

1 Ideas and perspectives: New research examples of autumnal
2 climate change ecology

3

4 **Ulf Büntgen^{1,2,3}, and Paul J. Krusic^{1,4}**

5

6 ¹Department of Geography, University of Cambridge, CB23EN Cambridge, UK

7 ²Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

8 ³CzechGlobe and Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic

9 ⁴Navarino Environmental Observatory, 24001 Messenia, Greece

10

11 *Correspondence to:* U. Büntgen (ulf.buentgen@geog.cam.ac.uk)

12

13

14

15

16 **Abstract.** Changes in autumnal climate affecting the diversity and productivity of the
17 ecosphere are arguably as important as vernal climatic changes. Motivated by a recent call for
18 more research on the biological and ecological consequences of autumnal climate change
19 (Gallinat et al., 2015), we present three examples of innovative biogeoscience, employing
20 novel datasets and methodologies, which refine our ability to monitor the physiological
21 functioning and ecosystem performance during autumn. Drawn from recent research in
22 wildlife biology (big-game hunting), wood anatomy (tree-ring formation) and mycology
23 (mushroom inventory), these studies provide original insights that contribute to an improved
24 understanding of how varying environmental and climatic conditions impact the phenology,
25 productivity and diversity of different organisms in autumn.

26 **1 Big-game hunting**

27 Warming-induced range shifts along altitudinal and latitudinal gradients have been reported
28 for many plant and animal species around the world (Parmesan and Yohe, 2003; Thomas et
29 al., 2004; Lenoir et al., 2008; Harsch et al., 2009; Chen et al., 2011; Gottfried et al., 2012;
30 Pauli et al., 2012). The mobility and behavioral plasticity of large animals, however,
31 complicates detection of climate-induced population movements. Long-term, massively
32 replicated and geographically detailed hunting records can supplement traditional animal
33 tracking studies (Kays et al., 2015). For instance, the Swiss canton of Grisons has amassed
34 >230,000 harvest locations of four ungulate species (Büntgen et al., 2017). Carefully collected
35 since 1991, this inventory contains year-to-year and decadal niche tracking of free-ranging
36 ibex, chamois, red deer and roe deer populations in higher elevations, late in the year. The
37 significant upward trend in ranging habits over the last two decades coincides with warmer,
38 snow-free and vegetation-rich, conditions in September and October. Such findings will help
39 improve awareness of the interconnectivity of the full annual cycle, including the return to
40 winter ranges (Rivrud et al., 2016).

41

42 **2 Tree-ring formation**

43 Though wood formation in many extra-tropical species occurs during most of the warm
44 season, several plant physiological processes occur at the end of the growing season. Their
45 precise assessment has greatly improved following recent advances in quantitative wood
46 anatomy (Steppe et al., 2015). State-of-the-art studies combining high-resolution dendrometer
47 measurements with micro-anatomy have found xylem lignification can persist through
48 autumn (Cuny et al., 2015). Thus, autumnal conditions can stimulate and prolong woody
49 biomass production, leaving a fingerprint on the intra-annual course of the global carbon
50 cycle (Piao et al., 2008). The application of wood anatomical studies, particularly in
51 environments with strong and regular summer droughts such as the Mediterranean, could help

52 identify moisture-controlled metabolic processes and ecophysiological reactions during the
53 formation of tree rings, thereby enabling the separation of different development stages from
54 anatomical traits.

55

56 **3 Mushroom inventories**

57 Rapid emergence, short lifespans, and non-photoperiodic constraints (Körner and Basler,
58 2010), make mushroom fruiting bodies ideal indicators of changes in late growing season
59 conditions. Inter-annual and multi-decadal variations in the abundance of autumnal
60 sporocarps (productivity), as well as the intra-annual timing of their occurrence (phenology),
61 and species abundance (diversity), are closely related to the multifaceted interplay of biotic
62 (mycelium and host interaction) and abiotic (environment and climate) factors (Boddy et al.,
63 2014). Experimental findings, local observations, national inventories and their continental-
64 scale compilations allow autumnal mushroom ‘fruit body’ dynamics to be reconstructed. Over
65 seven million sporocarp records, representing >10,000 fungal species from nine countries,
66 have been drawn from various scientific and citizen-science projects (Andrew et al., 2017). In
67 addition to providing evidence of warming-induced spatiotemporal shifts in autumn
68 mushroom phenology (Kauserud et al., 2012), this pan-European mycological inventory
69 offers unique macro-ecological opportunities to assess how fungal communities interact with
70 their environment. Exploring how fungal fruit body productivity and diversity is linked to
71 biotic and abiotic factors, including tree growth, as well as climate variation and nitrogen
72 deposition (Bünzgen and Egli, 2014; Andrew et al., 2016; Van Strien et al., 2017),
73 respectively, will provide new biological and ecological insights during autumn.

