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Abstract:

The Qinghai Province supports over 40% of the human population but occupies about 29% of
the land area, and thus it plays an important role in the entire Qinghai-Tibetan Plateau (QTP).
The dominant land cover is grassland, which has been severely degraded over the last decade
due to a combination of increased human activities and climate change. Numerous studies
indicate that the plateau is sensitive to recent global climate change, but the drivers and
consequences of grassland ecosystem change are controversial, especially the effects of climate
change and grazing patterns on the grassland biomass and soil organic carbon (SOC) storage in
this region. In this study, we used the DeNitrification-DeComposition (DNDC) model and two
climate change scenarios (representative concentration pathways: RCP4.5 and RCP8.5) to
understand how the grassland biomass and SOC pools might respond to different grazing
intensities under future climate change scenarios. More than 1400 grassland biomass sampling
points and 46 SOC points were collected, which were then used to validate the simulated results.
The results showed that compared with the past 30 years, the biomass and SOC exhibited a
significant decreasing trend under all grazing intensities in the RCP4.5 and RCP8.5 scenarios,

and RCP8.5 had a more negative effect on the biomass compared with RCP4.5. Future climate
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change could lead to greater temporal and spatial variations in the grassland biomass and SOC.
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Overall, climate change may be the major factor that leads to fluctuations in the inter-annual
grassland biomass on the Qinghai Province, where the grazing intensity has significantly
affected the grassland vegetation dynamics. Therefore, urgent ecological conservation of
vulnerable grassland ecosystems is required to effectively regulate grazing practices.

Keywords: Biogeochemical process; DNDC; Grazing intensity; Grassland management;

Degradation;

1 Introduction

Grassland is one of the most widespread terrestrial ecosystems and accounts for nearly 33% of
the land without ice cover (Ellis and Ramankutty, 2008), where it plays important roles in both
the global carbon cycle and terrestrial ecosystem processes (Li et al., 2013c). The Qinghai-

Tibetan Plateau (QTP) covers an arca of approximately 130 million hectares (ha), 44% of

China's total grassland, (Li et al., 2013a; Piao et al., 2012). This area plays a vital role for the

ecological services of China and Southeast Asian countries (Harris, 2010; Li et al., 2013b; Piao
et al., 2012; Wang et al., 2002; Zeng et al., 2015). Qinghai Province supports over 40% of the
population but it has about 29% of the total area, and thus it plays an important role in the whole
QTP (Li et al., 2013a; Piao et al., 2012). This area is recognized as one of the most ecologically
fragile and sensitive areas to global climate change and human disturbance (Harris, 2010; Li et
al., 2013b; Piao et al., 2012; Wang et al., 2002; Zeng et al., 2015). Moreover, this area is also
the largest animal husbandry production region in China, and it also contains the headwaters of
the two major rivers in China, i.e., the Yellow River and the Yangtze River, and thus it plays a
vital role in ecological conservation in China (Zeng et al., 2015).

In recent decades, due to climate change, increased human disturbances, the high altitude alpine
grassland ecosystems, which are the dominant grassland vegetation type, have been severely
degraded (Gao et al., 2010). The air temperature on the plateau has increased by 0.3°C per
decade, which is three times the global average (Li et al., 2008). Warming could significantly
increase the net primary productivity of alpine meadows (Chen et al., 2013; Du et al., 2004;
Fan et al., 2010). Other studies have found that warming also speeds up the decomposition rate

for litter and manure, and increases soil respiration (Luo et al., 2010; Xu et al., 2010), which

“| MIFREIA A The Qinghai-Tibetan Plateau (QTP), an area of

approximately 130 million hectares (ha), amounts to 44% of
China's grassland areaThe Qinghai-Tibetan Plateau (QTP),
which about 130 million hectares (ha), it counted 44% of

China's grassland area
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could cause significant losses of soil organic carbon (SOC) and affect the alpine grassland
ecosystem carbon pool balance (Pei et al., 2009; Tan et al., 2010). Although the ecological
impact of warming on the QTP alpine grassland ecosystem has not been fully elucidated in
previous studies, there is no doubt that warming will greatly accelerate the key processes in the
alpine grassland ecosystem carbon cycle (Luo et al., 2010). There are reported that both
precipitation amount and the number of precipitation days have increased significantly in QTP
(Lietal., 2010). As precipitation is another crucial climate factor in controlling the carbon cycle
of grassland ecosystems, how the higher variability precipitation impacts the SOC and biomass
in QTP need further investigation (Lehnert et al., 2016; Maussion et al., 2014).

Grazing is the most important biotic factor among the ecological processes that affect rapid
changes in the vegetation and soil, and it is the main method for deriving ecosystem services
from the QTP grassland (Tanentzap and Coomes, 2012). Moreover, grazing is one of the major
human disturbances to the grassland in this area. In general, overgrazing is considered to be one
of the main causes of carbon and nitrogen losses from the soil, thereby contributing to the
unsustainable use of grassland (MclIntire and Hik, 2005). Therefore, sustaining a reasonable
grazing intensity has an indispensable role in maintaining the turnover of soil nutrients and
plant community stability (Klein et al., 2007).

Previous studies have shown that different types of vegetation and soil nutrient pools exhibit
significantly different responses to variations in the grazing intensity (Lavado et al., 1996).
However, there is still a lack of robust studies to evaluate the combined effect of grazing and
climate change, as well as their impact on the QTP grassland ecosystem at a large scale. Due to
the unique geographic characteristics and important ecological functions of the QTP grassland
ecosystem, it is necessary to evaluate the impacts of human management and climate change to
ensure that it continues to provide these ecosystem services.

