

1 **Geomorphic influences on the contribution of vegetation to soil**
2 **C accumulation and accretion in *Spartina alterniflora* marshes**

3 Tracy Elsey-Quirk¹, Viktoria Unger²

4 ¹Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

5 ²University of Rostock, Rostock, 18051, Germany

6 *Correspondence to:* Tracy Quirk (tquirk@lsu.edu)

7 **Abstract.** Salt marshes are important hotspots of long-term belowground carbon (C) storage, where plant biomass
8 and allochthonous C can be preserved in the soil for thousands of years. However, the magnitude of C accumulation
9 rates as well as the sources of C may differ depending on environmental conditions influencing plant productivity,
10 allochthonous C deposition, and C preservation. For this study, we examined the relationship between belowground
11 plant ingrowth, turnover, decay, above-and belowground biomass and previously reported longer-term rates of total,
12 labile, and refractory organic C accumulation and accretion in *Spartina alterniflora*- dominated marshes across two
13 mid-Atlantic, US estuaries. Tidal range, long-term rates of mineral sedimentation, C accumulation and accretion were
14 higher and salinities were lower in marshes of the coastal plain estuary (Delaware Bay) than in the coastal lagoon
15 (BarNEGAT Bay). We expected that the conditions promoting high rates of C accumulation would also promote high
16 plant productivity and greater biomass. We further tested the influence of environmental conditions on belowground
17 ingrowth (roots + rhizomes), decomposition and biomass of *S. alterniflora*. The relationship between plant biomass
18 and C accumulation rate differed between estuaries. In the sediment-limited coastal lagoon, above- and belowground
19 biomass were directly and positively related to rates of total, labile and refractory C accumulation. Here, less flooding
20 and a higher mineral sedimentation rate promoted greater above-and belowground biomass, and, in turn, higher soil
21 C accumulation and accretion rates. In the coastal plain estuary, only aboveground biomass was positively related to
22 C accumulation, through the positive relationship with labile C accumulation rate. Soil profiles indicated that live
23 root and rhizome biomass was positively associated with labile C density for most marshes, yet high labile C densities
24 below the live root zone and in marshes with high mineral sedimentation rates and low biomass signify the potential
25 contribution of allochthonous C and preservation of labile C. Overall, our findings illustrate the importance of
26 sediment supply to marshes both for promoting positive plant-C accumulation-accretion feedbacks in geomorphic
27 settings where mineral sediment is limiting, and for promoting allochthonous inputs and preservation of labile C
28 leading to high C accumulation and accretion rates in geomorphic settings where sediment supply is abundant.

29
30 **1 Introduction**

31 Salt marshes are among the most productive ecosystems on Earth where over half of the annual plant biomass
32 production can occur belowground in the form of rhizomes and roots (Valiela et al., 1976; Gallagher and Plumley
33 1979; Schubauer and Hopkinson 1984). Plant biomass, especially belowground biomass, is considered to be a primary
34 contributor to soil organic matter and carbon (C) sequestration in marshes (DeLaune et al. 1983a; Nyman et al. 2006).
35 High rates of plant productivity coupled with relatively slow rates of decomposition allow a net accumulation of plant-
36 derived C over time. Important feedbacks among aboveground plant structure, such as stem density, sediment
37 deposition, elevation, above-and belowground productivity, and burial of organic matter promote both C accumulation
38 and accretion, allowing some resilience to relative sea level rise (Kirwan and Megonigal 2013). Belowground
39 productivity alone may contribute to an estimated 3.0 mm/yr of vertical accretion, based on a theoretical maximum
40 belowground production of 2,500 g/m²/yr for *Spartina alterniflora* (Morris et al. 2016). For British coastal marshes
41 dominated by different species, autochthonous production has been estimated to contribute 0.2 to 1.0 mm/yr (Allen
42 1990; French 1993). Variation in plant productivity due to differences in environmental conditions, therefore, may
43 account for a significant portion of the variability in rates of marsh C accumulation and accretion. For *S. alterniflora*

44 marshes, which naturally occur along the Atlantic and Gulf coasts of the U.S., roots and rhizomes of marsh plants are
45 estimated to comprise up to 90% of organic input (Howes et al. 1985). Accretion rates above the local organic
46 production, must be due to allochthonous source of C and sediment (Morris et al. 2016). Yet, it is not clear whether
47 local plant organic matter input is constant across geomorphic settings that experience a range of environmental
48 conditions and sedimentation rates. Local environmental conditions such as hydrology, salinity, sediment availability,
49 and soil properties are predicted to play a key role in influencing relationships between biotic processes and rates of
50 C accumulation and accretion (Haslett et al. 2003). Despite knowledge of bio-physical feedbacks governing C
51 accumulation and accretion, and the recent emphasis on the efficiency of salt marshes in sequestering C, fine-scale
52 controls of marsh C accumulation are still poorly understood (Connor et al. 2001, Chmura et al. 2003, Mcleod et al.
53 2011). These fine-scale controls may account for a large portion of the spatial variability in C accumulation rates in
54 marshes (e.g., Mcleod et al. 2011; Ouyang and Lee 2014). Of the numerous studies that have separately quantified
55 plant productivity or biomass and soil carbon accumulation rates, few have examined relationships between plant
56 growth, decay and biomass in concert with soil C accumulation and accretion. In addition, understanding these
57 relationships across natural systems is extremely important as multiple abiotic conditions will determine the ability of
58 marshes to accumulate and store C and adjust their elevation relative to sea-level.

59
60 While *insitu* plant biomass production may be a major C source, non-plant derived (e.g., edaphic algae) and
61 allochthonous C deposition also contributes to carbon accumulation in marsh soil. Some have suggested that
62 allochthonous C may be a more important component of surface sediments, while the accumulation of plant-derived C
63 from root productivity becomes more important at depth (Santilan et al. 2013). The relative magnitude of allochthonous
64 versus autochthonous carbon inputs may also differ within and among marshes depending on rates of deposition
65 (mineral and organic) and environmental conditions that regulate *insitu* productivity and decay. Higher tidal range,
66 greater supply of mineral nutrients and sediments, and lower salinities are conditions that are all predicted to enhance
67 both plant productivity and soil C accumulation (Mendelssohn and Kuhn 2003; Craft 2007; Kirwan and Guntenspergen
68 2010). Across geomorphic settings of estuaries, from deltas to coastal lagoons, physical and abiotic factors often co-
69 vary with potential consequences for C sequestration and even vulnerability to relative-sea level rise. Microtidal
70 marshes in coastal lagoons, for example, are considered particularly vulnerable to relative sea-level rise due to limited
71 sediment supply, weak and limited tidal movement for sufficient sediment transport and surface deposition leading to
72 a reliance on *insitu* organic matter production for accretion (Reed et al., 2008; Kirwan & Guntenspergen 2010; Ganju
73 et al., 2017). In contrast, marshes in geomorphic settings with high rates of mineral sedimentation such as those near
74 river deltas may have greater magnitudes of both allochthonous C deposition and autochthonous plant C inputs (e.g.,
75 Craft et al. 2007). In tidal marshes of Australia, for example, soil C stocks in fluvial environments containing finer-
76 grained sediments were approximately double the C stocks in marshes of marine sandy estuaries (Macreadie et al.
77 2017). Higher contributions of allochthonous C and greater preservation of plant-derived C likely influenced greater
78 soil C accumulation in fluvial versus marine geomorphic settings (Saintilan et al. 2013; Kelleway et al. 2016).
79 Similarly, in marshes of a coastal plain estuary, soil C accumulation and accretion were greater than in marshes of a
80 coastal lagoon (Unger et al. 2016). In these systems, C accumulation rate was strongly and positively related to rate

81 of mineral sedimentation. The strong positive relationship between mineral sedimentation and C accumulation rates
82 implied that mineral sediment availability influenced greater plant-derived C inputs, greater allochthonous C inputs,
83 and/or greater C preservation.

84
85 Stable C isotopic signatures have shed some light on the relative importance of different C sources in marsh soil. A
86 comparison of $\delta^{13}\text{C}$ in soils of mineral-rich and organic marshes indicated a depletion of plant-derived $\delta^{13}\text{C}$ signatures
87 in mineral marsh soils and strong signal of local plant $\delta^{13}\text{C}$ in organic marsh soils (Middleburg et al. 1997).
88 Preferential decomposition of labile C, which is enriched, with more negative $\delta^{13}\text{C}$ values, relative to *Spartina* tissue
89 and preservation of refractory lignin, which is depleted relative to *Spartina* tissue, may partially explain the overall
90 shift in $\delta^{13}\text{C}$ in mineral-rich marshes (Benner et al. 1991). Another mechanism potentially causing the depletion of
91 $\delta^{13}\text{C}$ signatures relative to local plant tissue is a greater allochthonous C input consisting of organic matter sorbed onto
92 mineral particles, estuarine phytoplankton, microphytobenthos and non-local macrophytes (Middleburg et al. 1997).
93 Though labile soil C may be derived from algal sources, it is also possible that the environmental conditions in mineral-
94 rich marshes stimulate *insitu* plant productivity and inputs of labile plant C. Mineral sedimentation, for example,
95 tends to be positively related to C accumulation (Chmura et al. 2003; Unger et al. 2016) and also creates favourable
96 conditions for plant growth (DeLaune et al. 1990; Mendelssohn and Kuhn 2003). Specifically, mineral sediment input
97 can increase marsh elevation, supply a physical substrate for root growth, supply inorganic nutrients, raise the redox
98 potential, and promote the precipitation of sulfide with iron and manganese to form non-toxic compounds (DeLaune
99 et al. 2003). Regardless of the source, labile C can be more abundant in marshes with higher rates of mineral sediment
100 deposition, and ultimately drive total C accumulation rates (Unger et al. 2016).

101
102 The goal of this study was to examine the relationship between autochthonous plant-derived C inputs and longer-term
103 labile, refractory, and total organic C accumulation rates in short-form *Spartina alterniflora* marshes. In a previous
104 study, we found rates of C accumulation to be significantly greater in marshes of a coastal plain estuary, Delaware
105 Bay, USA than marshes of an adjacent coastal lagoon, Barnegat Bay (Unger et al. 2016). Total organic C accumulation
106 rates were positively associated with rates of mineral sedimentation and labile C accumulation. Refractory C
107 accumulation was similar across marshes averaging $78 \pm 5 \text{ g/m}^2/\text{yr}$ (Unger et al. 2016). The sources of the C fractions
108 were unknown. For this study, we tested the hypothesis that rates of *S. alterniflora* belowground productivity were
109 greater in marshes of the coastal plain estuary than in the marshes of the coastal lagoon, where a higher water table,
110 higher salinity, and lower rates of sediment deposition were predicted to limit root and rhizome growth. We predicted
111 that patterns of belowground productivity and turnover would mirror those of longer-term total and labile organic
112 carbon accumulation rates across marshes and estuaries. Our hypothesis would be supported if environmental
113 conditions that promoted C accumulation such as high rates of mineral sedimentation and, potentially, high tidal range
114 and low salinity also promote high belowground biomass production. Further, we examined the role of belowground
115 decay in explaining spatial patterns of C accumulation. We hypothesized that the amount of organic material remaining
116 following 20 months of belowground decomposition would be greater in marshes with higher C accumulation rates.
117 For this, the conditions that promote high rates of C accumulation may also promote the preservation of C particularly

118 in the upper soil column where much of the decay of labile organic matter occurs (Hackney and de la Cruz 1980;
119 Hackney 1987; Morris and Bowden 1986). Ultimately, the net amount of belowground biomass (C fractions greater
120 than ~1 mm in size) was predicted to be directly and positively related to the density of C in the soil profile and C
121 accumulation rate. Similarly, above-and belowground biomass was predicted to be positively related to soil C
122 accumulation. Finally, because plant productivity and decay processes as well as overall plant structure (e.g., height,
123 stem density, biomass) have been shown to be tightly regulated by abiotic factors, we examined the influence of local
124 environmental conditions (i.e., water level, salinity, soil nutrient status, and sediment deposition rates) on *S.*
125 *alterniflora* growth, decay and biomass across marshes and estuaries.

126

127 **2 Methods**

128 **2.1 Study sites**

129 Six marshes in two estuaries along the Mid-Atlantic coast of the United States, Barnegat Bay and Delaware Bay, New
130 Jersey were the focus of this study (Fig. 1). The two estuaries and marshes therein varied in geomorphic setting and
131 therefore, tidal range, hydrology, salinity, sediment availability, and nutrient concentrations also varied. The Delaware
132 Bay is a large coastal plain estuary extending 215 km from the head-of-tides to the bay mouth at the Atlantic Ocean.
133 Tidal amplitude is approximately 1.5 m at the mouth and increases up-estuary modulated by estuary and tidal channel
134 geometry. Barnegat Bay is a shallow coastal lagoon extending 62.7 km along the coast of New Jersey, separated from
135 the Atlantic Ocean by a barrier island apart from two inlets. Barnegat Bay experiences a relatively small tidal
136 amplitude ranging from 20 to 50 cm depending on location in the bay (Defne and Ganju 2014). Mean salinity ranges
137 from 18 to 25 with lowest salinities in the northern part of the bay farther from the inlets and also near Toms River
138 (Kennish 2001). Across the two estuaries, marshes ranged from being along a large tidal tributary with relatively low
139 salinity (Maurice River, MR, in Delaware Bay) to a back-barrier marsh (Island Beach State Park, IB) in Barnegat Bay,
140 which has been converting from *S. alterniflora* to shallow open water between the parallel mosquito ditches over
141 approximately the last decade, likely due to a lack of drainage through the ditches (pers obs). Reedy Creek (RC)
142 marsh in northern Barnegat Bay had interior ponds which have been expanding in size over time. Of the six marshes
143 in the study, MR had the highest freshwater input and the highest longer-term mineral sediment, total organic C and
144 labile C accumulation and accretion rates (Unger et al. 2016). RC and IB in Barnegat Bay, had the lowest rates of
145 accumulation and accretion, while Channel Creek (CC) to the south had larger mineral sediment input and was
146 intermediate in accumulation and accretion rates to RC and IB and those in Delaware Bay (Unger et al. 2016).
147 Accretion rate in Barnegat Bay marshes (0.28 ± 0.06 cm/yr) over the last 50 – 100 years was less than the rate of
148 relative sea-level rise over approximately the same time period (0.41 cm/yr; NOAA, Tides and Currents; *in* Boyd et
149 al., 2017). In Delaware Bay, salt marsh accretion rate (0.70 ± 0.26 cm/yr) exceeded the rate of local relative sea-level
150 rise over the same time period (0.34 cm/yr, NOAA, Tides and Currents). Study locations have also been described in
151 Elsey-Quirk 2016; Unger et al., 2016 and Boyd et al., 2017.

