1 Virus mediated transfer of nitrogen from heterotrophic bacteria to

- 2 phytoplankton
- 3 Emma J. Shelford and Curtis A. Suttle
- 4

5 **Response to Reviews and Relevant Changes Made:**

- 6
- 7 Referee #1

8 Thank you for your review; your comments will help us to improve the manuscript. We will address each
 9 of your concerns as outlined below:

- 10 General Comments:
- 11 The introduction is too simple, and subsequent comments: In the Introduction we now emphasize
- 12 the relationship between primary producers and bacteria through nutrient cycling (especially N),
- 13 and the role of viruses in the process. As well, in the Methods we now explain the use of *Vibrio* sp.
- 14 strain PWH3a as a model organism. In the revised Discussion, we explain why *Synechococcus* would
- 15 not be expected to increase in abundance when lysate was added.
- 16 Minor Comments:
- P2 L19: We changed "bacteria" to "bacterioplankton" in the Abstract and Introduction to initially
 clarify, and have pointed out in the Introduction that planktonic bacteria are major players in ocean
- 19 nutrient cycling. We also clearly state that "bacteria" in the manuscript is used to refer to
- 20 "heterotrophic bacterioplankton"
- P2 L4: "which evidence suggests can support". "Evidence suggests" has been removed from the
 revised manuscript.
- 23 P2 L8: This sentence has been edited in the revised manuscript.
- 24 P4 L3: We mention that *Synechococcus* is not axenic in the revised manuscript.
- 25 P4 L6-8: The phrasing of "nutrient limitation" has been changed in the revised manuscript.
- 26 P5 L3-5: *Removal of 15-N from Lys before adding to field experiment*: We did not remove the
- 27 ammonium in the lysate before adding to the experiments. However, the added ammonium is
- significantly less than the calculated increase in PON in every field experiment. This is clarified and
 discussed further in the revised manuscript.
- P5 L14: Ultrafiltrate was stored for one year and bacteria grew: We do not claim that the bacteria in the ultrafiltrate are the same as in situ assemblages. Instead, the bacteria in the ultrafiltrate served as a starting bacterial assemblage that was derived from seawater, and survived in the dark, with no nutrient addition for an extended period of time. Albeit the communities will not be the same as the
- 34 in situ communities, they are derived from the environment and will be more representative than a

1 monoculture. We have explained in the revised Methods the rationale for using the bacterial 2 community that is in the ultrafiltrate. *Nutrient limitation condition*: We did not directly test for N 3 limitation, although since nitrate was present and there was a strong treatment effect (the bacteria 4 responded to lysate addition by producing ammonium), the bacteria were likely not N limited, and 5 could have been carbon limited. We clarified these concerns in the manuscript, and emphasized that 6 the experiment was designed to show ammonium production by the bacterial community, and 7 subsequent use by *Synechococcus*.

P9 L13-19: Washing GFF filters: We did not wash the sample at the GF filter stage. We clarified in the
 manuscript how the filters were treated and the effect of any residual PO¹⁵N on the results. If there
 was an effect it would be small, and would not affect the interpretation of the results.

11 P11 L11: Please clarify the demonstration of "N limited Synechococcus strain cells": The media was 12 made with a very low N:P ratio to ensure N limitation. In addition, the positive effect of lysate 13 addition on the abundance of Synechococcus is indicative of its N limitation. This is mentioned in the 14 revised manuscript. Dead Synechococcus cells releasing nitrogen: Any N that the cells released at the 15 end of exponential growth was not able to be used by either the still-living cells or the 16 contaminating bacteria that co-existed with them, or else the Synechococcus would have continued 17 to increase in abundance. In addition, the Synechococcus growth was only just beginning to slow 18 from exponential growth, indicating nutrient limitation but not yet producing many dead cells. This

19 is discussed in the revised Discussion.

P11 L17-18: Possible influence of Synechococcus-associated bacteria: Bacteria were present in the Synechococcus cultures and were remineralising (see Fig 2C DC2+Lys). The bacteria added with the ultrafiltrate simply added additional "natural" bacteria to the treatment and were associated with higher rates of ammonium regeneration. We have clarified this in the revision.

P12 L2 and Table 2: *Perhaps provide total amount (umol) instead of concentration (uM)*: We have
 kept μM, when we are referring to the concentration of a molecule, and μmol N l⁻¹ when referring to
 the concentration of DON, which is not a specific molecule. The revised manuscript now reports N
 from lysates in umol, where it may be useful in estimating mass balance.

P12 L1-15: Why was there no apparent stimulation of picocyanobacteria in field studies: It is likely that picocyanobacteria were outcompeted by larger phytoplankton, as a significant amount of N went into the larger size fraction (>1 um, presumably eukaryotic phytoplankton). We have clarified

- 31 this in the manuscript.
- P12 L21: We have continued to use "bacterial lysate" in the manuscript, but have emphasized why it
 is reasonable to assume that lysate from *Vibrio* is a reasonable proxy for coastal marine bacteria.
- 34 P17 L1-11: We have reworded this statement in the manuscript to make our meaning clearer.
- Table 2: In the field studies, we added far more lysate in two of the experiments than in the other
 two. We discuss this in the manuscript, but have also emphasized this in the figure legend for clarity.
- Fig. 1: We have made it clear that *Synechococcus* sp. strain DC2 is now referred to as *Synechococcus* in the revised manuscript, and not as DC2.

- 1 Fig. 2: The difference of NH4 and bacterial abundance at Day 0 should be discussed: There was some 2 ammonium in the lysate that was added, hence the slightly higher concentrations in these 3 treatments. However, this was minor relative to the ammonium that was produced. The ammonium 4 in the lysate was present because the Vibrio were still in exponential growth (to facilitate maximum 5 lysis by their viruses), and so not all N had been used. This is articulated in the revised manuscript. 6 Fig. 3: An X axis title has been added in the revised manuscript. 7 Fig. 5: We have removed this figure in the revised manuscript. 8 9 Referee #2 10 Thank you for your comments that have improved the manuscript. 11 General Comments: 12 Lack of 1999 paper by Proctor and Fuhrman: Thank you for pointing out this important oversight 13 (actually Noble RT, Fuhrman JA (1999) Breakdown and Microbial Uptake of Marine Viruses and 14 Other Lysis Products. Aquat Microb Ecol 20:1-11) that we have incorporated into our revised 15 manuscript. 16 Relationship between ambient nutrient concentration and ammonium uptake: we did not find a 17 relationship between ambient concentrations of nitrate, phosphate, or ammonium, and ammonium 18 uptake. We have discussed this in the revised manuscript. 19 Further Comments: 20 Figure 1: We appreciate that the reviewer found it difficult to follow the Venn diagram. We have put 21 this information into a table in the revised manuscript. 22 Figure 2A: Grey lines in figures: The figure lines are more discernable in the revised manuscript. 23 Pg 15, lines 9-12: The statement has been edited in the revised manuscript to reduce quantitative 24 claims. 25 Pg 12, lines 20-21: This sentence has been edited in the revised manuscript. 26 Figure 5: Upon reflection, we have deemed this figure unnecessary to the manuscript, and have 27 removed it. 28 29 Referee #3 30 Thank you for your careful review. Please see below for how we will address your concerns. 31 General Comments: 32 1. The lack of DON measurements in the laboratory study may change the quantitative claims of N 33 uptake and flux by viruses. In the field studies, uptake of DON concurrent with ¹⁵NH4 could have 34 meant we underestimated N uptake from lysate. Therefore, we updated our quantitative claims
 - 3

1 with these caveats. However, just because we are not able to report the total N taken up from 2 lysates (and those lysates are a laboratory construct, in any event), our experiment still shows that N 3 uptake from the production of lysates occurs. We can't be certain whether the phytoplankton are 4 taking up DO¹⁵N or ¹⁵NH4, but they are taking up N from lysate in either case. The ability of 5 phytoplankton to take up DON directly varies greatly dependent on factors such as trophic status of 6 the environment and the species of phytoplankton present (Berman T, Bronk DA (2003) Dissolved 7 organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31:279-305), but it 8 is generally less than inorganic sources of N. This is discussed in the revised Discussion.

2. Effect of DOP: We chose to focus our study on N, as N is typically limiting to phytoplankton
 growth in coastal BC waters (e.g. Yin K, Liu H, Harrison PJ (2017) Sequential nutrient uptake as a
 potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient
 stoichiometry. Biogeosciences 14:2469-2480). We are not aware of evidence for P limitation in these
 waters. We address this in the revised paper.

14 3. Effect of viruses on Bac+lysate treatment: Although viruses would be released it is unlikely that 15 they would infect members of the bacterial community. Vibrio phages are typically species specific, 16 and often strain specific (Comeau AM, Buenaventura E, Suttle CA (2005) A persistent, productive 17 and seasonally dynamic vibriophage population within Pacific Oysters (Crassostrea gigas). Appl 18 Environ Microbiol 71:5324-5331), and experiments have shown that there was undetectable binding 19 of PWH3a-P1 to natural populations of bacteria, even in the environment from which it was isolated 20 (Hennes KP, Suttle CA, Chan AM (1995) Fluorescently labeled virus probes show that natural virus 21 populations can control the structure of marine microbial communities. Appl Environ Microbiol 22 61:3623-3627). Finally, even if it was able to bind to Vibrio spp., in general, the estimated 23 abundance in BC coastal waters ranges from ~1/mL to several hundred /mL (Comeau AM, Suttle CA 24 (2007) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British 25 Columbia. Environ Microbiol 9:1790-1800), and is not enough to significantly affect N release. 26 Regardless, this would not affect the observation that N released by viral lysis is ultimately 27 incorporated into cells. We have addressed this in the revised manuscript.

4. Possible need for a Lys-only treatment: There were bacteria in the Lys addition as well as in the
 Syn+lysate treatment, which could have led to nutrient regeneration, and is likely the reason that
 growth occurred in the Syn+lysate treatment. The increase in Syn could be from remineralisation by
 these contaminating bacteria, or potentially from DOM use by Syn (although preliminary
 experiments with filtered lysate indicated that Syn was unable to grow on lysate directly). We have
 adjusted the manuscript to discuss the implications of bacteria in Syn treatments.

5. Section 4.3 is speculative. Indeed, this is speculative, and is included to emphasize that the N
 released by viral lysis and its subsequent remineralization can be quantitatively significant. We have
 emphasized, in the revised manuscript, that these estimates are a "best guess".

37 Specific Comments:

Page 5 line 13 and 14: The bacteria in the ultrafiltrate are an essential aspect of the experiment, as
 they serve as the remineralisers in the laboratory study. We have emphasized this more strongly in
 the revised manuscript.

- 1 Page 12 line 16 and 17: This sentence has been edited in the revised manuscript.
- Page 18 section 4.3: We have simplified the calculations in this section to provide an estimate of
 daily rates of N availability from viral lysis.
- 4 Page 27 Table 2: Upon reflection, we have removed the MOI information from the revised Table. It
- is unnecessary information to provide the MOI, as we incubated the infected cultures for 7 h untillysis was complete.
- 7 Page 4 line 4: This error has been fixed in the revised manuscript.
- 8 Pag 26 line 4: This error has been fixed in the revised manuscript.