In this study, using a well-calibrated DeNitrification-DeComposition (DNDC) model based on
long-term vegetation observations, we evaluated the response of the grassland ecosystem in
Qinghai Province in terms of both climate change and human management by analyzing the
grazing intensity. We also analyzed the interactions between grassland vegetation and soil
carbon storage with grazing intensity and climate change disturbances at a large scale in long-

term impact assessments.
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2 Materials and methods

2.1 Study area

Qinghai Province (89°35'-103°04" E, 31°39'-39°19’ N) is located in the northeast of QTP in
China (Fig. 1). This region has a typical plateau climate, with a mean annual temperature of
8.6°C (from —6°C to 9°C across the study area) and a mean annual precipitation of 424.7 mm
(16.7-776.1 mm _across the study area). In general, the climate is cold and dry. The altitude of
Qinghai province ranges between 1,650-6,860 meters above sea level (m a.s.l.) and 67% of the
land area is in the range of 3,000-5,000 masl. Grassland is the major land cover in the study
area where alpine meadow and alpine steppe are the dominant vegetation types, where they
account for 60.5% of the total grassland area.

Grazing is the primary human activity in the study area and livestock production is a key
industry in this region. Generally, natural grassland is the major food source for the livestock
in the QTP. Compared with 1949, the number of livestock has increased by almost three times
from 7.49 x 10° (Zhang, 2011) to the peak number 22.19 x 10°head in 2005 at the study area
(QPBS, 2015, 2005).

Since 2004, the Chinese government has implemented a series of ecological protection projects
and policies in Qinghai province, including reducing livestock and prohibiting grazing, building
fences to allow natural grassland recovery, as well as providing allowances and awards to local
herdsmen families to promote degraded pasture recovery and to balance the livestock rate
according to the forage productivity (Zeng et al., 2015). The core objective of these projects
and policies is changing the grazing intensity and achieving a balance between the livestock
intensity and grassland regenerability in order to construct a sustainable grassland ecosystem.
Due to new policies for ecological protection, the livestock numbers have declined in recent
years, but they have been maintained at the 2015 level of 19.42 x 10° head (supplementary

Table S1) (QPBS, 2015).
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2.2 DNDC model

The DNDC 9.5 biogeochemical model, which was downloaded from the official web
(http://www.dndc.sr.unh.edu/), was employed in this study (Li et al., 2006; Li et al., 1992). The
model has been used widely in more than 20 countries to obtain accurate calibration and
verification results in various ecosystems (Abdalla et al., 2009; Chen et al., 2015;
Kariyapperuma et al., 2011; Li et al., 1996; Li et al., 2017; Li et al., 2014; Liu et al., 2006; Xu
et al., 2003; Zhang and Niu, 2016; Zhao et al., 2016).

The model has two gcomponents. The first component can simulate the soil environmental

conditions, where it includes soil climate, vegetation growth, and decomposition submodels.
The second component includes three submodels for simulating nitrification, denitrification,
and fermentation processes, which are used to simulate biogeochemical production,

consumption, and emissions of CH4, N,O, NO, and NH;, as well as pitrogen losses due to

{ B B A & major

leaching (Zhang et al., 2015).

The DNDC model simulates vegetation growth by tracking photosynthesis, respiration, water
demand, N demand, C allocation, crop yield, and litter production. The model predicts the SOC
dynamics mainly by quantifying the SOC input from crop litter incorporation and manure
amendment, as well as the SOC output through decomposition. More detailed information

about the model was given by Li (1996).

2.3 Regional database

In order to characterize the spatial heterogeneity of natural grasslands in the study area, we
collected the following geospatial data as inputs for the DNDC biogeochemical model:
grassland type and spatial distribution (Fig. 1), soil properties, and climate data.

Grassland Database

The vegetation parameters in the model were obtained from a grassland field monitoring project
implemented during 2005-2014 (ERSMC-a, 2016; ERSMC-b, 2016). This annual monitoring
project covered the major types of grassland within the project area. On average, 168

monitoring sites were sampled each year. For each monitoring site, the average value based on

MIBREI A A, net ecosystem exchanges of CO,

{
{

MR B A B carbon and
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3 replicate sampling points was calculated to determine the aboveground biomass value for the

| mmma: i

monitoring site. The aboveground biomass harvests used the quadrat method during the plant
growing season (July 10—August 20) in a 1 m x 1 m plot. A more detailed description of the
sampling method used to obtain the observation data can be found in reports by the Ecological
Environment Remote Sensing Monitoring Center of Qinghai Province (ERSMC-a, 2016;
ERSMC-b, 2016). The grassland simulation based on the grassland functional group type was

categorized according to the grassland type map for the study area (Fig. 1). The detailed

Soil Database

We used a 1:1,000,000 scale soil database developed by the Institute of Soil Science, Chinese
Academy of Sciences, which was compiled based on the second national soil survey conducted
in 19791994 for all the counties in China (Shi et al., 2004). The database had three attributes:
locations, soil attributes, and reference systems. It contained multi-layer soil properties (e.g.
organic matter, pH, and bulk density), soil texture (e.g. sand, silt and clay proportions), and
spatial information (Shi et al., 2004; Yu et al., 2007a; Yu et al., 2007b), which were used in the

model simulations.

Climate Database

Daily climate data were obtained from the China Meteorological Network for the study period,
and there were 39 stations inside the study areas (http://data.cma.cn/). The daily precipitation
and maximum/minimum temperatures between 1985-2014 were interpolated at 1-km
resolution grid for our model. Regression kriging and the inverse distance method were
employed for air temperature and precipitation interpolation, respectively (Fortin and Dale,

2005; Hengl et al., 2007).