152

153 **2.2 Experimental design**

154 In each of the six marshes, five plots were established along a transect of increasing distance from the marsh/estuary
155 boundary. Transects ranged from 270 to 2970 m with shorter transects in smaller marshes (generally in Barnegat Bay)
156 and longer transects in marshes along larger tidal channels (in Delaware Bay). This transect-based study design, rather
157 than replicate plots in close proximity, was employed to capture a range of within-marsh variation, while also
158 stratifying by short-form *S. alterniflora*. Belowground ingrowth and litterbag decomposition studies were employed
159 at each of the five plots (n = 5). Vegetation structure (i.e., stem density and shoot height and above- and belowground
160 biomass) was measured at three of the five plots (nearest, middle and farthest from the estuary). Belowground biomass
161 was determined from 2-cm depth sections from half of a 15.2-cm diameter soil core. The other half of the core was
162 used for analysis of soil properties, C (total organic, labile, and refractory) and nitrogen concentrations, and ^{137}Cs and
163 ^{210}Pb -activity (reported in Unger et al., 2016; Boyd et al., 2017). Organic C (labile, refractory and total) accumulation
164 rates, with which we examined relationships with plant processes and properties (present study) were previously
165 published in Unger et al. 2016. C accumulation rates were calculated using ^{137}Cs -based accretion rates published in
166 Boyd et al. 2017.

167 **2.3 Environmental conditions**

168 **2.3.1 Marsh elevation, hydrology and salinity**

169 Elevations of the plots were collected using a Leica GS-14 (NJ NAD83, Geiod 12A). A minimum of three GPS survey
170 points were collected on the marsh surface at each plot. Two water level/conductivity recorders (In-Situ 5000 vented)
171 were installed in each of the six marshes from August 2012 to October 2013. Probes were placed in each marsh near
172 and far from the estuary approximately 5 m from the location of two of the five belowground ingrowth and litterbag
173 plots and two of the three standing biomass and soil core plots. Probes were installed in slotted wells to a depth of 70
174 cm. Water level and conductivity were recorded every 15 and 30 minutes, respectively. Elevation of the marsh surface
175 around each well was also collected. Water levels were referenced to the marsh surface, while elevations were
176 referenced to the North American Vertical Datum 1988 (NAVD88).

177

178 **2.3.2 Soil properties**

179 Soil cores were collected for testing relationships between belowground biomass and previously reported soil C
180 accumulation (in Unger et al., 2016) and accretion rates (in Boyd et al., 2017). PolyCate tubes 15.2 cm in diameter
181 and 110 cm long with a sharpened bottom edge were used to collect soil cores. Cores were taken back to the lab and
182 sectioned into 2-cm depth sections. Physical and chemical analyses were conducted on half of each 2 cm section. Soil
183 bulk density (g/cm³), percent organic matter, total organic C, refractory and labile C, total nitrogen, and radiometric
184 dating were conducted and is reported in Unger et al., 2016 and Boyd et al., 2017. The remaining half of each 2-cm
185 depth was rinsed and sieved for belowground biomass (see below).

186

187 **2.4 Vegetation parameters**

188

189 **2.4.1 Belowground ingrowth and turnover**

190 Belowground ingrowth rate ($\text{g DW m}^{-2} \text{ yr}^{-1}$) was measured at five locations in each of the six marshes using rates of
191 root and rhizome growth into flexible mesh bags filled with a 1:1 mixture of unfertilized top soil and peat moss
192 (McKee et al., 2007; $n = 5$). Ingrowth bags were constructed of flexible crawfish sack material with a mesh size of 6.3
193 x 3.2 mm, and, when filled, were 5 cm diameter and 15 cm length. Four ingrowth bags were deployed in each of the
194 five plots and sequentially harvested approximately every four months from April 2013 to October 2014 to calculate
195 belowground (root + rhizome) ingrowth rate. The four bags were deployed 50 cm apart in each plot and all bags were
196 installed vertically into 15 cm deep cored holes. Accumulated root and rhizome mass was dried at 60°C to a constant
197 weight. All of the roots and rhizomes in ingrowth bags were live based on color and structural integrity. Belowground
198 turnover was calculated by dividing ingrowth ($\text{g/m}^2/\text{yr}$) by live root and rhizome biomass (g/m^2 ; Section 2.5.3).
199 Ingrowth typically underestimates absolute rates of belowground productivity, and therefore, both absolute
200 productivity and turnover will be underestimated. However, our goal is to examine relative responses to varying
201 environmental conditions (Valiela et al., 1976; Graham and Mendelsohn 2016).

202

203 **2.4.2 Belowground decay**

204 Belowground decomposition of macro-organic matter was estimated using the litterbag technique. Litterbags (20 x
205 10 cm) made of 1 x 1 mm window screen mesh were filled with 9 g wet weight of macro-organic material comprised
206 of coarse roots and rhizomes in a live to dead ratio of 1:3. Organic material was subsampled from all soil cores (Section
207 2.5.3) and combined as a composite sample. Five replicate 9 g wet weight samples were dried at 60°C to estimate
208 initial dry weight. Four litterbags were deployed horizontally 10-cm below the surface in each of five plots
209 approximately 2 m from ingrowth bags in each of the six marshes ($n = 5$). Litterbags were placed in Delaware Bay
210 marshes on 12 December (DN), 13 December (MR), and 9 January (DV). Litterbags were deployed later in BB
211 marshes (13 February (RC), 29 March (IB), and 8 April (CC)) because of the difficulty of accessing these sites in the
212 months following Hurricane Sandy, which made landfall within 115 km of the marsh study sites on 29 October 2012.
213 Once deployed, litterbags were collected sequentially over the same ~20 month period of ingrowth study for
214 determination of mass loss over time. Percent of the original dry mass remaining at the end of the study period was
215 determined.

216

217 **2.5.3 Biomass**

218 Aboveground biomass was harvested from three plots within a 0.25 m^2 quadrat where soil cores for radiometric dating,
219 C analysis and belowground biomass were also collected. In the lab, stems were rinsed of mineral matter, counted,
220 and measured for height. Belowground biomass from half of each 2 cm soil section was rinsed to remove all mineral
221 sediment and separated into size classes of coarse and fine organic material. Coarse organic matter, comprised
222 primarily of stem bases and rhizomes, were further sorted into live and dead categories based on color and rigidity. A
223 sieve with a 2 mm mesh size retained coarse material and a sieve with a 1 mm mesh size retained fine organic matter,
224 which could not be easily separated into live and dead components. All above- and belowground biomass was dried
225 to a constant weight in a 70°C drying oven. Dry weights were converted to a g m^{-2} basis and depth profiles were
226 constructed. For analysis, belowground biomass in each core was summed to two depths in the soil profile. One was

227 to each respective ^{137}Cs peak, accounting for biomass that contributed directly to accretion above the ^{137}Cs peak depth.
228 However, live biomass is continually added to the soil column, and is often at depths well below the year 1963 ^{137}Cs
229 marker, and therefore, biomass was also summed to a specific depth, 50 cm, which is typical methodology for
230 quantifying belowground biomass.

231

232 **2.6 Data analysis**

233 Each environmental and vegetation parameter was checked for normality using the Shapiro-Wilks test. Log
234 transformations were used for most variables when necessary and appropriate and logit transformations were used for
235 percent data (e.g., percent soil organic matter, total nitrogen). A square root transformation was necessary to normalize
236 belowground ingrowth data. We tested for homogeneity of variances using the Levene Test on transformed data. The
237 only violation of the equal variance assumption was for the 95% rooting depth, which, following log-transformation,
238 failed the Levene test between estuaries, but not among marshes. We used a nested analysis of variance to test for
239 differences among marshes nested within estuaries in belowground ingrowth, decay rate, and vegetation structure
240 (e.g., stem density, height, rooting depth, and biomass). To test for relationships between belowground biomass
241 structure and accretion and C (total organic, labile and refractory) accumulation rates a stepwise regression analysis
242 was conducted. For analysis of relationships between belowground biomass and ^{137}Cs -based accumulation and
243 accretion rates, biomass summed above the ^{137}Cs peak depth was used. Matlab was used to calculate hydrologic
244 parameters including mean low water (MLW), mean high water (MHW), and frequency and percentage of time
245 flooded from the continuous water level time series (MATLAB 6.1, the Mathworks Inc., Natick, MA). Multivariate
246 correlation analysis was conducted to test for collinearity among environmental predictor variables. One
247 representative of highly correlated variables was chosen and redundant variables were removed for future analyses.
248 Based on the results of the correlation analysis, two hydrologic parameters, MHW and MLW depths relative to the
249 marsh surface, were selected to represent the suite of variables with which they were related, for which isolating
250 individual relationships with vegetation parameters would be impossible (Supplementary Table A). We chose to use
251 MHW and MLW over other variable such as % time flooded because these variables represent the magnitude of
252 surface flooding at high tide and the magnitude of drainage at low tide, respectively, both of which we predicted to be
253 biologically important. Salinity was also maintained in the models, although it was negatively correlated with several
254 hydrologic parameters, but not related to soil properties. Because of the strong relationship between soil bulk density
255 and long-term mineral sedimentation rate, only sedimentation rate was retained in subsequent models. Correlations
256 within environmental and vegetation data were expected, and therefore, a multivariate approach were used to analyze
257 the data. Multivariate analysis of variance (MANOVA) was used to test for differences among marshes nested within
258 estuaries in environmental parameters. If a significant multivariate treatment affect was found based on the Wilks
259 Lambda test, univariate tests were performed. Univariate post-hoc tests were conducted using Tukey's HSD test. To
260 examine the relationship between environmental and vegetation parameters across samples, a stepwise regression was
261 used with forward selection, starting with the full model and minimum BIC. Belowground ingrowth, decay and
262 biomass components were analysed in separate stepwise univariate models. Non-linear modelling was used when

263 relationships were non-linear. Unless otherwise specified, JMP V.12.1 was used for all statistical analysis (JMP
264 Version 12.1, SAS Institute Inc.).

265 **3 Results**

266 **3.1 Local environmental conditions**

267 Despite the stratification of our study plots in marsh interiors dominated by short-form *S. alterniflora*, environmental
268 conditions varied across marshes and estuaries. Elevations ranged from -7 to 87 cm, (NAVD88; Table 1). Tidal
269 amplitudes ranged from 5 to 22 cm (Table 1). Relative to the tidal frame, marsh surfaces ranged from below MLW
270 (IB) to above MHW (CC). Generally, marshes in Barnegat Bay experienced a lower tidal range, but were flooded for
271 a greater percentage of the year than Delaware Bay marshes (53 ± 12 and $40 \pm 9\%$, respectively; Estuary: $p = 0.0341$).
272 Among the marshes in Barnegat Bay, CC was the highest in elevation, sitting on average 3 cm above MHW. CC was
273 flooded less often (6% of the time), with higher water table salinities, and higher long-term rates of mineral
274 sedimentation than RC (Table 1). IB was moderate in elevation but flooded 86% of the time with long durations of
275 individual flood events, due to poor drainage through mosquito ditches. RC was the lowest elevation marsh, and
276 although not flooded as much as IB, was flooded 66% of the time. In the Delaware Bay, DV was sitting high in the
277 tidal frame and therefore was flooded less often than the other marshes (MR and DN; Marsh[Estuary]: $F_{4, 11} = 53.15$,
278 $p < 0.0001$). Overall, 65% of marsh areas had MLW depths within 5 cm of the marsh surface, indicating that the
279 majority of the root zone was continuously inundated. The lowest MLW depth of the 18 study areas was 11 cm below
280 the surface in a relatively high elevation area of DV in Delaware Bay.

281

282 Salinities ranged from 7 at MR in Delaware Bay to 40 at CC in Barnegat Bay. Salinity of Barnegat Bay marshes was
283 an average of 16 psu higher than DB, but there was also a significant difference within Barnegat Bay with RC in the
284 north having a lower salinity than IB and CC (Marsh[Estuary], $p = 0.0103$; Table 1). In Delaware Bay, salinity was
285 variable across marshes as were soil properties, although MR had higher soil bulk densities and less variable high
286 rates of mineral sedimentation (Table 1). Soil nitrogen concentrations were greater in RC and IB in Barnegat Bay
287 than all other marshes (Table 1). Total soil N concentrations were positively correlated with soil organic matter and
288 strongly negatively correlated with bulk density (Supplemental Table A).

289

290 **3.2. Belowground ingrowth and turnover**

291 Belowground ingrowth, comprised primarily of large roots and rhizomes, ranged from 0 to 550 g/m²/yr across plots.
292 There were two plots in IB where no root ingrowth occurred, where previously vegetated areas had converted to
293 ponded mudflat. Regardless of the inclusion of these zero data points, ingrowth rates did not differ among marshes
294 (Fig. 2), and averaged 206 ± 22 g/m²/yr (excluding zeros). Significant differences in belowground ingrowth were not
295 found among marshes because within marsh differences in environmental conditions influenced large variability.
296 Across all sampling plots, belowground ingrowth was negatively related to MLW depth, indicating that root and
297 rhizome growth was positively influenced by drainage (Fig. 3). However, under moderate inundation, root growth
298 was highly variable. Because MLW was generally above the lowest part of the ingrowth bag, and therefore, ingrowth
299 bags were inundated most of the time, the effect of hydrology on root growth was evident at the extremes of MLW,

300 where either average low water level exposed a significant portion of the ingrowth bag resulting in relatively high root
301 growth or low water averaged above the surface and the root zone was continuously flooded, where no roots grew.
302 However, even with the zero root growth data points removed, a positive relationship between drainage and root
303 growth remained (i.e., adj $R^2 = 0.36$, $p = 0.0078$). Belowground turnover ranged from 0.04 to 0.43 yr^{-1} with an average
304 of $0.15 \pm 0.03 \text{ yr}^{-1}$. Turnover rates did not vary among marshes and were not influenced by measured environmental
305 parameters.

306

307 **3.3. Belowground decay**

308 Live and dead biomass in a ratio of 1:3 placed in litterbags 10 cm below the marsh surface tended to decline rapidly
309 following deployment. Litterbags were placed in Barnegat Bay a few months later in the spring than those in Delaware
310 Bay, and may have led to a more rapid initial decline in mass (Supplemental Figure A). However, regardless of the
311 initial decay slopes, the percentage of root and rhizome material remaining at the end of approximately 20 months
312 was similar among marshes averaging $59 \pm 1\%$ (Fig. 2). The percent mass remaining was not significantly related to
313 any of the environmental factors tested (i.e., water level, salinity, soil nutrient concentration, sedimentation rate), as it
314 did not vary much among plots.