74 A non-traditional resource that can provide important mushroom-related data for
75 autumnal climate change research, are governmental emergency services. Poison centers, such
76 as the Swiss National Poisons Information Centre delivers 24-hour/7-days-a-week nationwide
77 free medical advice. Since its establishment in 1966, the center has registered over one

78 million poison-related inquiries with around one percent of all cases attributed to mushrooms
79 (Schenk-Jäger et al., 2016). Comparison between these >12,000 mushroom-related calls with
80 survey information from the Swiss National Data Centre for Biodiversity demonstrates the
81 ability of poison center data to capture spatiotemporal patterns of fungal phenology,
82 productivity and diversity (Schenk-Jäger et al., 2016).

83

84 **4 What's next?**

85 By providing timely examples of research initiatives that further a better understanding of
86 biological and ecological responses to autumnal conditions (Gallinat et al., 2015), we hope to
87 encourage diversity and creativity in future studies. For instance, there is a multitude of
88 aquatic organisms that have life histories stored in distinct seasonal increments (Cole and
89 Fairbanks, 1990; Morrongiello, et al., 2012; Black et al., 2014; Reynolds, et al., 2016).
90 Complementary to terrestrial plant growth, information recorded in long-lived fish, bivalve
91 and coral species can reflect autumnal and even winter signals at high temporal resolution
92 (Black et al., 2017).

93 Moreover, we agree with Williams et al. (2015) about the biological and ecological
94 importance of winter climate change. Knowledge of the intensity and duration of climate
95 variability during winter is particularly critical for higher latitude and altitude ecosystems,
96 where the impacts of winter temperature and precipitation on snow cover persist through most
97 of the year. Although varying between organisms and habitats, cold season trends and
98 extremes may alter chilling requirements, frost injury, energy and water balance, phenology
99 and community interactions. At the same time, winter warming generally exceeds that during
100 other months, with implications not only on the annual temperature cycle (Duan et al., 2017)
101 and the Earth's carbon balance (Piao et al., 2008; Friend et al., 2014), but also by creating a
102 temporal mismatch between the biological requirements of different ecosystem components
103 and climate (Williams et al., 2015; Marra et al., 2016).

104 Future research on climate change ecology should consider the effects of changing
105 temperature and hydroclimate (precipitation and drought) in autumn and winter. Emphasis
106 should be given to investigations of the temporal synchronization of climate variability and
107 species-specific biological demands. Future efforts should also consider mining the whole
108 range of non-traditional, environmental inventories and metrics that exist today. The
109 application of (process-based) mechanistic models (Friend et al., 2014; Yang et al., 2017),
110 capable of detecting interactive influences and nonlinear factors affecting physiological
111 alternations, and diversity in organisms throughout the year, are still in their infancy.

112

113 *Author contributions.* U. Büntgen developed the idea and wrote the paper together with P.J.
114 Krusic.

115

116 *Acknowledgements.* Dr. Jeff Diez (University of Riverside, USA), Dr. Andrew Friend
117 (University of Cambridge), Dr. Amanda Gallinat (Boston University), Prof. Christian Körner
118 (University of Basel), and Dr. Andrew Liebhold (USDA Forest Service, USA), kindly
119 commented on earlier versions of this paper. U.B. received funding from the Ministry of
120 Education, Youth and Sports of CR within the National Sustainability Program I (NPU I; GN
121 LO1415), and additional support was provided by NSF grant 0909541. We are particularly
122 thankful to all colleagues that made their data available.