Model implementation

All datasets were processed with ArcGIS version 10.2 (ESRI, Redlands, CA) to the formation
a georeferenced DNDC regional simulation database. The data processing flowchart could be

found in the supplementary Fig. S1. The county boundary data were overlaid on grassland type

maps to form the model simulation unit. Then county-based grazing intensity, soil properties

| mmemas
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and climate information were assigned to the model simulation units, The DNDC was running

with regional simulation database based on individual model simulation units. The detailed
information of how to run the model could be found in Li (2012). The actual climate, soil,

grassland type and grazing intensity as the simulation baseline.

2.4 Simulation scenarios

Grazing simulation scenarios

The grazing period is all-year round and cattle (90% yaks), sheep, and goats are major livestock
types, while horses are a minor component in the study area. The grazing intensity data were
based on the annual national livestock statistical report provided by the National Bureau of
Statistics of China and the Bureau of Statistics for Qinghai Province. The detailed grazing data
are shown in Supplementary Table S3. In the DNDC model, grazing activity is defined by
specifying the grazing parameters, including the livestock type, grazing period, and grazing

intensity. The detailed parameters for simulating grass growth, are shown in Supplementary

Table S4. The grazing intensity is defined according to Eq. 1 based on the grazing area in each
administrative region (Li et al., 2014):
GL=LP/GA, (Eq.1)

where GI is the grazing intensity (head hafl), LP is the livestock unit (head), and GA is the
grazing area (ha).

In order to test the responses of the grassland biomass and soil SOC to various grazing
intensities, we tested the following treatments: baseline, grazing intensity based on the actual
grazing intensity in 2005; Gy, grazing intensity of zero; G_so, 50% of the baseline intensity; and

G50, 50% higher than the baseline.

Climate change scenarios

The Intergovernmental Panel on Climate Change (IPCC) Fifth Report employed new stable
concentration-based scenarios in representative concentration pathways (RCPs) to project
future climate change (IPCC, 2013). The development of the RCP scenarios used a parallel
method, which combined climate, air, and the carbon cycle with emissions and the socio-

economic situation to assess the impact of climate change on a study area, as well as adaptation,

MIB& B A Z: . The county boundary data intersected with
grassland type map to formation the model simulation unit,
meanwhile, the county based grazing intensity, soil properties
and climate information also assigned to the model

simulation units

{ HIFR B A A the DNDC grazing model
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vulnerability, and mitigation analysis (Moss et al., 2010). The RCPs were named according to
their 2100 radiative forcing level and reported by individual modeling teams, i.e., 2.6-8.5 W/m”.
The RCPs comprise four scenarios, i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (Moss et al.,
2010). Each scenario provides a path affected by social and economic conditions and climate,
and each projection corresponds to the radiation force value predicted by 2100.

We considered RCP4.5 and RCP8.5 because these two scenarios have been used widely to
evaluate the potential impact of climate change on the environment (Di Vittorio et al., 2014; Li
etal., 2015; van Vuuren et al., 2011; Zhang et al., 2013). RCP4.5 represents a medium-low RCP
with stabilization of CO, emissions from 2150 onwards, and RCP8.5 represents a high RCP
with stabilizing CO, emissions post-2100 (Meinshausen et al., 2011). The projected climate
conditions in the present study under RCP4.5 and RCP8.5 were derived from the average values
of 25 Coupled Model Intercomparison Project Phase 5 (CMIPS5) global climate models (Fu and
Feng, 2014).

Compared with 2014, the average temperature and precipitation increased by 0.72°C and
0.80°C, and by 11.81 mm and 12.50 mm under RCP4.5 and RCP8.5 in 2044, respectively, in
the study area (Table 1). The changes in the spatial distribution of precipitation are shown in
Supplementary Fig. S2. The pattern of increased precipitation was similar using RCP4.5 and
RCP8.5 for the period of 2014-2044, where it increased in the whole area and it increased
gradually from the north to the south of the study area. However, RCP8.5 obtained a higher
increase than RCP4.5 and the southwest part of the research area is projected to have a higher
temperature increase than the other regions. Moreover, the annual average temperature had a
similar distribution under the two climate change scenarios, where the temperature increase
using RCP4.5 (Supplementary Fig. S2¢) was lower than that with RCP8.5 (Supplementary Fig.
S2d).

Three different periods were considered in the grassland simulations. First, a pretreatment
(1961-1984) period was used to initialize the soil climate conditions and SOC composition.
The pretreatment period represented the baseline climate with no increases in CO, or climate
change. The second period represented realistic climate scenarios (1985-2014) based on the
most recent climate. The third period comprised future climate scenarios (2015-2044), which

represented two future climates (RCP4.5, RCP8.5) scenarios with changes in temperature and
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precipitation. The future climate database between 2015 to 2044 was obtained through add the

projected future climate change to the daily temperature and precipitation in 2014.

2.5 Model validation and sensitivity test

The root mean squared error (RMSE) (Eq.2), coefficient of determination (R?) (Eq.3) and model
efficiency (ME) (Eq.4) were employed for model validation. The RMSE estimates the scatter
between the simulated and measured data, where values close to zero indicate excellent
agreement and hence the good performance of the model (Araya et al., 2015). R? is used to test
the agreement between the modeled results and observations, where a value closer to 1 indicates
that the model provides a better explanation for the observed values (Willmott, 1982). The
positive ME value indicates that the model prediction is better than the mean of observations,

and the best model performance has ME value equal to 1 (Miehle, 2006). RMSE, R? and ME

Eq.2
RMSE = /—?”(P"_O")Z a2
n

were calculated as follows:

R? = | ZE10i0)PiP) (Eq.3)
[eroor [recrr
2

ME =1-— M (Eq. 4)
X400, -0)2

where P; and O; were modeled and observed values, and P and O are their averages. n is the
number of values.