315

316 **3.4 Vegetation structure**

317 **3.4.1 Aboveground**

318 *Spartina alterniflora* stem density ranged from 0 to 4112 stems/ m^2 across plots and did not differ significantly among
319 marshes (Table 3). In Barnegat Bay, there was a strong negative relationship between stem density and mean low
320 water depth, such that stem density increased with more drainage (Fig. 3). Stem density in Delaware Bay marshes
321 was not related to any environmental predictor variable.

322

323 Shoot height was approximately two times greater in MR in Delaware Bay than the other marshes with the exception
324 of RC (Marsh [Estuary]: $F_{1,4} = 8.15$, $p = 0.0026$). Aboveground biomass was over six times greater in MR than RC
325 and IB in Barnegat Bay (Marsh [Estuary]: $F_{1,4} = 8.13$, $p = 0.0021$; Table 3). In Barnegat Bay, live aboveground
326 biomass increased linearly with increasing sedimentation rate and decreased linearly with increasing MHW. This
327 indicates that aboveground biomass responded positively to higher mineral sedimentation and less flooding. In
328 Delaware Bay, aboveground biomass increased with increasing MHW following a quadratic relationship (Fig. 7b).
329 Therefore, geomorphic differences between the two estuaries led to differences in vegetation response with
330 aboveground biomass stimulated by higher MHW in Delaware Bay, while aboveground biomass responded negatively
331 to increasing MHW depth in Barnegat Bay.

332

333 **3.4.2 Belowground**

334 Aboveground live biomass was not related to live, dead, or fine belowground biomass, nor total belowground biomass.
335 Rates of belowground ingrowth and decay were also not statistically related to belowground biomass stocks.

336

337 Belowground biomass was variable within marshes. When calculated to a 50 cm depth, there was no difference among
338 marshes or between estuaries in total, live coarse, or dead coarse biomass (Table 3). However, the depth of live
339 biomass differed among marshes. The 95% rooting depth was greatest in DN, followed by MR, both of which had
340 greater live root depths than Barnegat Bay marshes (Marsh [Estuary]: $F_{4, 12} = 10.58$, $p = 0.0007$; Table 3; Fig. 6).
341 There was more fine biomass in CC in Barnegat Bay than in MR in Delaware Bay (Table 3). The total amount of live
342 biomass (above- and belowground) was over three times greater in CC ($3245 \pm 768 \text{ g/m}^2$) than in RC ($833 \pm 41 \text{ g/m}^2$)
343 with no other differences among marshes (Marsh[Estuary]: $F_{1,4} = 4.2$, $P = 0.0227$).

344

345 Biomass was also summed to ^{137}Cs -peak depths, which varied by 42 cm across plots. Depth of the ^{137}Cs peak ranged
346 from 9 – 17 cm in Barnegat Bay marshes and 17 to 51 cm in Delaware Bay marshes (Boyd et al. 2017). There was
347 similar or less biomass in Delaware Bay marshes to a greater depth than in Barnegat Bay marshes (Fig. 6). For
348 example, the quantity of live biomass to a 16 cm depth at CC was similar to the amount to a 48 cm depth in MR. Total
349 belowground biomass (live coarse, dead coarse and fine) above the ^{137}Cs peak, was significantly greater in DN and
350 CC than in RC (Marsh [Estuary]: $F_{4, 12} = 5.12$, $p = 0.0121$), partly due to the shallower depth of the ^{137}Cs peak in RC.
351 However, live coarse biomass ranged from an average of 505 g/m^2 in RC to 2675 g/m^2 in CC where ^{137}Cs peaks
352 occurred at depths averaging 11 and 16 cm, respectively. Fine biomass was also greater in CC than in RC (Table 3).
353

354 Belowground biomass stocks were related to several measured environmental parameters. And while the aim of these
355 analyses were to examine cross-system relationships between environmental conditions and vegetation patterns, it
356 became apparent that the relationships were highly estuary-dependent. In Barnegat Bay, live belowground coarse
357 biomass was positively related to sedimentation rate and negatively to MHW (Fig. 4c, d). Dead belowground coarse
358 biomass was also negatively related to MHW in Barnegat Bay (Fig. 4f). This indicates that while mineral
359 sedimentation stimulated live root and rhizome biomass, an increase in high tide over the marsh surface was associated
360 with a decline in both live and dead coarse biomass. In Delaware Bay, live and dead coarse biomass was variable
361 across the range of environmental conditions. However, both fine and total biomass declined with increasing rates of
362 mineral sedimentation. Fine biomass comprised 45 – 69% of total belowground biomass in Delaware Bay marshes,
363 and the decline in fine biomass resulted in a decline in the total biomass. Fine biomass also declined with a decline
364 in salinity in Delaware Bay.

365

366 **3.5 Relationship between vegetation and soil C and accretion**

367 **3.5.1. Soil C density profiles**

368 Belowground biomass profiles corresponded well with profiles of organic C density, depending on the biomass
369 component (live coarse, dead coarse, or fine), depth, and whether the C was chemically labile or refractory (Fig. 6).
370 Across marshes, total C density profiles were positively correlated with dead coarse and fine biomass ($\text{adj } r^2 = 0.25$,
371 $p < 0.0001$). Labile C density was weakly related to biomass stocks (live and dead coarse: $\text{adj } r^2 = 0.05$, $p < 0.0001$),
372 while all (live, dead, and fine) biomass stocks explained 28% of the variation in downcore refractory C densities ($\text{adj } r^2 = 0.28$,
373 $p < 0.0001$). Live coarse biomass was the only significant predictor of labile C density in four of the six

374 marshes (Table 4). In IB, no belowground biomass component was related to labile C density and in MR, labile C
375 density was related to fine biomass (Table 4). In RC, labile C density was negatively related to live biomass, indicating
376 that as live root biomass increased, labile C declined (Fig. 6). This is due to changes in the relationship between live
377 biomass and labile C with depth. From the soil profiles, it is clear that labile C density mirrors live coarse biomass
378 dynamics to the depth limit of the live root zone. Below the live rooting depth, labile C density tends to increase (RC,
379 IB, and CC), likely associated with an increase in preservation of labile C and compaction and increased soil bulk
380 density.

381
382 Refractory C density increases in-step with biomass toward the surface in the coastal lagoon marshes, but is relatively
383 uniform with depth regardless of biomass changes in the coastal plain estuary (Fig. 6). Nevertheless, refractory C
384 density in the coastal plain marshes was positively related to the amount of dead biomass (Table 4). In the coastal
385 lagoon, refractory C density was related to both live and dead biomass (Table 4). This suggests that the
386 labile/refractory nature of the biomass produced may differ among the marshes and estuaries. While interesting
387 relationships emerged for labile and refractory C densities and biomass components, some of the relationships were
388 masked when examining total C densities, which were variably related to biomass components. Three marshes, IB,
389 CC and MR, had relatively strong soil C density-belowground biomass relationships while other marshes had weak
390 or non-detectable relationships (RC, DV, and DN).

391
392 3.5.1. C accumulation and accretion rates
393 We found no relationship between rates of belowground ingrowth and longer-term labile and total carbon
394 accumulation rates. Belowground turnover was weakly (adj $R^2 < 0.35$) negatively related to total organic and labile
395 C accumulation, largely due to the positive relationship between live belowground biomass and labile C accumulation
396 rates (Supplemental Figure B; see below). Percent mass remaining in belowground litterbags was, likewise, unrelated
397 to C accumulation rates. However, across the two estuaries, there was a positive relationship between aboveground
398 biomass and longer-term total organic and labile C accumulation (Fig. 7). Aboveground live biomass also explained
399 37% of the variation in ^{137}Cs -based accretion rates (adj $R^2 = 0.37$, $p = 0.0058$, data not shown), which was largely
400 related to the effect of aboveground biomass on labile C accumulation rate. Aboveground live biomass explained
401 70% of the variation in labile C accumulation (Fig. 7).

402
403 Relationships between belowground biomass and C accumulation and accretion rates were estuary dependant. Total
404 and live belowground biomass corresponded to the pattern of total organic C accumulation across marshes in Barnegat
405 Bay, but not Delaware Bay (Fig. 8). When compared statistically, C accumulation and accretion rates were positively
406 related to cumulative belowground biomass above the ^{137}Cs peak depth only for Barnegat Bay marshes (Fig. 9). Live
407 coarse and fine biomass explained 86% of the variation in total C accumulation in Barnegat Bay marshes (Fig. 9).
408 Live coarse biomass was positively related to labile C accumulation and fine biomass was positively related to
409 refractory C accumulation rate (Fig. 9). Accretion rate did not scale with the amount of belowground biomass in

410 Delaware Bay, but live and dead coarse biomass explained 78% of the variation in accretion rate in Barnegat Bay
411 (Fig. 9).

412

413 **4.0 Discussion**

414 Our study illustrated significant relationships between plant biomass and soil C densities and C accumulation and
415 accretion rates in *S. alterniflora* marshes. Geomorphic setting within and between estuaries played a large role in
416 influencing these relationships. Marshes in the coastal lagoon had C accumulation and accretion rates that were
417 positively related to both above- and belowground biomass. Aboveground biomass was positively related to labile C
418 accumulation while belowground biomass was positively related to both labile and refractory C accumulation rates.
419 Here, above- and belowground biomass was stimulated by less flooding and greater mineral sedimentation, which, in
420 turn, increased rates of total, labile, and refractory C accumulation and accretion. In the coastal plain estuary, only
421 aboveground biomass influenced C accumulation through its positive relationship with labile C accumulation rate.
422 Aboveground biomass was stimulated in the coastal plain estuary by greater flooding, ultimately leading to greater
423 labile and total C accumulation rates. As discussed below, the positive relationship between aboveground biomass
424 and labile C accumulation rate may result from labile tissue production as a function of photosynthetic area and/or the
425 increased trapping and deposition of allochthonous labile C such as algal-derived C. Relatively high densities of labile
426 C in the mineral-rich marshes, independent of belowground biomass, indicate potential allochthonous contributions
427 and high preservation of labile C.

428

429 Contrary to our first two hypotheses, belowground ingrowth and decay did not differ among marshes, and were not
430 related to longer-term rates of C accumulation. These predictions were based on the premise that the environmental
431 conditions that lead to high rates of insitu production and greater C preservation, in turn, contribute to longer-term
432 autochthonous C accumulation. In a previous study, C accumulation rates across these marshes were found to be
433 strongly related to rates of mineral sedimentation (Unger et al. 2016). Root growth, however, was not related to
434 longer-term rates of mineral sedimentation, nor related bulk densities, despite the potential for positive responses to
435 higher soil bulk density and associated mineral nutrients (DeLaune et al. 1979). Subsurface hydrology seemed to
436 be the dominant factor influencing root and rhizome ingrowth rates with greater ingrowth in areas of greater average
437 low tide depths. This relationship tended to be based on thresholds, where root growth was greater when average
438 mean low water depth was at least 6 cm below the surface. When mean low water averaged above the marsh surface
439 and the marsh surface was flooded for long durations and a higher percentage of the time (e.g., IB), no roots grew.
440 *Spartina alterniflora* is highly adapted to flooded conditions, possessing both morphological adaptations such as
441 aerenchyma to facilitate oxygen transport to flooded rhizomes and roots and physiological adaptations such as
442 anaerobic metabolism (Teal and Kanwisher 1966; Mendelssohn et al., 1981). We observed that root growth of *S.*
443 *alterniflora* was highly variable under moderate flooding conditions, potentially more affected by other abiotic
444 conditions and/or the density of parental live root structures in close proximity. Others have also found that root
445 ingrowth increases with less flooding, lower soil moisture and higher redox potentials (Blum 1993; Kirwan and
446 Guntenspergen 2012). In addition to the main environmental drivers of root ingrowth and C accumulation being

447 different, the lack of a spatial relationship between root ingrowth and C accumulation rates may also be due to time
448 step differences in short-term (~2 yr) process rates and processes integrated over a longer time period (~50 yr), and
449 the potential for allochthonous C deposition across marshes.

450 Belowground decay did not vary much across a wide range of environmental conditions, and was not related to longer-
451 term C accumulation rate. By using a composite of biomass collected across study sites for our decomposition study,
452 we were able to examine the effect of abiotic factors on belowground decay. Our results indicated that the range of
453 environmental conditions across marshes did not differentially affect belowground decay. This could be because the
454 range of conditions in the subsurface soil in the marsh interior were not great enough to illicit a strong effect. With
455 respect to hydrology, however, several studies have shown that decay rates are variable in or insensitive to different
456 flooding regimes and redox potentials (Valiela et al., 1984; Blum 1993; Kirwan et al., 2013). The loss of organic
457 matter reaching similar asymptotes of dry mass across our study sites suggests that the amount of recalcitrant tissue
458 was more influential than environmental differences. While both labile polysaccharides and refractory lignin can be
459 leached during initial decay (Benner et al. 1986; Moran and Hodson 1990), enrichment of recalcitrant tissues in the
460 latter stages of decay slows decomposition, particularly under anaerobic conditions. We used a composite mix of live
461 and dead large organic material in a ratio of 1:3, which experienced rapid initial decomposition, likely the decay of
462 labile live and recently dead tissues, followed by an asymptotic decline in loss of organic matter to an average of 59%
463 dry mass remaining. This percentage corresponds well with the 55% of roots and rhizomes remaining following 18
464 months in a Sapelo Island, GA salt marsh (Benner et al., 1991). Lignocellulose content in root and rhizome biomass
465 of short-form *S. alterniflora* is approximately 79.5% (Hodson et al., 1984). Though relatively slow to decay under
466 anaerobic conditions, the cellulosic portion undergoes higher rates of mineralization than lignin, which comprises
467 approximately 19.3% in roots and rhizomes (Hodson et al., 1984). Lignin components can continue to be lost under
468 anaerobic conditions (Benner et al. 1991); however, the decay of recalcitrant soil organic matter can also be relatively
469 insensitive to flooding and subtle changes in redox potentials (Mueller et al. 2016). In the present study, we used a
470 composite of root and rhizome samples collected across our study sites, and therefore, site differences in lability of
471 biomass was not tested in this study, which may have implications for spatial variability in soil C storage.

