith (2017) used glider 

observations from austral summer 2012-2013 to distinguish three phases of the Ross Sea bloom 

and identified high frequency (hours) associations between wind-driven mixing and biomass. A 

perennial challenge when using glider data (as well as ship-based data), however, is separating 70 

the effects of time and space (Kaufman et al., 2014; Little, 2016). 

Numerical models are another approach for examining phytoplankton variability in the 

remote Ross Sea, providing an effective means for coordinating knowledge and understanding 

the underlying system complexities (Leonelli, 2009; Vallverdú, 2014). Furthermore, numerical 

simulations offer the ability for experimental manipulations that would be impractical or 75 

impossible in the real system. Such manipulations were implemented in the scenario experiments 

described by Kaufman et al. (2017a) to investigate how projected climate changes might alter the 

dynamics of the phytoplankton assemblage. These experiments showed that earlier availability of 

low light resulting from sea ice reduction was the primary driver of projected increases in 

production and export and composition change over the next century. 80 

Data assimilation, which refers to methodologies that systematically combine a 

mathematical model with observations, is often used in biogeochemical applications (Hofmann 

and Friedrichs, 2001, 2002) to improve estimates of model parameters that are frequently poorly 

known (Lawson et al., 1995, 1996; Matear, 1995; Fennel et al., 2001; Friedrichs, 2002; Schartau 

and Oschlies, 2003; Hemmings et al., 2004; Bagniewski et al., 2011; Doron et al., 2013; Xiao 85 

and Friedrichs, 2014a,b; Melbourne-Thomas et al., 2015; Song et al., 2016; Gharamti et al., 

2017, Schartau et al., 2017). This entails a smoothing or optimization procedure, in which 

elements of the model are adjusted to minimize differences between the model output and the 

observations. Typically, an aggregate measure of the differences between observations and 

model output is provided by calculation of a cost function, defined as the model-data misfit, and 90 

an optimization algorithm searches for model parameters that minimize the value of this cost 

function. 

In this study, data assimilation is used to obtain an optimal representation of Ross Sea 

lower trophic levels. Specifically, observations from an autonomous glider are assimilated into a 

biogeochemical model of the Ross Sea (Kaufman et al., 2017a) to better understand the spatial 95 

and temporal variability of phytoplankton in this region. Assimilation experiments also examine 
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how the space and time characteristics of observational sampling frequency impacts the ability of 

observations to produce optimal system representations.  

2 Methods 

2.1 One-dimensional biogeochemical model 100 

Numerical experiments were conducted with the Model of Ecosystem Dynamics, nutrient 

Utilisation, Sequestration and Acidification for the Ross Sea (MEDUSA-RS; Kaufman et al., 

2017a), a regionally adapted version of MEDUSA-1.0 (Yool et al., 2011). Three phytoplankton 

groups are represented in the MEDUSA-RS model: colonial P. antarctica, solitary P. antarctica, 

and diatoms. Phytoplankton growth in the model is temperature dependent as well as limited by 105 

light and nutrient availability. Colonial P. antarctica, diatoms, and detritus all sink at distinct 

rates. The model handles the sinking of large detrital particles implicitly as a fast-sinking group 

to avoid issues related to the scale of the model time step and to avoid the need for an additional 

tracer. A ballast scheme is used to allow inorganic materials to “protect” a variable fraction of 

the sinking organic material from degradation. The model is configured to focus on dynamics 110 

within the euphotic zone with a vertical resolution of 5 m from the ocean surface to 200 m. A full 

description of the model and its set-up within the Marine Model Optimization Testbed 

(MarMOT; Hemmings and Challenor, 2012), as well as the physical forcings derived from glider 

observations, are documented in Kaufman et al. (2017a,b).  

2.2 Data for assimilation 115 

In situ observations used for the assimilation experiments came from an iRobot Seaglider 

equipped with a Wet Labs ECO Puck sensor and are available in the Biological and Chemical 

Oceanography Data Management Office data repository (http://www.bco-

dmo.org/dataset/568868). Glider dives from 22 November 2012 to 01 February 2013 covered a 

horizontal area spanning 76.83 - 77.44 ˚S and 168.9 - 171.97 ˚E (Fig. 1). Data spanning the 120 

upper 200 m of the water column were binned by means into hourly, 5-m vertical bins. 

Concentrations of chlorophyll (Chl) and particulate organic carbon (POC) were derived, 

respectively, from fluorescence and optical backscatter counts measured by the sensor and 

converted using regression equations (Kaufman et al., 2017a). These bio-optical quantities were 

used for calculating model-data misfits during assimilation. 125 
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2.3 Cost function 

The ‘cost function’ (J), defined as a measure of misfit between a particular model 

simulation and observational data, is computed as a weighted average of the squared differences 

between simulated and observed values: 

𝒥 =
1
𝑁 (

1
𝜎!!!!

𝑥!,!!! − 𝑦!,!!!
! +

1
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where 𝑁 is the number of observation points, 𝑥! is the simulated value of either chlorophyll or 130 

POC at the ith observation point and 𝑦! is its observed value; σ is the standard deviation of the 

specific observation set assimilated in a particular experiment. Using the standard deviation of 

the observations to define a characteristic scale of variation for each variable is a technique used 

in previous studies (e.g. Friedrichs et al., 2006; Xiao and Friedrichs, 2014). It is designed to 

weight the relative misfit contribution of each variable appropriately when there are insufficient 135 

data to define a comprehensive error model. Such a model would require reliable information 

about the uncertainty associated with observation errors (instrument error and error of 

representativeness) and non-parametric errors in the simulation such as forcing errors (Schartau 

et al., 2017). The use of different cost function weighting schemes in plankton modelling 

including the characteristic scale technique is explored in more detail by Hemmings and 140 

Challenor (2012).  