The validation dataset included more than 1400 grassland biomass sampling points, which
covered the whole of the study area, and the field measurements were also fully representative
of the major grassland types in this area. In addition, 46 SOC observation points were sampled
between 2011-2012, which were randomly distributed among all of the simulation units

(county and grassland types), Maximum biomass in each quadrat was harvested and dried in an

| MIBXEIAA: . The grassland biomass was sampled in quadrat

oven at 70 °C for 72 h, weighed and ground for analysis. The soil of 0—-30 cm depth was sampled
at 10-cm intervals with a soil drill (metal cylinder: diameter of 5 cm, length of 20 cm and the
total length of the sampler 1.3 m). 3 samples were collected in each replication plot. The ground

soil samples passed a 0.15-mm sieve and wet oxidation method was applied to determine SOC

(1 m x 1m) with 3 replicates between mid-July and mid-

August
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(Mebius, 1960). In general, every simulation unit had 1-2 validation points (ERSMC-a, 2016).

A series of sensitivity tests were conducted to investigate the responses of the DNDC to

variation in climate factors (air temperature, precipitation) and grazing intensity. DNDC was

run with a 55-year baseline scenario that was based on the actual climate, soil and grazing

conditions of year 2005 in the study area. The ranges of values for alternative scenarios were

+10, + 20 and £30% for precipitation, =1, + 2 and +3 °C for air temperature and +20, +40, +60

+80 and £100% for grazing intensity, respectively.,

2.6 Statistical analysis

Two-way analysis of variance (ANOVA) was used to test the effects of climate and grazing

intensity on both the biomass and SOC according to the simulated results. Mean values for the

same treatments were compared using Fisher’s least significant difference (LSD) test with one-
way ANOVA at P = 0.05. The statistical analyses, including the test for normality (Shapiro-
Wilk) and homogeneity of variance (Levene), were performed using Origin 2016 version
b9.3.1.273 (OriginLab Corporation, MA, USA), and the multiple regression analysis was

conducted with the Minitab version 17 (Minitab Inc., State College, PA, USA).

3 Results

3.1 Model validation

The biomass simulation showed that the modeled total biomass was in good agreement with
the observations (Fig. 2). There was a significant linear relationship (P < 0.001) between the

measurements and the modeled gbove ground biomass (R2 =0.71, ME=0.75, RMSE =93.11 g

C m?% P < 0.001). The simulated SOC concentrations were in good agreement with the
measured data (Fig. 3). The calculated statistical indices indicated that the modeled SOC
concentrations were closely correlated with the measured data (R* = 0.73, ME=0.69, RMSE =

21.51 gCkg'; P<0.001).

{ MR E A%
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3.2 Sensitivity analysis

In the sensitivity analysis simulation, increases in precipitation resulted in elevated biomass and

SOC, however, the SOC was changed slightly compared to the biomass (Fig. 4A, B);
Temperature decrease induced the biomass decrease, and temperature increase could increase
the biomass. However, biomass change did not follow a simple linear relationship with change
in temperature. The 1°C temperature increase could bring 24% of biomass increase, meanwhile,
1°C temperature decrease could decrease 13% biomass (Fig. 4A) . Biomass was not susceptible
to the changes in precipitation. The biomass increased 7% and decreased 6% with precipitation
increased and decreased 30%, respectively. SOC had the reverse trend with increased or
decreased temperature, but there was a more complex relationship with temperature change.
The SOC had less sensitivity to temperature change compared to biomass. With a 1 °C
temperature increase, the SOC increased slightly with 0.26%, but when temperature increased
over 2 °C, the SOC decreased 0.26-0.83% (Fig. 4B). The modeled biomass was sensitive to
grazing intensity and biomass had a reverse trend with increased or decreased grazing intensity
(Fig. 4A). When grazing intensity changed from -100 to 100%, SOC increased rate from -0.22

to 0.40% (Fig. 4B),

MIFR B R A A series of sensitivity tests were conducted to
investigate the responses of the DNDC to variation in climate
factors (air temperature, precipitation) and grazing intensity.
DNDC was run with a 55-year baseline scenario that was
based on the actual climate, soil and grazing conditions of
year 2005 in the study area. The ranges of values for
alternative scenarios were +10, & 20 and +30% for
precipitation, £1, + 2 and +3 °C for air temperature and £20,

+40, +60, +80 and £100% for grazing intensity, respectively.

3.3 Impact of grazing on biomass and SOC

The biomass and SOC were significantly affected by climate change and the grazing intensity.
However, there were no significant interaction effects between climate and grazing intensity on
biomass and SOC during 1985-2044 throughout the study area (Table 2).

Under the same climate scenario, the grazing intensity change could significantly influence the
biomass, which had a negative relationship with the grazing intensity. The biomass differed
significantly under the four grazing intensities in the three climate scenarios. Among the
grazing intensity treatments, the biomass followed the order of: GO > G—50 > baseline > G+50
(Table 3). Compared with the treatment without grazing, the grazing scenarios induced similar
changes in the biomass among the different grazing intensity treatments.