472

473 Belowground turnover rates of *S. alterniflora* were within the range found in other studies (0.17 – 0.71 yr⁻¹;
474 Schubauer and Hopkinson 1984), despite much lower productivity rates inherent to the ingrowth technique in the
475 present study. We found a significant but variable negative relationship between belowground turnover and total
476 organic and labile C accumulation rates. This finding was largely due to the positive relationship between live
477 coarse biomass and labile C accumulation rate. With rates of ingrowth being equal, an increase in live biomass,
478 lowers the turnover rate. While turnover explained <35% of the variation in C accumulation rates across estuaries,
479 biomass components (above- and belowground) explained 39 – 86% of the variation in soil C accumulation rates.

480 Rates of soil C accumulation and accretion were strongly related to *S. alterniflora* biomass. Aboveground live biomass
481 was positively related to organic C accumulation rate across estuaries, primarily though the strong relationship with
482 labile C accumulation rate. Despite the potential for high inter-annual variability in peak biomass aboveground (Gross

483 et al., 1990), spatial variation in peak aboveground biomass in marshes of the same region may be conserved over
484 time. Mechanisms of aboveground live biomass influencing labile soil C include the direct input of aboveground litter
485 to the soil. For *S. alterniflora* much of the aboveground litter is subject to decay and mechanical breakdown by tidal
486 action (Teal 1962), and therefore, little of the aboveground litter of *S. alterniflora* in these temperate marshes is thought
487 to be incorporated into the marsh soil. The standing live aboveground biomass, however, represents both
488 photosynthetic capacity and growing conditions, which may directly affect the production of labile exudates and new
489 labile tissues belowground. Additionally, aboveground shoots influence surface deposition and accumulation through
490 the direct capture of particles on plant stems and the indirect reduction of flow velocity inducing sediment settling
491 (Stumpf 1983; Leonard and Luther 1995). This has been illustrated for fertilized and unfertilized *S. alterniflora* plots,
492 where aboveground biomass was three times greater and surface accretion rate was 2 mm/yr greater in response to
493 fertilization (Morris and Bradley 1999; Morris et al. 2002). The higher accretion rate was accounted for by more
494 efficient trapping of sediments (Mudd et al., 2010). Therefore, both labile live plant tissues and labile organic C
495 associated with sediment may be enhanced with greater aboveground biomass. This finding supports other studies
496 showing positive relationships between aboveground biomass and soil microbial processes, including the
497 decomposition of recalcitrant soil organic matter, which was hypothesized to be due to greater labile C inputs
498 (substrate-induced priming) and/or greater rhizosphere oxygenation (O₂-induced priming; Mueller et al. 2016). Our
499 data suggest that aboveground biomass may increase soil C accumulation directly through the inputs of labile C and
500 positive bio-physical feedbacks for sedimentation, which increases labile C deposition, burial, and preservation.
501 Relationships among aboveground plant biomass, labile and total C accumulation rate, and mineral sedimentation rate
502 indicate positive feedbacks among these processes (Unger et al. 2016; present study).

503
504 Aboveground biomass response to flooding was estuary-dependent. In the coastal plain estuary, aboveground biomass
505 increased with a higher mean high tide level, whereas in the coastal lagoon, aboveground biomass declined with higher
506 mean high water depth. In the coastal lagoon, stem density increased with greater drainage. With all other conditions
507 being equal, plant biomass of *S. alterniflora* has a parabolic relationship with elevation relative to mean sea level
508 (Morris et al. 2002). Above- and below an optimum elevation, biomass declines. Our study of marshes in different
509 geomorphic settings, illustrate how environmental conditions in estuaries can illicit differential responses to individual
510 environmental parameters. In the coastal lagoon, a combination of less flooding and greater mineral sedimentation
511 rates promoted greater aboveground (and belowground) biomass. Lower tolerance to flooding in the coastal lagoon
512 marshes as compared to the coastal plain marshes is likely due to greater soil organic matter content, lower redox
513 potential, lower mineral sediment and nutrient availability, and higher sulfide concentrations (Bradley and Morris
514 1990; Reddy and DeLaune 2008). Because aboveground biomass was strongly associated with labile C accumulation
515 in marshes across the two estuaries, flooding dynamics and aboveground plant responses ultimately influenced labile
516 C accumulation. Limited sediment availability (e.g., RC and IB) also influenced negative feedbacks between labile
517 C availability and production and trapping efficiency by aboveground biomass.

519 Belowground biomass contributes directly to soil organic matter and, in this study, was a good predictor of soil C
520 accumulation rates, but only in the coastal lagoon marshes. This indicates that as geomorphic conditions change such
521 as with an increase in mineral sedimentation rates, belowground biomass can become uncoupled to soil C
522 accumulation and accretion rates. In the coastal lagoon marshes, live roots and rhizomes were concentrated in the top
523 30 cm depths, likely associated with a combination of high water table and high soil organic matter leading to low
524 redox potentials and high sulfide concentrations (DeLaune et al. 1983b; Saunders et al. 2006). In contrast, in the
525 coastal plain estuary, live rooting depths were variable but often extending to 40 – 50 cm depth. Greater neap tide
526 drainage (data not shown), and lower soil organic matter throughout the soil depth profile and higher redox potentials
527 likely account for the lower live rooting depths. Across the coastal lagoon marshes, labile C accumulation increased
528 as live belowground biomass increased. Fine biomass had a positive relationship with the rate of refractory C
529 accumulation, and refractory C density was relatively high just below the marsh surface. Both of these live and fine
530 biomass components, therefore, were positively related to the total C accumulation rate. Accretion in these marshes
531 were positively associated with the live and dead coarse biomass, likely due to the high porosity associated with stem
532 bases and rhizomes and surrounding soil. In the coastal plain estuary, C accumulation and accretion rates were not
533 significantly related to belowground biomass. It may have been presumed that marshes with higher tidal ranges and
534 higher rates of mineral sedimentation would have greater stocks of belowground biomass. In these marshes, mineral
535 sediment accumulation rates ranged from less than 500 to over 4000 g/m²/yr, yet belowground biomass did not vary
536 much along this gradient. At similar rates of mineral sedimentation, belowground live coarse biomass was over 1000
537 g/m² lower in marshes of the coastal plain estuary as compared to the coastal lagoon, despite a greater live rooting
538 depth. This may be associated with higher soil redox potentials and a lower requirement for rhizome photosynthate
539 storage (Gallagher and Kibby 1981). High belowground biomass is typically found in marsh areas with lower redox
540 potential (Gallagher and Plumley 1979; Dame and Kenny 1986 and references therein). This is hypothesized to be
541 due to greater investment in belowground production (Hopkinson and Schubauer 1984) and less photosynthate transfer
542 from underground rhizomes throughout the year, which results in lower aboveground biomass and higher
543 belowground biomass in short-form interior populations of *S. alterniflora* than tall-form populations growing along
544 creekbank (Gallagher and Kibby 1981). Differences among estuarine settings and soil organic matter contents may
545 also drive spatial patterns in belowground biomass and allocation. At higher sedimentation rates found in the coastal
546 plain estuary, fine belowground biomass, which was a significant predictor of refractory C accumulation in the coastal
547 lagoon, declined significantly. In the marsh with the highest rates of mineral sedimentation, and labile and total
548 organic C accumulation (MR), the lower quantity of fine biomass may be due to a shorter time period allowed for
549 growth and accumulation. The labile nature of fine biomass here suggests preservation of labile fractions of fine
550 biomass. With relatively low total belowground biomass, burial and small particle (< 1 mm) accumulation support
551 high C accumulation and accretion rates. The mechanism of fine organic matter loss or limited input with greater
552 mineral sedimentation rates is unclear, particularly when these marshes have the highest rates of labile and total
553 organic C accumulation in our study (Unger et al., 2016). In marshes with the highest rates of C accumulation, labile
554 C density in particular remained high when biomass stocks were low. High accumulation rates in marshes with low

555 biomass seem to be maintained by a combination of high live root biomass at depth, high allochthonous C deposition,
556 effective preservation of labile C, and high burial rates.

557

558 Our findings also provided insight as to the relative inputs of local plant-derived versus non-plant derived (e.g.,
559 edaphic algae) and allochthonous C to the labile and refractory C pools. We found significant relationships between
560 belowground biomass stocks and soil C density. The significance and strength of these relationships depended on
561 geomorphic setting, anatomical part, and the labile or refractory nature of the soil C. Comparisons of biomass and C
562 density profiles to profiles of mineral sediment volume (Unger et al. 2016), yields several important insights on how
563 plants and sediments interact to influence soil C. Labile C density was related to live belowground biomass in most
564 marshes. Below the live root zone and in marshes with high sedimentation rates, labile C preservation was high. In
565 marshes where mineral sedimentation was high, labile soil C became more important, regardless of the belowground
566 biomass pools. Labile C density weakly related to biomass stocks, and despite, significant relationships between live
567 root biomass and labile C accumulation in the root zone above the ^{137}Cs peak depth in Barnegat Bay, labile C density
568 was often higher at deeper depths with lower biomass. This suggests that labile C density, while significantly related
569 to live root biomass at the surface is being physio-chemically preserved at depth regardless of the source. Associations
570 with iron oxide minerals seem to be particularly important for long-term organic C preservation (Kögel-Knabner et
571 al. 2008). Refractory soil C density was more strongly related to belowground biomass across all marshes, indicating,
572 as expected, that plant biomass is the primary contributor to refractory soil C. In the highly organic marshes of the
573 coastal lagoon, biomass played a strong role in increasing refractory C in the upper soil column with both live and
574 dead biomass related to refractory C density. Soil profiles indicated that in marshes with a concentration of biomass
575 just below the surface and where mineral sedimentation was low, refractory C dominated the soil C pool. The
576 relationship between live and dead biomass and refractory C in the coastal lagoon marshes, suggests that the tissue
577 quality may be more refractory than in marshes of the coastal plain estuary, where only dead biomass was associated
578 with refractory soil C density. This finding supports the hypothesis that under constrained growing conditions (e.g.,
579 high salinity, high inundation, low tidal range), more energy may be invested into the production of recalcitrant tissues
580 such as lignin, cellulose and hemicellulose (Knops et al. 2007). This is also supported by marshes with higher live
581 and total biomass (e.g., DN vs IB) yet much lower refractory C densities. In the coastal plain estuary, refractory C was
582 associated with dead biomass and, in most sites, the broken down fine biomass.

583

584 Geomorphology played a large role in influencing the relative importance and contribution of plant biomass to soil C
585 and marsh accretion rate. Geomorphic conditions of high sediment availability and larger tidal range, which can
586 mobilize and distribute sediments in the main channel and creeks of the coastal plain estuary work in concert to
587 promote C accumulation and accretion. Estuarine dynamics in the coastal lagoon are characterized by localized
588 sediment supplies and limited tidal energy to resuspend, transport and deposit sediments, and therefore, the marshes
589 are highly dependent on organic matter production for accretion. Within this system, a high sediment supply and high
590 elevation promoted a positive feedback between above- and belowground biomass and elevation. Because of localized
591 sediment supplies (e.g., CC) and other geomorphic differences, there was no correlation between hydrology and

592 longer-term sedimentation rates even over longer time periods (present study, Boyd et al. 2017). Importantly, while
593 studies suggest the vulnerability of microtidal marshes in coastal lagoons (Reed et al., 2008; Kirwan & Guntenspergen
594 2010; Ganju et al., 2017), we illustrate the importance of localized sources of sediments as being the key to their
595 survival through the positive feedback on live and dead coarse and fine root biomass, and organic matter and C
596 accumulation rates. Continuous standing water, enlargement of interior ponds, and loss of aboveground vegetation
597 are all signs of marsh deterioration. At IB, two of the sampling locations had permanent shallow water between ditches,
598 and had lost the aboveground biomass. Remnants of former vegetation was evident belowground, where significant
599 quantities of live stem bases, roots and rhizomes were present to below 28 cm depth at least three years after
600 aboveground biomass was permanently lost.

601

602 Our dataset allows for a comparison of dynamics between individual marshes to highlight important geomorphic
603 effects on plant biomass. RC in Barnegat Bay and DN in Delaware Bay experienced comparable hydrology and
604 salinity in the marsh interior (Table 1). Yet, estuarine tidal range averaged approximately 0.3 m and 1.5 m, in RC
605 and DN respectively (USGS gage 01408167 and 01411435, respectively) and longer-term rates of mineral
606 sedimentation were an order of magnitude larger, and soil bulk density was three times greater in DN than in RC
607 (Boyd et al., 2017; Unger et al., 2016). So, despite a similar hydrology in the marsh interior, tidal range in the estuary
608 and creeks and sediment supply were much greater in DN than in RC. Aboveground biomass averaged two times
609 higher in DN than RC. Belowground live coarse biomass averaged 2456 and 721 g/m² in DN and RC, respectively
610 and dead coarse biomass averaged 1063 and 280 g/m² in DN and RC, respectively. Live rooting depth was also
611 significantly greater in DN (46 cm) as compared to RC (19 cm). In contrast, CC and DV, two of highest elevation
612 marshes in the two estuaries. CC was in Barnegat Bay ad DV was in Delaware Bay. Overall, many of the hydrologic
613 parameters were comparable. Salinity, however, was significantly higher at CC than DV, but soil organic matter, bulk
614 density and mineral sedimentation rate did not significantly differ. With both hydrology and sedimentation rates being
615 within range of each other, these two marshes in very different geomorphic settings, had comparable biomass and
616 organic C accumulation rates. Biomass profiles were also similar between marshes with the exception of greater fine
617 organic matter in CC, particularly between 4 and 20 cm depth.

618

619 **4.6 Conclusions**

620 The fate of low-lying salt marshes as sea-level rises depends, in part, on their ability to accumulate organic matter and
621 to trap sediments. Sediment supply is also a major factor, and may be most important in influencing the biophysical
622 processes that promote accretion and soil C accumulation. Our study illustrates above- and belowground biomass
623 dynamics is more strongly related to rates of mineral sedimentation and availability of substrate in *Spartina*
624 *alterniflora* marshes where sediment availability is limiting promoting positive feedbacks between biomass, soil C
625 accumulation, and elevation. Soil C and accretion were strongly related to biomass fractions in the coastal lagoon
626 estuary, where all biomass components were positively related to refractory C. When sediments are readily available,
627 total belowground biomass and fine biomass declined with increasing rate of mineral sedimentation and lower salinity.
628 In the coastal plain estuary, aboveground biomass was a significant predictor of labile C accumulation rate while

629 belowground biomass did not scale with C accumulation and accretion. Overall, our study shows that geomorphic
630 settings with limited sediment supply and delivery, have lower rates of organic C accumulation and accretion, which
631 are related to and limited by plant biomass. Plant biomass can be further stimulated by additional sediment input. In
632 geomorphic settings where sediment supply and deposition rates are high, a strong positive relationship between
633 aboveground biomass and labile C accumulation can promote high total C accumulation and accretion rates.

