

1 **Modeling impacts of climate change and grazing effects on plant**
2 **biomass and soil organic carbon in the Qinghai–Tibetan**
3 **grasslands**

4 Wenjuan Zhang^{1,2}, Feng Zhang³, Jiaguo Qi⁴, Fujiang Hou*¹

5 1 College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-
6 ecosystems, Lanzhou University, Lanzhou, 730020, China

7 2 Grassland Management Administration of Qinghai Province, Xining, Qinghai, 810008, China

8 3 Institute of Arid Agroecology, School of Life Sciences, State Key Laboratory of Grassland Agro-
9 ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China

10 4 Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI
11 48823, USA

12

13 **Abstract:**

14 The Qinghai Province supports over 40% of the human population but occupies about 29% of
15 the land area, and thus it plays an important role in the entire Qinghai–Tibetan Plateau (QTP).
16 The dominant land cover is grassland, which has been severely degraded over the last decade
17 due to a combination of increased human activities and climate change. Numerous studies
18 indicate that the plateau is sensitive to recent global climate change, but the drivers and
19 consequences of grassland ecosystem change are controversial, especially the effects of climate
20 change and grazing patterns on the grassland biomass and soil organic carbon (SOC) storage in
21 this region. In this study, we used the DeNitrification-DeComposition (DNDC) model and two
22 climate change scenarios (representative concentration pathways: RCP4.5 and RCP8.5) to
23 understand how the grassland biomass and SOC pools might respond to different grazing
24 intensities under future climate change scenarios. More than 1400 grassland biomass sampling
25 points and 46 SOC points were collected, which were then used to validate the simulated results.
26 The results showed that compared with the past 30 years, the biomass and SOC exhibited a
27 significant decreasing trend under all grazing intensities in the RCP4.5 and RCP8.5 scenarios,
28 and RCP8.5 had a more negative effect on the biomass compared with RCP4.5. Future climate
29 change could lead to greater temporal and spatial variations in the grassland biomass and SOC.

30 Overall, climate change may be the major factor that leads to fluctuations in the inter-annual
31 grassland biomass on the Qinghai Province, where the grazing intensity has significantly
32 affected the grassland vegetation dynamics. Therefore, urgent ecological conservation of
33 vulnerable grassland ecosystems is required to effectively regulate grazing practices.

34 **Keywords:** Biogeochemical process; DNDC; Grazing intensity; Grassland management;
35 Degradation;

36 **1 Introduction**

37 Grassland is one of the most widespread terrestrial ecosystems and accounts for nearly 33% of
38 the land without ice cover (Ellis and Ramankutty, 2008), where it plays important roles in both
39 the global carbon cycle and terrestrial ecosystem processes (Li et al., 2013c). The Qinghai-
40 Tibetan Plateau (QTP) covers an area of approximately 130 million hectares (ha), 44% of
41 China's total grassland (Li et al., 2013a; Piao et al., 2012). This area plays a vital role for the
42 ecological services of China and Southeast Asian countries (Harris, 2010; Li et al., 2013b; Piao
43 et al., 2012; Wang et al., 2002; Zeng et al., 2015). Qinghai Province supports over 40% of the
44 population but it has about 29% of the total area, and thus it plays an important role in the whole
45 QTP (Li et al., 2013a; Piao et al., 2012). This area is recognized as one of the most ecologically
46 fragile and sensitive areas to global climate change and human disturbance (Harris, 2010; Li et
47 al., 2013b; Piao et al., 2012; Wang et al., 2002; Zeng et al., 2015). Moreover, this area is also
48 the largest animal husbandry production region in China, and it also contains the headwaters of
49 the two major rivers in China, i.e., the Yellow River and the Yangtze River, and thus it plays a
50 vital role in ecological conservation in China (Zeng et al., 2015).

51 In recent decades, due to climate change, increased human disturbances, the high altitude alpine
52 grassland ecosystems, which are the dominant grassland vegetation type, have been severely
53 degraded (Gao et al., 2010). The air temperature on the plateau has increased by 0.3°C per
54 decade, which is three times the global average (Li et al., 2008). Warming could significantly
55 increase the net primary productivity of alpine meadows (Chen et al., 2013; Du et al., 2004;
56 Fan et al., 2010). Other studies have found that warming also speeds up the decomposition rate
57 for litter and manure, and increases soil respiration (Luo et al., 2010; Xu et al., 2010), which

58 could cause significant losses of soil organic carbon (SOC) and affect the alpine grassland
59 ecosystem carbon pool balance (Pei et al., 2009; Tan et al., 2010). Although the ecological
60 impact of warming on the QTP alpine grassland ecosystem has not been fully elucidated in
61 previous studies, there is no doubt that warming will greatly accelerate the key processes in the
62 alpine grassland ecosystem carbon cycle (Luo et al., 2010). There are reported that both
63 precipitation amount and the number of precipitation days have increased significantly in QTP
64 (Li et al., 2010). As precipitation is another crucial climate factor in controlling the carbon cycle
65 of grassland ecosystems, how the higher variability precipitation impacts the SOC and biomass
66 in QTP need further investigation (Lehnert et al., 2016; Maussion et al., 2014).

67 Grazing is the most important biotic factor among the ecological processes that affect rapid
68 changes in the vegetation and soil, and it is the main method for deriving ecosystem services
69 from the QTP grassland (Tannerzap and Coomes, 2012). Moreover, grazing is one of the major
70 human disturbances to the grassland in this area. In general, overgrazing is considered to be one
71 of the main causes of carbon and nitrogen losses from the soil, thereby contributing to the
72 unsustainable use of grassland (McIntire and Hik, 2005). Therefore, sustaining a reasonable
73 grazing intensity has an indispensable role in maintaining the turnover of soil nutrients and
74 plant community stability (Klein et al., 2007).

75 Previous studies have shown that different types of vegetation and soil nutrient pools exhibit
76 significantly different responses to variations in the grazing intensity (Lavado et al., 1996).
77 However, there is still a lack of robust studies to evaluate the combined effect of grazing and
78 climate change, as well as their impact on the QTP grassland ecosystem at a large scale. Due to
79 the unique geographic characteristics and important ecological functions of the QTP grassland
80 ecosystem, it is necessary to evaluate the impacts of human management and climate change to
81 ensure that it continues to provide these ecosystem services.

82 In this study, using a well-calibrated DeNitrification-DeComposition (DNDC) model based on
83 long-term vegetation observations, we evaluated the response of the grassland ecosystem in
84 Qinghai Province in terms of both climate change and human management by analyzing the
85 grazing intensity. We also analyzed the interactions between grassland vegetation and soil
86 carbon storage with grazing intensity and climate change disturbances at a large scale in long-
87 term impact assessments.

88 **2 Materials and methods**

89 **2.1 Study area**

90 Qinghai Province ($89^{\circ}35' - 103^{\circ}04'$ E, $31^{\circ}39' - 39^{\circ}19'$ N) is located in the northeast of QTP in
91 China (Fig. 1). This region has a typical plateau climate, with a mean annual temperature of
92 8.6°C (from -6°C to 9°C [across the study area](#)) and a mean annual precipitation of 424.7 mm
93 ($16.7 - 776.1$ mm [across the study area](#)). In general, the climate is cold and dry. The altitude of
94 Qinghai province ranges between 1,650–6,860 meters above sea level (m a.s.l.) and 67% of the
95 land area is in the range of 3,000–5,000 masl. Grassland is the major land cover in the study
96 area where alpine meadow and alpine steppe are the dominant vegetation types, where they
97 account for 60.5% of the total grassland area.

98 Grazing is the primary human activity in the study area and livestock production is a key
99 industry in this region. Generally, natural grassland is the major food source for the livestock
100 in the QTP. Compared with 1949, the number of livestock has increased by almost three times
101 from 7.49×10^6 (Zhang, 2011) to the peak number 22.19×10^6 head in 2005 at the study area
102 (QPBS, 2015, 2005).

103 Since 2004, the Chinese government has implemented a series of ecological protection projects
104 and policies in Qinghai province, including reducing livestock and prohibiting grazing, building
105 fences to allow natural grassland recovery, as well as providing allowances and awards to local
106 herdsmen families to promote degraded pasture recovery and to balance the livestock rate
107 according to the forage productivity (Zeng et al., 2015). The core objective of these projects
108 and policies is changing the grazing intensity and achieving a balance between the livestock
109 intensity and grassland regenerability in order to construct a sustainable grassland ecosystem.
110 Due to new policies for ecological protection, the livestock numbers have declined in recent
111 years, but they have been maintained at the 2015 level of 19.42×10^6 head (supplementary
112 Table S1) (QPBS, 2015).

113 **2.2 DNDC model**

114 The DNDC 9.5 biogeochemical model, which was downloaded from the official web
115 (<http://www.dndc.sr.unh.edu/>), was employed in this study (Li et al., 2006; Li et al., 1992). The
116 model has been used widely in more than 20 countries to obtain accurate calibration and
117 verification results in various ecosystems (Abdalla et al., 2009; Chen et al., 2015;
118 Kariyapperuma et al., 2011; Li et al., 1996; Li et al., 2017; Li et al., 2014; Liu et al., 2006; Xu
119 et al., 2003; Zhang and Niu, 2016; Zhao et al., 2016).

120 The model has two components. The first component can simulate the soil environmental
121 conditions, where it includes soil climate, vegetation growth, and decomposition submodels.
122 The second component includes three submodels for simulating nitrification, denitrification,
123 and fermentation processes, which are used to simulate biogeochemical production,
124 consumption, and emissions of CH_4 , N_2O , NO , and NH_3 , as well as nitrogen losses due to
125 leaching (Zhang et al., 2015).

126 The DNDC model simulates vegetation growth by tracking photosynthesis, respiration, water
127 demand, N demand, C allocation, crop yield, and litter production. The model predicts the SOC
128 dynamics mainly by quantifying the SOC input from crop litter incorporation and manure
129 amendment, as well as the SOC output through decomposition. More detailed information
130 about the model was given by Li (1996).

131 **2.3 Regional database**

132 In order to characterize the spatial heterogeneity of natural grasslands in the study area, we
133 collected the following geospatial data as inputs for the DNDC biogeochemical model:
134 grassland type and spatial distribution (Fig. 1), soil properties, and climate data.