Grazing could increase the SOC storage. The SOC levels under various grazing intensities

‘| MBREIAZ: . The sensitivity analysis demonstrated that the

DNDC model was sensitive to precipitation and temperature
change and was useful for studying the biomass and SOC

under the grazing intensity change
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followed the order of: Gy < G_5o < baseline < G5y (Table 3). Gy had the lowest SOC whereas

G50 had the highest SOC under all the climate scenarios. Under the same climate scenario, a
reduction in the grazing intensity from the baseline could significantly decrease the SOC
concentration, but there was no significant change in the SOC when the grazing intensity

increased by 50% compared with the baseline.

3.4 Impact of climate change on biomass and SOC

The biomass exhibited a significant decreasing trend in the future climate scenarios compared
with the past 30 years under all the grazing intensities (Fig. 5), although precipitation increased
under both RCP4.5 and RCP8.5 (Table 1). Moreover, with the same grazing intensity, the
biomass was lower in RCP8.5 compared with RCP4.5. However, the biomass did not differ
significantly between RCP4.5 and RCP8.5 under the same grazing intensity (Table 3). This
suggests that RCP8.5 had a more negative effect on the biomass compared with RCP4.5 (Fig.
5).

The future climate could significantly decrease the SOC, and RCP8.5 had a more negative effect
than the RCP4.5 on the SOC. SOC exhibited a continuously decreasing trend according to the
RCP4.5 and RCP8.5 projections in the research area, where the changes in the SOC were similar
under the different grazing treatments (Fig. 6). A similar trend also occurred between 1985—
2014. The SOC was lower under RCP8.5 compared with that under RCP4.5 at all of the grazing
intensities. However, there were no significant differences between RCP4.5 and RCP8.5 (Table

2).

3.5 The relationship between SOC and biomass change with

grazing and climate factors

A multiple linear regression analysis was adopted to each simulation unit to analyze the

relationship between the annual changed biomass and SOC with corresponding temperature

precipitation and grazing intensity, The yegression analysis indicated precipitation, air

temperature and combined with grazing intensity, can explain 33.2% of changes in biomass

| mmmm:
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/| MBREIA A A multiple linear regression analysis was
adopted to each simulation unit to analyze the relationship
between the annual change of biomass and SOC with
corresponding temperature, precipitation and grazing

intensity

[ MR B A A A multiple linear
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under the realistic climate scenarios with a linear model. Meanwhile, precipitation, air

account the prediction sum of squares (PRESS) value, air temperature is the factor contributing

most of variations in biomass and SOC, It’s suggested that precipitation and grazing intensity -~

Jhave lower contributes to biomass and SOC change in study region during past thirty years

compared to temperature.
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| MIBREIAZ: air temperature is the best predictor factor for

biomass and SOC
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3.6 Patterns of regional change in the biomass and SOC =~

From a spatiotemporal distribution perspective, the distribution of grassland biomass in

Qinghai Province is rather distinct due to the different constraints imposed by water and the

cumulative temperature. The biomass increased in the central and southwest of the research

region but decreased in the eastern and northern regions under RCP4.5 and RCP8.5

respectively. However, the grassland biomass tended to decrease in more regions rather than

controlled by temperature in the eastern region, which may lead to greater negative effects than

the positive effects of increased precipitation (Zhou et al., 2007); therefore, the average regional
biomass may exhibit a significant decreasing trend.

In general, the SOC decreased from the low-temperature region to the high-temperature region
where it followed the temperature distribution pattern in Qinghai Province and decreased from
the south to the north (Fig. 7B). The cold weather conditions would limit decomposition process

and there would be greater carbon storage over the years with accumulation in this area.

Furthermore, on the regional scale, although the SOC exhibited a decreasing trend in the whole

study area, the rate of change differed with a significant spatial distribution pattern. ,

4 Discussion

4.1 Effects of climate change on biomass and SOC

Climate change is the main driver of the inter-annual fluctuations in the grassland biomass, as
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observed in previous studies by Fan et al. (2010) and Gao et al. (2016). The unique climate
conditions such as precipitation and temperature on the QTP have a significant impact on the
grassland biomass (Fan et al., 2010; Yan et al., 2015). According to this study, the biomass of
alpine grassland could increase significantly in the short term as the temperature increases (Fig.
4), as also suggested by Chen et al. (2013) and Gao et al. (2016). However, under long-term
constant warming and without considering other meteorological factors, the alpine grassland
biomass will probably decrease (Zhu et al., 2016). This may be due to the higher temperature
increasing evaporation in the study area, thereby overcoming the benefits of increased
precipitation (Xu et al., 2009). The shortage of water will ultimately limit the increase in the
grassland biomass with significant warming and drying.

The decline of the SOC in our study indicates that climate warming will have more negative
effects and eliminated the positive effect of precipitation increasing in the study area. Riedo et
al. (2000) indicated that carbon storage may be lost from grazed grassland as the temperature
and precipitation increase. Tan et al. (2010) suggested that after a 2°C increase in temperature
in the QTP, the grassland ecosystem’s net primary productivity will increase by 9%, but the
SOC will decrease by 10%. Temperature and precipitation are the main factors that affect the
SOC pools (Jobbagy and Jackson, 2000). Many studies have shown that sustained warming will
lead to increases in the SOC decomposition rate (Tan et al., 2010; Xu et al., 2012), especially
in the QTP region with high carbon storage at a low temperature in the high latitudes. Thus, the
SOC could be released by climate warming and become a more obvious carbon source
(Kirschbaum, 1995; Kvenvolden, 1993; Qin et al., 2014; Wang et al., 2008; Yang et al., 2008).
However, the effects of warming and precipitation on SOC storage remain a relatively complex

problem (Cao and Woodward, 1998; Schuur, 2003).