634

635

636

637

638 *Acknowledgements* We would like to thank M. Archer, P. Zelanko, L. Zaoudeh, M. Schafer, M. Mills, M. Brannin,
639 and B. Boyd for help in the field and lab. We would also like to thank all of the Mid-Atlantic Coastal Wetland
640 Assessment partners including D. Kreeger, M. Maxwell-Doyle, D.J. Velinsky, A. Padaletti et al., . This research was
641 largely funded by NJ SeaGrant / NOAA Grant #6210-0011. Surface accretion data were funded by EPA Region 2
642 Wetland Program Development Grant CD-97225909. We appreciate the thorough and constructive comments from
643 three anonymous reviewers, which helped to improve the manuscript.

644

645

646 *Competing interests* The authors declare that they have no conflict of interest.

647 **References**

648 Benner, R., Moran, M. A., and Hodson, R. E.: Biogeochemical cycling of lignocellulosic carbon in marine and
649 freshwater ecosystems: relative contributions of prokaryotes and eukaryotes. *Limnol. Oceanogr.* 31, 89-100, 1986
650

651 Benner, R., Fogel, M. L. and Sprague, E. K.: Diagenesis of belowground biomass of *Spartina alterniflora* in salt-
652 marsh sediments. *Limnol. Oceanogr.* 36, 1358-1374, 1991.

653

654 Blum, L. K.: *Spartina alterniflora* root dynamics in a Virginia marsh. *Mar. Ecol. Prog. Ser.*, 102, 169-178, 1993.

655

656 Boyd, B., Sommerfield, C. K., and Elsey-Quirk, T.: Hydrogeomorphic influences on salt marsh sediment
657 accumulation and accretion in two estuaries of the U.S. Mid-Atlantic coast. *Mar. Geol.*, 383, 132-145, 2017.

658

659 Bradley, P. M. and Morris, J. T.: Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in *Spartina*
660 *alterniflora*. *Ecology* 71, 282-287, 1990.

661

662 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R, and Lynch, J. C.: Global carbon sequestration in tidal, saline wetlands.
663 *Global Biogeochem. Cycles* 4, 1-12, 2003.

664

665 Connor, R. F., Chmura, G. L., and Beecher, C. B.: Carbon accumulation in Bay of Fundy salt marshes: implications
666 for restoration of reclaimed marshes. *Global Biogeochem. Cycles* 0, 1-12, 2001.

667

668 Craft, C. S.: Freshwater input structures soil properties, vertical accretion and nutrient accumulation of Georgia and
669 U.S. tidal marshes. *Limnol. Oceanogr.* 52, 1220-1230, 2007.

670

671 Dame, R.F. and Kenny, P.D.: Variability of *Spartina alterniflora* primary production in the euhaline North Inlet
672 estuary. *Mar. Ecol. Prog. Ser.* 32, 71-80, 1986.

673

674 Defne, Z., and Ganju, N. K.: Quantifying the residence time and flushing characteristics of a shallow, back-barrier
675 estuary: application of hydrodynamic and particle tracking models. *Estuar. Coasts* DOI 10.1007/s12237-014-9885-3,
676 2014.

677

678 DeLaune, R. D., Buresh, R. J., and Patrick, Jr W. H.: Relationship of soil properties to standing crop biomass of
679 *Spartina alterniflora* in a Louisiana salt marsh. *Estuar. Coastal Shelf Sci.* 8, 477-487, 1979.

680

681 DeLaune, R. D., Baumann, R. H., and Gosselink, J. G.: Relationships among vertical accretion, coastal submergence,
682 and erosion in a Louisiana Gulf coast salt marsh. *J. Sed. Pet.* 53, 147-157, 1983a.

683

684 DeLaune, R. D., Smith, C. J. and Patrick, W. H.: Relationship of marsh elevation, redox potential, and sulfide to
685 *Spartina alterniflora* productivity. *Soil Sci. Soc. Am. J.* 47:930-935, 1983b.
686 doi:10.2136/sssaj1983.03615995004700050018x

687

688 DeLaune, R. D., Pezeshki, S. R., Pardue, J. H, Whitcomb, J. H., and Patrick, Jr W. H.: Some influences of sediment
689 addition to a deteriorating salt marsh in the Mississippi River Deltaic Plain: a pilot study. *J. Coastal Res.* 6, 181-188,
690 1990.

691

692 DeLaune, R. D., Jugsujinda, A., Peterson, G. W., and Patrick, W. H.: Impact of Mississippi River freshwater
693 reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. *Estuar. Coast. Shelf Sci.* 58:653-
694 662, 2003

695

696 Elsey-Quirk, T.: Impact of Hurricane Sandy on salt marshes of New Jersey. *Estuar. Coast. Shelf Sci.* 183, 235-248,
697 2016.

698

699 Gallagher, J. L. and Plumley, F.: Underground biomass profiles and productivity in Atlantic coastal marshes. Am. J.
700 Bot. 66, 156-161, 1979.

701

702 Gallagher, J.L. and Kirby, H.V.: The Streamside effect in a *Carex lyngbyei* estuarine marsh: the possible role of
703 recoverable underground reserves. Estuar. Coastal Shelf Sci. 12, 451-460, 1981.

704

705 Ganju, N. K., Defne, Z., Kirwan, M. L., Fagherazzi, S., D'Alpaos, A., and Carniello, L.: Spatially integrative metrics
706 reveal hidden vulnerability of microtidal salt marshes. Nature Comm., doi: 10.1038/ncomms14156, 2017.

707

708 Graham, S. A. and Mendelssohn, I. A.: Contrasting effects of nutrient enrichment on below-ground biomass in coastal
709 wetlands. J. Ecol. 104, 249-260, 2016.

710

711 Gross, M. F., Hardisky, M. A. and Klemas, V.: Inter-annual spatial variability in the response of *Spartina alterniflora*
712 biomass to amount of precipitation. J. Coast. Res. 6, 949-960, 1990.

713

714 Hackney, C. T.: Factors affecting accumulation or loss of macroorganic matter in salt marsh sediments. Ecology 68,
715 1109–1113, 1987.

716

717 Hackney, C. T. and de la Cruz, A. A.: In situ decomposition of roots and rhizomes of two tidal marsh plants. Ecology
718 61, 226-231, 1980.

719

720 Haslett, S. K., Cundy, A. B., Davies, C. F. C., Powell, E. S., and Croudace, I. W.: Salt marsh sedimentation over the
721 past c. 120 years along the West Cotentin coast of Normandy (France): relationship to sea-level rise and sediment
722 supply. J. Coast. Res. 19, 609-620, 2003.

723

724 Hopkinson, C. S. and Schubauer, J. P.: Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid,
725 *Spartina alterniflora*. Ecology 65, 961-969, 1984.

726

727 Hodson, R. E., Christian, R. R., and Maccubbin, A. E.: Lignocellulose and lignin in the salt marsh grass *Spartina*
728 *alterniflora*: initial concentrations and short-term, post-depositional changes in detrital matter. Mar. Biol. 81, 1-7,
729 1984.

730

731 Howes, B. L., Dacey, J. W. H. and Teal, J. M.: Annual carbon mineralization and belowground production of *Spartina*
732 *alterniflora* in a New England salt marsh. Ecology 66, 595-605, 1985

733

734 JMP Version 12.1. SAS Institute Inc., Cary, NC, 1989-2017

735

736 Kelleway J. J., Saintilan N., Macreadie P. I. and Ralph P. J. Sedimentary factors are key predictors of carbon storage
737 in SE Australian saltmarshes. Ecosystems 19, 865-880, 2016. doi: 10.1007/s10021-016-9972-3

738

739 Kennish, M. J.: Physical description of the Barnegat Bay—Little Egg Harbor estuarine system. Journal of Coast. Res.
740 SI 32, 13–27, 2001.

741

742 Kirwan, M. L., and Guntenspergen, G. R.: Influence of tidal range on the stability of coastal marshland. J Geophys
743 Res 115, F02009, 2010. doi: 10.1029/2009JF001400.

744

745 Kirwan, M. L., Langley, J. A., Guntenspergen, G. R., and Megonigal, J. P.: The impact of sea-level rise on organic
746 matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10, 1869-1976, 2013.

747

748 Kirwan, M. L. and Megonigal, J. P.: Tidal wetland stability in the face of human impacts and sea-level rise. Nature
749 504, 53-60, 2013.

750

751 Kirwan, M. L. and Guntenspergen, G. R.: Feedbacks between inundation, root production, and shoot growth in a
752 rapidly submerging brackish marsh, J. Ecol. 100, 764-770, 2012.

753 Knops J. M. H., Naeemw S, Reich PB (2007) The impact of elevated CO₂, increased nitrogen availability and
754 biodiversity on plant tissue quality and decomposition. *Global Change Biol.* 13, 1960–1971.

755 Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K. and
756 Leinweber, P. (2008), Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic
757 matter chemistry. *Z. Pflanzenernähr. Bodenk.*, 171: 61–82. doi:10.1002/jpln.200700048

758 Leonard, L. A., and Luther, M. E.:Flow hydrodynamics in tidal marsh canopies, *Limnol. Oceanogr.*, 40, 1474–1484,
759 1995

760

761 Macreadie PI, Ollivier QR, Kelleway JJ, et al. Carbon sequestration by Australian tidal marshes. *Scientific Reports.*
762 7, 44071, 2017. doi:10.1038/srep44071.

763

764 McKee, K. L., Cahoon, D. R. and Feller, I. C.: Caribbean mangroves adjust to rising sea level through biotic controls
765 on change in soil elevation. *Global Ecol. Biogeogr.* 16, 545-556, 2007.

766

767 McLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H.,
768 Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal
769 habitats in sequestering CO₂. *Frontiers in the Ecology and the Environment* 9, 552-560.

770

771 Mendelssohn, I. A., McKee, K. L., and Patrick Jr, W. H.: Oxygen deficiency in *Spartina alterniflora* roots: metabolic
772 adaptation to anoxia. *Science* 214, 439-441, 1981.

773

774 Mendelssohn, I. A. and Kuhn, N. L.: Sediment subsidy: effects on soil-plant response in a rapidly submerging coastal
775 salt marsh. *Ecol. Eng.* 21, 115-128, 2003.

776

777 Moran, M. A. and Hodson, R. E.: Contributions of degrading *Spartina alterniflora* lignocellulose to the dissolved
778 organic carbon pool of a salt marsh. *Mar. Ecol. Prog. Ser.*, 62, 161-168, 1990.

779

780 Morris, J. T., and Bowden, W. B.: A Mechanistic, Numerical Model of Sedimentation, Mineralization, and
781 Decomposition for Marsh Sediments1. *Soil Sci. Soc. Am. J.* 50:96-105, 1986.
782 doi:10.2136/sssaj1986.03615995005000010019x

783

784 Morris, J. T., and P. M. Bradley (1999), Effects of nutrient loading on the carbon balance of coastal wetland
785 sediments, *Limnol. Oceanogr.*, 44, 699–702.

786

787 Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., and Cahoon, D. R.: Responses of coastal wetlands to
788 rising sea level. *Ecology* 83, 2869-2877, 2002.

789

790 Morris JT, Barber DC, Callaway JC, Chambers R, Hagen SC, Hopkinson CS, Johnson BJ, Megonigal P, Neubauer
791 SC, Troxler T, Wigand C: Contributions of organic and inorganic matter to sediment volume and accretion in tidal
792 wetlands at steady state. *Earth's Future* 4:1–12, 2016

793

794 Mudd SM, D'Alpaos A, Morris JT. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating
795 particle capture and hydrodynamic controls on biologically mediated sedimentation. *Journal of Geophysical Research*
796 115: F03029. DOI:[10.1029/2009JF001566](https://doi.org/10.1029/2009JF001566).

797

798 Mueller, P., Jensen, K., Megonigal, J. P.: Plants mediate soil organic matter decomposition in response to sea level
799 rise. *Global Change Biol.* 22, 404-414, 2016

800

801 Nyman, J. A., Walters, R. J., DeLaune, R. D., and Patrick, Jr., W. H.: Marsh vertical accretion via vegetative growth.
802 *Est. Coast. Shelf Sci.*: 370-380, 2006.

803

804 Ouyang, X., Lee, S.Y., 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments.
805 *Biogeosciences* 11, 5057-5071.

806
807 Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton,
808 Florida.
809
810 Reed, D. J., Bishara, D., Cahoon, D., Donnelly, J., Kearney, M., Kolker, A., Leonard, L., Orson, R. A., Stevenson, J.
811 C.: Site-specific scenarios for wetlands accretion as sea level rises in the mid-Atlantic region. Section 2.1 in:
812 Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal
813 Elevations and Sensitivity to Sea Level Rise [Titus, J.G. and E.M. Strange (eds.)]. EPA 430R07004. U.S.
814 Environmental Protection Agency, Washington, DC, pp. 134-174, 2008.
815 <<http://epa.gov/climatechange/effects/coastal/background.html>>
816
817 Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C.: Allochthonous and autochthonous contributions to C
818 accumulation and C store in southeastern Australian coastal wetlands. *Est. Coast. Shelf Sci.* 128: 84-93, 2013.
819
820 Saunders, C.J., Megonigal, J.P. & Reynolds, J.F. *Plant Soil* (2006) 280: 305. <https://doi.org/10.1007/s11104-005-3275-3>
821
822 Schubauer, J. P. and Hopkinson, C. S.: Above- and belowground emergent macrophyte production and turnover in a
823 coastal marsh ecosystem, Georgia. *Limnol. Oceanogr.* 29, 1052 – 1065, 1984.
824
825 Stumpf, R. P.: The process of sedimentation on the surface of a salt-marsh, *Estuarine Coastal Shelf Sci.*, 17, 495–508,
826 1983.
827
828 Teal, J. M.: Energy flow in the salt marsh ecosystem of Georgia. *Ecol.* 43, 614-624, 1962.
829
830 Teal, J. M. and Kanwisher, J.W.: 1966. Gas transport in the marsh grass, *Spartina alterniflora*. *J. Exp. Bot.* 17, 355-
831 361, 1966.
832
833 Turner, R. E., Swenson, E. M. and Milan, C. S.: Organic and inorganic contributions to vertical accretion in salt marsh
834 sediments, in Concepts and Controversies in Tidal Marsh Ecology, edited by M. P. Weinstein and D. A. Kreeger, pp.
835 583–595, Kluwer Academic Publishers, Berlin, Germany, 2000.
836
837 Unger, V., Elsey-Quirk, T., Sommerfield, C. and Velinsky, D. J.: Stability of organic C accumulating in *Spartina*
838 *alterniflora*-dominated marshes of the mid-Atlantic U.S.A. *Estuar. Coastal Shelf Sci.* 182: 179-189, 2016.
839
840

Table 1: Environmental conditions of interior *Spartina alterniflora*-dominated marshes in two estuaries of the Mid-Atlantic, USA. Values are means \pm standard errors (n = 2 for hydrologic parameters and n = 3 for soil and elevation and soil parameters). Parameter values across marshes represented by different letters are significantly different based on nested analysis of variance (p < 0.05).