1 Virus mediated transfer of nitrogen from heterotrophic bacteria to

2 phytoplankton

- 3 Emma J. Shelford¹ and Curtis A. Suttle^{1,2,3,4,5}
- 4 ¹Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,
- 5 Vancouver, Canada
- 6 ²Department of Botany, University of British Columbia, Vancouver, Canada
- 7 ³Department of Microbiology and Immunology, University of British Columbia, Vancouver,
- 8 Canada
- 9 ⁴Institute of Oceans and Fisheries, University of British Columbia, Vancouver, Canada

10 ⁵Canadian Institute for Advanced Research, Toronto, Canada.

- 11
- 12 Correspondence to: C. A. Suttle (suttle@science.ubc.ca)
- 13
- 14

Abstract 1

-	

3	Lytic infection of bacteria by viruses releases nutrients during cell lysis and stimulates the		
4	growth of primary producers, but the path by which these nutrients flow from lysates to primary		
5	producers has not been traced. This study examines the remineralisation of nitrogen (N) from		
6	bacterial lysate Vibrio lysates by heterotrophic bacterioplanktone and its transfer to primary	Formatted: F	ont: Not Italic
7	producers. In laboratory trials, Vibrio sp. strain PWH3a was infected with a lytic virus (PWH3a-		
8	P1) and the resulting 36.0 $\mu \underline{\text{mol } \Gamma^1}M$ of dissolved organic N (DON) in the lysate was added to		
9	cultures containing cyanobacteria (Synechococcus sp. strain DC2) $_{\overline{3}}$ and a natural bacterial		
10	assemblage. Based on the increase in cyanobacteria, 74% (26.5 $\mu \underline{\text{mol}}_{4}^{1-1M}$ N) of the DON in the	Formatted: 9	Superscript
11	lysate was remineralised and taken up by Synechococcus sp. strain DC2 cells. Lysate from Vibrio	Formatted: S	Superscript
12	sp. strain PWH3a labeled with $^{15}NH_4^+$ was also added to seawater containing natural microbial		
13	communities, and in four field experiments, stable isotope analysis indicated that the uptake of		
14	habeled <u>15</u> N was 0.09 to 0.70 μ mol N per μ g of chlorophyll <i>a</i> . The results from these experiments	 Formatted: 9	Superscript
15	demonstrate that DON from bacterial lysate Vibrio-lysate can be efficiently remineralised and	Formatted: F	ont: Not Italic
16	transferred to phytoplankton, and provides further evidence that the viral shunt is an important		
17	link in nitrogen recycling in aquatic systems.		

18

19 1 Introduction

- 20 Nutrient recycling is an important link between phytoplankton and heterotrophic
- 21 bacterioplankton (henceforth, referred to as bacteria) in the ocean. Cell death of pPhytoplankton
- 22 die after blooms and and bacteria release dissolved exude organic materialcarbon (DOM)

1	products during growth, which is rich in, both of which can provide a source of carbon for
2	bacterioplankton (e.g. Brussaard et al., 1996, Fouilland et al. 2014). Bacterioplankton contribute
3	to ocean nutrient cycling by degrading waste products from other microbes. Major constituents
4	of the released material are free and combined amino acids (Middelboe and Jørgensen, 2006)
5	that, which are taken up and metabolised by bacteria (Middelboe et al., 1996, 2003). They
6	eanWhen the C:N of DOM is low relative to bacterial nutritional requirements, bacteria
7	deaminate DOM and release ammonium (Goldman et al., 1987; Hollibaugh, 1978), to acquire
8	carbon DOC for energy and growth (e.g. Brussaard et al., 1996, Fouilland et al. 2014);
9	remineralise nutrients such as nitrogen the release of ammonium which can support phytoplankton
10	growth (Haaber and Middelboe, 2009; Shelford et al., 2012; Weinbauer et al., 2011)and those
11	nutrients are then available for uptake by phytoplankton.
12	But these two groups are not the only players in the microbial world. Viruses are significant
13	mortality agents of bacterioplanktonae and phytoplankton in the ocean, and consequently of
14	DOM release (Gobler et al., 1997; Middelboe and Jørgensen, 2006; Noble and Fuhrman, 1999).
15	thereby affecting <u>: consequently</u> affecting pathways and rates of nutrient cycling (Fuhrman,
16	1999; Suttle, 2005, 2007; Wilhelm and Suttle, 1999) when particulate and dissolved organic
17	matter (DOM) is released into the water during cell lysis (Gobler et al., 1997; Middelboe and
18	Jørgensen, 2006: Noble and Fuhrman, 1999). Although many nutrients are released during cell
19	lysis, nitrogen-is typically limitsing to phytoplankton growth in coastal BC waters (e.g. Yin et al.,
20	2017),-which is the location of the current studyMajor constituents of the released material are
21	free and combined amino acids (Middelboe and Jørgensen, 2006), which are taken up and
22	metabolised by bacteria (Middelboe et al., 1996, 2003). When the C:N of DOM is low relative to
23	the nutritional requirements of heterotrophic bacteria, ammonium may be released (Goldman et

1	al., 1987; Hollibaugh, 1978), which evidence suggests-ean support phytoplankton growth	
2	(Haaber and Middelboe, 2009; Shelford et al., 2012; Weinbauer et al., 2011).	
3	High rates of bacterial mortality from viral lysis imply a continuous and substantial flux of DOM	
4	from lysates cells into seawater. Weinbauer et al. (2011) provided evidence of the importance of	
5	this flux by showing that reducing viral abundance decreased the growth of Synechococcus, the	
6	dominant primary producer during their experiments in the Gulf of Mexico and Mediterranean	
7	Sea. It was postulated that Synechococcus growth may have been directly stimulated by uptake	
8	of dissolved organic nutrients released by lysis, or indirectly through the incorporation of these	
9	organics by uninfected bacteria and subsequent remineralisation of inorganic nutrients. Evidence	
10	that mineraliszation of DOM and release of ammonium by uninfected bacteria stimulates	
11	phytoplankton growth was shown by Shelford et al. (2012).	
12	The present contribution demonstrates, in the laboratory and field, that uninfected bacteria	
13	metabolise dissolved organic N (DON) released as the result of viral lysis of bacteria, and release	
14	produce ammonium that supports the growth of phytoplankton.	
15		
16	Formatted: Line spacing: Doub	ble
17	2 Methods	
18	2.1 Laboratory cultures	
19	A non-axenic semi-continuous culture of Synechococcus sp. strain DC2 Synechococcus sp. strain	
20	DC2-(Bigelow, CCMP #1334; WH7803); henceforth, referred to as Synechococcus, was grown	
	9	

1	on artificial seawater (Berges et al., 2001), modified by adding 5 mM bicine (Healey and	
2	Hendzel, 1979), 124-µM NH4Cl instead of nitrate, and 13 µM K2HPO4 <u>, in order-to ensure</u> a-low	
3	concentrations and a low N:P ratio and N-limited growth., Cultures were maintained at 19°C and	
4	continuous light (42 µmol quanta m ⁻² s ⁻¹ photosynthetically active radiation). Experiments were	Formatted: Not Superscript/ Subscript
5	started when cultures entered nutrient N limitation near the end of exponential growth, as	
6	determined by epifluorescence microscopy counts.	
7	The gramnegative marine bacterium Vibrio sp. strain PWH3a (henceforth referred to as Vibrio	
8	PWH3a), also known as Vibrio natriegens strain PWH3a (Suttle and Chen, 1992; Weinbauer et	
9	al., 1997) and Vibrio alginolyticus strain PWH3a (Poorvin et al. 2011), was grown on artificial	
10	seawater with 5 mmol μ^{-4} M bicine, 500 μ mol μ^{-4} µM NH ₄ Cl, 100- μ mol μ^{-4} µM K ₂ HPO ₄ , and 1	
11	$m_{\overline{mol}}^{4}M$ glucose as a carbon source for a C:N:P ratio of 60:5:1. The cultures were grown at	
12	25°C and continuously mixed at 100 rpm. This bacterium was chosen as a model to produce	
13	lysates for the current study because it originated from a coastal marine source, and because it	
14	has an isolated lytic virus (PWH3a-P1). It is assumed that lysate from Vibrio PWH3a is a	Formatted: Font: Not Italic
15	reasonable proxy for dissolved organic material (DOM) produced by viral lysis of marine	
16	heterotrophic bacteria, and throughout the manuscript is referred to as bacterial lysate.	
17	Bacteriophage PWH3a-P1 was added in eight-fold excess abundance (multiplicity of infection of	
18	8:1) to cultures of Vibrio sp. strain PWH3aVibrio PWH3a at the end of exponential growth, as	Formatted: Font: Not Italic
19	determined by absorbance at 660 nm (Ultrospec spectrophotometer, Biochrom, United	
20	Kingdom). The culture was incubated with the virus until absorbance decreased to 20% of the	
21	initial <u>value</u> absorbance (~7 h). The lysate <u>-(Lys)</u> was filtered through a 0.22µm pore-size	
22	Durapore membrane (Millipore, Billerica, MA) and kept at 4°C for approximately 20 h. The	
23	number of cells lysed prior to filtration was determined by flow cytometry as described below	