135 **Grassland Database**

136 The vegetation parameters in the model were obtained from a grassland field monitoring project
137 implemented during 2005–2014 (ERSMC-a, 2016; ERSMC-b, 2016). This annual monitoring
138 project covered the major types of grassland within the project area. On average, 168
139 monitoring sites were sampled each year. For each monitoring site, the average value based on

140 3 replicate sampling points was calculated to determine the aboveground biomass value for the
141 monitoring site. The aboveground biomass harvests used the quadrat method during the plant
142 growing season (July 10–August 20) in a 1 m × 1 m plot. A more detailed description of the
143 sampling method used to obtain the observation data can be found in reports by the Ecological
144 Environment Remote Sensing Monitoring Center of Qinghai Province (ERSMC-a, 2016;
145 ERSMC-b, 2016). The grassland simulation based on the grassland functional group type was
146 categorized according to the grassland type map for the study area (Fig. 1). The detailed
147 grassland parameters used in the model were shown in Supplementary Table S4.

148 **Soil Database**

149 We used a 1:1,000,000 scale soil database developed by the Institute of Soil Science, Chinese
150 Academy of Sciences, which was compiled based on the second national soil survey conducted
151 in 1979–1994 for all the counties in China (Shi et al., 2004). The database had three attributes:
152 locations, soil attributes, and reference systems. It contained multi-layer soil properties (e.g.
153 organic matter, pH, and bulk density), soil texture (e.g. sand, silt and clay proportions), and
154 spatial information (Shi et al., 2004; Yu et al., 2007a; Yu et al., 2007b), which were used in the
155 model simulations.

156 **Climate Database**

157 Daily climate data were obtained from the China Meteorological Network for the study period,
158 and there were 39 stations inside the study areas (<http://data.cma.cn/>). The daily precipitation
159 and maximum/minimum temperatures between 1985–2014 were interpolated at 1-km
160 resolution grid for our model. Regression kriging and the inverse distance method were
161 employed for air temperature and precipitation interpolation, respectively (Fortin and Dale,
162 2005; Hengl et al., 2007).

163 **Model implementation**

164 All datasets were processed with ArcGIS version 10.2 (ESRI, Redlands, CA) to the formation
165 a georeferenced DNDC regional simulation database. The data processing flowchart could be
166 found in the supplementary Fig. S1. The county boundary data were overlaid on grassland type
167 maps to form the model simulation unit. Then county-based grazing intensity, soil properties,

168 and climate information were assigned to the model simulation units. The DNDC was running
169 with regional simulation database based on individual model simulation units. The detailed
170 information of how to run the model could be found in Li (2012). The actual climate, soil,
171 grassland type and grazing intensity as the simulation baseline.

172 **2.4 Simulation scenarios**

173 **Grazing simulation scenarios**

174 The grazing period is all-year round and cattle (90% yaks), sheep, and goats are major livestock
175 types, while horses are a minor component in the study area. The grazing intensity data were
176 based on the annual national livestock statistical report provided by the National Bureau of
177 Statistics of China and the Bureau of Statistics for Qinghai Province. The detailed grazing data
178 are shown in Supplementary Table S3. In the DNDC model, grazing activity is defined by
179 specifying the grazing parameters, including the livestock type, grazing period, and grazing
180 intensity. The detailed parameters for simulating grass growth are shown in Supplementary
181 Table S4. The grazing intensity is defined according to Eq. 1 based on the grazing area in each
182 administrative region (Li et al., 2014):

$$GI = LP/GA, \quad (Eq.1)$$

183 where GI is the grazing intensity (head ha^{-1}), LP is the livestock unit (head), and GA is the
184 grazing area (ha).

185 In order to test the responses of the grassland biomass and soil SOC to various grazing
186 intensities, we tested the following treatments: baseline, grazing intensity based on the actual
187 grazing intensity in 2005; G_0 , grazing intensity of zero; G_{-50} , 50% of the baseline intensity; and
188 G_{+50} , 50% higher than the baseline.

189 **Climate change scenarios**

190 The Intergovernmental Panel on Climate Change (IPCC) Fifth Report employed new stable
191 concentration-based scenarios in representative concentration pathways (RCPs) to project
192 future climate change (IPCC, 2013). The development of the RCP scenarios used a parallel
193 method, which combined climate, air, and the carbon cycle with emissions and the socio-
194 economic situation to assess the impact of climate change on a study area, as well as adaptation,

195 vulnerability, and mitigation analysis (Moss et al., 2010). The RCPs were named according to
196 their 2100 radiative forcing level and reported by individual modeling teams, i.e., 2.6–8.5 W/m².
197 The RCPs comprise four scenarios, i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (Moss et al.,
198 2010). Each scenario provides a path affected by social and economic conditions and climate,
199 and each projection corresponds to the radiation force value predicted by 2100.

200 We considered RCP4.5 and RCP8.5 because these two scenarios have been used widely to
201 evaluate the potential impact of climate change on the environment (Di Vittorio et al., 2014; Li
202 et al., 2015; van Vuuren et al., 2011; Zhang et al., 2013). RCP4.5 represents a medium-low RCP
203 with stabilization of CO₂ emissions from 2150 onwards, and RCP8.5 represents a high RCP
204 with stabilizing CO₂ emissions post-2100 (Meinshausen et al., 2011). The projected climate
205 conditions in the present study under RCP4.5 and RCP8.5 were derived from the average values
206 of 25 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (Fu and
207 Feng, 2014).

208 Compared with 2014, the average temperature and precipitation increased by 0.72°C and
209 0.80°C, and by 11.81 mm and 12.50 mm under RCP4.5 and RCP8.5 in 2044, respectively, in
210 the study area (Table 1). The changes in the spatial distribution of precipitation are shown in
211 Supplementary Fig. S2. The pattern of increased precipitation was similar using RCP4.5 and
212 RCP8.5 for the period of 2014–2044, where it increased in the whole area and it increased
213 gradually from the north to the south of the study area. However, RCP8.5 obtained a higher
214 increase than RCP4.5 and the southwest part of the research area is projected to have a higher
215 temperature increase than the other regions. Moreover, the annual average temperature had a
216 similar distribution under the two climate change scenarios, where the temperature increase
217 using RCP4.5 (Supplementary Fig. S2c) was lower than that with RCP8.5 (Supplementary Fig.
218 S2d).

219 Three different periods were considered in the grassland simulations. First, a pretreatment
220 (1961–1984) period was used to initialize the soil climate conditions and SOC composition.
221 The pretreatment period represented the baseline climate with no increases in CO₂ or climate
222 change. The second period represented realistic climate scenarios (1985–2014) based on the
223 most recent climate. The third period comprised future climate scenarios (2015–2044), which
224 represented two future climates (RCP4.5, RCP8.5) scenarios with changes in temperature and

225 precipitation. The future climate database between 2015 to 2044 was obtained through add the
226 projected future climate change to the daily temperature and precipitation in 2014.

227 **2.5 Model validation and sensitivity test**

228 The root mean squared error (RMSE) (Eq.2), coefficient of determination (R^2) (Eq.3) and model
229 efficiency (ME) (Eq.4) were employed for model validation. The RMSE estimates the scatter
230 between the simulated and measured data, where values close to zero indicate excellent
231 agreement and hence the good performance of the model (Araya et al., 2015). R^2 is used to test
232 the agreement between the modeled results and observations, where a value closer to 1 indicates
233 that the model provides a better explanation for the observed values (Willmott, 1982). The
234 positive ME value indicates that the model prediction is better than the mean of observations,
235 and the best model performance has ME value equal to 1 (Miehle, 2006). RMSE, R^2 and ME
236 were calculated as follows:

$$RMSE = \sqrt{\frac{\sum_{i=1}^n (P_i - O_i)^2}{n}} \quad (Eq. 2)$$

$$R^2 = \left[\frac{\sum_{i=1}^n (O_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^n (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^n (P_i - \bar{P})^2}} \right]^2, \quad (Eq. 3)$$

$$ME = 1 - \frac{\sum_{i=1}^n (P_i - O_i)^2}{\sum_{i=1}^n (O_i - \bar{O})^2} \quad (Eq. 4)$$

237 where P_i and O_i were modeled and observed values, and \bar{P} and \bar{O} are their averages. n is the
238 number of values.

239 The validation dataset included more than 1400 grassland biomass sampling points, which
240 covered the whole of the study area, and the field measurements were also fully representative
241 of the major grassland types in this area. In addition, 46 SOC observation points were sampled
242 between 2011–2012, which were randomly distributed among all of the simulation units
243 (county and grassland types). Maximum biomass in each quadrat was harvested and dried in an
244 oven at 70 °C for 72 h, weighed and ground for analysis. The soil of 0–30 cm depth was sampled
245 at 10-cm intervals with a soil drill (metal cylinder: diameter of 5 cm, length of 20 cm and the
246 total length of the sampler 1.3 m). 3 samples were collected in each replication plot. The ground
247 soil samples passed a 0.15-mm sieve and wet oxidation method was applied to determine SOC

248 (Mebius, 1960). In general, every simulation unit had 1–2 validation points (ERSMC-a, 2016).
249 A series of sensitivity tests were conducted to investigate the responses of the DNDC to
250 variation in climate factors (air temperature, precipitation) and grazing intensity. DNDC was
251 run with a 55-year baseline scenario that was based on the actual climate, soil and grazing
252 conditions of year 2005 in the study area. The ranges of values for alternative scenarios were
253 ± 10 , ± 20 and $\pm 30\%$ for precipitation, ± 1 , ± 2 and ± 3 °C for air temperature and ± 20 , ± 40 , ± 60 ,
254 ± 80 and $\pm 100\%$ for grazing intensity, respectively.

255 **2.6 Statistical analysis**

256 Two-way analysis of variance (ANOVA) was used to test the effects of climate and grazing
257 intensity on both the biomass and SOC according to the simulated results. Mean values for the
258 same treatments were compared using Fisher's least significant difference (LSD) test with one-
259 way ANOVA at $P = 0.05$. The statistical analyses, including the test for normality (Shapiro-
260 Wilk) and homogeneity of variance (Levene), were performed using Origin 2016 version
261 b9.3.1.273 (OriginLab Corporation, MA, USA), and the multiple regression analysis was
262 conducted with the Minitab version 17 (Minitab Inc., State College, PA, USA).

263 **3 Results**

264 **3.1 Model validation**

265 The biomass simulation showed that the modeled total biomass was in good agreement with
266 the observations (Fig. 2). There was a significant linear relationship ($P < 0.001$) between the
267 measurements and the modeled above ground biomass ($R^2 = 0.71$, $ME = 0.75$, $RMSE = 93.11$ g
268 $C m^{-2}$; $P < 0.001$). The simulated SOC concentrations were in good agreement with the
269 measured data (Fig. 3). The calculated statistical indices indicated that the modeled SOC
270 concentrations were closely correlated with the measured data ($R^2 = 0.73$, $ME = 0.69$, $RMSE =$
271 21.51 g $C kg^{-1}$; $P < 0.001$).