Environmental parameter	Barnegat Bay			Delaware Bay		
	RC	IB	CC	DV	MR	DN
Distance to tidal channel (m)	13 \pm 5 ^a	11 \pm 3 ^a	19 \pm 3 ^a	56 \pm 16 ^b	27 \pm 16 ^b	62 \pm 34 ^b
Marsh elevation (cm, NAVD88)	-2.3 \pm 6.4	11.8 \pm 1.9	29.1 \pm 1.0	71.9 \pm 7.7	51.5 \pm 16.3	66.8 \pm 7.7
Tidal range (cm)	13.4 \pm 0.6 ^{bc}	7.2 \pm 0.5 ^{cd}	5.1 \pm 0.1 ^d	10.9 \pm 2.2 ^{bcd}	22.2 \pm 0.2 ^a	17.0 \pm 1.9 ^{ab}
Mean high water relative to marsh surface (cm)	12.6 \pm 1.2 ^{ab}	10.3 \pm 0.7 ^{bc}	-3.3 \pm 0.8 ^d	3.4 \pm 3.7 ^{cd}	21.2 \pm 1.8 ^a	15.6 \pm 1.2 ^{ab}
Mean water level relative to marsh surface (cm)	3.5 \pm 0.7	5.5 \pm 1.0	-6.5 \pm 0.7	-4.9 \pm 1.9	2.7 \pm 0.3	2.8 \pm 0.5
Mean low water relative to marsh surface (cm)	-0.8 \pm 1.0 ^a	3.1 \pm 1.1 ^a	-8.5 \pm 0.7 ^b	-7.4 \pm 1.6 ^b	-1.0 \pm 2.0 ^a	-1.4 \pm 0.7 ^a
% time flooded	66 \pm 4 ^{ab}	86 \pm 1 ^a	6 \pm 1 ^c	11 \pm 4 ^c	40 \pm 1 ^b	68 \pm 5 ^{ab}
# flooding events/yr	304 \pm 21 ^{ab}	24 \pm 1 ^c	113 \pm 16 ^{bc}	205 \pm 51 ^{bc}	455 \pm 55 ^a	176 \pm 78 ^{bc}
Avg duration of flood (hr)	20 \pm 2 ^b	324 \pm 14 ^a	4 \pm 1 ^b	15 \pm 7 ^b	7 \pm 1 ^b	44 \pm 14 ^b
Salinity	20.6 \pm 0.1 ^{bc}	30.4 \pm 4.0 ^{ab}	38.8 \pm 0.8 ^a	17.1 \pm 1.0 ^c	7.4 \pm 1.0 ^c	13.5 \pm 2.1 ^c
Soil nitrogen (%)	1.6 \pm 0.2 ^a	1.5 \pm 0.1 ^a	0.8 \pm 0.1 ^b	0.7 \pm 0.2 ^b	0.5 \pm 0.1 ^b	0.5 \pm 0.1 ^b
Soil organic matter (%)	39.7 \pm 1.3 ^a	39.4 \pm 0.3 ^a	23.4 \pm 1.4 ^{ab}	32.4 \pm 9.1 ^a	14.1 \pm 0.8 ^b	27.8 \pm 5.5 ^{ab}
Soil bulk density (g/cm3)	0.14 \pm 0.01 ^c	0.15 \pm 0.02 ^{bc}	0.29 \pm 0.01 ^{abc}	0.34 \pm 0.07 ^{ab}	0.52 \pm 0.04 ^a	0.39 \pm 0.03 ^a
Long-term mineral sedimentation rate (g/m2/yr)*	147 \pm 22 ^d	168 \pm 19 ^{cd}	626 \pm 45 ^{bc}	1237 \pm 576 ^{ab}	4126 \pm 74 ^a	1568 \pm 279 ^{ab}

845

846

847

Table 3: Vegetation structure in *Spartina alterniflora* salt marshes in two Mid-Atlantic estuaries (n = 3, \pm standard error).

	BB			DB		
	RC	IB	CC	DV	MR	DN
Stem density (#/m ²)	509 \pm 132	493 \pm 440	3276 \pm 615	1234 \pm 382	612 \pm 174	1675 \pm 53
Average height (cm)	17 \pm 3 ^{ab}	14 \pm 2 ^b	13 \pm 2 ^b	13 \pm 1 ^b	26 \pm 1 ^a	12 \pm 1 ^b
Aboveground biomass (g/m ²)						
live	112 \pm 41 ^b	93 \pm 88 ^b	362 \pm 38 ^{ab}	234 \pm 79 ^b	664 \pm 90 ^a	353 \pm 35 ^{ab}
dead	338 \pm 129	91 \pm 85	317 \pm 97	33 \pm 8	122 \pm 38	100 \pm 10
95% live rooting depth (cm)	19 \pm 1 ^c	20 \pm 1 ^c	18 \pm 1 ^c	23 \pm 1 ^{bc}	30 \pm 2 ^b	46 \pm 6 ^a
Belowground biomass (g/m ²)						
to ¹³⁷ Cs-peak						
live coarse	505 \pm 21	1225 \pm 200	2675 \pm 764	1842 \pm 7	2055 \pm 700	1973 \pm 201
dead coarse	138 \pm 91	131 \pm 69	310 \pm 180	341 \pm 191	985 \pm 124	708 \pm 469
fine	1498 \pm 612 ^b	3676 \pm 186 ^{ab}	4326 \pm 258 ^a	3398 \pm 438 ^{ab}	2484 \pm 532 ^{ab}	3527 \pm 448 ^{ab}
to 50 cm depth						
live coarse	721 \pm 81	1568 \pm 222	2839 \pm 758	1931 \pm 34	2055 \pm 700	2456 \pm 305
dead coarse	280 \pm 73	952 \pm 231	1262 \pm 125	690 \pm 106	1010 \pm 111	1063 \pm 494
fine	4406 \pm 1280 ^{ab}	8192 \pm 2005 ^{ab}	8999 \pm 948 ^a	6599 \pm 1654 ^{ab}	2517 \pm 565 ^b	5626 \pm 661 ^{ab}
Live BG:AB ratio	8 \pm 3	62 \pm 56	8 \pm 3	12 \pm 5	4 \pm 2	7 \pm 1

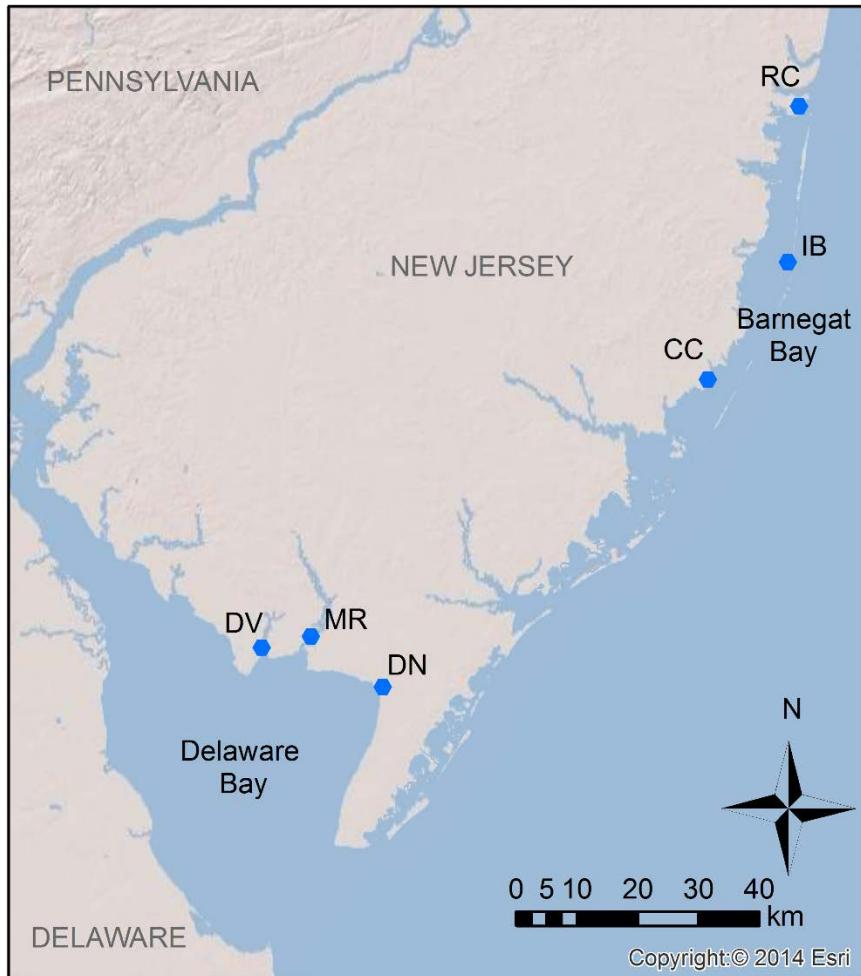
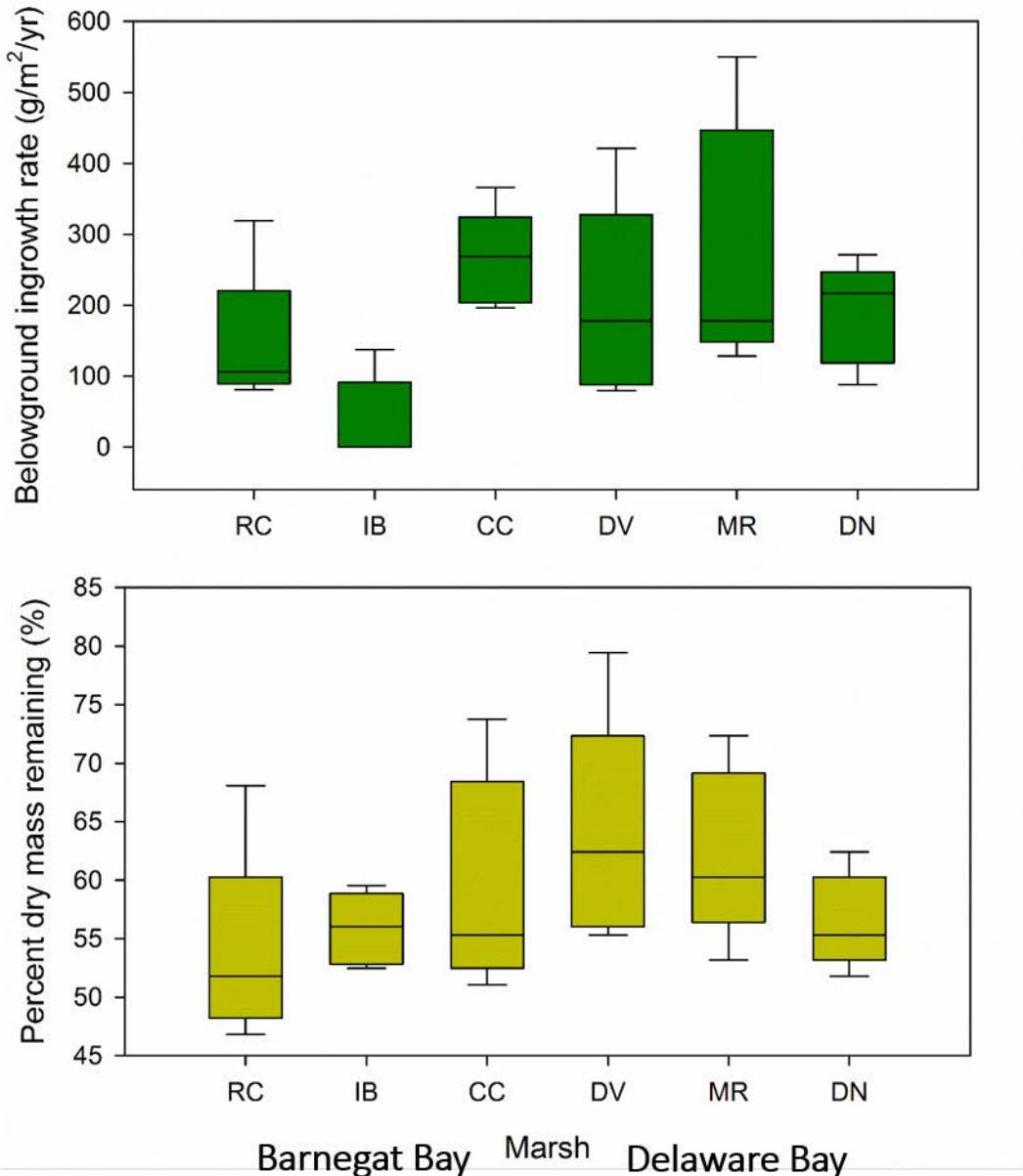

848

Table 4: Results of regression analysis of the relationship between belowground biomass and labile, refractory, and total soil organic C density in marshes of a coastal lagoon (Barnegat Bay) and a coastal plain estuary (Delaware Bay). Shown are adjusted r-square values.