123

124 **References**

125 Andrew, C., Heegaard, E., Halvorsen, R., Martinez-Pena, F., Egli, S., Kirk, P.M., Bässler, C.,
126 Büntgen, U., Aldea, J., Høiland, K., Boddy, L. and Kauserud, H.: Climate impacts on
127 fungal community and trait dynamics. *Fungal Ecol.*, 22, 17–25, 2016.
128 Andrew, C., Heegaard, E., Kirk, P., Bässler, C., Heilmann-Clausen, J., Krisai-Greilhuber, I.,
129 Kuyper, T., Senn, B., Büntgen, U., Diez, J., Egli, S., Gange, A., Halvorsen, R., Høiland,

130 K., Nordén, J., Rustøen, F., Boddy, L. and Kauserud, H.: Big data integration: Pan-
131 European fungal species observations' assembly for addressing contemporary questions
132 in ecology and global change biology. *Fungal Biol. Rev.*, 31, 88–98, 2017.

133 Black, B.A., Sydeman, W.J., Frank, D.C., Griffin, D., Stahle, D.W., García-Reyes, M.,
134 Rykaczewski, R.R., Bograd, S.J. and Peterson, W.T.: Six centuries of variability and
135 extremes in a coupled marine-terrestrial ecosystem. *Science* 345, 1498–1502, 2014.

136 Black, B.A., Griffin, D., van der Sleen, P., Wanamaker, Jr. A.D., Speer, J.H., Frank, D.C.,
137 Stahle, D.W., Pederson, N., Copenhaever, C.A., Trouet, V., Griffin, S. and Gillanders,
138 B.M.: The value of crossdating to retain high-frequency variability, climate signals, and
139 extreme events in environmental proxies. *Global Change Biol.*, 22, 2582–2595, 2016.

140 Boddy, L., Büntgen, U., Egli, S., Gange, A., Heegaard, E., Kirk, P., Mohammad, A. and
141 Kauserud, H.: Climate variation effects on fungal fruiting. *Fungal Ecol.*, 10, 20–33, 2014.

142 Büntgen, U. and Egli, S.: Breaking new ground at the interface of dendroecology and
143 mycology. *Trends Plant Sci.*, 19, 613–614, 2014.

144 Büntgen, U., Greuter, L., Bollmann, K., Jenny, H., Liebhold, A., Galvan, J.D., Stenseth, N.C.,
145 Andrew, C. and Mysterud, A.: Elevational range shifts in four mountain ungulate species
146 from the Swiss Alps. *Ecosphere* 8(4), e01761. 10.1002/ecs2.1761, 2017.

147 Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D.: Rapid range shifts of
148 species associated with high levels of climate warming. *Science*, 333, 1024–1026, 2011.

149 Cole, J.E. and Fairbanks, R.G.: The southern oscillation recorded in the $\delta^{18}\text{O}$ of corals from
150 Tarawa atoll. *Paleoceanography*, 5, 669–683, 1990.

151 Cuny, H.E., Rathgeber, C.B.K., Frank, D.C., Fonti, P., Mäkinen, H., Prislan, P., Rossi, S.,
152 Martinez del Castillo, E., Campelo, F. et al.: Woody biomass production lags stem-girth
153 increase by over one month in coniferous forests. *Nature Plants* 1, 1–6, 2015.

154 Duan, J., Esper, J., Büntgen, U., Li, L., Xoplaki, E., Zhang, H., Wang, L., Fang, Y. and
155 Luterbacher, J.: Weakening of annual temperature cycle over the Tibetan Plateau since
156 the 1870s. *Nature Com.*, 8, 14008, 2017.

157 Friend, A.D., Lucht, W., Rademacher, T.T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark,
158 D.B., Dankers, R., Falloon, P.D. et al.: Carbon residence time dominates uncertainty in
159 terrestrial vegetation responses to future climate and atmospheric CO₂. *Proc. Natl. Acad.*
160 *Sci. USA*, 111, 3280–3285, 2014.

161 Gallinat, A.S., Primack, R.B. and Wagner, D.L.: Autumn, the neglected season in climate
162 change research. *Trends Ecol. Evol.*, 30, 169–176, 2015.

163 Gottfried, M., et al.: Continent-wide response of mountain vegetation to climate change.
164 *Nature Clim. Change*, 2, 111–115. 2012.