4.2 Effects of grazing intensity on biomass and SOC

The grazing intensity is most importance for the outcomes of grazing and it is the main external

factor that controls the, grassland vegetation dynamics, as reported in the previous studies

(Guevara et al., 1996; Mclntire and Hik, 2005; Pei et al., 2008; Veen et al., 2012; Zeng et al.,

2015). Indeed, an increase in the grazing intensity implies that more plants would be removed
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by animals, which could eventually lead to a decline in the aboveground biomass of the
grassland (Yan et al., 2013).

Small differences in the SOC concentrations were observed after the grazing intensity increased.
lack of consistent conclusions regarding the impact of grazing on the SOC concentration
according to previous studies. Thus, some studies showed that the grazing intensity and SOC
had a negative correlation (Bagchi and Ritchie, 2010; Derner et al., 1997; Wu et al., 2009) or
no relationship (Holt, 1997; Milchunas and Lauenroth, 1993). By contrast, many other studies
showed that grazing can increase the SOC (Li et al., 2011; Schuman et al., 1999; Wienhold et
al., 2001). This is partly because moderate grazing can increase the grassland below-ground
biomass, which is beneficial for the accumulation of SOC (Lopez-Marsico et al., 2015). Some

studies have shown that increasing the plant root/shoot ratio and allocating more carbon to the

root system could induce SOC increase, (Derner et al., 1997). Nevertheless, the main reason for

the increase in the SOC in our study was the increasing number of grazing animals, and thus
the increased amount of manure returned after grazing on grassland (Hu et al., 2015).
Furthermore, the fertilizing effects of livestock excrement can increase the SOC (Conant et al.,
2001), especially in alpine grassland where the low temperature leads to the relatively slow

decomposition of litter (Davidson and Janssens, 2006). Moreover, increases in the effects of

hoof activity can accelerate the decomposition of litter and decaying roots, and improve the

concentration (Luo et al., 2010; Naeth et al., 1991).

4.3

4.4 Uncertainty analysis

Models are ideal tools for assessing the details of environment processes under various grazing

intensity. Furthermore, they can provide projections regarding the variations in grassland

{ MR B 2 with

{ MR B9 A 7 different increases in the SOC

|
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2.E# [1]: Patterns of regional change in the bi

and SOC
From a spatiotemporal distribution perspective, the
distribution of grassland biomass in  Qinghai Province is
rather distinct due to the different constraints imposed by
water and the cumulative temperature. The biomass increased
in the central and southwest of the research region but
decreased in the eastern and northern regions under RCP4.5
and RCP8.5, respectively. However, the grassland biomass
tended to decrease in more regions rather than exhibiting an
increasing trend (Fig. 7A). In particular, the vegetation
activities are mainly controlled by temperature in the eastern
region, which may lead to greater negative effects than the
positive effects of increased precipitation (Zhou et al., 2007);
therefore, the average regional biomass may exhibit a
significant decreasing trend.
In general, the SOC decreased from the low-temperature
region to the high-temperature region, where it followed the
temperature distribution pattern in Qinghai Province and
decreased from the south to the north (Fig. 7B). The cold
weather conditions would limit decomposition process and
there would be greater carbon storage over the years with
accumulation in this area. Furthermore, on the regional scale,
although the SOC exhibited a decreasing trend in the whole
study area, the rate of change differed with a significant

spatial distribution pattern.
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biomass and SOC under alternative climate change scenarios. However, the uncertainty of the

data sources could be incorporated into the model outputs. The CMIPS5 RCP scenarios were .-~

used to provide the possible changes in climate in this study, but as a long-term climate

projection, the uncertainty of the projected climate will increase with ime span increase (Moss .~

etal., 2010). The precipitation seasonal distribution pattern is critical to grassland growth (Shen

et al., 2011). In the present study, the precipitation distribution pattern of RCP scenarios was
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derived from the year of 2014; this assumption may cause jncertainty for long-ferm study. { MRk A9 M & incorporate
In the present study, we assumed that the grassland type was the same in the scenarios. As the { IR P9 2
grassland community structure could be altered under both grazing and climate change
(Koerner and Collins, 2014). Therefore, the assumption of grassland community structure keeps

| MR RE:.

stable in the simulation could induce the uncertainty, Due to a lack of mechanisms yegarding .-~

the response of grassland soil to animal trampling in the DNDC model, we ignored the
trampling effect of the animals on the soil structure, which may have led to some errors in the
results.

The grazing rate can be another potential source of uncertainty. In most of the natural grassland
regions of the QTP, transhumance is usually practiced, which requires the transfer of livestock
from one pasture to another during different seasons, and staying in the same pasture for the
whole season. However, this grassland management practice was simplified in the present study
because we could not find specific statistical data to address this issue. Thus, we assumed that
livestock stayed in the same pasture for the whole year with 24 h d”' of grazing and the stocking
rates were the same throughout the simulation unit and without yak dung remove (Zhang et al.,
2016). Furthermore, we assumed that all grasslands were useable. These assumptions could

have induced pncertainties in the simulation results.

5 Conclusions

In this study, we used the DNDC model to study the grassland biomass and SOC dynamics
under different climate change and grazing management scenarios. We found that the biomass
and SOC were significantly affected by climate change and grazing intensity. In the long term,

the total grassland biomass had a negative relationship and the SOC had a positive relationship

The grazing rate can be another potential source of
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with the grazing intensity. The total biomass exhibited interannual fluctuations in the time series
and the SOC had a declining trend. All of the grazing scenarios obtained similar patterns of
change compared with the baseline scenario.