2.4 Cost function minimization 

Model parameters were optimized in MarMOT by finding the minimum of the cost 

function (Sect. 2.3) through a combination of the micro-genetic algorithm (µGA) and Powell’s 

non-gradient direction set algorithm. The µGA runs first and identifies sets of parameter values 145 

that produce low cost values; this is achieved by "evolving" a population of various parameter 

sets over successive iterations, called generations. The low-cost parameter sets identified by the 

µGA are then used as starting points for the direction set method, which performs successive 

linear searches to identify nearby lower cost solutions.  

Genetic algorithms, including the µGA, are a subtype of computational methods known 150 

as evolutionary algorithms, so-called because of their inspiration from, and metaphoric 

relationship to, biological evolution. Described using this metaphor, a genetic algorithm 

procedure modifies a population of candidate solutions over successive generations by variation 

and selection processes to converge on a single solution or solution area. GAs have several 
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advantages for optimization, including their intrinsic parallelism, suitability for systems with 155 

multiple local minima, and their generalizability (Bajpai and Kumar, 2010; Ward et al., 2010). 

The µGA uses three steps to transition from one generation to the next, described following the 

biological metaphor as: selection, crossover, and resampling (Krishnakumar, 1990; Črepinšek et 

al., 2013). An advantage of the µGA is its reduced risk of premature convergence, resulting from 

reinitializating after each convergence, and generating new random populations while 160 

maintaining the best fit individual from the previous set (Schmitt, 2001).  

In this µGA implementation, optimizations begin with a population of five individual 

parameter sets randomly generated for the first µGA generation. The constituent parameter 

values are selected randomly from within a pre-determined range of allowable values (Sect. 

2.5.1). An evaluation of the cost function for each model solution indicates the ‘fitness’ of each 165 

individual. A binary tournament procedure is then followed to select parents from this population 

for the next generation. The most-fit individuals (i.e., those with the lowest cost function values) 

are paired with one another and undergo recombination of the bits representing parameter values. 

After each generation, the proportion of bits differing from those of the fittest individual is 

calculated to determine whether the population can be deemed converged (though this does not 170 

necessarily indicate closeness in parameter space). After the threshold for convergence has been 

achieved, the population is reinitialized to random individuals, although the fittest individual is 

maintained. The µGA is terminated upon the first convergence occurring after a minimum 

number of generations has been reached. 

Once convergence has been achieved after a minimum number of µGA generations, 175 

Powell’s non-gradient direction set algorithm performs a local search using the µGA solutions as 

starting points. The direction set method performs sequential minimizations in iterative 

directions, updating the search direction after each iteration (Powell, 1964; Press et al., 1992). 

Although the µGA is well suited for global search problems partly because of its stochasticity, 

Powell’s direction set algorithm is well suited to searching for a local optimum. Brent’s method, 180 

which combines root-bracketing with secant and inverse quadratic interpolation (Brent, 1973), is 

used to numerically locate cost minima between neighboring function evaluations along each 

direction identified by the Powell algorithm. The direction set algorithm stops when a cost 

function minimum is located or when a maximum number of iterations is reached. The optimized 

parameter values are those that generated the cost function minimum. 185 
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2.5 Selection of parameters to be optimized 

Ideally, optimal values are identified for all parameters in a model, however, uncertainty 

in the parameter estimates from an algorithmic optimization increases as the number of 

parameters included in that optimization increases (Friedrichs et al., 2007; Ward et al., 2010). 

Although the optimization of more parameters generally lowers the assimilated cost, the 190 

increasing potential for equifinality with more parameters means the optimization may find 

equivalent low-cost solutions with substantially different parameter values. Therefore, before 

assimilating observations and optimizing parameters, a subset of “free” or “optimizable” model 

parameters must be chosen. In this study, the parameters to be optimized are selected through a 

three-step process: defining a range of permitted values for every parameter (Sect. 2.5.1), 195 

identifying the parameters to which model outputs are most sensitive (Sect. 2.5.2), and 

evaluating how many of these sensitive parameters can be reasonably optimized when 

assimilating the available data (Sect. 2.5.3). Initial values for each parameter, prior to the 

assimilation, were set to values identified in Kaufman et al. (2017a). 

2.5.1 Parameter ranges 200 

Upper and lower bounds of the allowable range for each free parameter were defined 

loosely following Hemmings et al. (2015). Bounds were set to be geometrically symmetric 

(factor of four for rates; factor of five for half-saturation concentrations) around the initial 

values. For fractional parameter values, limits were set to +/- 0.25 their initial values, although 

not allowed to exceed 0.05 or 0.95. Ranges for parameters not expressed as fractions were log-205 

transformed for sampling purposes. 

2.5.2 Sensitivity Analysis 

Parameters to which model outputs are highly sensitive are important and useful to 

optimize. In contrast, it is futile to optimize parameters to which model outputs of interest are not 

sensitive; no amount of varying these parameters will result in improved model performance. 210 

Therefore, the first criterion used to designate a parameter as optimizable was the sensitivity of 

model outputs to the values of that parameter. Model sensitivities were evaluated for assimilated 

variables (Chl and POC) and carbon fluxes of interest (primary production (PP) and carbon 

export at 200 m). To quantify the sensitivities of these outputs to each of the 80 parameters in the 

model, a series of runs were conducted following the approach of Hemmings et al. (2015). Each 215 

run used a unique sample of parameter values drawn from within the specified parameter ranges 
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(Section 2.5.1) using a Latin hypercube. This approach provides more even coverage of the 

parameter space than Monte Carlo sampling methods that can result in clustered values and 

unsampled regions (Appendix A). One thousand values were drawn from sequential intervals 

throughout the range for each parameter. Using this technique, unique parameter sets were 220 

constructed such that over the course of all runs, the full range of values for each parameter was 

represented. 