272 **3.2 Sensitivity analysis**

273 In the sensitivity analysis simulation, increases in precipitation resulted in elevated biomass and
274 SOC, however, the SOC was changed slightly compared to the biomass (Fig. 4A, B);
275 Temperature decrease induced the biomass decrease, and temperature increase could increase
276 the biomass. However, biomass change did not follow a simple linear relationship with change
277 in temperature. The 1°C temperature increase could bring 24% of biomass increase, meanwhile,
278 1°C temperature decrease could decrease 13% biomass (Fig. 4A). Biomass was not susceptible
279 to the changes in precipitation. The biomass increased 7% and decreased 6% with precipitation
280 increased and decreased 30%, respectively. SOC had the reverse trend with increased or
281 decreased temperature, but there was a more complex relationship with temperature change.
282 The SOC had less sensitivity to temperature change compared to biomass. With a 1 °C
283 temperature increase, the SOC increased slightly with 0.26%, but when temperature increased
284 over 2 °C, the SOC decreased 0.26–0.83% (Fig. 4B). The modeled biomass was sensitive to
285 grazing intensity and biomass had a reverse trend with increased or decreased grazing intensity
286 (Fig. 4A). When grazing intensity changed from -100 to 100%, SOC increased rate from -0.22
287 to 0.40% (Fig. 4B).

288 **3.3 Impact of grazing on biomass and SOC**

289 The biomass and SOC were significantly affected by climate change and the grazing intensity.
290 However, there were no significant interaction effects between climate and grazing intensity on
291 biomass and SOC during 1985–2044 throughout the study area (Table 2).
292 Under the same climate scenario, the grazing intensity change could significantly influence the
293 biomass, which had a negative relationship with the grazing intensity. The biomass differed
294 significantly under the four grazing intensities in the three climate scenarios. Among the
295 grazing intensity treatments, the biomass followed the order of: G0 > G-50 > baseline > G+50
296 (Table 3). Compared with the treatment without grazing, the grazing scenarios induced similar
297 changes in the biomass among the different grazing intensity treatments.
298 Grazing could increase the SOC storage. The SOC levels under various grazing intensities

299 followed the order of: $G_0 < G_{-50} < \text{baseline} < G_{+50}$ (Table 3). G_0 had the lowest SOC whereas
300 G_{+50} had the highest SOC under all the climate scenarios. Under the same climate scenario, a
301 reduction in the grazing intensity from the baseline could significantly decrease the SOC
302 concentration, but there was no significant change in the SOC when the grazing intensity
303 increased by 50% compared with the baseline.

304 **3.4 Impact of climate change on biomass and SOC**

305 The biomass exhibited a significant decreasing trend in the future climate scenarios compared
306 with the past 30 years under all the grazing intensities (Fig. 5), although precipitation increased
307 under both RCP4.5 and RCP8.5 (Table 1). Moreover, with the same grazing intensity, the
308 biomass was lower in RCP8.5 compared with RCP4.5. However, the biomass did not differ
309 significantly between RCP4.5 and RCP8.5 under the same grazing intensity (Table 3). This
310 suggests that RCP8.5 had a more negative effect on the biomass compared with RCP4.5 (Fig.
311 5).

312 The future climate could significantly decrease the SOC, and RCP8.5 had a more negative effect
313 than the RCP4.5 on the SOC. SOC exhibited a continuously decreasing trend according to the
314 RCP4.5 and RCP8.5 projections in the research area, where the changes in the SOC were similar
315 under the different grazing treatments (Fig. 6). A similar trend also occurred between 1985–
316 2014. The SOC was lower under RCP8.5 compared with that under RCP4.5 at all of the grazing
317 intensities. However, there were no significant differences between RCP4.5 and RCP8.5 (Table
318 3).

319 **3.5 The relationship between SOC and biomass change with
320 grazing and climate factors**

321 A multiple linear regression analysis was adopted to each simulation unit to analyze the
322 relationship between the annual changed biomass and SOC with corresponding temperature,
323 precipitation and grazing intensity. The regression analysis indicated precipitation, air
324 temperature and combined with grazing intensity, can explain 33.2% of changes in biomass

325 under the realistic climate scenarios with a linear model. Meanwhile, precipitation, air
326 temperature, and grazing intensity can explain 52.3% of SOC variation (Table 4). Taking into
327 account the prediction sum of squares (PRESS) value, air temperature is the factor contributing
328 most of variations in biomass and SOC. It's suggested that precipitation and grazing intensity
329 have lower contributes to biomass and SOC change in study region during past thirty years
330 compared to temperature.

331 **3.6 Patterns of regional change in the biomass and SOC**

332 From a spatiotemporal distribution perspective, the distribution of grassland biomass in
333 Qinghai Province is rather distinct due to the different constraints imposed by water and the
334 cumulative temperature. The biomass increased in the central and southwest of the research
335 region but decreased in the eastern and northern regions under RCP4.5 and RCP8.5,
336 respectively. However, the grassland biomass tended to decrease in more regions rather than
337 exhibiting an increasing trend (Fig. 7A). In particular, the vegetation activities are mainly
338 controlled by temperature in the eastern region, which may lead to greater negative effects than
339 the positive effects of increased precipitation (Zhou et al., 2007); therefore, the average regional
340 biomass may exhibit a significant decreasing trend.

341 In general, the SOC decreased from the low-temperature region to the high-temperature region,
342 where it followed the temperature distribution pattern in Qinghai Province and decreased from
343 the south to the north (Fig. 7B). The cold weather conditions would limit decomposition process
344 and there would be greater carbon storage over the years with accumulation in this area.
345 Furthermore, on the regional scale, although the SOC exhibited a decreasing trend in the whole
346 study area, the rate of change differed with a significant spatial distribution pattern.

347 **4 Discussion**

348 **4.1 Effects of climate change on biomass and SOC**

349 Climate change is the main driver of the inter-annual fluctuations in the grassland biomass, as

350 observed in previous studies by Fan et al. (2010) and Gao et al. (2016). The unique climate
351 conditions such as precipitation and temperature on the QTP have a significant impact on the
352 grassland biomass (Fan et al., 2010; Yan et al., 2015). According to this study, the biomass of
353 alpine grassland could increase significantly in the short term as the temperature increases (Fig.
354 4), as also suggested by Chen et al. (2013) and Gao et al. (2016). However, under long-term
355 constant warming and without considering other meteorological factors, the alpine grassland
356 biomass will probably decrease (Zhu et al., 2016). This may be due to the higher temperature
357 increasing evaporation in the study area, thereby overcoming the benefits of increased
358 precipitation (Xu et al., 2009). The shortage of water will ultimately limit the increase in the
359 grassland biomass with significant warming and drying.

360 The decline of the SOC in our study indicates that climate warming will have more negative
361 effects and eliminated the positive effect of precipitation increasing in the study area. Riedo et
362 al. (2000) indicated that carbon storage may be lost from grazed grassland as the temperature
363 and precipitation increase. Tan et al. (2010) suggested that after a 2°C increase in temperature
364 in the QTP, the grassland ecosystem's net primary productivity will increase by 9%, but the
365 SOC will decrease by 10%. Temperature and precipitation are the main factors that affect the
366 SOC pools (Jobbagy and Jackson, 2000). Many studies have shown that sustained warming will
367 lead to increases in the SOC decomposition rate (Tan et al., 2010; Xu et al., 2012), especially
368 in the QTP region with high carbon storage at a low temperature in the high latitudes. Thus, the
369 SOC could be released by climate warming and become a more obvious carbon source
370 (Kirschbaum, 1995; Kvenvolden, 1993; Qin et al., 2014; Wang et al., 2008; Yang et al., 2008).
371 However, the effects of warming and precipitation on SOC storage remain a relatively complex
372 problem (Cao and Woodward, 1998; Schuur, 2003).

373 **4.2 Effects of grazing intensity on biomass and SOC**

374 The grazing intensity is most importance for the outcomes of grazing and it is the main external
375 factor that controls the grassland vegetation dynamics, as reported in the previous studies
376 (Guevara et al., 1996; McIntire and Hik, 2005; Pei et al., 2008; Veen et al., 2012; Zeng et al.,
377 2015). Indeed, an increase in the grazing intensity implies that more plants would be removed

378 by animals, which could eventually lead to a decline in the aboveground biomass of the
379 grassland (Yan et al., 2013).

380 Small differences in the SOC concentrations were observed after the grazing intensity increased.
381 However, there was a positive correlation between the grazing intensity and SOC. There is a
382 lack of consistent conclusions regarding the impact of grazing on the SOC concentration
383 according to previous studies. Thus, some studies showed that the grazing intensity and SOC
384 had a negative correlation (Bagchi and Ritchie, 2010; Derner et al., 1997; Wu et al., 2009) or
385 no relationship (Holt, 1997; Milchunas and Lauenroth, 1993). By contrast, many other studies
386 showed that grazing can increase the SOC (Li et al., 2011; Schuman et al., 1999; Wienhold et
387 al., 2001). This is partly because moderate grazing can increase the grassland below-ground
388 biomass, which is beneficial for the accumulation of SOC (López-Mársico et al., 2015). Some
389 studies have shown that increasing the plant root/shoot ratio and allocating more carbon to the
390 root system could induce SOC increase (Derner et al., 1997). Nevertheless, the main reason for
391 the increase in the SOC in our study was the increasing number of grazing animals, and thus
392 the increased amount of manure returned after grazing on grassland (Hu et al., 2015).
393 Furthermore, the fertilizing effects of livestock excrement can increase the SOC (Conant et al.,
394 2001), especially in alpine grassland where the low temperature leads to the relatively slow
395 decomposition of litter (Davidson and Janssens, 2006). Moreover, increases in the effects of
396 hoof activity can accelerate the decomposition of litter and decaying roots, and improve the
397 contact with the soil, thereby accelerating the transfer of carbon to the soil to increase the SOC
398 concentration (Luo et al., 2010; Naeth et al., 1991).