Future climate change could induce great uncertainty in the grassland dynamics. The total
grassland biomass and average SOC in the study area were reduced significantly under both the
RCP4.5 and RCP8.5 future climate change scenarios. However, there were significant
differences in the spatial distribution of the changing trends in the biomass and SOC. In the
eastern and northern regions of the study area, the biomass decreased, whereas it exhibited an
increasing trend in the southwest part of the research area. On a regional scale, the change in
the SOC had a significant spatial distribution pattern where it decreased from the south to the
north.

The grassland biomass and SOC will decline under sustained warming according to future
climate change projections. Therefore, grassland management should be adapted to potential
climate change to ensure sustainable grassland development in the study area. In the future,
suitable grazing intensity for the sustainable development of grasslands should be studied.
Moreover, greater human activity and management practices should be coupled according to

the model to develop more intelligent grassland management strategies.
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Table 1. Projected climatic changes (precipitation and maximum, minimum, and mean air
temperature) under the RCP4.5 and RCP8.5 scenarios in 2044 compared with the
corresponding values in the baseline data (2014).
Scenarios Air temperature (°C) N
Precipitation(mm)
Tmax Tmin Tmean
Baseline 3.63 -16.88 -3.56 279.24
RCP4.5 +0.99 +0.44 +0.72 +11.81
RCP8.5 +1.09 +0.51 +0.80 +12.50
Table 2. Summary of two-way analysis of variance for biomass and SOC relative to the climate, grazing
intensity, and their interactions during 1985-2044. Degrees of freedom (d.f.), mean squares (M.S.),
variance ratio (F-value), and level of significance (P-value) are shown.
Source of variation d.f. Biomass SOC
M.S. F-value P-value M.S. F-value  P-value
Climate 2 1682791 5427 o 46816 72354  xx | MR
Grazing Intensity 3 22132.64 71.37 wx 17.29 26.72 *k
Climate*Grazing Intensity 6 2.63 0.01 ns. 0.28 0.28 ns.
** Indicate the population means of the treatment are significantly different at 0.05 level; n.s., the { BB I . Significant effect
means no significant different. {MI%EFJ A% effect
Table 3. The simulated SOC concentrations and total biomass under climate and grazing scenarios. < { R A (b0 ®E, B
Scenarios Total biomass SOC (0-20 ¢cm) concentrations { R AT R
(gCm?) (gCkg) | BB HIPI: two-way ANOVA of
Climate  Realistic (1985-2014) 204.01 66.18
RCP4.5 (2015-2044) 191.17 63.44
RCP8.5 (2015-2044) 183.62 63.37
LSDo.0s 3.87 0.09
Grazing  Baseline 187.83 64.49
GO 211.42 64.37
G-50 201.41 64.64 o R R -
G+50 178.11 65.26
LSDoos 4.47 0.10

LSDy ¢s: Least significant difference at 0.05 level.

X LR L T
Table 4. Multiple linear regression analysis of grassland biomass and SOC change with relative factors. { MBI AZ: 5
Variables R-square PRESS Temperature Precipitation Grazullg
numbers Intensity
1 26.4 273067.7 X
1 6.4 370402.4 X
Biomass 1 0.4 349337.6 X
2 26.4 287817.3 X X
2 26.4 301908.4 X X




2 8.6 383224.5 X X
3 26.4 326183.5 X X X
1 47.6 179.2 X
1 2.3 310.9 X
1 0.4 3229 X

SOC 2 47.9 185.5 X X
2 47.7 189.5 X X
2 4.7 328.8 X X
3 48.6 199.1 X X X

PRESS: The prediction sum of squares. The smaller the PRESS value, the better the model’s predictive
ability.
X: Indicates variable applied in the regression.
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Table 3. Simulated total biomass (mean + SE) under the realistic, RCP4.5 and RCP8.5 scenarios

for the Gy, G_s¢, baseline, and G5 treatments.

Management Total biomass (g C m )

practice Realistic (1985-2014) RCP4.5 (2015-2044) RCP8.5 (2015-2044)
Go 223.6+10.8** 207.0+10.3*" 199.5+10.2°B
G_so 213.3+10.5°4 197.3+10.1°® 189.7+10.1°®
Baseline 202.1+10.4°4 186.5+10.0°" 178.9+10.0°"
Giso 190.2+10.4%4 173.9+10.0%® 166.3+10.0°®

SE: Standard error, which representing interannual variations of the mean values. Significant
differences among management practices are indicated by letters. Values within a column
followed by the same lowercase letters or within a row followed by the same uppercase letter

are not different at P < 0.05.

Table 4. Simulated SOC (mean + SE) under the realistic, RCP4.5, and RCP8.5 scenarios for the

Gy, G_s0, baseline and G5 treatments.

Management Soil organic carbon (0—20 cm) concentrations (g C kg_l)
practice Realistic (1985-2014) RCP4.5 (2015-2044) RCP8.5 (2015-2044)
Go 65.84+2.30 ** 62.94+2.20"" 62.87+2.20° B

G_s0 66.04+2.30** 63.27+2.21*" 63.20+2.20°®
Baseline 66.3242.31°4 63.61+2.21°B 63.53+2.21°B

Giso 66.59+2.31°4 63.96+2.22°B 63.88+2.21°®

SE: Standard error which representing interannual variations of the mean values. Significant
differences among management practices are indicated by letters. Values within a column
followed by the same lowercase letters or within a row followed by the same uppercase letter

are not different at P < 0.05.

m 1: [2] HIBEMARE i=5
Scenarios Total biomass (g C m_z) Soil organic carbonSOC
(0—20 cm) concentrations
(gCkg™h)
Climate Realistic (1985-2014) 204.01 66.18
RCP4.5 (2015-2044) 191.17 63.44

RCP8.5 (2015-2044) 183.62 63.37



LSDy.05 3.87 0.09

Grazing Baseline 187.83 64.49
GO 211.42 64.37
G-50 201.41 64.64
G+50 178.11 65.26
LSDy o5 4.47 0.10

LSDys: Least significant differencelLeast sifnifiantlysignificantly difference at 0.05 level.
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Fig. 7. Responses of the grassland biomass(A) and SOC(B) to climate change at a regional
scale.