1	(section 2.4.1). The amount of DON released was determined by the number of cells lysed	
2	multiplied by the measured cellular N quota for Vibrio sp. strain PWH3aVibrio PWH3a, 2.54	Formatted: Font: Not Italic
3	fmol cell ⁻¹ as described below (section 2.4.4). The result is the amount of total N released by	
4	lysis of Vibrio sp. strain PWH3a Vibrio PWH3a.	Formatted: Font: Not Italic
5	Lysates for field experiments were prepared as above, except that Vibrio sp. strain PWH3aVibrio	
6	<u>PWH3a</u> was grown on ¹⁵ NH ₄ Cl instead of ¹⁴ NH ₄ Cl (90+ atom % ¹⁵ N, Isotec, Miamisburg, OH),	Formatted: Font: Not Italic
7	and the filtered lysate was kept at 4°C for 2 to 5 d until the experiments were initiated. Excess	
8	ammonium in the lysate was not removed before adding to the experiments; h. However, the	
9	concentration of added ammonium was significantly less than the calculated increase in	
10	particulate organic N (PON) in every field experiment.	
11	2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain	
11	2.2 Growth of <i>Synechococcus</i> sp. strain DC2 on lysate from <i>Vibrio</i> sp. strain	
11 12	2.2 Growth of <i>Synechococcus</i> sp. strain DC2 on lysate from <i>Vibrio</i> sp. strain PWH3a	
11 12 13	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. 	
11 12 13 14	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations 	
 11 12 13 14 15 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight 	
 11 12 13 14 15 16 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration 	
 11 12 13 14 15 16 17 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration through a 0.45 μm pore-size polyvinylidene fluoride (PVDF) Durapore membrane (Millipore, 	
 11 12 13 14 15 16 17 18 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration through a 0.45 μm pore-size polyvinylidene fluoride (PVDF) Durapore membrane (Millipore, Billerica, MA) as outlined in Suttle et al. (1991). The ultrafiltrate was stored in the dark at 4°C 	
 11 12 13 14 15 16 17 18 19 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration through a 0.45 μm pore-size polyvinylidene fluoride (PVDF) Durapore membrane (Millipore, Billerica, MA) as outlined in Suttle et al. (1991). The ultrafiltrate was stored in the dark at 4°C for a year until used in experiments. Bacteria in the ultrafiltrate grew to a density of 4.18 × 10⁵ 	
 11 12 13 14 15 16 17 18 19 20 	 2.2 Growth of Synechococcus sp. strain DC2 on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration through a 0.45 μm pore-size polyvinylidene fluoride (PVDF) Durapore membrane (Millipore, Billerica, MA) as outlined in Suttle et al. (1991). The ultrafiltrate was stored in the dark at 4°C for a year until used in experiments. Bacteria in the ultrafiltrate grew to a density of 4.18 × 10⁵ cells ml⁻¹, as determined by flow cytometry (described in section 2.4.1), and were used for the 	
 11 12 13 14 15 16 17 18 19 20 21 	 2.2 Growth of Synechococcus sp. strain DC2-on lysate from Vibrio sp. strain PWH3a Water was collected from Queen Charlotte Sound (51° 02.37N, 127° 52.38W) on 2 Oct 2011. Temperature and salinity were 11°C and 32, respectively. Nitrate and phosphate concentrations were 21.3 and 1.9 μM, respectively. The water was ultrafiltered using a 30 kDa molecular weight cut-off tangential flow cartridge (Prep/Scale, Millipore, Billerica, MA) after pre-filtration through a 0.45 μm pore-size polyvinylidene fluoride (PVDF) Durapore membrane (Millipore, Billerica, MA) as outlined in Suttle et al. (1991). The ultrafiltrate was stored in the dark at 4°C for a year until used in experiments. Bacteria in the ultrafiltrate grew to a density of 4.18 × 10⁵ cells ml⁻¹, as determined by flow cytometry (described in section 2.4.1), and were used for the regeneration-remineralisation experiment described below. The bacteria in the ultrafiltrate were 	

1	nutrient concentrations for an extended period, and hence were more representative of in situ
2	communities than a monoculture. They were an essential component of the laboratory study,
3	where they served as remineralisers.
4	The experiment used <u>combined</u> Synechococcus (Syn) sp. strain DC2, lysate from Vibrio sp.
5	strain PWH3aVibrio PWH3a, and the bacterial assemblage (Bac) in ultrafiltrate from Queen
6	Charlotte Sound (Bac) in the following six combinations (Table 1(Figure 1): 1)
7	SynDC2+Bac+lysate was the experimental treatment with DON from lysate; 2) DC2Syn+Bac
8	was a control for Synechococcus sp. strain DC2Synechococcus growth in the presence of the
9	bacterial assemblage without a DON source from lysate; 3) SynDC2+lysate was a control for
10	bacterial remineralisation in the non-axenic Synechococcus sp. strain DC2Synechococcus
11	culture; 4) Bac+lysate was a control to quantify ammonium remineralisation by the bacterial
12	assemblage with the addition of lysate; 5) Bac only was a control to determine the ammonium
13	concentration of the bacterial assemblage by itself; 6) DC2-Syn only was a control to determine
14	the ammonium concentration and increase in cell number activity of Synechococcus sp. strain
15	DC2 <u>Synechococcus</u> by itself. All treatments were in triplicate in 1 H polycarbonate Erlenmeyer
16	flasks (Corning, New York). To each appropriate treatment was added 10 ml of Synechococcus
17	sp. strain DC2 <u>Synechococcus</u> culture, 100 ml of bacterial assemblage, and/or 10 ml of lysate.
18	The experimental treatment volume was 200 ml, and volumes of control treatments were topped
19	up to 200 ml by adding nitrate- and phosphate-free artificial seawater to control treatments.
20	Treatments were incubated in the laboratory at 19°C under continuous light (42 µmol quanta m ⁻²
21	a ⁻¹ of photosymptratically active rediction) and compled daily for call abundance and any investigation
21	s of photosynthetically active radiation) and sampled daily for cell abundance and ammonium

22 concentration.

Formatted: Indent: First line: 0" Formatted: Font: Not Italic Formatted: Font: Not Italic

1 2.3 Uptake of ¹⁵N from lysates in the field

- 2 Water was collected from the surface at Saanich Inlet (SI), the Fraser River Plume (FRP),
- 3 Semiahoo Bay (SB) and Jericho Pier (JP) in southern coastal British Columbia (Table 1
- 4 Treatments in the laboratory experiment to examine increase in *Synechococcus* abundance (Syn),
- 5 in the presence of bacterial lysate from Vibrio PWH3a (Lys) and an environmental bacterial
- Formatted: Font: Not Italic
 Formatted: Font: Not Italic

6 <u>assemblage (Bac).</u>

Treatment	<u>Syn</u>	Bac	Lysate	Media	Aim	•	Formatted: Line spacing: Multiple 1.15 li
	<u>(ml)</u>	<u>(ml)</u>	<u>(ml)</u>	<u>(ml)</u>			Formatted Table
Syn+Bac+lysate	<u>10</u>	<u>100</u>	<u>10</u>	<u>80</u>	Experimental treatment	_	
Syn+Bac	<u>10</u>	<u>100</u>	Ξ	<u>90</u>	Control for Syn growth with bacterial assemblage but not lysate		
Syn+lysate	<u>10</u>	z	<u>10</u>	<u>180</u>	Control for remineralisation in non-		
Bac+lysate	Ξ	<u>100</u>	<u>10</u>	<u>90</u>	axenic Syn culture Control for remineralisation by bacterial assemblage		
Bac only	Ξ	<u>100</u>	±.	100	Control for remineralisation in bacterial		
<u>Syn only</u>	<u>10</u>	Ξ	z	<u>190</u>	assemblage Control for Syn growth and remineralisation	4-	Formatted: Line spacing: Multiple 1.15 li

1	Table 2). SI and FRP samples were collected using Go-Flo bottles mounted on a rosette, which	Formatted: Caption, Space After: 0 pt, Line spacing: Double
2	held a SBE 25 CTD (Sea-Bird, Bellevue, WA) for measuring temperature and salinity. SB and	
3	JP samples were collected by hand using a 20 l carboy rinsed with 10% HCl and ultrapure water,	
4	and temperature and salinity were measured with a hand-held thermometer and refractometer.	
5	Samples for phytoplankton identification were collected from the whole water and preserved	
6	with Lugol's acidic iodine solution (Edler and Elbrächter, 2010). The water was filtered through	
7	118-µm mesh-size Nitex screening to remove large particulates.	
8	For each experiment, 0.22-µm filtered lysate from Vibrio sp. strain PWH3aVibrio PWH3a was	Formatted: Indent: First line: 0"
9	added to Nitex-filtered seawater (SW+lysate) and compared to a control containing 0.22- μ m	
10	filtered seawater (SW). For SB and JP, a third treatment included 0.22-µm filtered seawater and	
11	$0.9\ \mu M$ $^{15}\text{NH}_4\text{Cl}$ (SW+N), to confirm that N stimulated production and that another factor was	
12	not limiting phytoplankton growth, and to mirror the estimated N contributed by the lysate in the	
13	SW+lysate treatment. Treatments were in triplicate. SI and FRP experiments were done in an on-	
14	deck flow-through incubator with neutral density screening to reduce sunlight to approximate in	Formatted: Font: Not Italic
15	situ irradiance. For SB and JP, experiments were done at 19°C and 42 μmol quanta $m^{\text{-2}} s^{\text{-1}}$	
16	continuous irradiance. Samples for cell abundance and ammonium concentration were collected	
17	every 6 to 9 h for 1 to 2 d; samples for chlorophyll a were collected at the initial and final time	
18	points, and samples for PO ¹⁵ N were collected at the final time point.	
19	2.4 Sample Analysis	

L U

20 2.4.1 Cell and virus counts

21 One ml samples were fixed with a final concentration of 0.5% gluteraldehyde for bacteria and

22 viruses, and 2% formaldehyde for phytoplankton, and flash frozen in liquid nitrogen and stored

1	at -80°C. Bacteria and viruses were stained with SYBR Green I (Sigma-Aldrich, St. Louis, MO),	
2	while picophytoplankton were left unstained, immediately before counting by flow cytometry	
3	(FACSCalibur, Becton Dickinson, Franklin Lakes, NJ) following the procedures of Brussaard	
4	(2004), Gasol and Del Giorgio (2000), and Olson et al. (1993). Larger phytoplankton were	
5	preserved with Lugol's solution, and the dominant taxa identified using a settling chamber (Edler	
6	and Elbrächter, 2010) and light microscope (Axiovert 10, Zeiss, Canada).	
7	2.4.2 Nutrient and chlorophyll <i>a</i> collection and analysis	
8	Samples of 25 ml were filtered through acid-rinsed syringes fitted with MilliQ-soaked 0.45 - μ m	
9	pore size, 25-mm diameter, cellulose-nitrate filters (Whatman, United Kingdom) in a Swinnex	
10	filter holder (Millipore, Billerica, MA). The first 15 ml were used to rinse the <u>15 ml15-ml</u> acid-	
11	rinsed polypropylene screw-cap collection tubes (Sarstedt, Germany), before collecting and	
12	freezing the final 10 ml at -20°C for subsequent nutrient analysis. The filters were folded, placed	
13	in aluminum foil packages, and frozen $\frac{dessicated}{desiccated}$ at -20°C until chlorophyll a was	
14	extracted using 90% acetone and sonication, and analysed fluorometrically (Turner Designs,	
15	10AU fluorometer, Sunnyvale, CA) following Parsons et al. (1984).	
16 17	Nitrate+nitrite and phosphate concentrations were analyzed on a Bran & Luebbe AutoAnalyzer 3 - using air-segmented continuous-flow analysis (Technicon, Oakland, CA), while ammonium	Formatted: Indent: First line: 0"
18	concentrations were determined fluorometrically (Holmes et al., 1999) using a TD-700	

19 fluorometer (Turner Designs, Sunnyvale, CA).