C density fraction	Barnegat Bay			Delaware Bay		
	RC	IB	CC	DV	MR	DN
labile	live coarse: 0.39**	<i>n.s.</i>	live coarse: 0.54**	live coarse: 0.26*	fine: 0.42**	live coarse: 0.23**
refractory	live coarse and fine: 0.55**	live and dead coarse: 0.66**	live and dead coarse: 0.63**	fine: 0.17*	dead coarse and fine: 0.46**	dead coarse: 0.17*
total	<i>n.s.</i>	ALL: 0.40**	live coarse and fine: 0.68**	live coarse and fine: 0.18*	fine: 0.42**	fine: 0.03*

*p < 0.05


**p < 0.0001

9

10 **Figure 1: Study locations in Barneget Bay and Delaware Bay along the mid-Atlantic coast, U.S.**

11
12

13
14 **Figure 2: Belowground ingrowth rate (upper) and percent mass remaining in belowground litterbags (lower)**
15 **over a 20 month period in salt marshes of two mid-Atlantic estuaries (n = 5, \pm standard error).**
16
17

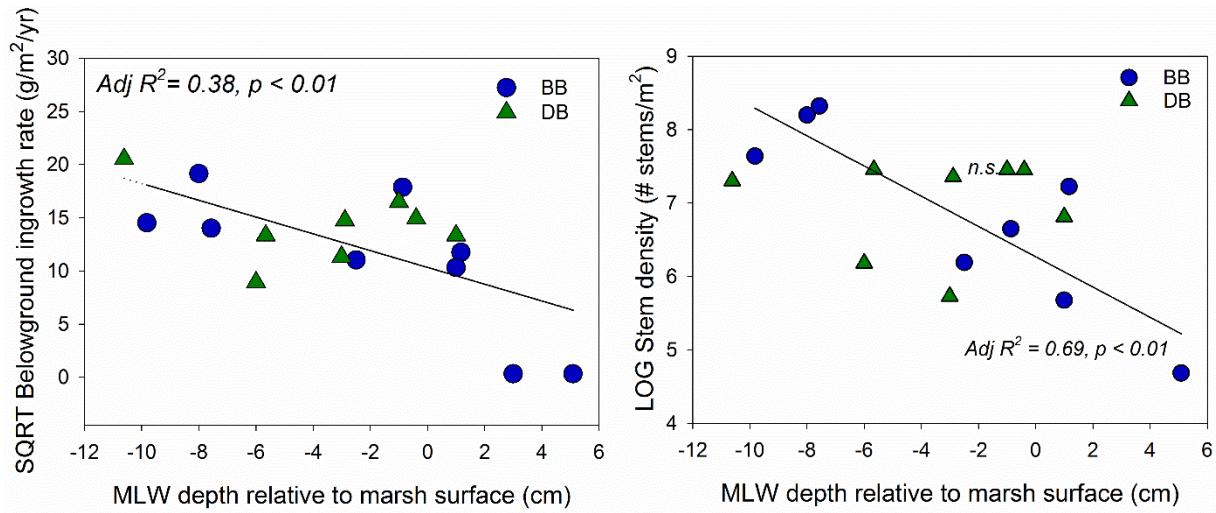
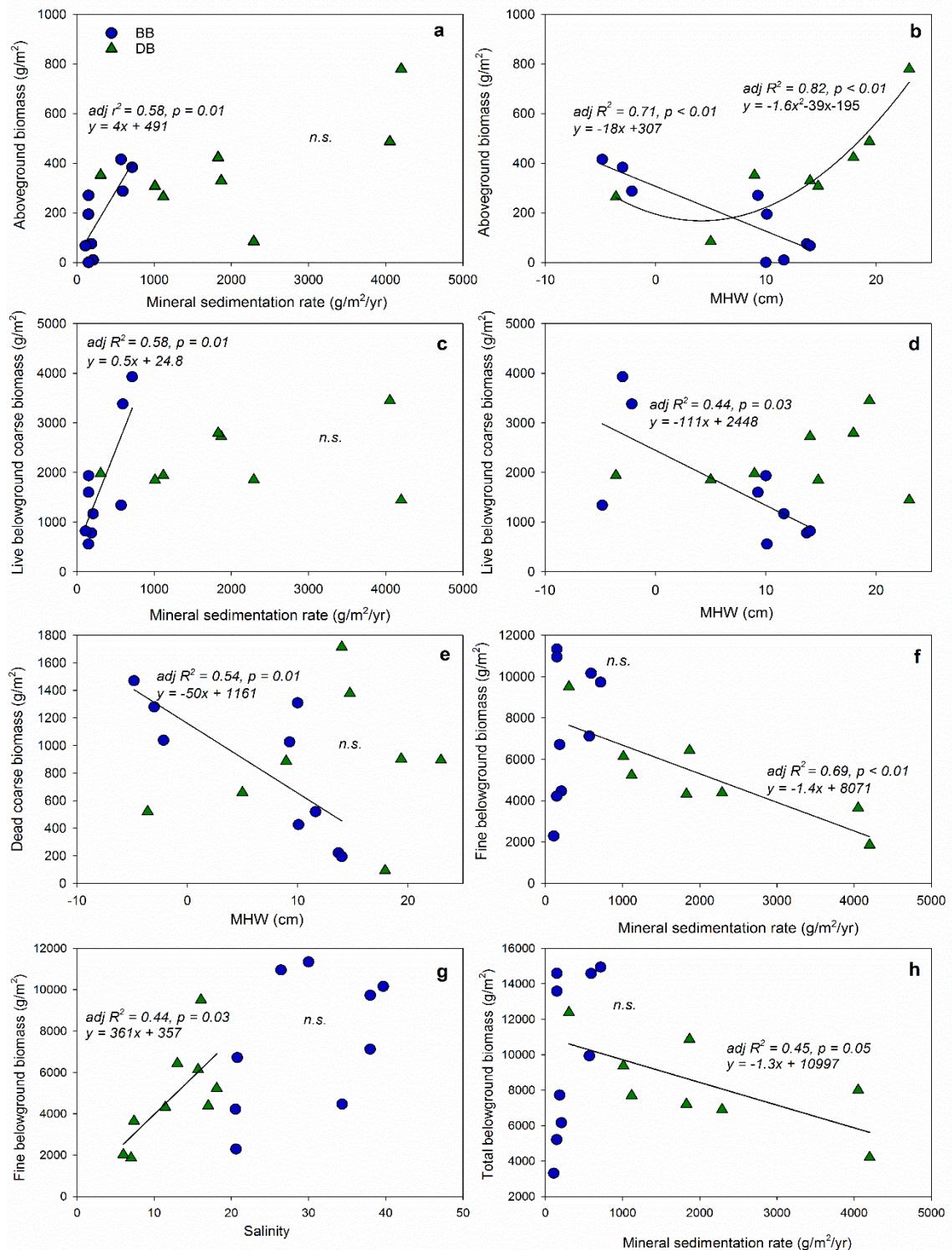
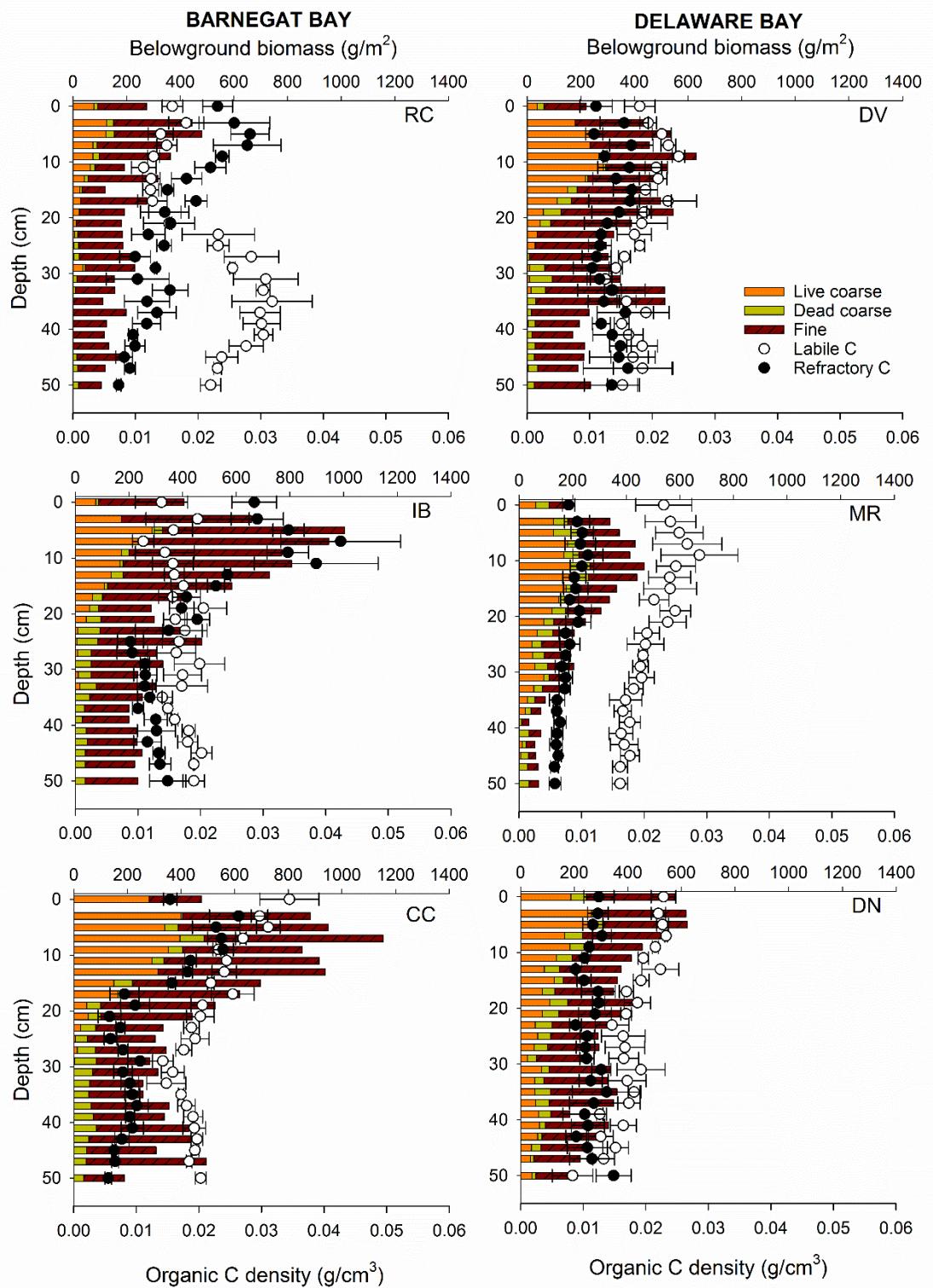
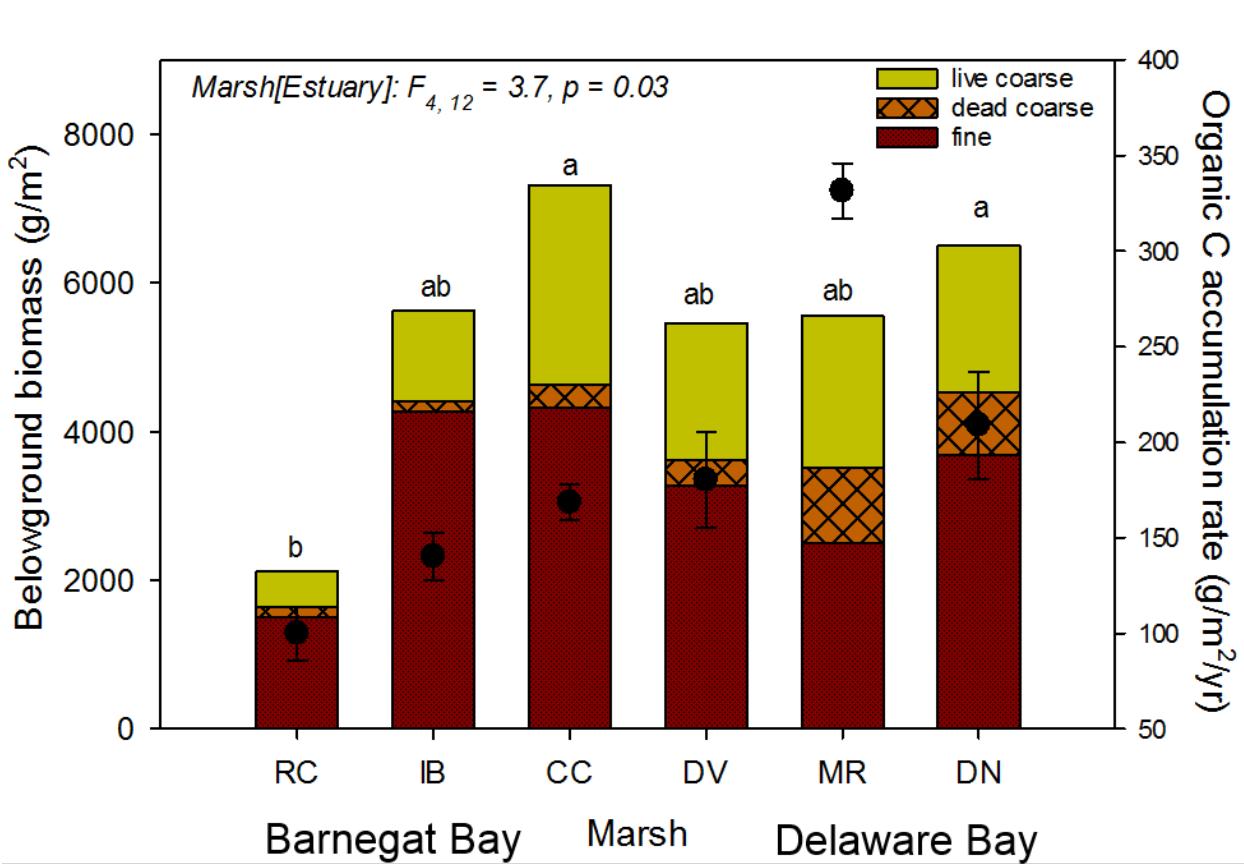



Figure 3: Relationships between belowground ingrowth and mean low water (MLW) relative to the marsh surface (left) and stem density and MLW (right). Blue dots and green triangles refer to data collected in Barnegat Bay (BB) and Delaware Bay (DB), respectively.