399 **4.3 Uncertainty analysis**

400 Models are ideal tools for assessing the details of environment processes under various grazing
401 intensity. Furthermore, they can provide projections regarding the variations in grassland
402 biomass and SOC under alternative climate change scenarios. However, the uncertainty of the
403 data sources could be incorporated into the model outputs. The CMIP5 RCP scenarios were
404 used to provide the possible changes in climate in this study, but as a long-term climate
405 projection, the uncertainty of the projected climate will increase with time span increase (Moss

406 et al., 2010). The precipitation seasonal distribution pattern is critical to grassland growth (Shen
407 et al., 2011). In the present study, the precipitation distribution pattern of RCP scenarios was
408 derived from the year of 2014; this assumption may cause uncertainty for long-term study.

409 In the present study, we assumed that the grassland type was the same in the scenarios. As the
410 grassland community structure could be altered under both grazing and climate change
411 (Koerner and Collins, 2014). Therefore, the assumption of grassland community structure keeps
412 stable in the simulation could induce the uncertainty. Due to a lack of mechanisms regarding
413 the response of grassland soil to animal trampling in the DNDC model, we ignored the
414 trampling effect of the animals on the soil structure, which may have led to some errors in the
415 results.

416 The grazing rate can be another potential source of uncertainty. In most of the natural grassland
417 regions of the QTP, transhumance is usually practiced, which requires the transfer of livestock
418 from one pasture to another during different seasons, and staying in the same pasture for the
419 whole season. However, this grassland management practice was simplified in the present study
420 because we could not find specific statistical data to address this issue. Thus, we assumed that
421 livestock stayed in the same pasture for the whole year with 24 h d^{-1} of grazing and the stocking
422 rates were the same throughout the simulation unit and without yak dung remove (Zhang et al.,
423 2016). Furthermore, we assumed that all grasslands were useable. These assumptions could
424 have induced uncertainties in the simulation results.

425 **5 Conclusions**

426 In this study, we used the DNDC model to study the grassland biomass and SOC dynamics
427 under different climate change and grazing management scenarios. We found that the biomass
428 and SOC were significantly affected by climate change and grazing intensity. In the long term,
429 the total grassland biomass had a negative relationship and the SOC had a positive relationship
430 with the grazing intensity. The total biomass exhibited interannual fluctuations in the time series
431 and the SOC had a declining trend. All of the grazing scenarios obtained similar patterns of
432 change compared with the baseline scenario.

433 Future climate change could induce great uncertainty in the grassland dynamics. The total

434 grassland biomass and average SOC in the study area were reduced significantly under both the
435 RCP4.5 and RCP8.5 future climate change scenarios. However, there were significant
436 differences in the spatial distribution of the changing trends in the biomass and SOC. In the
437 eastern and northern regions of the study area, the biomass decreased, whereas it exhibited an
438 increasing trend in the southwest part of the research area. On a regional scale, the change in
439 the SOC had a significant spatial distribution pattern where it decreased from the south to the
440 north.

441 The grassland biomass and SOC will decline under sustained warming according to future
442 climate change projections. Therefore, grassland management should be adapted to potential
443 climate change to ensure sustainable grassland development in the study area. In the future,
444 suitable grazing intensity for the sustainable development of grasslands should be studied.
445 Moreover, greater human activity and management practices should be coupled according to
446 the model to develop more intelligent grassland management strategies.

447

448 **Acknowledgments**

449 We thank editors and four anonymous reviewers for their valuable comments and suggestions
450 on the manuscript. This study was supported by the National Natural Science Foundation of
451 China (Nos. 31672472 and 31770480), National Key Project of Scientific and Technical
452 Supporting Programs (2014CB138706), and Program for Changjiang Scholars and Innovative
453 Research Team in University (IRT17R50). We are grateful to the grassland station in Qinghai
454 province for providing data about the grassland biomass and livestock numbers in each county.

455

456 **References**

457 Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and Williams, M.: Application of the
458 DNDC model to predict emissions of N₂O from Irish agriculture, *Geoderma*, 151, 327-337, 2009.
459 Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K. M., Kisekka, I., and Martorano, L. G.: Assessment
460 of maize growth and yield using crop models under present and future climate in southwestern Ethiopia,
461 *Agricultural and Forest Meteorology*, 214–215, 252-265, 2015.
462 Bagchi, S. and Ritchie, M. E.: Introduced grazers can restrict potential soil carbon sequestration through
463 impacts on plant community composition, *Ecology Letters*, 13, 959-968, 2010.
464 Cao, M. and Woodward, F. I.: Dynamic responses of terrestrial ecosystem carbon cycling to global
465 climate change, *Nature*, 393, 249-252, 1998.

466 Chen, H., Zhao, Y., Feng, H., Li, H., and Sun, B.: Assessment of climate change impacts on soil organic
467 carbon and crop yield based on long-term fertilization applications in Loess Plateau, China, *Plant and*
468 *Soil*, 390, 401-417, 2015.

469 Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X.,
470 Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., Zhao, X., Gong, P., Yao,
471 T., and Wu, J.: The impacts of climate change and human activities on biogeochemical cycles on the
472 Qinghai-Tibetan Plateau, *Global Change Biology*, 19, 2940-2955, 2013.

473 Conant, R. T., Paustian, K., and Elliott, E. T.: Grassland management and conversion into grassland:
474 Effects on soil carbon, *Ecological Applications*, 11, 343-355, 2001.

475 Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks
476 to climate change, *Nature*, 440, 165-173, 2006.

477 Derner, J. D., Briske, D. D., and Boutton, T. W.: Does grazing mediate soil carbon and nitrogen
478 accumulation beneath C-4, perennial grasses along an environmental gradient?, *Plant and Soil*, 191, 147-
479 156, 1997.

480 Di Vittorio, A. V., Chini, L. P., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J., Craig, A., Calvin, K.,
481 Jones, A., Collins, W. D., Edmonds, J., Hurtt, G. C., Thornton, P., and Thomson, A.: From land use to
482 land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and
483 the implications for CMIP5 RCP simulations, *Biogeosciences*, 11, 6435-6450, 2014.

484 Du, M. Y., Kawashima, S., Yonemura, S., Zhang, X. Z., and Chen, S. B.: Mutual influence between
485 human activities and climate change in the Tibetan Plateau during recent years, *Global and Planetary*
486 *Change*, 41, 241-249, 2004.

487 Ellis, E. C. and Ramankutty, N.: Putting people in the map: anthropogenic biomes of the world, *Frontiers*
488 in *Ecology and the Environment*, 6, 439-447, 2008.

489 ERSMC-a: <http://www.sanjiangyuan.org.cn/>, last access: 8/12 2016.

490 ERSMC-b: <http://deep.gherc.org/>, last access: 8/12 2016.

491 Fan, J.-W., Shao, Q.-Q., Liu, J.-Y., Wang, J.-B., Harris, W., Chen, Z.-Q., Zhong, H.-P., Xu, X.-L., and
492 Liu, R.-G.: Assessment of effects of climate change and grazing activity on grassland yield in the Three
493 Rivers Headwaters Region of Qinghai-Tibet Plateau, China, *Environmental Monitoring and Assessment*,
494 170, 571-584, 2010.

495 Fortin, M. J. and Dale, M. R. T.: *Spatial Analysis: A Guide for Ecologists*, Cambridge University Press,
496 2005.

497 Fu, Q. and Feng, S.: Responses of terrestrial aridity to global warming, *Journal of Geophysical Research: Atmospheres*, 119, 7863-7875, 2014.

498 Gao, Q., Guo, Y., Xu, H., Ganjurjav, H., Li, Y., Wan, Y., Qin, X., Ma, X., and Liu, S.: Climate change
500 and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the
501 Qinghai-Tibetan Plateau, *Science of the Total Environment*, 554, 34-41, 2016.

502 Gao, Q.-z., Wan, Y.-f., Xu, H.-m., Li, Y., Jiangcun, W.-z., and Borjigidai, A.: Alpine grassland
503 degradation index and its response to recent climate variability in Northern Tibet, China, *Quaternary*
504 *International*, 226, 143-150, 2010.

505 Guevara, J. C., Stasi, C. R., and Estevez, O. R.: Effect of cattle grazing on range perennial grasses in the
506 Mendoza plain, Argentina, *Journal of Arid Environments*, 34, 205-213, 1996.

507 Harris, R. B.: Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its
508 magnitude and causes, *Journal of Arid Environments*, 74, 1-12, 2010.

509 Hengl, T., Heuvelink, G. B. M., and Rossiter, D. G.: About regression-kriging: From equations to case

510 studies, *Computers & Geosciences*, 33, 1301-1315, 2007.

511 Holt, J. A.: Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid
512 northeastern Australia, *Applied Soil Ecology*, 5, 143-149, 1997.

513 Hu, Z., Li, S., Guo, Q., Niu, S., He, N., Li, L., and Yu, G.: A synthesis of the effect of grazing exclusion
514 on carbon dynamics in grasslands in China, *Global Change Biology*, doi: 10.1111/gcb.13133, 2015. n/a-
515 n/a, 2015.

516 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
517 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,
518 Cambridge, United Kingdom and New York, NY, USA, 2013.

519 Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to
520 climate and vegetation, *Ecological Applications*, 10, 423-436, 2000.

521 Kariyapperuma, K. A., Wagner-Riddle, C., Furon, A. C., and Li, C.: Assessing Spring Thaw Nitrous
522 Oxide Fluxes Simulated by the DNDC Model for Agricultural Soils, *Soil Science Society of America
523 Journal*, 75, 678-690, 2011.

524 Kirschbaum, M. U. F.: THE TEMPERATURE-DEPENDENCE OF SOIL ORGANIC-MATTER
525 DECOMPOSITION, AND THE EFFECT OF GLOBAL WARMING ON SOIL ORGANIC-C
526 STORAGE, *Soil Biology & Biochemistry*, 27, 753-760, 1995.

527 Klein, J. A., Harte, J., and Zhao, X.-Q.: Experimental warming, not grazing, decreases rangeland quality
528 on the Tibetan Plateau, *Ecological Applications*, 17, 541-557, 2007.

529 Koerner, S. E. and Collins, S. L.: Interactive effects of grazing, drought, and fire on grassland plant
530 communities in North America and South Africa, *Ecology*, 95, 98-109, 2014.

531 Kvenvolden, K. A.: Gas hydrates—geological perspective and global change, *Reviews of Geophysics*,
532 31, 173-187, 1993.

533 Lavado, R. S., Sierra, J. O., and Hashimoto, P. N.: Impact of grazing on soil nutrients in a Pampean
534 grassland, *Journal of Range Management*, 49, 452-457, 1996.

535 Lehnert, L. W., Wesche, K., Trachte, K., Reudenbach, C., and Bendix, J.: Climate variability rather than
536 overstocking causes recent large scale cover changes of Tibetan pastures, 6, 24367, 2016.