The model was run 1000 times, each time using one of the unique parameter sets 

resulting from Latin hypercube sampling of the full parameter space. Sensitivity was quantified 

by evaluating the amount of variance in the output diagnostics explained by each parameter (i.e., 225 

by computing the coefficient of determination (r2) between each parameter and each of the four 

output variables of interest; Fig. 2). All four model outputs (Chl, POC, PP, and export) were 

most sensitive (r2 ≥ 0.01) to attenuation of blue-green light by phytoplankton pigments, diatom 

maximum growth rate, and C:Chl ratio for solitary P. antarctica. Three additional parameters 

(maximum growth rate of P. antarctica colonies, maximum growth rate of solitary P. antarctica, 230 

and microzooplankton maximum grazing rate) exhibited r2 ≥ 0.01 for both chlorophyll and POC. 

The 21 parameters with r2 ≥ 0.01 (Fig. 2) were selected for further evaluation (Sect. 2.5.3). 

2.5.3 Using twin experiments to select optimizable subset 

After selecting the 21 potentially optimizable parameters, Numerical Twin Experiments 

(NTEs) were conducted to identify an optimizable subset by evaluating the extent to which 235 

known values of sensitive parameters could be recovered given the data available for 

assimilation. The implementation of NTEs involves four primary steps (Hofmann and Friedrichs, 

2001). First, the chosen model is run forward in time to create a simulation using a known, “true” 

parameter set. Second, output from this simulation is sub-sampled to create a so-called 

“synthetic” data set. Third, the synthetic dataset is then assimilated to optimize model 240 

parameters. Fourth, the optimized parameter set is compared to the true parameter set. The 

assimilation is successful if the optimized values recover the true parameters used to generate the 

assimilated synthetic data.  

There is a limit to the number of parameters that can be independently constrained by the 

available observations because varying different parameters can often have similar effects on the 245 

cost function. Optimizing a larger set increases the potential for correlation between the effects 

of different parameters, reducing the algorithm’s effectiveness in identifying unique optimal 
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parameter sets. This, combined with the increased potential for over-fitting associated with the 

greater model degrees of freedom, can reduce the ability of an optimized model to reproduce 

independent data (Matear et al., 1995; Friedrichs et al., 2007; Xiao and Friedrichs et al., 2014b). 250 

The limitation on the number of optimizable parameters applies to both µGA and variational 

adjoint optimizations (Ward et al., 2010). In fact, rather than being a function of the optimization 

algorithm, it is dependent on the available data and the design of the cost function. A larger or 

richer observation set can help to constrain more parameters. The impact of cost function design 

is more complicated because an improved cost function may allow for greater uncertainty in the 255 

observations and/or non-parametric uncertainty in the simulation, leading to weaker but more 

realistic constraints on the parameters (Hemmings & Challenor, 2012). 

The procedure followed here for determining the subset of optimizable parameters is 

similar to that used by Friedrichs et al. (2007). First, a reference simulation was generated using 

the initial parameter set, and chlorophyll and POC estimates from this reference simulation were 260 

subsampled to generate a synthetic data set. Starting with a parameter space defined by the set of 

21 parameters deemed sensitive in the Latin hypercube tests (Fig. 2), a series of sequential NTEs 

was then performed with a progressively smaller number of optimized parameters: after each 

NTE, the optimized parameter that was most different from its ‘true’ value was removed from 

the optimizable parameter set. Thus, after each NTE the number of optimized parameters was 265 

reduced by one. The series of NTEs was evaluated to identify the largest parameter set for which 

the original parameter values were recoverable and the cost function remained essentially zero. 

From this analysis (Fig. 3), it was determined that optimizing eight parameters would be ideal 

(Table 1), because values of these eight parameters were recovered much better than larger 

parameter sets and model-data misfit (cost) remained low. 270 

2.6 Assimilation experiments 

The µGA optimization procedure was used to assimilate glider data in two sets of 

experiments that explored aspects of spatiotemporal variability and data availability. Estimates of 

depth- and time-integrated PP and time-integrated carbon export at 200 m were computed from 

the full model simulation in each experiment.  275 

2.6.1 Experiment #1 

The first set of experiments examined the differences in model simulations resulting from 

assimilating Chl and POC data from different spatial regions. In Experiment #1a, glider 
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observations were assimilated from the upper 50 m of the full temporal and spatial domain, 

referred to hereafter as the “Full Assimilation” case (Table 2). (Comparisons showed only minor 280 

differences between assimilating data from the upper 50 m vs. the full upper 200 m). 

Observations from different spatial areas of the glider track were also assimilated. Observations 

from the glider track were divided into three latitudinal bands (Northern, Central, and Southern 

bands) as well as into three longitudinal areas constituting Eastern, Central, and Western bands. 

Glider data from each of these three latitudinal and longitudinal bands were assimilated in 285 

Experiment #1b and #1c, respectively (Table 2, Fig. 4), resulting in three cost functions for each 

of these esperiments. 

2.6.2 Experiment #2 

The second set of experiments investigated the assimilation of data at different 

resolutions mimicking different data sources. In Experiment #2a, glider data were subsampled at 290 

~12-hour intervals (Table 2). The subsampling was repeated 12 times, with each iteration offset 

from the previous by +1, 2, 3... 11 hours, to generate a series of 12 glider observation sets. The 

assimilation of these 12 time series yields the “Glider Assimilation” case. In Experiment #2b, 

glider data were subsampled at a reduced temporal resolution similar to cruise sampling (Table 

2). Sampling during cruise missions often takes place for a few days in one location before 295 

moving elsewhere, and the ship sometimes returns to the first location after a number of weeks. 