1	2.4.3 PO ¹⁵ N size-fractionation, collection and determination of ¹⁵ N enrichment	
2	For the field experiments, the ¹⁵ N incorporated was determined by collecting the particulate	
3	material onto combusted (450°C for 4 h) glass-fibre (GF) filters (nominal pore size of 0.7 $\mu m,$	
4	Whatman, United Kingdom), which were subsequently dried at 50°C for 2 d. Prior to collection	
5	onto the GF filters, the SI and FRP samples were poured into a Sterifil (Millipore, Germany)	
6	filtration tower fitted with a 1- μ m pore-size polycarbonate filter (AMD Manufacturing, Canada).	
7	While the sample was being gently filtered, the phytoplankton were kept in suspension and	
8	rinsed, while the volume was maintained by adding 200 ml of ultrafiltrate. In this way, cells	
9	captured by the 1- μ m filter were retained for analysis of isotopic enrichment, while smaller cells	
10	passed through. Samples for cell counts were taken before and after washing to determine the	
11	proportion of cells lost by this process. Samples that were not rinsed with ultrafiltrate were also	
12	filtered onto combusted GF filters to estimate the amount of ¹⁵ N uptake that was due to bacteria	
13	that passed through the 1- μ m pore size membrane. These GF filters were not rinsed with	
14	ultrafiltrate after collecting the filtering with sample; hence, if there was which may have	
15	overestimated the uptake of 15 N for the <1 μ m size fraction from residual noncellular PO 15 N in	Formatted: Super
16	the <1- μ m size fraction, uptake by the bacterial size fraction would be overestimated. H _i	Formatted: Super
17	however, there is no reason to expect significant noncellular PO ¹⁵ N in the $<1-\mu m$ size fraction,	
18	and it is uptake by the uptake of interest is by >1 -µm size fraction, which was washed, that is the	
19	focus of this study. The SW+N treatment (SB and JP) was filtered directly onto GF filters	
20	without rinsing. The δ $^{15}\!\text{N-PON}$ and total PON on the filters was determined at the Stable	
21	Isotope Laboratory at Boston University on a GV Instruments IsoPrime isotope-ratio mass	
22	spectrometer and a Eurovector elemental analyzer, calibrated against atmospheric N2 and IAEA	
23	standards N-1, N-2, and N-3 (replicate analysis within $\pm 0.2\%$). Due to instrument error, the	

rscript rscript

- 1 stable-isotope data for SI and FRP are not replicated; whereas, duplicates for JP and triplicates
- 2 for SB were measured.
- 3 2.4.4 Particulate C and N analysis

4	N cell quotas of Synechococcus sp. strain DC2 and Vibrio sp. strain PWH3aVibrio PWH3a were	Formatted: Font: Not Italic
5	determined from cultures grown using the same media and conditions as described in section 2.1.	
6	Cultures at the -entering stationaryend of exponential phase for Synechococcus sp. strain	
7	DC2 <u>Synechococcus</u> as determined by epifluorescence microscopy counts, and mid-exponential	
8	phase for Vibrio sp. strain PWH3aVibrio PWH3a as determined by absorbance, were filtered	Formatted: Font: Not Italic
9	onto combusted GF filters, dried at 50°C for two days, and placed in a desiccator until packaged	
10	into aluminum foil and analyzed on a CHN Elemental Analyser (Carlo Erba NA-1500).	
11	2.4.5 Calculations and statistical analysis	
12	Total uptake rates of ¹⁵ N in the field experiments were calculated by dividing the total particulate	
13	¹⁵ N on the filters by the volume filtered. Normalised uptake rates were calculated by dividing the	
14	total uptake rate by the initial chlorophyll a concentration for each incubation. The percent	
15	contribution of cells >1 μ m to total ¹⁵ N uptake was calculated by dividing the total particulate	
16	¹⁵ N on the filters of the 'washed' samples (adjusted for decrease in phytoplankton abundance) by	
17	the ¹⁵ N on the unwashed samples.	
18	The differences between initial and final time points for Synechococcus abundances and	
19	ammonium concentrations were normally distributed and with equal variances according to	
20	Shapiro-Wilk and Levene's tests, respectively; hence, the significance of the results was	
21	analysed using one-way analysis of variance (ANOVA). The differences between initial and	

1 final time points for bacterial abundances in the laboratory experiment, while normally

2 distributed, had unequal variances, and therefore a Kruskal-Wallis test was performed to test for

3 significant differences.

4 The differences between initial and final time points for ammonium and chlorophyll *a*

5 concentrations and bacteria and picophytoplankton abundances were normally distributed

6 (except for the picophytoplankton data for treatment SW in SI, which had only two samples),

7 and with equal variances (except the bacteria data for SI and JP). Significant differences between

8 treatments were determined using two-tailed Student's *t* tests. Data which did not meet the

9 assumptions for the Student's t test were analysed for significant differences using the non-

10 parametric Mann-Whitney U test.

11 Because the final time point of the bacterial data for the SW+lysate treatment in SI was

12 approximately six-fold lower than the previous time point, concurrent with a significant increase

13 in viral abundance (data not shown), significance between the two treatments was calculated for

14 the differences between the initial and the fourth time points. The data were normally distributed

15 and had equal variances (Shapiro-Wilk and Levene's tests), and so a Student's *t* test was run.

1 3 RESULTS

2		
3	3.1 Response of N-limited <i>Synechococcus</i> sp. strain DC2-to the addition of	
4	lysate	
5	There was a greater increase in the abundance of N-limited Synechococcus sp. strain	
6	DC2 <u>Synechococcus</u> cells exposed to lysate and a remineralising bacterial assemblage than when	
7	grown with each component separately; the greatest increase occurred in the treatment	
8	SynDC2+Bac+lysate (Figure 1A), with final abundances significantly different among all	
9	treatments (p<0.05). Ammonium decreased from ~1.0 μ mol 1 ⁻⁴ μ M to less than 0.2 μ mol 1 ⁻⁴ μ M	
10	except in the Bac+lysate treatment, in which it increased to $8.24 \pm 0.04 \frac{\mu \text{mol} + \mu}{\mu} M$ (Figure 1B),	
11	significantly higher than in the other treatments (p<0.05). Bacterial abundance increased in all	
12	treatments, but the greatest increases occurred in treatments with lysate addition (Figure 1C).	
13	Bacterial abundance increased in the Syn+lysate treatment, because bacteria were present in the	
14	non-axenic <u>Synechococcus sp. strain DC2Synechococcus</u> and were remineralising (see Figure 1C	Formatted: Font: Italic
15	Syn+lysate). The bacteria added with the ultrafiltrate (Bac) simply added additional	
16	"environmental" bacteria to the treatment and were associated with higher rates of ammonium	
17	regeneration.	
18	The proportion of N released by lysis of cultures of <i>Vibrio</i> sp. strain PWH3aVibrio PWH3a that	Formatted: Font: Not Italic
19	was taken up by Swashooogaaus op strain DC2 Synachooogacus cells was calculated using the N	
20	cell quotes for Vibrio sp. strain DWH2a Vibrio PWH2a of 2.54 fmol cell ⁻¹ and for Synachococcus	Formatted: Font: Not Italic
20	en strain DC2 of 7.83 fmol cell ⁻¹ Based on the decrease in Vibrio sp. strain PWH3aVibrio	
$\begin{vmatrix} 21\\ 22 \end{vmatrix}$	DWH3 a calls from viral infection, multiplied by the N call quote of <i>Vibrio</i> an atrain	Earmatted: East: Not Italia
22	<u>r wrisa</u> cens nom vnai miection, multiplied by me iv cen quota of <i>viorio</i> sp. strain	

1	PWH3a<u>Vibrio</u> PW	<u>H3a</u> , a	pproxi	mately 36	5.0 <u>µmol</u>	$1^{-1}\mu M$ N was added to each incubation from		Formatted: Font: Not Italic
2	bacterial lysis (Tab	ole 3).	The me					
2	an strain DC2 Sur	, , , , , , , , , , , , , , , , , , ,			minanali	$\frac{1}{1} \int \frac{1}{2} dx$		
3	sp. stram DC2 <u>syne</u>	<u>ecnoco</u>	<u>eccus</u> ce	ens via re	mmeran	sation by bacteria was 74%.		
4	3.2 Uptake of	N fro	om ba	cterial	lysate b	y primary producers in field studies		
5	Lysate from ¹⁵ N-la	ıbelled	Vibrio	sp. strai i	n PWH3:	AVibrio PWH3a cultures was added to seawater	(Formatted: Font: Not Italic
6	from Saanich Inlet	(SI), t	he Fras	ser River	Plume (I	FRP), Semiahoo Bay (SB), and Jericho Pier (JP;		
7	Table 1 Treatment	s in th	e labora	atory exp	eriment t	o examine increase in <i>Synechococcus</i>		
,	<u>ruble</u> r <u>reatment</u>	<u>5 III (II)</u>			<u>erment</u>	o examine mercuse in <i>Syncenoesceus</i>		
8	abundance (Syn), i	in the p	presenc	e of bact	erial lysa	te from Vibrio PWH3a (Lys) and an		Formatted: Font: Not Italic
0	anvironmontal has	torial (acombi	laga (Pag			1	Formatted: Font: Not Italic
9	environmentar bac		issemu	lage (Dac	<u>.</u>			
				-			0	
		0	D		Madia	A 1100		Formatted: Line spacing: Multiple 1.15 li
	<u>Treatment</u>	<u>Syn</u>	Bac	Lysate		Am		
	<u>Treatment</u>	<u>Syn</u> (ml)	Bac (ml)	<u>Lysate</u> (ml)	<u>(ml)</u>	<u>Ann</u>		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u>	<u>Syn</u> (ml) <u>10</u>	<u>Bac</u> (ml) 100	<u>Lysate</u> (ml) <u>10</u>	<u>(ml)</u> <u>80</u>	Experimental treatment		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> Syn+Bac	<u>Syn</u> (ml) <u>10</u> 10	<u>Bac</u> (ml) <u>100</u> 100	<u>Lysate</u> (ml) <u>10</u>	<u>(ml)</u> <u>80</u> 90	Experimental treatment Control for Syn growth with bacterial		Formatted Table
	<u>Syn+Bac+lysate</u> <u>Syn+Bac</u>	<u>Syn</u> (ml) <u>10</u> <u>10</u>	Bac (ml) 100 100	<u>Lysate</u> (ml) <u>10</u> <u>-</u>	<u>(ml)</u> <u>80</u> <u>90</u>	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> <u>Syn+Bac</u> <u>Syn+lysate</u>	<u>Syn</u> (ml) <u>10</u> <u>10</u> <u>10</u>	<u>Bac</u> (ml) <u>100</u> <u>100</u> <u>-</u>	<u>Lysate</u> (ml) <u>10</u> <u>-</u> <u>10</u>	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u>	Experimental treatment <u>Control for Syn growth with bacterial</u> <u>assemblage but not lysate</u> <u>Control for remineralisation in non-</u>		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> <u>Syn+Bac</u> <u>Syn+lysate</u>	<u>Syn</u> (ml) <u>10</u> <u>10</u> <u>10</u>	Bac (ml) 100 100 =	<u>Lysate</u> (<u>ml</u>) <u>10</u> <u>-</u> <u>10</u>	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u>	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> <u>Syn+Bac</u> <u>Syn+lysate</u> <u>Bac+lysate</u>	<u>Syn</u> (ml) <u>10</u> <u>10</u> <u>10</u> <u>-</u>	Bac (ml) 100 100 - 100	<u>Lysate</u> (ml) <u>10</u> - <u>10</u> <u>10</u>	<u>(ml)</u> 80 90 180 90	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> <u>Syn+Bac</u> <u>Syn+lysate</u> <u>Bac+lysate</u>	<u>Syn</u> (ml) <u>10</u> <u>10</u> <u>10</u> <u>-</u>	Bac (ml) 100 100 - 100 - 100	<u>Lysate</u> (ml) <u>10</u> - <u>10</u> <u>10</u>	<u>(ml)</u> 80 90 180 90	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial assemblage Control for remineralisation in bacterial		Formatted Table
	Treatment Syn+Bac+lysate Syn+Bac Syn+lysate Bac+lysate Bac only	<u>Syn</u> (ml) 10 10 10 = -	Bac (ml) 100 100 = 100 100	<u>Lysate</u> (ml) 10 - 10 10 -	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u> <u>90</u> <u>100</u>	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial assemblage Control for remineralisation in bacterial assemblage		Formatted Table
	<u>Treatment</u> <u>Syn+Bac+lysate</u> <u>Syn+Bac</u> <u>Syn+lysate</u> <u>Bac+lysate</u> <u>Bac only</u> Syn only	Syn (ml) 10 10 10 = = 10	Bac (ml) 100 - - 100 - -	<u>Lysate</u> (ml) <u>10</u> - <u>10</u> <u>10</u> -	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u> <u>90</u> <u>100</u> 190	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial assemblage Control for remineralisation in bacterial assemblage Control for Syn growth and		Formatted: Line spacing: Multiple 1.15 li
	Treatment Syn+Bac+lysate Syn+Bac Syn+lysate Bac+lysate Bac only Syn only	Syn (ml) 10 10 = = 10	Bac (ml) 100 = 100 = 100 100 =	<u>Lysate</u> (ml) 10 - 10 10 - - - -	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u> <u>90</u> <u>100</u> <u>190</u>	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial assemblage Control for remineralisation in bacterial assemblage Control for Syn growth and remineralisation		Formatted: Line spacing: Multiple 1.15 li
10	Treatment Syn+Bac+lysate Syn+Bac Syn+lysate Bac+lysate Bac only Syn only	Syn (ml) 10 10 10 - - - 10	Bac (ml) 100 = 100 = 100 100 =	<u>Lysate</u> (ml) 10 - 10 10 - - -	<u>(ml)</u> <u>80</u> <u>90</u> <u>180</u> <u>90</u> <u>100</u> <u>190</u>	Experimental treatment Control for Syn growth with bacterial assemblage but not lysate Control for remineralisation in non- axenic Syn culture Control for remineralisation by bacterial assemblage Control for remineralisation in bacterial assemblage Control for Syn growth and remineralisation		Formatted Table Formatted: Line spacing: Multiple 1.15 li