537 Li, C.: The DNDC Model. In: *Evaluation of Soil Organic Matter Models: Using Existing Long-Term
538 Datasets*, Powlson, D. S., Smith, P., and Smith, J. U. (Eds.), Springer Berlin Heidelberg, Berlin,
539 Heidelberg, 1996.

540 Li, C.: User's Guide for the DNDC Model. 2012.

541 Li, C. S., Farahbakhshazad, N., Jaynes, D. B., Dinnis, D. L., Salas, W., and McLaughlin, D.: Modeling
542 nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa,
543 *Ecological Modelling*, 196, 116-130, 2006.

544 Li, C. S., Frolking, S., and Frolking, T. A.: A MODEL OF NITROUS-OXIDE EVOLUTION FROM
545 SOIL DRIVEN BY RAINFALL EVENTS .1. MODEL STRUCTURE AND SENSITIVITY, *Journal of
546 Geophysical Research-Atmospheres*, 97, 9759-9776, 1992.

547 Li, C. S., Narayanan, V., and Harriss, R. C.: Model estimates of nitrous oxide emissions from agricultural
548 lands in the United States, *Global Biogeochemical Cycles*, 10, 297-306, 1996.

549 Li, H., Wang, L., Li, J., Gao, M., Zhang, J., Zhang, J., Qiu, J., Deng, J., Li, C., and Frolking, S.: The
550 development of China-DNDC and review of its applications for sustaining Chinese agriculture,
551 *Ecological Modelling*, 348, 1-13, 2017.

552 Li, L., Yang, S., Wang, Z., Zhu, X., and Tang, H.: Evidence of warming and wetting climate over the
553 Qinghai-Tibet Plateau, *Arctic, Antarctic, and Alpine Research*, 42, 449-457, 2010.

554 Li, R. H., Li, X. B., Li, G. Q., and Wen, W. Y.: Simulation of soil nitrogen storage of the typical steppe
555 with the DNDC model: A case study in Inner Mongolia, China, *Ecological Indicators*, 41, 155-164, 2014.

556 Li, S., Lu, S., Gao, Y., and Ao, Y.: The change of climate and terrestrial carbon cycle over Tibetan Plateau
557 in CMIP5 models, *International Journal of Climatology*, 35, 4359-4369, 2015.

558 Li, W., Huang, H. Z., Zhang, Z. N., and Wu, G. L.: Effects of grazing on the soil properties and C and N
559 storage in relation to biomass allocation in an alpine meadow, *Journal of Soil Science and Plant Nutrition*,
560 11, 27-39, 2011.

561 Li, X. L., Gao, J., Brierley, G., Qiao, Y. M., Zhang, J., and Yang, Y. W.: RANGELAND DEGRADATION
562 ON THE QINGHAI-TIBET PLATEAU: IMPLICATIONS FOR REHABILITATION, *Land Degradation
& Development*, 24, 72-80, 2013a.

563 Li, Y., Dong, S., Wen, L., Wang, X., and Wu, Y.: Assessing the soil quality of alpine grasslands in the
564 Qinghai-Tibetan Plateau using a modified soil quality index, *Environmental Monitoring and Assessment*,
565 185, 8011-8022, 2013b.

566 Li, Y., Luo, T., and Lu, Q.: Plant height as a simple predictor of the root to shoot ratio: Evidence from
567 alpine grasslands on the Tibetan Plateau, *Journal of Vegetation Science*, 19, 245-252, 2008.

568 Li, Z., Huffman, T., McConkey, B., and Townley-Smith, L.: Monitoring and modeling spatial and
569 temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data,
570 *Remote Sensing of Environment*, 138, 232-244, 2013c.

571 Liu, Y., Yu, Z., Chen, J., Zhang, F., Doluschitz, R., and Axmacher, J. C.: Changes of soil organic carbon
572 in an intensively cultivated agricultural region: A denitrification-decomposition (DNDC) modelling
573 approach, *Science of The Total Environment*, 372, 203-214, 2006.

574 López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P., and Paruelo, J. M.: Grazing increases
575 below-ground biomass and net primary production in a temperate grassland, *Plant and Soil*, 392, 155-
576 162, 2015.

577 Luo, C., Xu, G., Chao, Z., Wang, S., Lin, X., Hu, Y., Zhang, Z., Duan, J., Chang, X., Su, A., Li, Y., Zhao,
578 X., Du, M., Tang, Y., and Kimball, B.: Effect of warming and grazing on litter mass loss and temperature
579 sensitivity of litter and dung mass loss on the Tibetan plateau, *Global Change Biology*, 16, 1606-1617,
580 2010.

581 Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg, R.: Precipitation Seasonality
582 and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis, *Journal of Climate*,
583 27, 1910-1927, 2014.

584 McIntire, E. J. B. and Hik, D. S.: Influences of chronic and current season grazing by collared pikas on
585 above-ground biomass and species richness in subarctic alpine meadows, *Oecologia*, 145, 288-297, 2005.

586 Mebius, L. J.: A rapid method for the determination of organic carbon in soil, *Analytica Chimica Acta*,
587 22, 120-124, 1960.

588 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto,
589 K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.:
590 The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, *Climatic Change*, 109,
591 213-241, 2011.

592 Miehle, P.: Quantifying uncertainty from large-scale model predictions of forest carbon dynamics, *Global
593 Change Biology*, 12, 1421-1434, 2006.

594 Milchunas, D. G. and Lauenroth, W. K.: Quantitative Effects of Grazing on Vegetation and Soils over a
595 Global Range of Environments, *Ecological Monographs*, 63, 327-366, 1993.

596 Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T.

598 R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith,
599 S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios
600 for climate change research and assessment, *Nature*, 463, 747-756, 2010.

601 Naeth, M. A., Bailey, A. W., Pluth, D. J., Chanasyk, D. S., and Hardin, R. T.: GRAZING IMPACTS ON
602 LITTER AND SOIL ORGANIC-MATTER IN MIXED PRAIRIE AND FESCUE GRASSLAND
603 ECOSYSTEMS OF ALBERTA, *Journal of Range Management*, 44, 7-12, 1991.

604 Pei, S., Fu, H., and Wan, C.: Changes in soil properties and vegetation following exclosure and grazing
605 in degraded Alxa desert steppe of Inner Mongolia, China, *Agriculture Ecosystems & Environment*, 124,
606 33-39, 2008.

607 Pei, Z.-Y., Ouyang, H., Zhou, C.-P., and Xu, X.-L.: Carbon Balance in an Alpine Steppe in the Qinghai-
608 Tibet Plateau, *J. Integr. Plant Biol.*, 51, 521-526, 2009.

609 Piao, S., Tan, K., Nan, H., Ciais, P., Fang, J., Wang, T., Vuichard, N., and Zhu, B.: Impacts of climate and
610 CO₂ changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past
611 five decades, *Global and Planetary Change*, 98-99, 73-80, 2012.

612 Qin, Y., Yi, S., Ren, S., Li, N., and Chen, J.: Responses of typical grasslands in a semi-arid basin on the
613 Qinghai-Tibetan Plateau to climate change and disturbances, *Environmental Earth Sciences*, 71, 1421-
614 1431, 2014.

615 QPBS: 'Qinghai Statistical Yearbook 2015.'(China Statistics Press:Beijing), 2015. 2015.

616 QPBS: 'Qinghai Statistical Yearbook 2015.'(China Statistics Press:Beijing), 2005. 2005.

617 Riedo, M., Gyalistras, D., and Fuhrer, J.: Net primary production and carbon stocks in differently
618 managed grasslands: simulation of site-specific sensitivity to an increase in atmospheric CO₂ and to
619 climate change, *Ecological Modelling*, 134, 207-227, 2000.

620 Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., and Manley, W. A.: Impact of Grazing
621 Management on the Carbon and Nitrogen Balance of a Mixed-Grass Rangeland, *Ecological Applications*,
622 9, 65-71, 1999.

623 Schuur, E. A. G.: Productivity and global climate revisited: The sensitivity of tropical forest growth to
624 precipitation, *Ecology*, 84, 1165-1170, 2003.

625 Shen, M., Tang, Y., Chen, J., Zhu, X., and Zheng, Y.: Influences of temperature and precipitation before
626 the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau,
627 *Agricultural and Forest Meteorology*, 151, 1711-1722, 2011.

628 Shi, X. Z., Yu, D. S., Warner, E. D., Pan, X. Z., Petersen, G. W., Gong, Z. G., and Weindorf, D. C.: Soil
629 database of 1:1,000,000 digital soil survey and reference system of the Chinese Genetic Soil
630 Classification System, *Soil Survey Horizons*, 45, 129-136, 2004.

631 Tan, K., Ciais, P., Piao, S., Wu, X., Tang, Y., Vuichard, N., Liang, S., and Fang, J.: Application of the
632 ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan
633 grasslands, *Global Biogeochemical Cycles*, 24, 2010.

634 Tanentzap, A. J. and Coomes, D. A.: Carbon storage in terrestrial ecosystems: do browsing and grazing
635 herbivores matter?, *Biological Reviews*, 87, 72-94, 2012.

636 van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T.,
637 Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S., and Rose, S.: The
638 representative concentration pathways: an overview, *Climatic Change*, 109, 5-31, 2011.

639 Veen, G. F., Geuverink, E., and Olff, H.: Large grazers modify effects of aboveground-belowground
640 interactions on small-scale plant community composition, *Oecologia*, 168, 511-518, 2012.

641 Wang, G., Li, Y., Wang, Y., and Wu, Q.: Effects of permafrost thawing on vegetation and soil carbon pool

642 losses on the Qinghai-Tibet Plateau, China, *Geoderma*, 143, 143-152, 2008.

643 Wang, G. X., Qian, J., Cheng, G. D., and Lai, Y. M.: Soil organic carbon pool of grassland soils on the
644 Qinghai-Tibetan Plateau and its global implication, *Science of the Total Environment*, 291, 207-217,
645 2002.

646 Wienhold, B. J., Hendrickson, J. R., and Karn, J. F.: Pasture management influences on soil properties in
647 the Northern Great Plains, *Journal Of Soil and Water Conservation*, 56, 27-31, 2001.

648 Willmott, C. J.: Some Comments on the Evaluation of Model Performance, *Bulletin of the American
649 Meteorological Society*, 63, 1309-1313, 1982.

650 Wu, G.-L., Du, G.-Z., Liu, Z.-H., and Thirgood, S.: Effect of fencing and grazing on a Kobresia-
651 dominated meadow in the Qinghai-Tibetan Plateau, *Plant and Soil*, 319, 115-126, 2009.