To roughly mimic this sampling pattern, daily vertical profiles (again down to 50 m) were 

assimilated for three days in a row, starting from the first day of available glider data (22 Nov), 

and then three days of data were assimilated two weeks later. Shifting this pattern forward one 

week at a time generated a series of eight cruise-based observation sets for assimilation in this 300 

“Cruise Based Assimilation” case. In Experiment #2c, glider data were assimilated only from the 

upper 5 m surface layer to produce a data set resembling satellite-derived data. These data were 

then subsampled at two-week intervals, to represent typical data return from remote sensing 

observations of ocean color in the Ross Sea, where the availability of satellite image retrieval is 

frequently limited by excessive, though variable, cloud cover (Arrigo and van Dijken, 2004). The 305 

two-week subsampling pattern covered the entire period of glider data (22 Nov - 1 Feb), and was 

sequentially shifted forward one day at a time to generate a series of 14 satellite-based 

observation sets for assimilation in this “Satellite-Based Assimilation” case (Table 2). 
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2.7 Predictive Cost Assessment  

In addition to the assimilative cost (𝒥!) calculated during the optimization procedure 310 

using assimilated data, a predictive cost (𝒥!) was calculated to assess model-data misfit 

computed using the unassimilated data in each experiment. Because predictive costs represent 

model-data misfit from unassimilated data only (Friedrichs et al., 2006; Ward et al., 2010), it is 

an objective measure of the skill of an optimized model in reproducing observations at different 

points in time or space (Gregg et al., 2009). In this case, the aim of these experiments is to assess 315 

the skill of each optimized simulation regardless of which subset of the available data is 

assimilated. By computing the mean and median predictive cost for each experiment (other than 

the Full Assimilation case), the skill of the resulting simulations can be compared directly with 

one another. 

3 Results 320 

3.1 Experiment #1 

Assimilation of the glider data over the full temporal and spatial domain (Full 

Assimilation case) improves the model-data fit of both Chl and POC (Fig. 5a,b) and reduces the 

cost by nearly half (47%) compared to the a priori simulation without assimilation (No 

Assimilation case; Table 3). Average Chl and POC concentrations in the upper 50 m are both 325 

slightly lower (8% and 12%, respectively) in the optimized simulation. The contribution of each 

phytoplankton group to total chlorophyll remains similar to the No Assimilation case (Fig. 6a,c), 

but colonial P. antarctica carbon is lower and diatom carbon is higher in December and early 

January (Fig. 6b,d). Compared to the No Assimilation case, PP is only slightly lower (7%), 

whereas export flux is nearly 50% higher (Table 3; Fig. 7). Compared to their initial values, 330 

colonial P. antarctica parameters change the most as a result of the optimization, with reductions 

between 40-70% for the colonial P. antarctica maximum growth rate, maximum sinking rate and 

C:Chl ratio (Table 4). In contrast, the diatom maximum growth rate and C:Chl ratio increased 

(~10% and 20% respectively).  

Chlorophyll and POC time-series exhibit only minor differences between latitudinal band 335 

experiments when data from the northern, central, and southern sections are assimilated 

independently (Fig. 5c,d) or when data from the eastern, central western sections are assimilated 

(Fig. 5e,f). Specifically, the optimal simulations for Chl and POC exhibit similar seasonal cycles 

across the three latitudinal and longitudinal bands, with only slightly higher Chl and POC 
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concentrations when assimilating data from the southern band (Fig. 5c,d) and higher Chl from 340 

the western band (Fig. 5e,f). Mean costs are much lower for the latitudinal and longitudinal 

experiments than for the No Assimilation case, and only slightly higher than the Full 

Assimilation case (Table 3). This indicates that data sampled from within only one spatial band 

improved the match between modeled and observed variables in the unassimilated areas as well. 

Average estimates of PP and export in both the latitudinal and longitudinal experiments are only 345 

slightly less (< 5%) than the Full Assimilation estimate (Fig. 7, Table 3).  

3.2 Experiment #2 

Assimilation of data subsampled at a frequency one-twelth that of the original glider data 

(Expt. 2a) results in twelve model simulations, all of which are similar to the Full Assimilation 

case, with Chl and POC time series closely following the observed seasonal pattern (Fig. 8a,b). 350 

Mean assimilative and predictive costs in the Glider Assimilation case are close to the cost of the 

Full Assimilation case (Table 3). Mean PP and export estimates are also close to estimates from 

the Full Assimilation case. The mean optimal parameter values obtained from the Glider 

Assimilation case are generally within one standard deviation of the optimal values from the Full 

Assimilation case (Table 4). 355 

Assimilation of data subsampled with a frequency typical of cruise observations (Expt. 

2b) results in a wide range of solutions, with several Chl and POC time series exhibiting 

markedly different peak bloom timings (Fig. 8c,d). Two of the solutions yield substantially 

higher concentrations of POC in November, and Chl peaks range from mid-November to early 

January. The mean predictive cost from this experiment (1.24) is roughly three times the 360 

assimilative cost for the Full Assimilation case (0.41) and three times the predictive cost for the 

Glider Assimilation case (0.43; Table 3). The PP estimates from the Cruise-based Assimilation 

case span a broad range (92 to 156 g C m-2 y-1) around the Full Assimilation estimate but are 

generally higher (Fig. 7a). This experiment similarly yields a very large range of export estimates 

(11 to 33 g C m-2 y-1) encompassing the results from Experiment #1 (Fig. 7b). Optimal parameter 365 

values obtained from the Cruise-based Assimilation case are generally less well constrained 

(higher standard deviations) than the Glider Assimilation case (Table 4). 