Table 2). Changes were followed in ammonium concentrations and in abundances of bacteria 1 2 (Figure 3) Bacterial abundances in SW+lysate treatments were significantly higher than 3 in samples without lysate (SW) by the final time point for FRP, SB, and JP (p<0.05). In the SI 4 sample, bacterial abundances in the treatment with lysate added (SW+lysate) increased almost 5 tenfold before decreasing to below initial values by the final time point, concurrent with an 6 increase in viral abundance (data not shown). There were no significant differences between 7 experimental and control treatments for picophytoplankton abundances, or for chlorophyll a 8 concentrations atim the other stations (data not shown). A lack of picophytoplankton abundance 9 increase may be due to competition by the larger size fraction (>1 μ m, presumably eukaryotic phytoplankton), and an increase in chlorophyll *a* concentrations may have been present, but not 10 11 significant over the experiment time. Ammonium concentrations in SI, SB, and JP decreased to 12 less than 0.2 umol 1⁻¹ µM. In FRP, ammonium concentrations in the SW+lysate treatment 13 decreased to less than 0.04 µmol 1⁻¹M by 19.75 h to less than 0.04 µM before both ammonium 14 and bacterial abundance increased concurrentlyclimbing again to 0.25 µM, correlated with a 15 spike in bacterial abundance. There was significantly greater drawdown of ammonium in the 16 SW+lysate treatment atim every station except SB (p<0.05). The increase of bacteria and greater 17 ammonium uptake at most stations indicates that bacterial growth and overall uptake of 18 ammonium was-were enhanced in these samples by the addition of bacterial lysate. 19 There was uptake of lysate-derived N by cells >1 µm, which would be comprised primarily of 20 phytoplankton. The addition of lysate to the SW+lysate treatment for each station contributed 21 approximately 67.7 μ mol $l^{-1}\mu$ M for SI and FRP, and 0.44 μ mol $l^{-1}\mu$ M for SB and JP (Table 22 3). In order to To more closely reflect ambientadd a more reasonable concentrations of N to the 23 samples, the concentration amount of lysate N added to SB and JP was greatly reduced compared

Formatted: Caption, Space After: 0 pt, Line spacing: Double

1	to the other two previous experiments. Stable isotope data collected from <u>PON particulate</u>
2	organic material collected on 0.7-µm pore-size glass-fibre filters indicated that there was uptake
3	of lysate by the particulate fraction (Table 4; Figure 3). From the ¹⁵ N data, the calculated
4	contribution to the total uptake by cells in the >1 μ m size fraction was 46.3% (SI), 47.6% (FRP),
5	and 100% (SB and JP). The large (>50%) contribution of the bacterial size fraction to 15 N uptake
6	in SI and FRP (Figure 3) corresponded to an increase in bacterial abundances (Figure 3).
7	
8	There was confirmed -uptake of $^{15}NH_{4-}$ in the <u>SW+N</u> treatment with ^{15}N addition (SW+N) , with
9	$0.61 \pm 0.20 \mu \text{mol}l^{-1}\mu \text{mol}l^{-1}M \text{N}$ (SB) and $0.44 \pm 0.26 \mu \text{mol}l^{-1}\mu \text{mol}l^{-1}M \text{N}$ (JP) taken up into the

10 particulate fraction (corrected for 90 atom % ${}^{15}N_{a}$; data not shown); therefore, a- Any ammonium 11 produced by remineralisation of lysate in the SW+Lys treatment, therefore, <u>cw</u>could be used by 12 the microbes at these two stations. Formatted: Not Highlight

Formatted: Superscript
Formatted: Superscript

13

14 4 DISCUSSION

15

Experiments in the laboratory and with natural systems <u>show-demonstrate</u> that N in viral lysates can be remineralised by bacterial communities to fuel primary production. Studies have shown that lysis by viruses produces bioavailable <u>dissolved organic matterDOM</u> (e.g. Middelboe et al. 2003, Poorvin et al. 2004), and that phytoplankton lysate can be remineralised (Gobler et al., 1997). Other studies have provided evidence that ammonium from remineralisation may

21 stimulate primary production (Haaber and Middelboe, 2009; Shelford et al., 2012; Weinbauer et

1	al., 2011); yet, data are lacking on the mechanism involved in the transfer of N to primary
2	producers from bacterial lysate. Vibrio lysates produced by viral infection. This study shows that
3	phytoplankton in culture and in environmental samples take up N from bacterial lysate Vibrio
4	lysates, and that ammonium produced through bacterial remineralisation of DON enables that
5	uptake.

6 4.1 Remineralisation of nitrogen in bacterial lysate Vibrio lysates

7 The increase in bacterial abundance in all experiments, along with the production of ammonium 8 in the laboratory experiment, establishes that bacterial lysate bacterial lysates produced through 9 viral infection are available for bacterial growth and potential ammonium remineralisation. In the 10 laboratory-experiment, every treatment with added lysate had a greater increase of bacteria than 11 treatments without lysate, indicating that the bacteria used the added lysate for growth. For all 12 field studies, bacterial abundances increased significantly in the treatments with lysate over the 13 controls (p<0.05; Figure 3Figure 2), demonstrating uptake of lysis products by the bacterial 14 communities.

15 Ammonium concentration increased eightfold in laboratory treatments with lysate added to 16 bacteria (Bac+lysate; Figure 1B) from remineralisation of N in the lysate by the bacterial 17 community. In the other treatments, either lysate was not added as a source of DON (treatment 18 Bac), or Synechococcus sp. strain DC2Synechococcus was present and consumed the ammonium 19 that was produced (the remainder of the treatments). There was no measured ammonium 20 production in the field studies except in the Fraser River Plume (FRP;-Figure 2Figure 3). The increase in ammonium at the final time point in FRP may be due to the concurrent sharp-rapid 21 22 increase in bacteria, which likely resulted in increased ing ammonium remineralisation. There

-	Formatted: Font: Not Italic
-	Formatted: Caption, Space After: 0 pt, Line spacing:

Formatted: Font: Not Italic

Formatted: Font: Not Italic

	Double
-	Formatted: Font: Not Italic
-	Formatted: Font: Not Italic

1	was some ammonium in the added lysate (see Figure 1B, T=0), which was present because the	
2	Vibrio sp. strain PWH3aVibrio PWH3a was in exponential growth to facilitate maximum lysis	Formatted: Font: Italic
3	by PWH3a-P1, and so not all the ammonium in the medium was had been taken up by the	Formatted: Font: Not Italic
4	bacteria prior to lysis. However, theis amount that was added was minor relative to the	
5	ammonium that was produced by remineraliszation. The data clearly show that Viral lysates can	
6	bewere used by the bacterial community for growth, and excess N remineralised to produce	
7	ammonium.	
8	Although viruses (PWH3a-P1) were present in the bacterial lysate, it is unlikely that they would	Formatted: Font: Not Italic
9	infect members of the bacterial community. Vibrio phages are typically species specific, and	Formatted: Font: Italic
10	often strain specific (Comeau et al. 2005), and experiments have shown-that there was	
11	undetectable binding of PWH3a-P1 to natural populations of bacteria, even in the environment	
12	from which it was isolated (Hennes et al. 1995). Finally, even if PWH3a-P1 was able to bind to	
13	Vibrio spp., the estimated abundance of Vibrio spp. in BC coastal waters ranges from ~1 ml ⁻¹ to	Formatted: Font: Italic
14	several hundred ml ⁻¹ (Comeau and Suttle 2007), and is not enough to significantly affect N	Formatted: Font: Italic
15	release. MoreoverRegardless, this would not affect the observation that N released by viral lysis	
16	is ultimately-incorporated into cells.	
17	4.2 Phytoplankton uptake of remineralised nitrogen	
18	This study shows that remineralised N from viralus lysis of bacteria can fuel the growth of	
19	primary producers. Observations of increased ammonium production in the presence of viral	
20	lysis (Haaber and Middelboe, 2009; Shelford et al., 2012), are extended by this study, which	
21	demonstrates that bacteria remineralise the organic N in lysates and produce ammonium, which	
22	is then taken up by phytoplanktonprimary producers. The use of a cultivated bacterium for lysate	