652 Xu, G., Hu, Y., Wang, S., Zhang, Z., Chang, X., Duan, J., Luo, C., Chao, Z., Su, A., Lin, Q., Li, Y., and
653 Du, M.: Effects of litter quality and climate change along an elevation gradient on litter mass loss in an
654 alpine meadow ecosystem on the Tibetan plateau, *Plant Ecology*, 209, 257-268, 2010.

655 Xu, R., Wang, M., and Wang, Y.: Using a modified DNDC model to estimate N2O fluxes from semi-arid
656 grassland in China, *Soil Biology & Biochemistry*, 35, 615-620, 2003.

657 Xu, X., Sherry, R. A., Niu, S., Zhou, J., and Luo, Y.: Long-term experimental warming decreased labile
658 soil organic carbon in a tallgrass prairie, *Plant and Soil*, 361, 307-315, 2012.

659 Xu, Y., Xu, C. H., Gao, X. J., and Luo, Y.: Projected changes in temperature and precipitation extremes
660 over the Yangtze River Basin of China in the 21st century, *Quaternary International*, 208, 44-52, 2009.

661 Yan, L., Zhou, G., and Zhang, F.: Effects of Different Grazing Intensities on Grassland Production in
662 China: A Meta-Analysis, *Plos One*, 8, 2013.

663 Yan, L., Zhou, G. S., Wang, Y. H., Hu, T. Y., and Sui, X. H.: The spatial and temporal dynamics of carbon
664 budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model,
665 *Journal of Cleaner Production*, 107, 195-201, 2015.

666 Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J., and Zhu, B.: Storage, patterns and controls of soil
667 organic carbon in the Tibetan grasslands, *Global Change Biology*, 14, 1592-1599, 2008.

668 Yu, D.-S., Shi, X.-Z., Wang, H.-J., Sun, W.-X., Warner, E. D., and Liu, Q.-H.: National Scale Analysis of
669 Soil Organic Carbon Storage in China Based on Chinese Soil Taxonomy, *Pedosphere*, 17, 11-18, 2007a.

670 Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X., Chen, J. M., Liu, Q. H., and Zhao, Y. C.: Regional patterns
671 of soil organic carbon stocks in China, *Journal of Environmental Management*, 85, 680-689, 2007b.

672 Zeng, C., Wu, J., and Zhang, X.: Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of
673 Alpine Grasslands on the Northern Tibetan Plateau, *Plos One*, 10, 2015.

674 Zhang, B.: On the Livestock Development of Qinghai Province during the Time of Republic of China
675 (1912—1949) , *Ancient and Modern Agriculture*, 2011. 91-100, 2011.

676 Zhang, R., Li, Z., Yuan, Y., Li, Z., and Yin, F.: Analyses on the Changes of Grazing Capacity in the
677 Three-River Headwaters Region of China under Various Climate Change Scenarios, *Advances in
678 Meteorology*, doi: 10.1155/2013/951261, 2013. 2013.

679 Zhang, W., Liu, C., Zheng, X., Zhou, Z., Cui, F., Zhu, B., Haas, E., Klatt, S., Butterbach-Bahl, K., and
680 Kiese, R.: Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous
681 oxide and nitric oxide emissions from the winter wheat-summer maize rotation system, *Agricultural
682 Systems*, 140, 1-10, 2015.

683 Zhang, Y., Min, Q., Zhao, G., Jiao, W., Liu, W., and Bijaya G.C., D.: Can Clean Energy Policy Improve
684 the Quality of Alpine Grassland Ecosystem? A Scenario Analysis to Influence the Energy Changes in the
685 Three-River Headwater Region, China, *Sustainability*, 8, 231, 2016.

686 Zhang, Y. and Niu, H.: The development of the DNDC plant growth sub-model and the application of
687 DNDC in agriculture: A review, *Agriculture, Ecosystems & Environment*, 230, 271-282, 2016.

688 Zhao, Z., Sha, Z., Liu, Y., Wu, S., Zhang, H., Li, C., Zhao, Q., and Cao, L.: Modeling the impacts of
689 alternative fertilization methods on nitrogen loading in rice production in Shanghai, *Science of The Total
690 Environment*, 566–567, 1595-1603, 2016.

691 Zhou, D., Fan, G., Huang, R., Fang, Z., Liu, Y., and Li, H.: Interannual variability of the normalized
692 difference vegetation index on the Tibetan plateau and its relationship with climate change, *Advances in
693 Atmospheric Sciences*, 24, 474-484, 2007.

694 Zhu, X. J., Yu, G. R., Wang, Q. F., Gao, Y. N., He, H. L., Zheng, H., Chen, Z., Shi, P. L., Zhao, L., Li, Y.
695 N., Wang, Y. F., Zhang, Y. P., Yan, J. H., Wang, H. M., Zhao, F. H., and Zhang, J. H.: Approaches of
696 climate factors affecting the spatial variation of annual gross primary productivity among terrestrial
697 ecosystems in China, *Ecol. Indic.*, 62, 174-181, 2016.

698

Table 1. Projected climatic changes (precipitation and maximum, minimum, and mean air temperature) under the RCP4.5 and RCP8.5 scenarios in 2044 compared with the corresponding values in the baseline data (2014).

Scenarios	Air temperature (°C)			Precipitation(mm)
	T _{max}	T _{min}	T _{mean}	
Baseline	3.63	-16.88	-3.56	279.24
RCP4.5	+0.99	+0.44	+0.72	+11.81
RCP8.5	+1.09	+0.51	+0.80	+12.50

Table 2. Summary of two-way analysis of variance for biomass and SOC relative to the climate, grazing intensity, and their interactions during 1985–2044. Degrees of freedom (d.f.), mean squares (M.S.), variance ratio (*F*-value), and level of significance (*P*-value) are shown.

Source of variation	d.f.	Biomass			SOC		
		M.S.	<i>F</i> -value	<i>P</i> -value	M.S.	<i>F</i> -value	<i>P</i> -value
Climate	2	16827.91	54.27	**	468.16	723.54	**
Grazing Intensity	3	22132.64	71.37	**	17.29	26.72	**
Climate*Grazing Intensity	6	2.63	0.01	n.s.	0.28	0.28	n.s.

** Indicate the population means of the treatment are significantly different at 0.05 level; n.s., the means no significant different.

Table 3. The simulated SOC concentrations and total biomass under climate and grazing scenarios.

Scenarios		Total biomass (g C m ⁻²)	SOC (0–20 cm) concentrations (g C kg ⁻¹)
Climate	Realistic (1985–2014)	204.01	66.18
	RCP4.5 (2015–2044)	191.17	63.44
	RCP8.5 (2015–2044)	183.62	63.37
	LSD _{0.05}	3.87	0.09
Grazing	Baseline	187.83	64.49
	G0	211.42	64.37
	G–50	201.41	64.64
	G+50	178.11	65.26
	LSD _{0.05}	4.47	0.10

LSD_{0.05}: Least significant difference at 0.05 level.

Table 4. Multiple linear regression analysis of grassland biomass and SOC change with relative factors.

	Variables numbers	R-square	PRESS	Temperature	Precipitation	Grazing Intensity
Biomass	1	26.4	273067.7	X		
	1	6.4	370402.4			X
	1	0.4	349337.6		X	
	2	26.4	287817.3	X	X	
	2	26.4	301908.4	X		X
	2	8.6	383224.5		X	X
	3	26.4	326183.5	X	X	X
SOC	1	47.6	179.2		X	
	1	2.3	310.9			X
	1	0.4	322.9	X		
	2	47.9	185.5		X	X
	2	47.7	189.5	X	X	
	2	4.7	328.8	X		X
	3	48.6	199.1	X	X	X

PRESS: The prediction sum of squares. The smaller the PRESS value, the better the model's predictive ability.

X: Indicates variable applied in the regression.

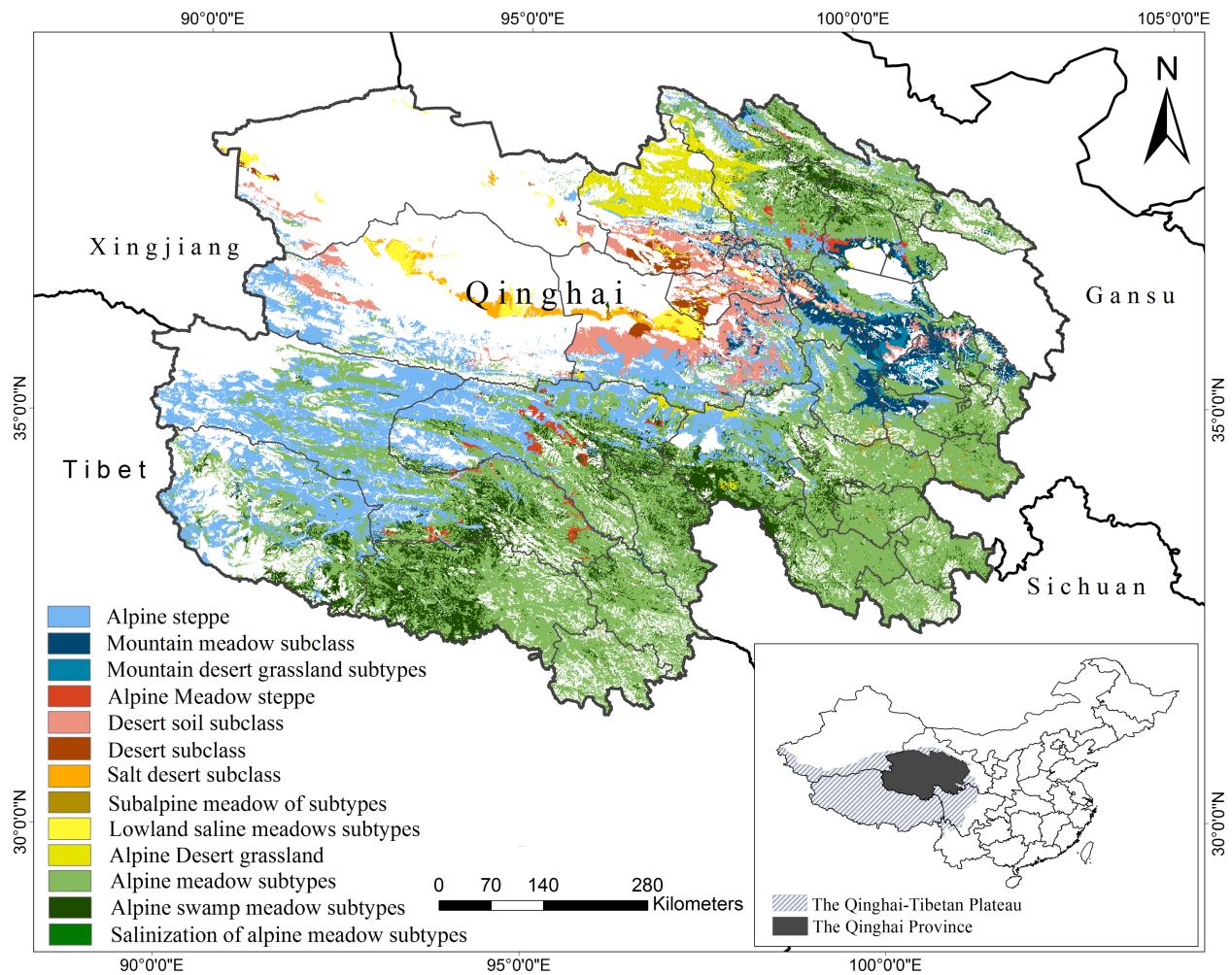


Fig. 1. Location of the study area and spatial distribution of the main grassland types. White areas are not covered by grassland.