Table S1. Changes in livestock(million heads) in Qinghai province during the period from 1949 (data from Zhang (2011)) to 2015 (data from QPBS (2015)).

Livestock 1949 1978 1980 1985 1990 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Yaks 497 487 5.6 539 551 5.09 524 501 443 422 394 378 3091 4.01

Sheep and goats 16.45 16.13 1328 16.08 1648 1635 16.77 16.66 1570 16.01 1639 1640 1642 16.76
Other large Animals 0.71 067 074 074 0.72 0.66  0.63 0.58 0.62  0.60 0.57 0.53 0.51 0.54
Total livestock 749 2213 21.67 19.18 2221 2271 22.10 22.65 2225 20.75 20.83 2091 20.71 2083 21.31
Livestock 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Yaks 4.11 4.06 4.04 406 450 447 445 445 436 442 474 452 444 480

Sheep and goats 17.33  17.62 17.64 17.66 15.02 1497 1497 1498 15.05 1498 15.12 1442 1421 1431
Other large Animals 0.52 050 0.49 047 036 0.41 039 0.36 036 036 034 033 0.32 0.32

Total livestock 2195 2218 22.17 22.19 19.88 19.85 19.81 19.78 19.77 19.76 20.21 19.27 1897 19.42




Table S2. Livestock grazing intensity in each county in the study area.

County Grazing Intensity County Grazing Intensity

Yak/Cattle Sheep and Goats Yak/Cattle Sheep and Goats

(heads ha™) (heads ha™) (heads ha™) (heads ha™)
Tianjun 0.04 0.32 Banma 0.29 0.32
Dulan 0.02 0.16 Magqin 0.24 0.27
Waulan 0.04 0.40 Guinan 0.24 1.39
Delinha 0.01 0.11 Xinghai 0.18 1.03
Geermu 0.01 0.05 Guide 0.18 1.03
Xisanzhen 0.03 0.23 Tongde 0.36 2.10
Qumalai 0.04 0.09 Gonghe 0.16 0.94
Nangqian 0.18 0.38 Henan 0.38 0.92
Zhiduo 0.02 0.05 Zeku 0.40 0.98
Chengduo 0.13 0.29 Jianzha 0.61 1.48
Zaduo 0.04 0.10 Tongren 0.29 0.69
Yushu 0.15 0.32 Gangcha 0.25 1.28
Maduo 0.05 0.06 Haiyan 0.24 1.20
Jiuzhi 0.20 0.22 Qilian 0.19 0.95
Dari 0.16 0.18 Menyuan 0.32 1.63
Gande 0.31 0.34

The number of horses has decreased each year and at the end of 2014, the number of horses only accounted for 1.7% of the total number of grazing livestock.
Therefore, we combined the data for horses and cattle to calculate the grazing intensity. The baseline grazing intensity was based on the grazing data from 2005,
which was the highest in recent decades, and the grassland monitoring project also started in that year.



Table S3. Livestock grazing parameters employed in this study.

Parameters Yak/Cattle Sheep Horse
Daily C intake (kg C head ") 2.48° 0.50 4.01
Milk C fraction [0-1] 0.01 0.00 0.01
Meat C fraction [0-1] 0.05 0.04 0.05
Urine C fraction [0-1] 0.02 0.06 0.02
Dung C fraction [0-1] 0.44 0.42 0.44
Enteric CH4 C fraction [0-1] 0.02 0.03 0.02
Respiration C fraction [0-1] 0.46 0.45 0.46
Milk N fraction [0-1] 0.00 0.00 0.00
Meat N fraction [0-1] 0.30 0.30 0.30
Urine N fraction [0-1] 0.35 0.49 0.35
Dung N fraction [0-1] 0.35 0.21 0.35

* Parameters derived from (Dong Quan min and quan, 2007; Xue Bai et al., 2004)



Table s4. Input values for the main grassland type parameters used in the DNDC model.

Parameters Mountain meadow Alpine steppe Lowland saline Alpine meadow Alpine swamp Alpine desert Desert soil
subclass meadow subtype subtype meadow subtype subclass
Maximum biomass production
4 5 1157 798 879 2786 3586 1441 672
(kg C ha  year )
Grain fraction of biomass® 0.04 0.03 0.03 0.02 0.02 0.01 0.01
Leaf and stem fraction of
) b 0.40 0.40 0.42 0.60 0.40 0.11 0.28
biomass
Root fraction of biomass® 0.56 0.57 0.55 0.38 0.58 0.88 0.71
C/N ratio of grain® 34 31 31 34 33 26 25
C/N ratio of leaf and stem® 33 30 30 32 31 22 24
C/N ratio of root* 40 48 22 59 58 25 19
Water requirement’
4 200 200 200 200 200 200 200
(kg water kg~ dry matter)
Max height (m)* 0.5 0.6 0.5 04 04 0.5 1
TDD! 1000 1500 1000 1500 1500 1000 1000
N fixation index* 1.5 1.5 1.5 1.5 1.5 1.5 1.5

*Parameters derived from field observations; b parameters derived from (ji et al., 1995); “parameters derived from(cai et al., 2007; li et al., 2016; lin et al., 2014);

Yparameters derived from the default values in the DNDC model.
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