Assimilation of data subsampled as satellite-based observations from the surface layer 

(Expt. 2c) results in Chl and POC concentrations generally higher than the Full Assimilation case 

(Fig. 8e,f). The predictive costs are similar on average to those of the Cruise-based Assimilation 370 



 
14 

experiment; however, there is less variation (Table 3). The median integrated production is 

higher (9%) than the Full Assimilation estimate and the Cruised-based Assimilation estimate 

(Fig. 7a; Table 3); however, the range of PP estimates for this Satellite-based Assimilation case 

is smaller than those for the Cruise-based Assimilation case (Fig. 7a). Most notably, despite 

generally higher PP and higher POC concentrations, carbon export from the Satellite-based 375 

Assimilation case is substantially lower (41%) than the Full Assimilation estimate (Fig. 7b; 

Table 3). In fact, export estimates from individual runs in this experiment are all lower (-19% to 

-56%) than the Full Assimilation estimate (Fig. 7b). Again, the range of export estimates is 

smaller for the Satellite-based Assimilation than for the Cruise-based Assimilation. When 

assimilating data at a resolution similar to that of satellite-based observations, mean optimal 380 

parameter values were similar to those obtained in the Glider Assimilation and Cruise-based 

Assimilation cases, with the exception of the fast detritus sinking fraction for diatoms, which was 

significantly lower in the Satellite-based Assimilation case (0.62 ± 0.14) than in the other 

experiments (Glider Based Assimilation Case: 0.86 ± 0.05). In contrast to this sinking parameter 

for mortality from diatoms, the mean maximum sinking rate of colonial P. antarctica in the 385 

Satellite-based case was not significantly different than its value in either the Full Assimilation 

or Cruise-based cases (Table 4). Standard deviations of optimal parameters for the Satellite-

based Assimilation case were generally similar to or lower than those for the Cruise-based 

Assimilation case, except for the C:Chl ratio for diatoms, which produced a very high optimal 

value and was particularly poorly constrained (375±187 gC gChl-1; Table 4). 390 

4 Discussion 
4.1 Ross Sea simulation resulting from assimilation of glider data 

Data assimilation is a valuable tool for efficiently utilizing limited observational data in 

remote regions like the Ross Sea. In this study, glider data consisting of both fluorescence-

derived chlorophyll and backscatter-derived POC were assimilated into a one-dimensional 395 

marine biogeochemical model developed for the Ross Sea. Eight ecosystem parameters, 

including phytoplankton growth and sinking rates and C:Chl ratios, were optimized resulting in a 

simulation with a 50% reduced model-data misfit. This Full Assimilation run yielded lower P. 

antarctica carbon concentrations and higher diatom carbon concentrations, resulting in higher 

carbon export compared to those generated by the No Assimilation run (Kaufman et al., 2017a), 400 

despite slightly lower estimates of overall annual primary production. Changes in chlorophyll 
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concentrations of diatoms and P. antarctica were minor. This Full Assimilation simulation was 

obtained largely via changes in the C:Chl ratios: the colonial P. antarctica ratio of C:Chl was 

lower and the diatom C:Chl was higher than in the original simulation. Although modified from 

their initial values, the relative differences between these optimized C:Chl ratios for P. 410 

antarctica and diatoms are consistent with shipboard measurements of C:Chl ratios, which found 

higher C:Chl in diatom-dominated waters compared to P. antarctica-dominated waters: ~200 vs. 

90 g C g Chl-1 (DiTullio and Smith, 1996), and ~50-100 vs. 20-50 g C g Chl-1 (Mathot et al., 

2000). Although the authors are not aware of any specific estimates in the literature for the 

fraction of diatom mortality that becomes fast-sinking detritus, other optimal rate paramaters are 415 

consistent with those previously reported in the literature. For example, the optimized growth 

rates (0.29 - 0.4 d-1) are similar to measured values in the Ross Sea (Smith and Gordon, 1997; 

Smith et al., 1999; Mosby and Smith, 2015), and the optimized sinking rate of P. antarctica 

colonies (14 m d-1) is similar to previous estimates (Asper and Smith, 1999; Asper and Smith, 

2003; Smith et al., 2011). 420 

The high number of model evaluations in each optimization case (roughly 4000 – 5000) 

makes such direct optimization impractical for large-scale models; however, the parameters 

identified in a 1D model by these techniques can be used in larger models, and indeed locally 

optimized parameters have been previously shown to improve the skill of 3D models in other 

regions (Oschlies and Schartau, 2005; Kane et al., 2011; McDonald et al., 2012; St-Laurent et al., 425 

2017). It is expected that the optimized parameter values found in the one-dimensional 

assimilation experiments described here will be of value in a future 3D biogeochemical modeling 

analysis of the Ross Sea and, through model inter-comparisons, provide a basis for examining 

the dependence of these parameter values on model structure and level of complexity, as has 

been done elsewhere (Friedrichs et al., 2007; Bagniewski et al., 2011; Ward et al., 2013; Irby et 430 

al., 2016).  

4.2 Spatial variation within the glider track 

Phytoplankton in the Ross Sea exhibit both spatial and temporal variability. Cruise 

transects across the continental shelf show a marked spatial variability in both the east-west and 

north-south direction over short periods of time (Smith et al., 2013). Within the Ross Sea 435 

Polynya, ship-based observations show biochemical gradients that suggest patchiness of 

phytoplankton dynamics on the mesoscale (Hales and Takahashi, 2004; Smith et al., 2017). 
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Nutrient pools have been found to exhibit gradients from both north to south and east to west 440 

(DiTullio and Smith, 1996; Sedwick et al., 2011; Smith et al., 2013; Marsay et al., 2014), and 

phytoplankton assemblage composition is not necessarily uniform across longitudes (DiTullio 

and Smith, 1996; Garrison et al., 2003; Smith et al., 2013). In addition, cold and fresh eddies 

have been observed along the ice shelf edge potentially reshaping the phytoplankton assemblage 

on short time (<10 days) and space (<20 km) scales (Li et al., 2017).  445 

When analyzing glider data in regions characterized by high mesoscale variability, it is 

often not apparent whether observed patterns represent spatial or temporal variability. As 

Rudnick (2016) discusses, “Because gliders can occupy lines, their data can be viewed as 

traditional sections, such as those measured from a ship. However, because high-frequency 

variability is projected onto a spatial structure, it is sometimes more convenient to think of the 450 

data as a time series from a mooring.” This ambiguity led Kaufman et al. (2014) to concede 

“both spatial and temporal gradients may have played a role in the observed variability” when 

analyzing physical-biological relationships from glider data in the southern Ross Sea. 