165 Harsch, M.A., Hulme, P.E., McGlone, M.S. and R. P. Duncane, R.P.: Are treelines
166 advancing? A global meta-analysis of treeline response to climate warming. *Ecol. Lett.*,
167 12, 1040–1049, 2009.

168 Kauserud, H., Heegaard, E., Büntgen, U., Halvorsen, R., Egli, S., Boddy, L., Senn-Irlet, B.,
169 Greilhuber, I., Dämon, W., Sparks, T., Nordén, J., Høiland, K., Kirk, P., Semenov, M.
170 and Stenseth, N.C.: Warming-induced shift in European mushroom fruiting phenology.
171 *Natl. Acad. Sci. USA*, 109, 14488–14493, 2012.

172 Kays, R., Crofoot, M.C., Jetz, W. and Wikelski, M.: Terrestrial animal tracking as an eye on
173 life and planet. *Science*, 343, 24781–24788, 2015.

174 Körner, C. and Basler, D.: Phenology under global warming. *Science*, 327, 1461–1462, 2010.

175 Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P. and Brisse, H.: A significant upward
176 shift in plant species optimum elevation during the 20th century. *Science*, 320, 1768–
177 1771, 2008.

178 Marra, P.P., Cohen, E.B., Loss, S.R., Rutter, J.E. and Tonra, C.M.: A call for full annual cycle
179 research in animal ecology. *Biol. Lett.*, 11, 20150552, 2016.

180 Morrongiello, J.R., Thresher, R.E. and Smith, D.C.: Aquatic biochronologies and climate
181 change. *Nature Clim. Change*, 2, 849 – 857, 2012.

182 Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change impacts across
183 natural systems. *Nature*, 421, 37–42, 2003.

184 Pauli, H., et al.: Recent plant diversity changes on Europe's mountain summits. *Science*, 336,
185 353–355, 2012.

186 Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H.,
187 Fang, J., Barr, A. et al.: Net carbon dioxide losses of northern ecosystems in response to
188 autumn warming. *Nature*, 451, 49–52, 2008.

189 Reynolds, D.J., Scourse, J.D., Halloran, P.R., Nederbragt, A.J., Wanamaker, A.D., Butler,
190 P.G., Richardson, C.A., Heinemeier, J., Eiriksson, J., Knudsen, K.L. and Hall, I.R.:
191 Annually resolved North Atlantic marine climate over the last millennium. *Nature
192 Commun.*, 7, 13502, 2016.

193 Rivrud, I.M., Bischof, R., Meisingset, E.L., Zimmermann, B., Egil Loe, L. and Mysterud, A.:
194 Leave before it's too late: anthropogenic and environmental triggers of autumn migration
195 in a hunted ungulate population. *Ecol.*, 97, 1058–1068, 2016.

196 Schenk-Jäger, K.M., Egli, S., Hanimann, D., Senn-Irlet, B., Kupferschmidt, H. and Büntgen,
197 U.: Introducing mushroom fruiting patterns from the Swiss National Poisons Information
198 Centre. *PLOS ONE*, 11(9), e0162314, 2016.

199 Steppe, K., Sterck, F. and Deslauriers, A.: Diel growth dynamics in tree stems: linking
200 anatomy and ecophysiology. *Trends Plant Sci.*, 20, 335–343, 2015.

201 Thomas, C.D., et al.: Extinction risk from climate change. *Nature*, 427, 145–148, 2004.

202 Van Strien, A.J., Boomsluiter, M., Noordeloos, M.E., Verweij, R.J.T. and Kuyper, T.W.:
203 Woodland ectomycorrhizal fungi benefit from large-scale reduction in nitrogen
204 deposition in the Netherlands. *J. Ecol.*, doi:10.1111/1365-2664.12944, 2017.

205 Williams, C.M., Henry, H.A.L. and Sinclair, B.J.: Cold truths: how winter drives responses of
206 terrestrial organisms to climate change. *Biol. Rev.*, 90, 214–235, 2015.

207 Yang, B., He, M., Shishov, V., Tychkov, I., Vaganov, E., Rossi, S., Ljungqvist, F.C.,
208 Bräuning, A. and Grießinger, J.: New perspective on spring vegetation phenology and
209 global climate change based on Tibetan Plateau tree-ring data. *Proc. Natl. Acad. Sci.*
210 USA, doi:10.1073/pnas.1616608114, 2017.