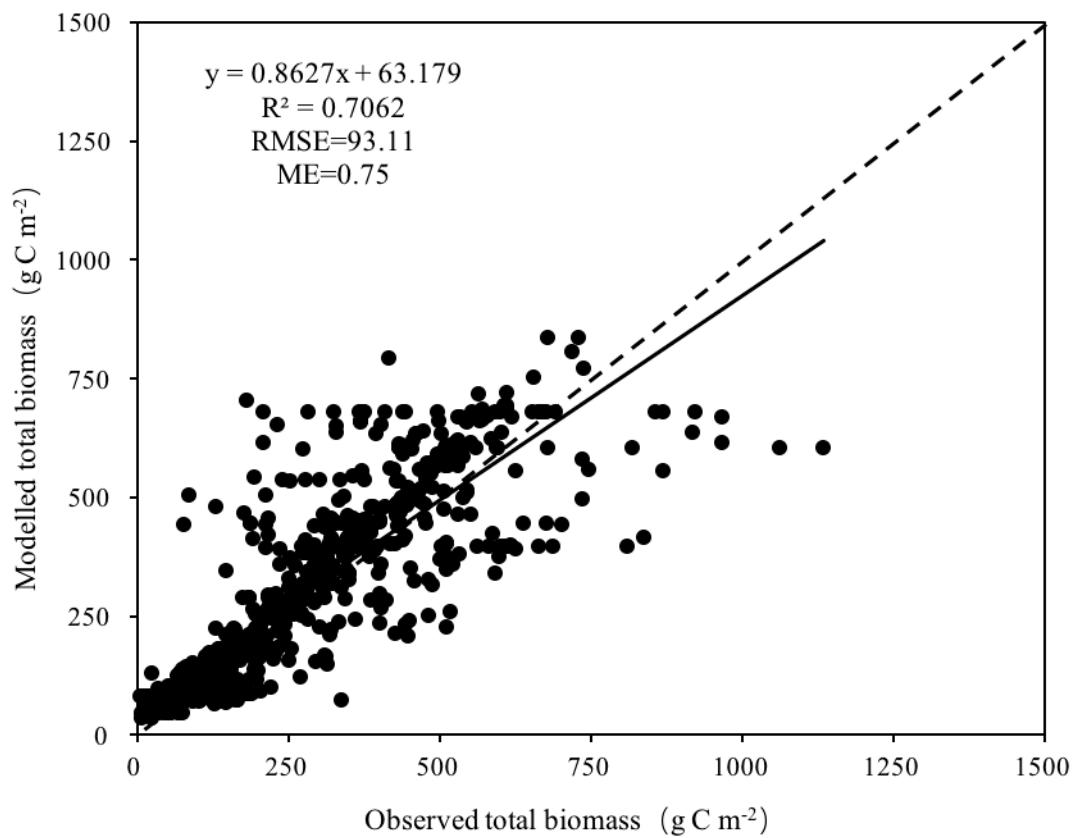


Fig. 2. Comparison of the modeled and observed total biomass values.

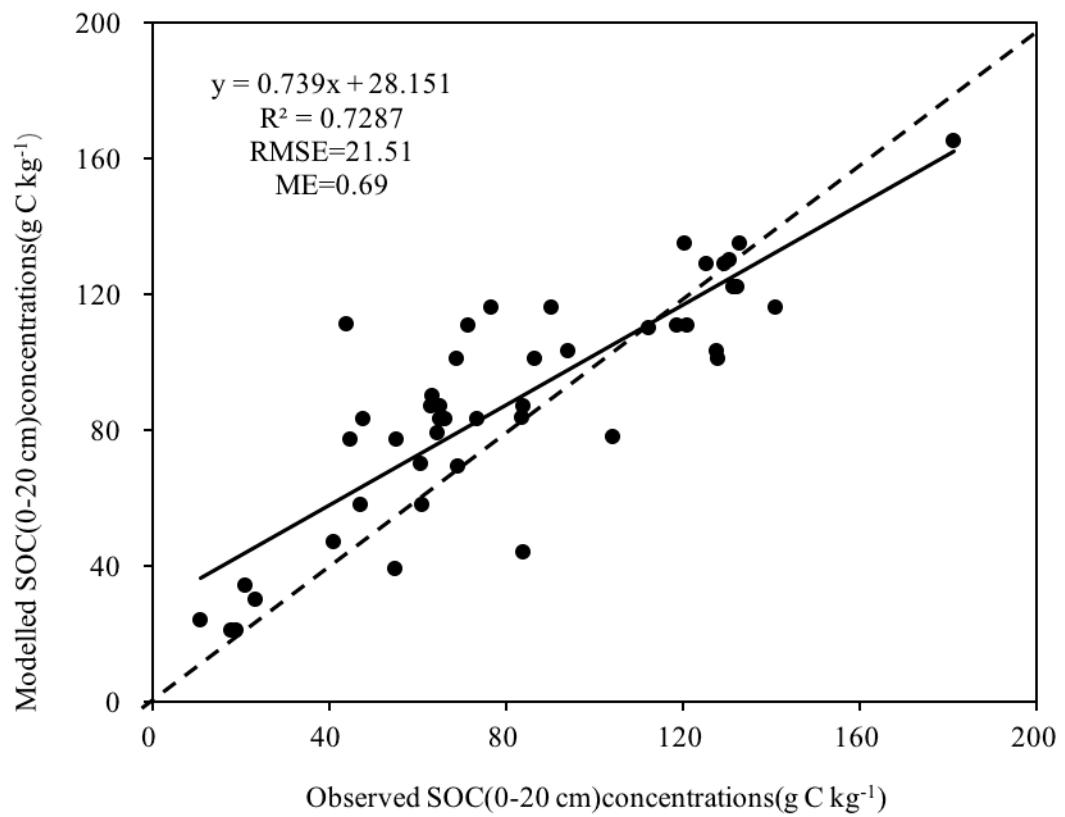


Fig. 3. Comparison of the modeled and observed SOC concentrations (0–20 cm).

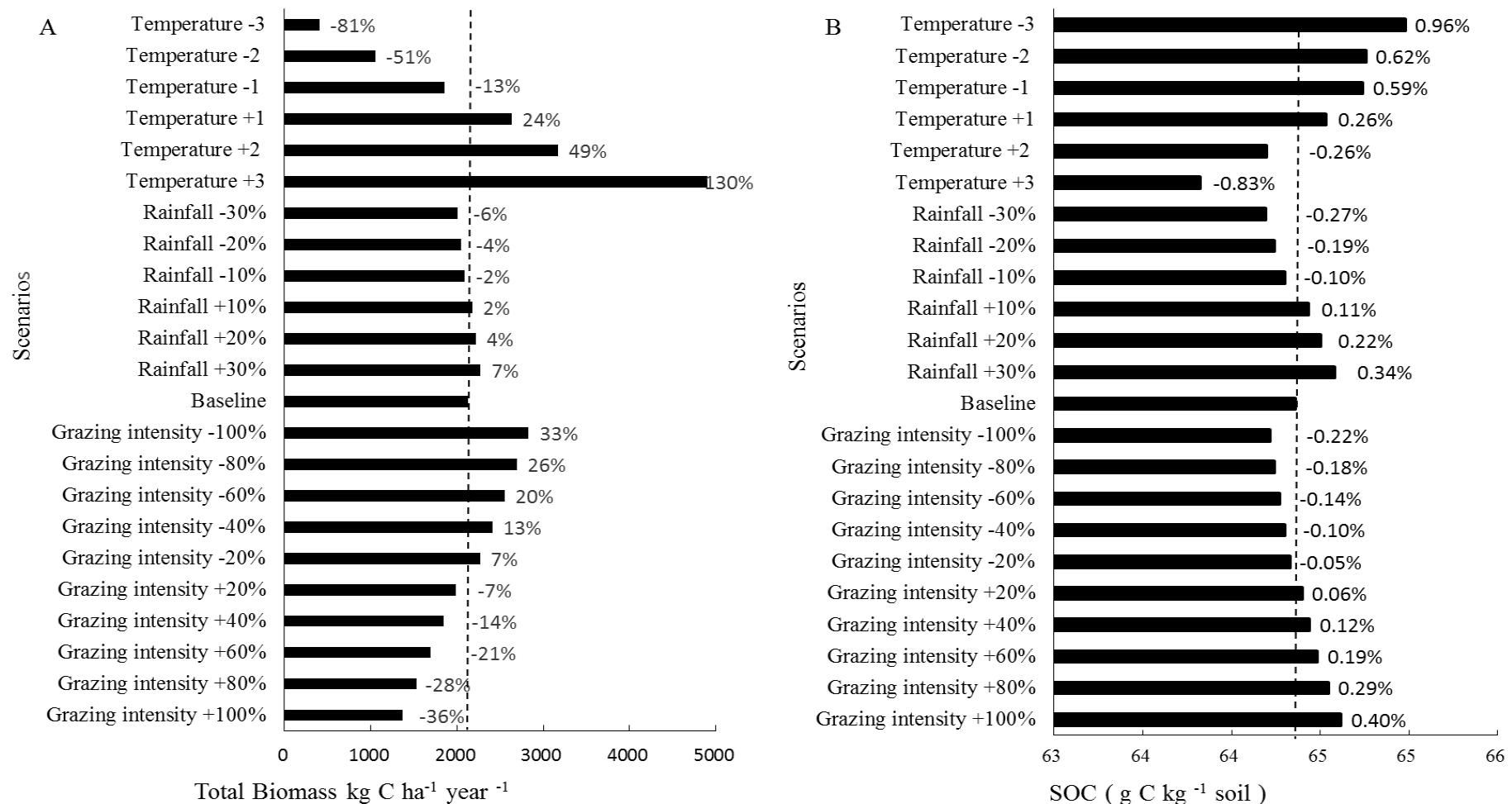


Fig. 4. Sensitivity analysis of model response to climate and grazing intensity change. The baseline biomass and SOC were the average value of a 55-year (1961-2014) simulation based on the actual climate and grazing conditions in the study area.