Although both temporal and spatial gradients may be present, observations can be 

presented as either primarily spatial or temporal patterns with simple tests guiding the decision. 455 

For example, a comparison of means and standard deviations across spatial sections and time 

periods was previously used to identify time as the dominant dimension of variability in the 

2012-2013 glider observations (Jones and Smith, 2017). In this study, a similar conclusion was 

reached, using a very different methodology. The assimilation of glider data from six different 

sub-areas of the study region (separated latitudinally or longitudinally by ~20 km) indicated that 460 

the seasonal cycle is similar in phase throughout the region of the glider track. The assimilation 

of glider data from each of the nine regions yielded similar estimates of POC and Chl, generally 

within the variance of the glider observations (gray areas of Fig. 5c-f), and similar estimates of 

temporally averaged primary productivity and export. This further supports the approach of 

using the glider data as a time series and suggests that temporal patterns at this scale play a 465 

greater role than spatial patterns in structuring variability of the phytoplankton assemblage. 

Moreover, the similarity between predictive and assimilative costs when assimilating the 

latitudinal and longitudinal bands of data suggests that the parameters are not being over-fit for 

these experiments. Thus, temporally resolved observations in any of these regions might be 

expected to provide similar constraints on modeled temporal patterns of the phytoplankton.  470 
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4.3 Differences between assimilating glider, satellite-derived, and cruise-based data 

Results from experiments that assimilated data at different spatial and temporal 

resolutions suggest that assimilating only surface observations, as are typically available from 

remote-sensing platforms, underestimates carbon export and more weakly constrains estimates of 

productivity relative to assimilation of depth-resolved glider data. The lower estimates of carbon 475 

export occurred because the optimal diatom fraction for fast-sinking detritus obtained via the 

assimilation of surface-only data (0.62 ± 0.14) was significantly lower than that obtained via the 

assimilation of data throughout the upper 50 m (Expt. 2a: 0.86 ± 0.05; Expt. 2b: 0.86 ± 0.11). 

These results highlight the importance of assimilating subsurface measurements and of modeling 

diatom aggregation when estimating carbon export; similar findings were reported in 1D 480 

biogeochemical optimization experiments using data from Lagrangian floats in the North 

Atlantic (Bagniewski et al., 2011). Experimental results also indicate that the assimilation of 

satellite-derived data provides a weaker constraint on productivity estimates, as seen by the 

larger range of estimates (114 ± 11 gC m-2 y-1), as compared to the assimilation of glider data 

(104 ± 2 gC m-2 y-1). Although not statistically significant, the higher productivity estimates 485 

generated by the assimilation of satellite-derived data is consistent with those of Gregg (2008), 

who found that assimilation of satellite-based chlorophyll estimates into a three-dimensional 

global biogeochemical model overestimated primary production. In contrast, results from 

assimilating satellite-derived chlorophyll concentrations into a one-dimensional model in the 

equatorial Pacific produced underestimates of primary productivity compared to in situ 490 

observations (Friedrichs, 2002).  

Although both chlorophyll and POC were assimilated in the present study, chlorophyll 

alone has been the dominant satellite data product used in biogeochemical assimilation, although 

other data types are available and can impact the assimilation results. For instance, a study 

investigating the assimilation of different types of satellite-derived data, including POC and size-495 

fractionated chlorophyll, found that assimilation of satellite-derived POC estimates worsened the 

model estimates of chlorophyll, whereas the assimilation of chlorophyll did not substantially 

impact the POC estimates (Xiao and Friedrichs, 2014b). Additionally, satellite-based sampling 

bias could be reduced by concurrently assimilating export flux data derived from sediment trap 

measurements (Friedrichs et al., 2007), or by assimilating satellite measurements such as remote-500 

sensing reflectance directly (Jones et al., 2016). It is also worth noting that when assimilating 
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actual satellite data, the biases suggested by this study resulting from assimilation of only surface 

data would be compounded with biases inherent in the satellite retrieval algorithms (Saba et al., 

2011; Stukel et al., 2015). 

Assimilating cruise-based data in the highly variable Ross Sea may also yield potentially 505 

large errors in primary production, as well as in carbon export estimates, depending on which 

specific days are sampled. Estimates of bloom timing from the assimilation of cruise-based 

observations may also vary substantially (Fig. 8c,d). This echoes the results of a series of 

reduced resolution data interpolations, from which Hales and Takahashi (2004) reported that 

cruise-based observations in the Ross Sea were likely able to capture average conditions well, 510 

but miss some mesoscale phenomena. Likewise, a subsampling analysis of physical-biological 

correlations from 2010 Ross Sea glider data demonstrated the possibility of lower resolution data 

obscuring or biasing biogeochemical interpretations (Kaufman et al., 2014). The results provided 

by the data assimilative study described here can be used to help guide decisions of when and 

how long to sample certain locations in the Ross Sea; this is especially important given the 515 

limitations of ship-based sampling in such a remote region (Smith et al., 2014). In fact, the use of 

data collection from other sampling platforms may decrease the pressure to conduct repeated 

transects by ship, and allow limited vessel-time to be used for more thorough process-based 

investigations uniquely-suited for research vessels.  