1	production limits generalisation of quantitative data to environmental systems; however, the	
2	observation that 74% of the N in bacterial lysates was taken up by cultures of Synechococcus sp.	
3	strain DC2Synechococcus provides strong evidence that N from lysates are available tomay	
4	provide a large portion of the N taken up by phytoplankton.	
5	DON from bacterial lysates was remineralised by the bacterial assemblage into ammonium and	
6	used to fuel primary production. In the laboratory experiment, the increase in ammonium in the	
7	Bac+lysate treatment did not occur in the treatment with Synechococcus sp. strain	
8	DC2 <u>Synechococcus</u> (SynDC2+Bac+lysate; Figure 1B), indicating that the remineralised	
9	ammonium was taken up and leading to by Synechococcus sp. strain DC2; this is consistent with	
10	the concurrent increase in Synechococcus sp. strain DC2Synechococcus cells (Figure 1A). The	
11	increase in Synechococcus sp. strain DC2-in treatment Syn+lysate may have resulted from	Formatted: Font: Italic
12	remineralisation by contaminating bacteria (bacteria in the non-axenic Synechococcus sp. strain	Formatted: Font: Italic
13	DC2Synechococcus culture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in the	Formatted: Font: Italic
13 14	DC2Synechococcus culture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated	Formatted: Font: Italic Formatted: Font: Not Italic
13 14 15	DC2Synechococcus culture, or from uninfected <i>Vibrio</i> sp. strain PWH3aVibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant that this is unlikely. The uptake of ⁴⁵ N in seawater	Formatted: Font: Italic Formatted: Font: Not Italic
13 14 15 16	DC2Synechococcus culture, or from uninfected <u>Vibrio sp. strain PWH3a</u> Vibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawater samples by organisms >1 μm (Figure 4) also demonstrates that remineralised N in bacterial	Formatted: Font: Italic Formatted: Font: Not Italic
 13 14 15 16 17 	DC2Synechococcus culture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant-that this is unlikely. The uptake of ¹⁵ N in seawater samples by organisms >1 μm (Figure 4) also demonstrates that remineralised N in bacterial lysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et	Formatted: Font: Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 	DC2Synechococcus culture, or from uninfected <u>Vibrio sp. strain PWH3a</u> Vibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawater samples by organisms >1 µm (Figure 4) also demonstrates that remineralised N in bacterial lysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011).	Formatted: Font: Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 	DC2Synechococcus culture, or from uninfected <u>Vibrio sp. strain PWH3aVibrio PWH3a in the</u> lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawater samples by organisms >1 µm (Figure 4) also demonstrates that remineralised N in bacterial lysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011).	Formatted: Font: Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 19 	DC2Synechococcus culture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in the lysate), or possibly from direct DON uptake, although preliminary experiments suggestindicated that direct uptake of DON was not significant that this is unlikely. The uptake of ⁴⁵ N in seawater samples by organisms >1 µm (Figure 4) also demonstrates that remineralised N in bacterial lysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011). All four field studies showed that ¹⁵ N from labeled bacterial lysate bacterial lysate was taken up	Formatted: Font: Italic Formatted: Font: Not Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 19 20 	DC2Synechococcusculture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in thelysate), or possibly from direct DON uptake, although preliminary experiments suggestindicatedthat direct uptake of DON was not significant-that this is unlikely. The uptake of ¹⁵ N in seawatersamples by organisms >1 µm (Figure 4) also demonstrates that remineralised N in bacteriallysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011).All four field studies showed that ¹⁵ N from labeled bacterial lysate bacterial lysate was taken upby the >1-µm fraction (Figure 3), whichdemonstrates that remineralised N in Vibrio-lysate	Formatted: Font: Italic Formatted: Font: Not Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 19 20 21 	DC2Synechococcus culture, or from uninfected Vibrio sp. strain PWH3aVibrio PWH3a in theIysate), or possibly from direct DON uptake, although preliminary experiments suggestindicatedthat direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawatersamples by organisms >1 µm (Figure 4) also demonstrates that remineralised N in bacterialIysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer etal., 2011).All four field studies showed that ¹⁵ N from labeled bacterial lysate bacterial lysate was taken upby the >1-µm fraction (Figure 3), which –demonstrates that remineralised N in Vibrio-supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011).	Formatted: Font: Italic Formatted: Font: Not Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 19 20 21 22 	DC2Synechococcus culture, or from uninfected <u>Vibrio sp. strain PWH3aVibrio PWH3a in the</u> Iysate), or possibly from direct DON uptake, although preliminary experiments suggestindicatedthat direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawatersamples by organisms >1 μm (Figure 4) also demonstrates that remineralised N in bacteriallysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011).All four field studies showed that ¹⁵ N from labeled bacterial lysate bacterial lysate was taken upby the >1-μm fraction (Figure 3), whichdemonstrates that remineralised N in <i>Vibrio</i> -lysatesupports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011). The reason that increases in phytoplankton or chlorophyll were not observed is likely	Formatted: Font: Italic Formatted: Font: Not Italic Formatted: Font: Not Italic
 13 14 15 16 17 18 19 20 21 22 23 	DC2Synechococcus culture, or from uninfected <i>Vibrio</i> sp. strain PWH3aVibrio PWH3a in thelysate), or possibly from direct DON uptake, although preliminary experiments suggestindicatedthat direct uptake of DON was not significant that this is unlikely. The uptake of ¹⁵ N in seawatersamples by organisms >1 μm (Figure 4) also demonstrates that remineralised N in bacteriallysate supports primary production, as suggested previously (Shelford et al., 2012; Weinbauer etal., 2011).All four field studies showed that ¹⁵ N from labeled bacterial lysate bacterial lysate was taken upby the >1-μm fraction (Figure 3), which ,-demonstrates that remineralised N in <i>Vibrio</i> -lysatesupports primary production, as suggested previously (Shelford et al., 2012; Weinbauer et al., 2011). The reason that increases in phytoplankton or chlorophyll were not observed is likelybecause there are often significant lags between incorporation of ammonium and growth in N-	Formatted: Font: Italic Formatted: Font: Not Italic Formatted: Font: Not Italic

1	limited phytoplankton (Collos, 1986, Davidson et al., 1992). This is likely largely the result of
2	uptake by phytoplankton which dominate this size fraction. As well, these rates represent
3	minimum estimates, as ¹⁵ N released through rapid recycling of lysis products (Noble and
4	Fuhrman, 1999) bacterial remineralisation or phytoplankton exudation (Bronk and Ward, 2000)
5	is not included <u>Uptake of DO¹⁵N concurrent with ¹⁵NH_€ could also have resulted in an</u>
6	underestimation of N uptake from remineralisation. The ability of phytoplankton to take up DON
7	directly varies greatly, and is dependent on factors such as trophic status of the environment and
8	the species of phytoplankton present (Berman and Bronk, 2003), but it-is generally less
9	importanttaken up with less frequency than are inorganic sources of N. Although the field
10	experiments do not provide quantitative estimates of the amount of N in lysate that ean bewas
11	taken up, the results corroborate those from the laboratory experiment and indicate that N uptake
12	from the production of lysates occurs. An-The anomalous result infor the SB experiment was-that
13	the estimated <u>uptake</u> amount of N taken up (0.67 \pm 0.02 μ mol $l^{-1}\mu$ M N; corrected for 90 atom %
14	¹⁵ N; Figure 3) was higher more than the calculated <u>N addedamount of N in the lysate addition</u>
15	(0.44 <u>µmol l⁻¹µM</u> N; Table 3) suggests that ; htheowever, the N in the lysate was underestimated.
16	This is plausible, as lysate N was calculated contribution is an estimate calculated from the
17	cellular N quota multiplied by and the decline in abundance of reduction in cell number of Vibrio
18	sp. strain PWH3aVibrio PWH3a, and cell count data were not replicated some error may derive
19	from these calculations and from a lack of replicates in the cell number data. Nonetheless, the
20	data are convincingit is reasonable to conclude that most of the lysate added in the SB and JP
21	experiments was incorporated by primary producers, since at both stations 100% of the estimated
22	¹⁵ N uptake was into the >1 μ m fraction. <u>Interestingly, we did not find a relationship between</u>
23	ambient concentrations of nitrate, phosphate, or ammonium, and ammonium uptake despite

Formatted: Superscript
Formatted: Superscript
Formatted: Subscript

Formatted: Font: Italic

Formatted: Font: Not Italic

1	evidence of an increase in uptake of lysis products with lower trophic status in previous studies	
2	(e.g. Noble and Fuhrman, 1999), although this could be due to all of all the stations in these	
3	studies being relatively productive to the current study only having four data points.	
4	Nonetheless, not all of the N in lysates was taken up by primary producers. Although bacteria	
5	con remineralize lyzeta (Pac lyzeta: Figure 1P) and Swacheseasus on strain	
5	can remineranse rysate (Bac+rysate, Figure 1B), and Synetholocetus sp. stram	
6	DC2 <u>Synechococcus</u> can use remineralised N from co-occurring bacteria (<u>SynDC2</u> +lysate; Figure	
7	1A), in the laboratory only 74% of the N in the lysate contributed to an increase in	
8	Synechococcus sp. strain DC2Synechococcus abundance. As well, in the FRP and SI samples,	
9	only about half of the ^{15}N uptake was into the >1 μm fraction. Discrepancies between N uptake	
10	and phytoplankton growth is likely because of the lag between ammonium uptake and growth	
11	that is observed in many N-limited phytoplankton (Collos, 1986), and may be in partly be	
12	because phytoplankton can take up substantially more N than they incorporate because of DON	
13	releasehave been observed to take up almost 74% more N than the net amount incorporated	
14	(Bronk et al., 1994); thus, in our experiments more N may have been taken up than was	
15	measured, because of DON release. Bronk et al. (1994) also measured DON turnover times in	
16	seawater samples of 4 to 18 d, much longer than in our incubations; however, the DON in	
17	seawater would also include phytoplankton exudates and refractory DON that would have a	
18	different composition than bacterial lysate Vibrio lysates. As well, longer Hence, the incubation	Formatted: Font: Not Italic
19	times may have allowed the in situ bacterial communities to break down more complex DON in	
20	the lysate and regenerate additional ammonium that could bein our study may not have been long	
21	enough to allow for uptake of more recalcitrant DON, which might have been incorporated with	
22	time (Middelboe and Jørgensen, 2006), but would add the additional complication of secondary	
23	release and uptake of labelled DON. For SI and FRP, the lysate N was added at a relatively high	