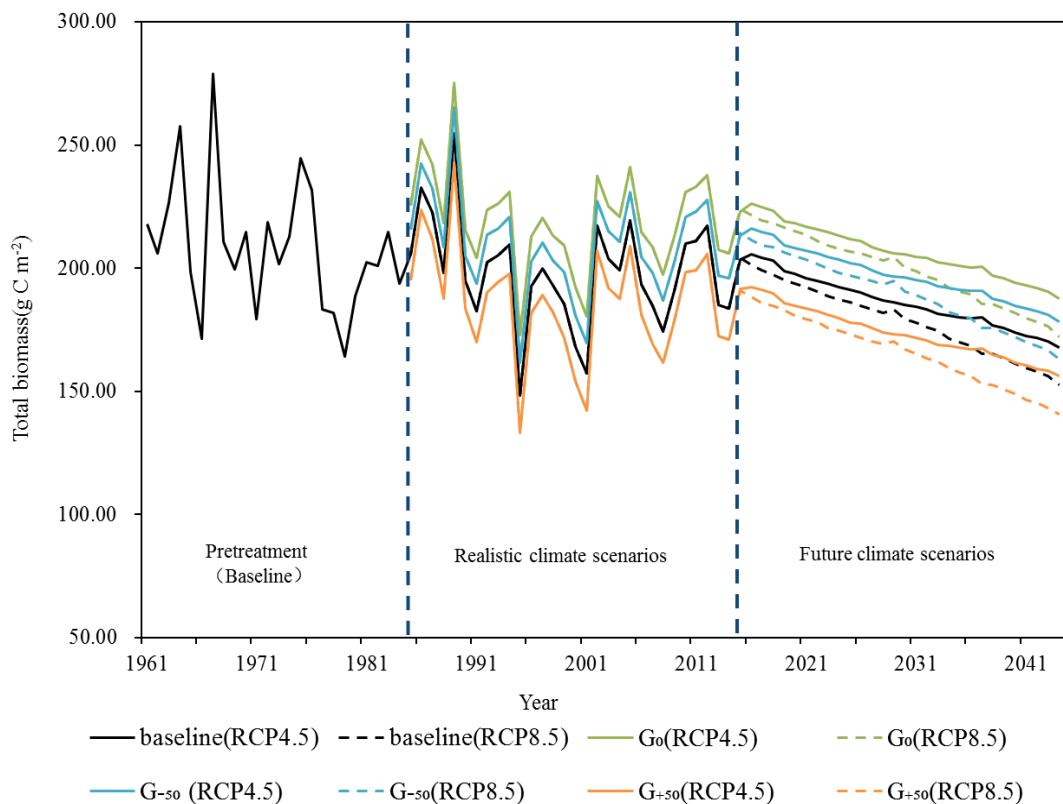


Fig. 5. Variations in the area-weighted mean biomass value under different scenarios. The stage on the left represents the preprocessing period from 1961 to 1984. The stage in the middle represents the realistic climate scenarios. The stage on the right represents future climate scenarios.

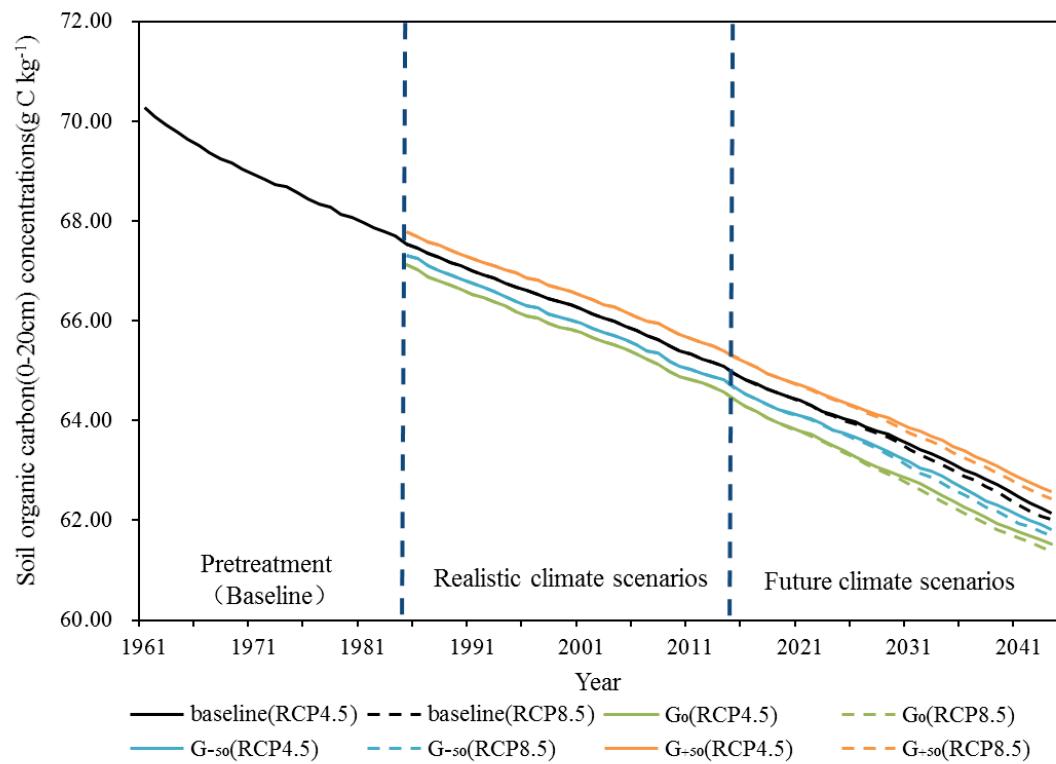


Fig. 6. Variations in the area-weighted mean SOC value under different scenarios. The stage on the left represents the preprocessing period from 1961 to 1984. The stage in the middle represents the realistic climate scenarios. The stage on the right represents future climate scenarios.

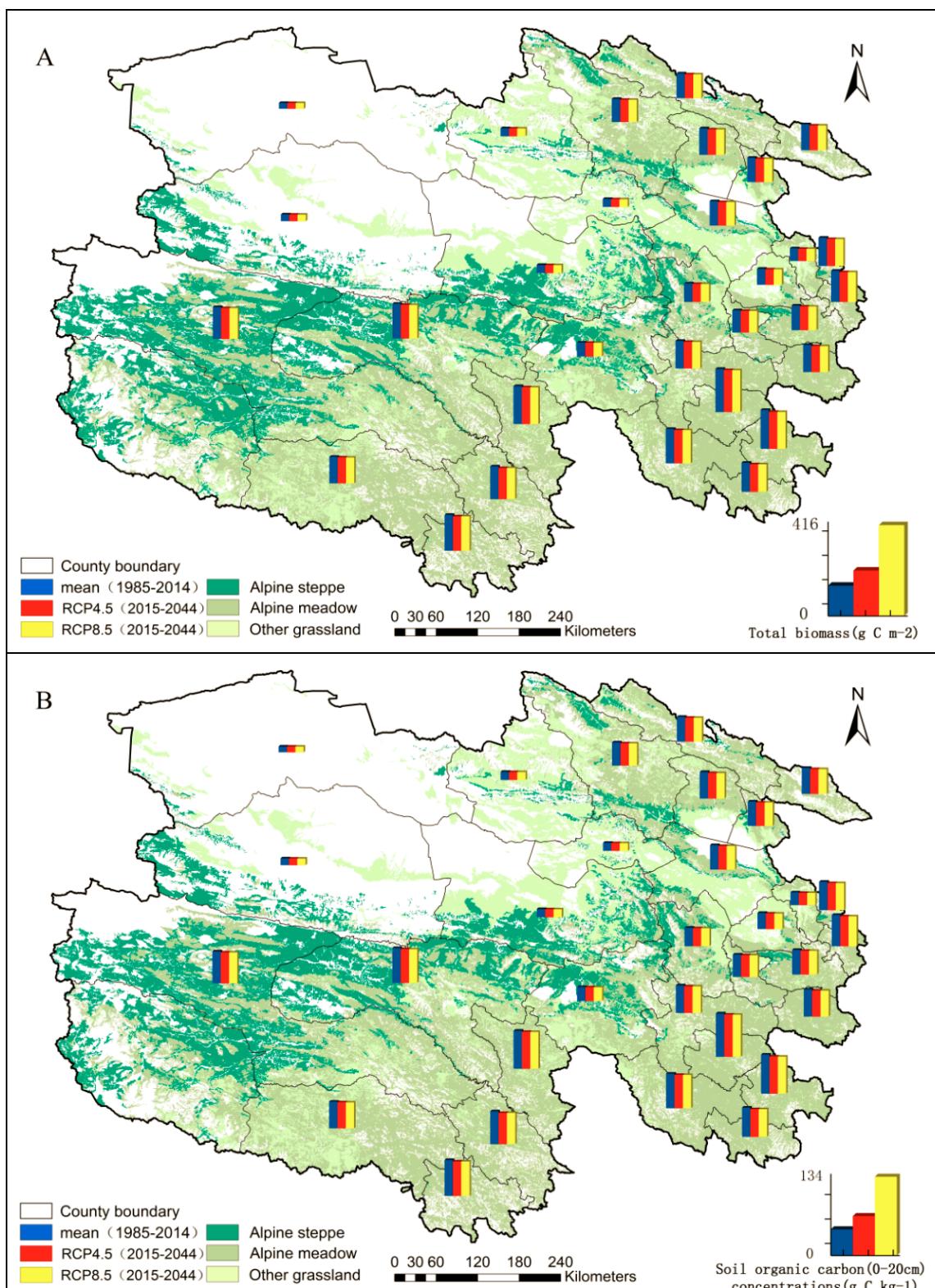


Fig. 7. Responses of the grassland biomass(A) and SOC(B) to climate change at a regional scale.