5 Summary and Conclusions 520 

A series of experiments investigating spatiotemporal variability of the phytoplankton 

assemblage and potential effects of assimilating data from different observation platforms 

highlighted the benefits and challenges of combining data and biogeochemical models in the 

Ross Sea. The assimilation of glider data reduced model-data misfit by 50%, and resulted in 

reduced depth-integrated primary production and higher carbon export at 200 m. Additional 525 

experiments for different spatial regions reduced predictive costs with respect to unassimilated 

data by ~35%, suggested that the model parameters were well constrained, and implied that 

using glider data as time series in these local studies is a reasonable approach. This may further 

suggest the value of using moorings or buoys, or even deploying gliders in a “virtual mooring” 

mode. However, the effects of mesoscale variability were apparent when assimilating data at a 530 

frequency characteristic of cruise-based sampling, which resulted in a wide range of primary 

production and export estimates depending on the sampling times. Results of assimilating data 
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characteristic of satellite-based sampling suggest that assimilating satellite-derived data will 

result in underestimated carbon export. These findings can be used to help avoid potential 

sources of error when using ship-based or satellite-based observations alongside the 535 

development, calibration, or running of biogeochemical models. The combination of high-

resolution glider data and modeling in this study underscores the importance of considering how 

the timing at which observations are collected affect the subsequent interpretations.  
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Data Availability. Data from the autonomous glider are available from the BCO-DMO data 

repository (http://www.bco-dmo.org/dataset/568868), and other data to support this article 540 

are available at W&M Publish (https://doi.org/10.21220/V5RT5C) and upon request from 

the authors (dkauf42@gmail.com, marjy@vims.edu). 

 

Appendix A: Latin hypercube sampling (Sect. 2.5.2)  

Latin hypercube sampling (LHS) and Monte Carlo sampling are both techniques that can 545 

be used to randomly draw a finite number of samples from input distributions in order to 

approximate a full multidimensional distribution. The LHS incorporates stratified random 

sampling, i.e. in each dimension each sample is drawn randomly from within a different interval 

(also called a stratification or layer) of the distribution (McKay et al., 1979). Intervals are chosen 

with reference to the probability distribution such that each represents an equally probable range. 550 

In contrast, Monte Carlo sampling proceeds in each dimension with each sample drawn 

randomly from the entire distribution. Stratified random sampling with intervals of uniform 

probability ensures a good representation of the distribution, reducing the risk of samples being 

clustered in one or a small number of areas. In LHS sampling, if the sample size is n, each 

dimension is divided into n intervals such that in multi-dimensional space each interval of each 555 

dimension is sampled once and once only. This is based on the idea of a Latin square in which an 

individual symbol appears once in each row and each column. It ensures a good representation of 

the distribution is achieved for all dimensions. 
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Table 1: Eight parameters optimized in this analysis. 840 
 
Parameter Name Initial value 

(Kaufman et 
al., 2017a) 

Bounds 
(lower, 
upper) 

Diatom max growth rate at 0˚C 0.375 (d-1) 0.09375, 1.5 
P. antarctica solitary cells C:Chl ratio 30 (gC gChl-1) 7.5, 120 
P. antarctica colonies max growth rate at 0˚C 0.5 (d-1) 0.125, 2 
P. antarctica solitary cells max growth rate at 0˚C 0.5 (d-1) 0.125, 2 
Diatom C:Chl ratio 150 (gC gChl-1) 37.5, 600 
Fast detritus sinking fraction of diatom losses 0.75 0.5, 0.95 
P. antarctica colonies max sinking rate 20 (m d-1) 5, 80 
P. antarctica colonies C:Chl ratio 40 (gC gChl-1) 10, 160 
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Table 2: Spatio-temporal resolution of glider-based observations of Chl and POC assimilated for 845 
each experiment. 
 
Experiment Depth 

(m) 
Temporal Resolution Spatial Area(s) 

Expt 1a: Full Assimilation 0 - 50  Hourly Full glider track 
Expt 1b: Latitudinal Assim. 0 - 50  Hourly North, Central, South 

Latitudinal bands 
Expt 1c: Longitudinal Assim. 0 - 50  Hourly East, Central, West 

Longitudinal bands 
Expt 2a: Glider Assimilation 0 - 50 ~ twice per day, separated 

at a minimum of 12 hours.   
Full glider track 

Expt 2b: Cruise-based Assim. 0 - 50  3 days in a row, and then 
another 3 consecutive 
days two weeks later 

Full glider track 

Expt 2c: Satellite-based Assim. 0 - 5  1 day every two weeks Full glider track 
 
  

Author
Deleted: Time, depth, and time-space 850 
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Table 3: Depth- and time-integrated (over the length of the simulation, representing yearly rates) 
primary production (PP), carbon export flux at 200 m, and costs for the No Assimilation run 
(cost = 0.77), Experiment #1 and #2. Costs provide a measure of the misfit between a particular 
model simulation and observations, and the costs shown represent mean ± one standard deviation 
of assimilative runs. The assimilative and predictive costs are computed from the assimilated and 855 
unassimilated data, respectively. 
 
 
Simulation name PP  

(g C m-2 y-1) 
Export 
(g C m-2 y-1) 

Predictive 
Cost (𝓙𝑷) 

Assim. 
Cost (𝓙𝑨) 

No Assimilation 111.7 18.8 - - 
Expt 1a: Full Assimilation 104.2 27.2 - 0.41 
Expt 1b: Latitudinal Assim. 101.8 ±3.3 26.1 ±2.1 0.49 ±0.13 0.43 ±0.14 
Expt 1c: Longitudinal Assim. 103.2 ±2.1 26.9 ±2.1 0.50 ±0.10 0.46 ±0.13 
Expt 2a: Glider Assim. 103.7 ±1.8 27.0 ±1.2 0.43 ±0.01 0.43 ±0.03 
Expt 2b: Cruise-based Assim. 113.1 ±22.3 24.8 ±6.6 1.24 ±0.95 0.52 ±0.19 
Expt 2c: Satellite-based Assim. 114.1 ±10.7 16.7 ±2.7 1.04 ±0.36 0.26 ±0.16 
 