1	concentrations (Table 3), which may also have contributed led to incomplete incorporation. In		
2	contrast, the lysate N was added at a much lower concentrations in the SB and JP experiments,		
3	and the ¹⁵ N in the lysate was completely recovered in the particulate fraction, indicating that the		
4	DON in the lysate N was incorporated when added at more natural concentrations. Finally, the		
5	incomplete transfer of N from lysate of Vibrio sp. strain PWH3a to Synechococcus sp. strain		
6	DC2 <u>Synechococcus</u> in the laboratory, relative to the complete uptake of ¹⁵ N at SB and JP, may		
7	indicate that complete remineralisation of the DON depends on the make-up of the bacterial		
8	assemblage, or else that the N uptake of Synechococcus sp. strain DC2Synechococcus was		
9	saturated. some phytoplankton in natural waters may take up DON directly (Bronk et al., 2007).		
10	Laboratory experiments were conducted on The Synechococcus sp. strain DC2 Synechococcus		Formatted: Font: Italic
11	cultures, were grown under a low N/P ratio and which-were transitioning from exponential		
12	growth to ensure N limitation would be the limiting nutrient but not staryation and potential cell		
12	death with release of DOM . The positive offect of Vibric lysate addition on the abundance of		Formatted: Font: Italic
13	Sumachagagages on strain DC2 is indicative of its N limitation. The Sumachagagages on strain DC2		Formattedi Fonti Italia
14	sultures were added as the calls were beginning to slow from automatical growth indicating	\leq	Formatted: Font: Italic
15	cuttures were added as the cents were beginning to slow from exponential growth, indicating		
16	nutrient limitation but minimizing cell death to prevent dead cells from releasing N. Any N that		
17	the cells released at the end of exponential growth was not able to be used by either the still-		
18	living cells or the co-existing contaminating bacteria, or else the Synechococcus sp. strain DC2		Formatted: Font: Italic
19	would have continued to increase in abundance.		
20	We did not directly test for N limitation of tThe bacterial community (Bac) in these experiments		
21	was unlikely N-limited, and most likely C-limited, given nitrate in the medium and the		
22	production on f ammonium in the prior to treatment preparation, although since nitrate was		
23	present and there was a strong treatment effect in Bac+lysate treatment(the bacteria responded to		
	28		

1	lysate addition by producing ammonium), the bacteria were likely not N limited, and could have	
2	been carbon limited. The experiment was designed to show ammonium production by the	
3	bacterial community (Bac+lysate), and its subsequent use of that ammonium by Synechococcus	
4	sp. strain DC2Synechococcus (Syn+Bac+lysate).	
5	The increase in Synechococcus sp. strain DC2 abundance in the laboratory experiment (Figure	
6	1A) can be explained by the different sources of N present in the experimental treatment	
7	(SynDC2+Bac+lysate). A portion of tThe increase can be attributed as follows (calculated from	
8	the increase in cell number multiplied by cell quota)-to: 1) 16.7 μ mol l ⁻¹ N from the 21.3 μ M of	
9	nitrate present-in the Bac ultrafiltrate, 2)a portion to 9.2 μ mol 1 ⁻¹ N from the remineralisation of	
10	ammonium by the added bacterial assemblage, and 3) 9.8 µmol l ⁻¹ N from the another portion to	
11	uptake of ammonium from remineralisation by contaminating <u>heterotrophic</u> bacteria in the <u>non-</u>	
12	axenic Synechococcus sp. strain DC2Synechococcus culture. Despite evidence for direct uptake	
13	of DON directly by phytoplankton in field experiments (see Bronk et al. 2007 for a review),	
14	preliminary studies experiments to the current one showed no evidence for uptake of N from	
15	uptake of Vibrio sp. strain PWH3aVibrio PWH3a lysate uptake by axenic Synechococcus sp.	Formatted: Font: Not Italic
16	strain DC2Synechococcus. Despite the addition of N from other sources, the results clearly show	
17	that remineralization of N from the lysate contributed to If considered together, the increase of	
18	SynechococcusSynechococcus sp. strain DC2 in the experimental treatment	
19	(SynDC2+Bac+lysate) treatmentcan be accounted for by the effects from each of these control	
20	treatments.	

1 4.3 Ecological implications and future directions

2	Some studies have focused on the influence of phytoplankton lysates on fueling bacterial
3	production (Gobler et al., 1997; Haaber and Middelboe, 2009), which can be especially-
4	Phytoplankton lysates can be very important in certain situations, such as during a bloom
5	termination (Brussaard et al., 2005). In contrast, but bacterial lysates are produced constantly
6	throughout the ocean. Suttle (1994) estimated that 10 to 20% of heterotrophic bacteria are
7	estimated to be lysed every day by viruses (Suttle 1994), although it which can vary widely
8	dependent on location and conditions (e.g. Wilhelm et al. 1998, 2002). With an estimated 3.6 x
9	10^{28} prokaryotic cells in the upper 200 m of the ocean and an average carbon quota of 2.0 x 10^{-14}
10	g cell ⁻¹ (Whitman et al., 1998), a bacterial C:N of approximately 5 (Goldman et al., 1987), and
11	estimated loss rates of 10% d ⁻¹ from viral lysis, approximately 1.44 x 10 ¹³ g N d ⁻¹ is released
12	from viral lysis of bacteria in the photic zone. Primary production is estimated to be $\sim 1.35 \text{ x} 10^{14}$
13	<u>g C d⁻¹ (Ducklow and Carlson, 1992)</u> , corresponding to \sim 2.04 x10 ¹³ g N d ⁻¹ assuming the
14	Redfield ratio (106C:16N). Therefore, an estimated 71% of global primary production could be
15	supported by N released by viral lysis of bacteria. While these estimates need to be verified,
16	evidence suggests that viral lysis supplies a substantial portion of the N required for primary
17	production, and emphasizes the importance of the viral shunt, especially in N-limited
18	regions. With an estimated 26-70 Pg C yr ⁴ of bacterial production in the euphotic zone (Ducklow
19	and Carlson, 1992), a bacterial C:N of approximately 5 (Goldman et al., 1987), and loss rates of
20	10-20% from viral lysis, approximately 0.52-2.8 Pg N yr ⁺ is released from viral lysis of bacteria
21	in the photic zone. Primary production C demand is estimated to be <u>~49.3 Pg C yr</u> ⁴ (Ducklow
22	and Carlson, 1992), corresponding to <u>~</u> 7.4 Pg N yr ⁴ a <u>ssum</u> ccording to the Redfield ratio
23	(106C:16N). Therefore, an estimated 7-38% of global primary production can be supported by N

1	released by viral lysis of bacteria from bacterial lysates from viral infection (Figure 5). estimates
2	need to be verified viral lysis supplies This is a substantial portion of the N required for primary
3	production, and emphasizes the importance of the viral shuntsource of recycled N available to
4	fuel primary production, especially in <u>N-limited</u> regions that are N-limited.
5	The ability of primary producers to use of N by phytoplankton from bacterial remineralisation of
6	DOM <u>originating</u> from viral lysis of bacteria indicates that viruses are not simply C sinks that
7	disrupt trophic levels (Azam and Worden, 2004), but are important facilitators in N recycling
8	pathways. Traditional food chain models state that C and other nutrients flow from primary
9	producers to higher trophic levels. The introduction of the microbial loop (Azam et al., 1983)
10	included bacterial dynamics _ is where by _ DOM produced by the members of the traditional food
11	chain is taken up by bacteria and reintroduced to the food web instead of being lost to the
12	system. The viral shunt (Wilhelm and Suttle, 1999) introduced viruses as a 'short-circuit,'
13	removing particulate C from primary producers, consumers, and bacteria to the pool of organic
14	matter. This model emphasises viruses as a loss mechanism of food_web C; however, implicit in
15	these models is that nutrients, as well as C, must also be released by viral lysis, and that N and P
16	are likely recycled with greater efficiency than C (Suttle, 2007). The loss of C from the
17	particulate pool is clear, but there is evidence of increased productivity in the presence of
18	viruses. In Fe-limited regions of the eastern Pacific Ocean, viruses were shown to liberate Fe into
19	the DOM pool, where it was available for uptake by primary producers (Poorvin et al., 2004).
20	Weinbauer et al. (2011) provided evidence for this phenomenon when they removed the viral
21	fraction from a cyanobacteria bloom and primary production ceased. Shelford et al. (2012)
22	confirmed that observation by demonstrating a reduction in both ammonium remineralisation
23	and phytoplankton abundance with removal of viruses. The current study demonstrated in four

1	separate field experiments that N is transferred from <u>bacterial</u> bacterial lysate <u>Vibrio</u> lysates to Formatted: Font: Not Italic
2	phytoplankton-biomass. Weinbauer et al. (2011) hypothesised that primary production decreased
3	in their experiments due to either lysates either directly provideding a direct source of nutrients
4	supportingfor the Synechococcus growthblooms, or thatrough bacteria provided inorganic
5	nutrientsl by remineraliszing the products of viral lysissation providing inorganic nutrients. This
6	study demonstratessupports the interpretation that remobilization of nutrients by viral lysis of
7	bacteria and subsequent remineralisation by uninfected bacteria can fuel the growth of primary
8	producerssupported contributed to the observed growth of Synechococcus.

1 Author contributions

2	EJS.helford and CA.SSuttle designed the experiments. EJS.helford performed the
3	experiments and analysed the samples except for the stable isotope data which was analysed by
4	the Stable Isotope Facility at UC Davis, and the nitrogen cell content which was analysed by
5	Maureen Soon at UBC. EJS. helford prepared the manuscript and analyzed the data with
6	contributions and guidance from CASuttle.
7	

8 Competing Interests

- 9 The authors declare that they have no conflict of interest.
- 10

11 Acknowledgements

- 12 We acknowledge the crew of the CGS Vector; <u>Maureen-M.</u> Soon of UBC for nutrient analyses;
- 13 Chris-C. Payne for analyses and cruise technician expertise; A.myM. Chan, J.A.ulia Gustavsen,
- 14 M.arli Vlok, and D.M.anielle Winget for help with experimental set-up, logistics, and
- 15 discussions; M.<u>T.aite</u> Maldonado, P.<u>D.hilippe</u> Tortell, C.<u>E.T.heryl</u> Chow, C.aroline Chénard,
- 16 J.A.ulia Gustavsen, and J.F.an Finke for their insights on the manuscript. This work was
- 17 supported by awards from the NSERCNatural Sciences and Engineering Research Council of
- 18 <u>Canada (NSERC)</u>, UBC, and the <u>NSERC CREATE</u> BRITE program to E.<u>-J.</u>-S.<u>helford</u>, and by
- 19 an NSERC Discovery and Shiptime gGrants, as well as infrastructure awards from the Canada

- 1 <u>Foundation for Innovation and the British Columbia Knowledge Development Fund</u> to C.-A.
- 2 Suttle.
- 3

1 References

- 2 Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. and Thingstad, F.: The
- 3 ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10, 257–263, 1983.
- 4 Azam, F. and Worden, A. Z.: Microbes, molecules, and marine ecosystems, Science, 303, 1622–
 5 1624, 2004.
- 6 Berges, J. A., Franklin, D. J. and Harrison, P. J.: Evolution of an artificial seawter medium:
- 7 improvements in enriched seawater, artificial water over the last two decades, J. Phycol., 37,
- 8 1138–1145, 2001.
- 9 Berman, T., and Bronk, D. A.: Dissolved organic nitrogen: a dynamic participant in aquatic
 10 ecosystems, Aquat Microb Ecol, 31, 279-305, 2003.
- 11 Bronk, D. A., Glibert, P. M. and Ward, B. B.: Nitrogen uptake, dissolved organic nitrogen
- 12 release, and new production., Science, 265, 1843–1846, doi:10.1126/science.265.5180.1843,
- 13 1994.
- 14 Bronk, D. A., See, J. H., Bradley, P. and Killberg, L.: DON as a source of bioavailable nitrogen
- 15 for phytoplankton, Biogeosciences, 4, 283–296, 2007.
- 16 Bronk, D. A. and Ward, B. B.: Magnitude of dissolved organic nitrogen release relative to gross
- 17 nitrogen uptake in marine systems, Limnol. Oceanogr., 45, 1879–1883, 2000.
- 18 Brussaard, C. P. D.: Optimization of procedures for counting viruses by flow cytometry, Appl.
- 19 Environ. Microbiol., 70, 1506–1513, doi:10.1128/AEM.70.3.1506, 2004.