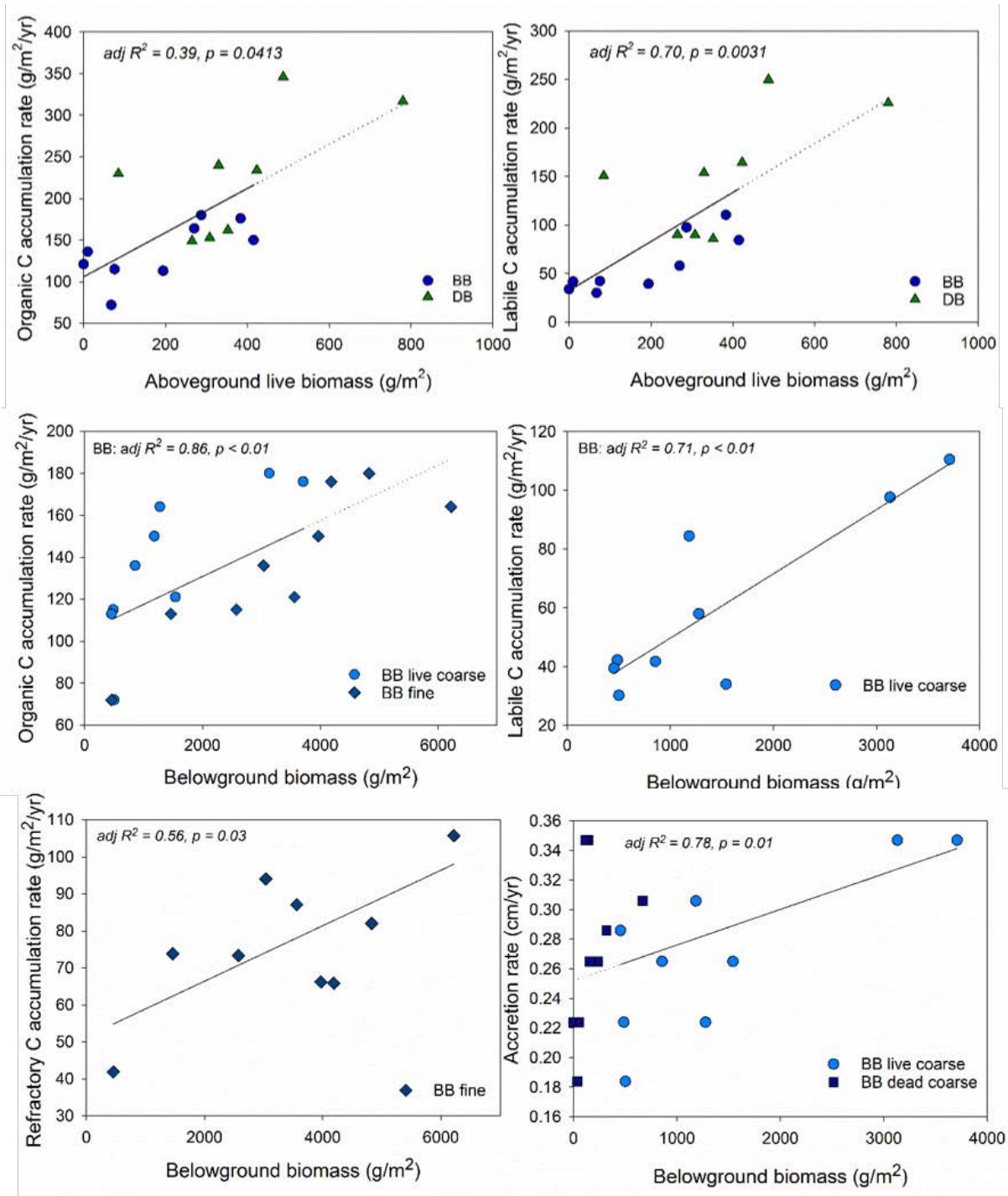

18
19

20
21
22

23
24
25
26
27
28


Figure 4: Relationships between vegetation structure and environmental parameters. For these analyses, belowground biomass to 50-cm depth was used. Mineral sedimentation rates were calculated using ¹³⁷Cs-dating, and therefore, are average rates over the last 50 years (Boyd et al. 2017). Blue dots and green triangles refer to data collected in Barneget Bay (BB) and Delaware Bay (DB), respectively, which were analysed separately. Both significant and non-significant (n.s.) relationships are shown.

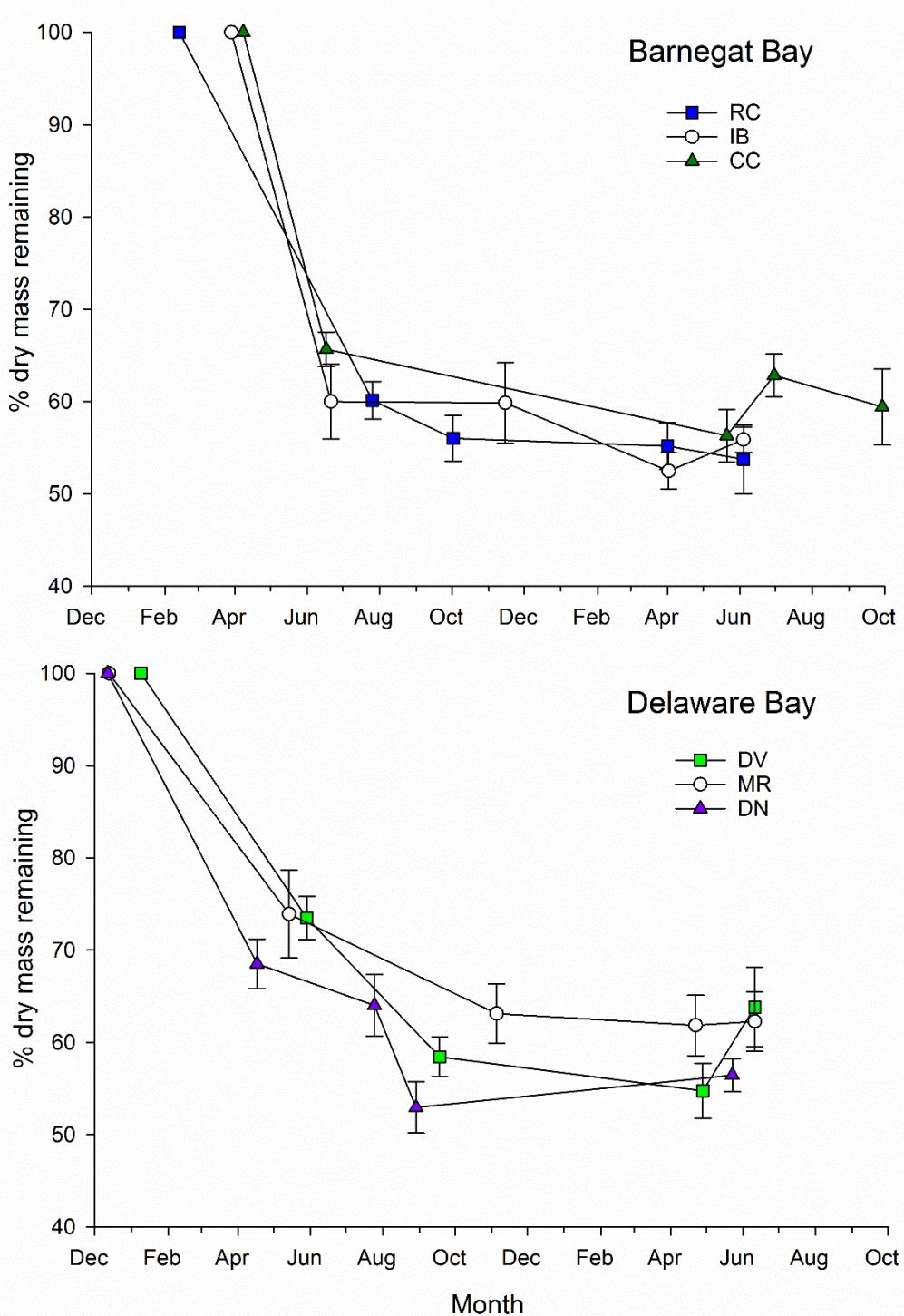
29
30
31
32


Figure 5: Belowground biomass and labile and refractory organic C density profiles in marshes of two Mid-Atlantic estuaries. Biomass data are means (standard errors not shown). C density data previously reported in Unger et al., 2016.

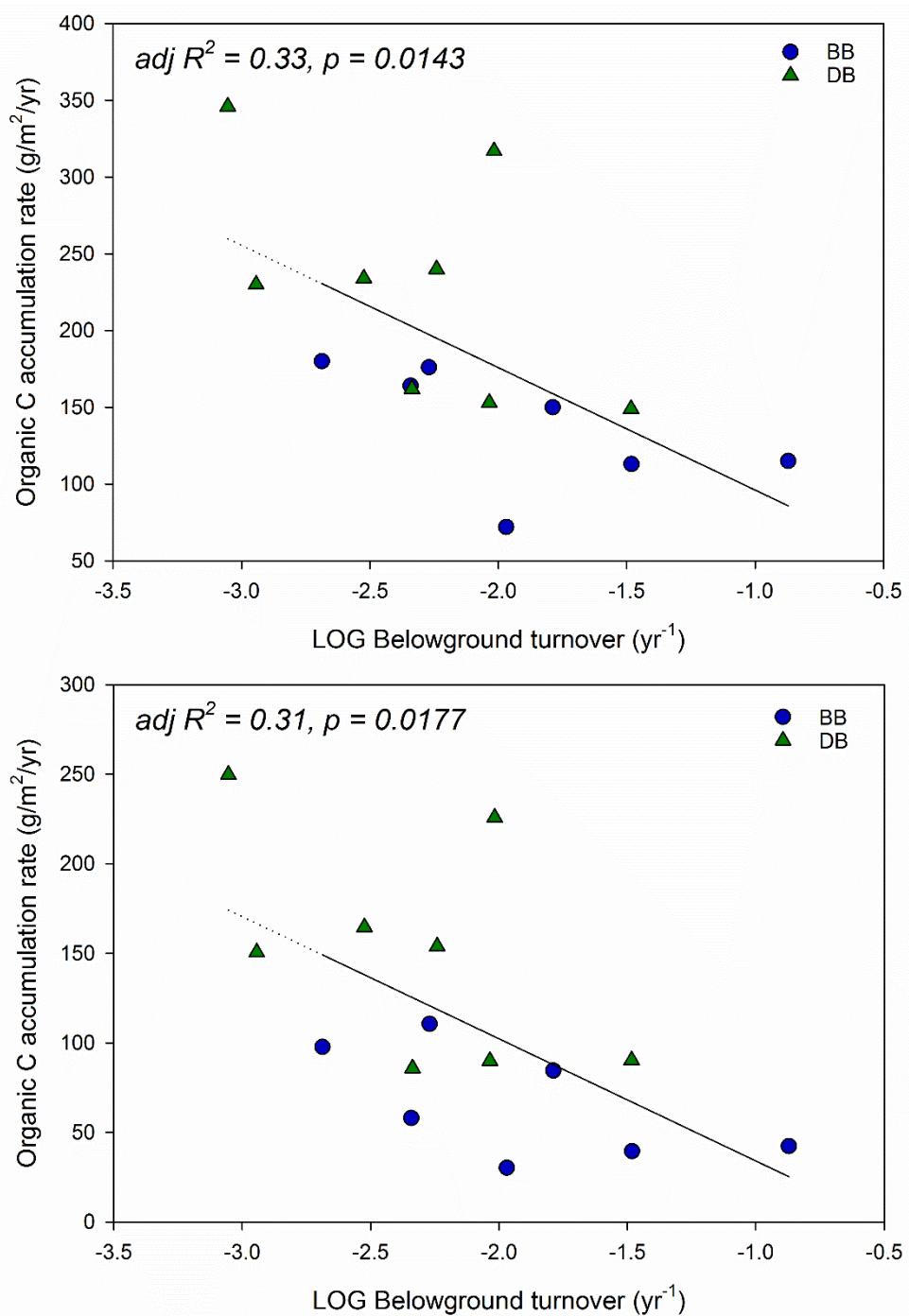
33
34
35

36
37
38
39
40

Figure 6: Belowground biomass (scaled on left-axis) and organic C accumulation rate (scaled on right axis; previously reported in Unger et al., 2016) in marshes of two Mid-Atlantic estuaries. Belowground biomass and C accumulation are relative to the ^{137}Cs peak depth. Statistics for total belowground are shown and letters represent differences ($p < 0.05$). Standard errors are shown in Table 2.



5 **Figure 7:** Relationship between *Spartina alterniflora* biomass and organic C (total, labile and refractory) accumulation and accretion rate in marshes of Barnegat Bay (BB) and Delaware Bay (DB). Only significant ($p < 0.05$) relationships are shown.


Table A1: Multivariate correlations and associated correlation probabilities for environmental parameters in saline marshes of Delaware Bay and Barnegat Bay, NJ. Only parameters with significant correlations are shown. Properties related to hydrology and soils are have a blue and brown background, respectively.

5

Parameter	Marsh elevation	% time flooded	MHW	MWL	MLW	Tidal range	# flooding events/yr	LOG flood duration	Salinity	LOGIT soil N	LOGIT soil organic matter	Soil bulk density	LOG long-term mineral sedimentation rate
Marsh elevation (cm, NAVD88)	1.00 <0.0001									-0.85 0.0004		0.78 0.0027	0.75 0.0046
LOGIT % time flooded		1.00 <0.0001	0.71 0.0089	0.97 <0.0001	0.94 <0.0001			0.84 0.0006					
MHW (cm)			0.71 0.0089	1.00 <0.0001	0.83 <0.0001	0.74 0.0007	0.85 <0.0001			-0.69 0.0409			
MWL (cm)				0.97 <0.0001	0.83 <0.0001	1.00 <0.0001	0.95 <0.0001			0.74 0.0007			
MLW (cm)					0.94 0.0001	0.74 0.0007	0.95 <0.0001	1.00 <0.0001		0.82 0.0001			
Tidal range (cm)					0.85 0.0001			1.00 <0.0001	0.81 <0.0001	-0.87 0.0023			
# flooding events/yr							0.81 0.0001	1.00 <0.0001		-0.68 0.0428			
LOG flood duration (hr)			0.84 0.0006		0.74 0.0007	0.82 0.0001		1.00 <0.0001					
Salinity				-0.69 0.0409			-0.87 0.0023	-0.68 0.0428	1.00 <0.0001				
LOGIT soil N (%)	-0.85 0.0004								1.00 <0.0001	0.74 0.0054	-0.93 <0.0001		-0.96 0.0001
LOGIT soil organic matter (%)									0.74 0.0054	1.00 <0.0001	-0.78 0.0025		-0.84 0.0005
Soil bulk density (g/cm ³)	0.78 0.0027								-0.93 <0.0001	-0.78 0.0025	1.00 <0.0001		0.94 0.0001
LOG mineral sedimentation rate (g/m ² /yr)	0.75 0.0046								-0.96 0.0001	-0.84 0.0005	0.94 <0.0001	1.00 <0.0001	

Figure A1. Mass loss from litterbags over time in three salt marshes in Barnegat Bay and three salt marshes in Delaware Bay from 2013 – 2014 (n = 5, \pm standard error).

Figure A2. Relationship between belowground turnover and total organic and labile C accumulation rate for *Spartina alterniflora*-dominated marshes.