  860 

Author
Deleted: The 
Author
Deleted: values assimilative and predictive 
costs 
Author
Deleted: s
Author
Deleted: these865 
Author
Deleted: .
Author
Deleted: ,
Author
Deleted: and 
Author
Deleted: t
Author
Deleted:  and is 870 
Author
Deleted: data during the optimization 
process. In constrast, the predictive cost is 
computed
Author
Deleted:  
Author
Deleted: using 875 
Author
Deleted:  only
Author
Deleted:  Costs represent mean ± one 
standard deviation of assimilative runs. 
Author
Deleted: a
Author
Deleted: *880 
Author
Deleted: * costs represent mean ± one 
standard deviation of assimilative runs. ... [1]
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Table 4: Initial parameter values (No Assimilation) and optimal parameter values after 
conducting the Full Assimilation, Glider, Cruise-based, and Satellite-based Assimilation 885 
experiments  
 
Parameter Name Initial 

Value 
Expt 1a 
Full 
Assimilation  

Expt 2a 
Glider* 

Expt 2b 
Cruise- 
based* 

Expt 2c 
Satellite- 
based* 

Diatom max growth rate at 
0˚C (d-1) 

0.375 0.40 0.43 ±0.01 0.42 ±0.15 0.41 ±0.09 

P. antarctica solitary cells 
C:Chl ratio (gC gChl-1) 

30 29.7 25.84 ±5.16 37.3 ±26.7 51.5 ±26.8 

P. antarctica colonies max 
growth rate at 0˚C (d-1) 

0.5 0.29 0.22 ±0.10 0.45 ±0.58 0.29 ±0.17 

P. antarctica solitary cells 
max growth rate at 0˚C (d-1) 

0.5 0.39 0.45 ±0.06 0.75 ±0.70 0.79 ±0.51 

Diatom C:Chl ratio (gC 
gChl-1) 

150 176.4 166.6 ±50.17 252.4 ±164.28 374.86 ±187.82 

Fast detritus sinking fraction 
of diatom losses 

0.75 0.87 0.86 ±0.05 0.86 ±0.11 0.62 ±0.14 

P. antarctica colonies max 
sinking rate (m d-1) 

20 10.7 10.1 ±3.66 20.1 ±20.5 12.8 ±9.27 

P antarctica colonies C:Chl 
ratio (gC gChl-1) 

40 14.0 14.2 ±2.29 42.7 ±41.6 34.3 ±26.5 

* mean ± one standard deviation of assimilative runs. 
 
  890 
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Figure 1: Southern Ross Sea showing transect locations where the glider was at the surface. The 
color of each glider dive indicates the date. Bathymetric contours are shown at 200-m intervals, 895 
as obtained from the bedmap2 bathymetric data [Fretwell et al., 2013].  
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Figure 2: Variance explained in model outputs by parameters during sensitivity tests using Latin 900 
hypercube sampling of parameter space. Only parameters with at least one r2 value greater than 
or equal to 0.01 (vertical dotted line) are shown. 
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 905 

 
 
Figure 3: (a) Minimum costs and (b) normalized parameter values in numerical twin 
experiments, illustrating that the assimilation procedure is unable to successfully recover the true 
parameter values when more than eight parameters are optimized. One data point in three of the 910 
experiments (#s 19, 20, and 21) exceeds the y-axis upper limit in the lower (b) panel. 
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 915 
Figure 4: Locations of glider observations assimilated in (a) Experiment 1b –latitudinal bands, 
and (b) Experiment 1c – longitudinal bands. Colors represent the three spatial bands of data 
assimilated.  
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Figure 5 (a-f): Upper 50 m mean concentrations of (a,c,e) Chl and (b,d,f) POC for various 
experiments assimilating the full glider and from different spatial areas (Table 2): (a,b) 
Experiment 1a, (c,d) Experiment 1b - latitude bands, and (e,f) Experiment 1c - longitude bands. 925 
For reference, glider data (black lines) with shading (gray) representing one standard deviation 
(from the upper 50 m) are included in each panel. Colored boxes at the top of each panel indicate 
times of assimilated observations. 
  

Author
Deleted: , model results for the Full 930 
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Author
Deleted: and 
Author
Deleted: , and model results for the Full 
Assimilation case (orange lines) are shown in 
panels (a) and (b)935 
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Figure 6: Upper 50 m mean concentrations of the three phytoplankton groups in terms of (a,c) 
Chl and (b,d) POC for the No Assimilation case (a,b) and the Full Assimilation case (c,d). The 
glider data are shown (black line) with shading (gray) that represents one standard deviation 940 
daily.  
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Figure 7: Distributions of (a) depth- and time-integrated production and (b) carbon export flux at 
200 m for each assimilation experiment (Table 2). The median value for each experiment is 945 
indicated by a horizontal light-blue line. Each box extends vertically from the 1st to 3rd quartile, 
and the whiskers extend from the lowest to highest values. Individual values are shown as grey 
dots. For reference, production and export estimates from the No Assimilation (solid blue line) 
and Full Assimilation (dashed gray line) cases are included in each panel. 
 950 
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Figure 8 (a-f): Upper 50 m mean concentrations of (a,c,e) Chl and (b,d,f) POC for various 
experiments assimilating subsets characteristic of the original glider data, cruise-based 955 
observations and satellite-based observations (Table 2): (a,b) Experiment 2a - glider 
observations, (c,d) Experiment 2b - cruise-based, and (e,f) Experiment 2c - satellite-based. For 
reference, model results for the Full Assimilation case (orange lines), and glider data (black 
lines) with shading (gray) representing one standard deviation (from the upper 50 m) are 
included in each panel. 960 
 
 