- 2 <u>bloom magnitude on a pelagic microbial food web, Mar. Ecol. Prog. Ser., 144, 211-221, 1996.</u>
- 3 Brussaard, C. P. D., Kuipers, B. and Veldhuis, M. J. W.: A mesocosm study of Phaeocystis
- 4 *globosa* population dynamics, Harmful Algae, 4, 859–874, doi:10.1016/j.hal.2004.12.015, 2005.
- 5 Collos, Y.: Time-lag algal growth dynamics: biological constraints on primary production in
- 6 aquatic environments, Mar. Ecol. Prog. Ser., 33, 193-206, 1986.
- 7 Comeau, A. M., Suttle, C. A.: Distribution, genetic richness and phage sensitivity of Vibrio spp.
- 8 from coastal British Columbia. Environ Microbiol, 9, 1790-1800, 2007.
- 9 Comeau, A. M., Buenaventura, E., and Suttle, C. A.: A persistent, productive and seasonally
- 10 dynamic vibriophage population within Pacific Oysters (Crassostrea gigas), Appl Environ
- 11 Microbiol, 71, 5324-5331, 2005.
- 12 Davidson, K., Flynn, K. J., Cunningham, A.: Non-steady state ammonium-limited growth of the
- 13 marine phytoflagellate, Isochrysis galbana Parke, New. Phytol., 122, 433-438, 1992.
- 14 Ducklow, H. W. and Carlson, C. A.: Oceanic bacterial production, in advances in microbial
- 15 ecology, vol. 12, edited by K. Marshall, pp. 113–181, Plenum Press, New York, 1992.
- 16 Edler, L. and Elbrächter, M.: The Utermöhl method for quantitative phytoplankton analysis, in
- 17 Microscopic and molecular methods for quantitative phytoplankton analysis, edited by B.
- 18 Karlson, C. Cusack, and E. Bresnan, pp. 13–20, UNESCO, Paris, 2010.
- 19 Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M., Got, P., Le Floc'h, E.,
- 20 Mostajir, B., Roques Richard Sempéré, C., Sime-Ngando, T., Vidussi, F.: Bacterial carbon

- 1 dependence on freshly produced phytoplankton exudates under different nutrient availability and
- 2 grazing pressure conditions in coastal marine waters, FEMS Microb. Ecol., 87, 757-769,
- 3 <u>doi.org/10.1111/1574-6941.12262, 2014.</u>
- 4 Fuhrman, J. A.: Marine viruses and their biogeochemical and ecological effects, Nature, 399,
- 5 541–548, 1999.
- 6 Gasol, J. M. and Del Giorgio, P. A.: Using flow cytometry for counting natural planktonic
- bacteria and understanding the structure of planktonic bacterial communities, Sci. Mar., 64, 197224, 2000.
- 9 Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. and Sañudo-Wilhelmy, S.: Release
- 10 and bioavailability of C, N, P Se, and Fe following viral lysis of a marine chrysophyte, Limnol.
- 11 Oceanogr., 42, 1492–1504, 1997.
- 12 Goldman, J. C., Caron, D. A. and Dennett, M. R.: Regulation of gross growth efficiency and
- ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr., 32, 1239–1252,
 14 1987.
- 15 Haaber, J. and Middelboe, M.: Viral lysis of *Phaeocystis pouchetii*: implications for algal
- 16 population dynamics and heterotrophic C, N and P cycling, ISME J., 3, 430–441,
- 17 doi:10.1038/ismej.2008.125, 2009.
- 18 Healey, F. P. and Hendzel, L. L.: Indicators of phosphorus and nitrogen deficiency in five algae
- 19 in culture, J. Fish. Res. Board Canada, 36, 1364–1369, 1979.

- 1 Hennes, K. P., Suttle, C. A., Chan, A. M.: Fluorescently labeled virus probes show that natural
- 2 virus populations can control the structure of marine microbial communities, Appl Environ

3 Microbiol, 61, 3623-3627, 1995.

- 4 Hollibaugh, J. T.: Nitrogen regeneration during the degradation of several amino acids by
- 5 plankton communities collected near Halifax, Nova Scotia, Mar. Biol., 45, 191–201, 1978.
- 6 Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. and Peterso, B. J.: A simple and precise
- 7 method for measuring ammonium and marine and freshwater ecosystems, Can. J. Fish. Aquat.

8 Sci., 56, 1801–1808, 1999.

- 9 Middelboe, M. and Jørgensen, N. O. G.: Viral lysis of bacteria: an important source of dissolved
 10 amino acids and cell wall compounds, J. Mar. Biol. Assoc. UK, 86, 605–612, 2006.
- 11 Middelboe, M., Jørgensen, N. O. G. and Kroer, N.: Effects of viruses on nutrient turnover and

growth efficiency of noninfected marine bacterioplankton, Appl. Environ. Microbiol., 62, 1991–
1997, 1996.

- 14 Middelboe, M., Riemann, L., Steward, G., Hansen, V. and Nybroe, O.: Virus-induced transfer of
- organic carbon between marine bacteria in a model community, Aquat. Microb. Ecol., 33, 1–10,
 2003.
- 17 Noble, R. T., and Fuhrman, J. A.: Breakdown and microbial uptake of marine viruses and other
- 18 lysis products, Aquat. Microb. Ecol., 20, 1-11, 1999.

- 1 Olson, R. J., Zettler, E. R. and D, D. M.: Phytoplankton analysis using flow cytometry, in
- handbook of methods in aquatic microbial ecology, pp. 175–186, Lewis Publishers, Boca Raton.,
 1993.
- Parsons, T. R., Maita, Y. and Lalli, C. M.: Manual of chemical and biological methods for
 seawater analysis, Pergamon Press., 1984.
- 6 Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A. and Wilhelm, S. W.: Viral release of iron and its
- 7 bioavailability to marine plankton, Limnol. Oceanogr., 49, 1734–1741, 2004.
- 8 Poorvin L., Sander S. G., Velasquez I., Ibisanmi E., LeCleir G. R., Wilhelm S.W.: A comparison
- 9 of Fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from
- 10 the marine bacterium Vibrio alginolyticus PWH3a. J. Exp. Mar. Biol. Ecol., 399, 43-47, 2011.
- 11 Shelford, E. J., Middelboe, M., Møller, E. F. and Suttle, C. A.: Virus-driven nitrogen cycling
- 12 enhances phytoplankton growth, Aquat. Microb. Ecol., 66, 41–46, doi:10.3354/ame01553, 2012.
- 13 Suttle, C. A.: The significance of viruses to mortality in aquatic microbial communities, Microb.
- 14 Ecol., 28, 237–243, doi:10.1007/BF00166813, 1994.
- 15 Suttle, C. A.: Viruses in the sea., Nature, 437, 356–361, doi:10.1038/nature04160, 2005.
- 16 Suttle, C. A.: Marine viruses--major players in the global ecosystem., Nat. Rev. Microbiol., 5,
- 17 801–812, doi:10.1038/nrmicro1750, 2007.
- 18 Suttle, C. A., Chan, A. M., and Cottrell, M. T. Use of ultrafiltration to isolate viruses from
- 19 seawater which are pathogens of marine phytoplankton. Appl. Environ. Microbiol. 57, 721-726,
- 20 1991.

- 1 Suttle, C. A. and Chen, F.: Mechanisms and rates of decay of marine viruses in seawater., Appl.
- 2 Environ. Microbiol., 58, 3721–3729, 1992.
- 3 Weinbauer, M. G., Bonilla-Findji, O., Chan, A. M., Dolan, J. R., Short, S. M., Šimek, K.,
- 4 Wilhelm, S. W. and Suttle, C. A.: Synechococcus growth in the ocean may depend on the lysis of
- 5 heterotrophic bacteria, J. Plankton Res., 33, 1465–1476, doi:10.1093/plankt/fbr041, 2011.
- 6 Weinbauer, M. G., Wilhelm, S. W., Suttle, C. A. and Garza, D. R.: Photoreactivation
- 7 compensates for UV damage and restores infectivity to natural marine virus communities, Appl.
- 8 Environ. Microbiol., 63, 2200–2205, 1997.
- 9 Whitman, W. B., Coleman, D. C., Wiebe, W. J.: Prokaryotes: the unseen majority, P. Natl. Acad.
 10 Sci. USA, 95, 6578-6583, 1998.
- 11 Wilhelm, S. W., Brigden, S. M. and Suttle, C. A.: A dilution technique for the direct

12 measurement of viral production: a comparison in stratified and tidally mixed coastal waters.,

- 13 Microb. Ecol., 43, 168–173, doi:10.1007/s00248-001-1021-9, 2002.
- 14 Wilhelm, S. W. and Suttle, C. A.: Viruses and nutrient cycles in the sea, Bioscience, 49, 781–
- 15 788, doi:10.2307/1313569, 1999.
- 16 Wilhelm, S. W., Weinbauer, M. G., Suttle, C. A. and Jeffrey, W. H.: The role of sunlight in the
- 17 removal and repair of viruses in the sea, Limnol. Oceanogr., 43, 586–592, 1998.
- 18 Yin, K., Liu, H., Harrison, P. J.: Sequential nutrient uptake as a potential mechanism for
- 19 phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry,
- 20 Biogeosciences, 14, 2469-2480, 2017.

Table 1 Treatments in the laboratory experiment to examine increase in *Synechococcus* abundance (Syn), in the presence of bacterial lysate from *Vibrio* PWH3a (Lys) and an environmental bacterial assemblage (Bac). 2 3

Treatment	<u>Syn</u>	Bac	Lysate	<u>Media</u>	Aim	4	Formatted: Line spacing: Multiple 1.15 li
	<u>(ml)</u>	<u>(ml)</u>	<u>(ml)</u>	<u>(ml)</u>			Formatted Table
Syn+Bac+lysate	<u>10</u>	<u>100</u>	<u>10</u>	<u>80</u>	Experimental treatment	_	
Syn+Bac	<u>10</u>	<u>100</u>	Ξ	<u>90</u>	Control for Syn growth with bacterial		
Syn+lysate	<u>10</u>	Ξ	<u>10</u>	<u>180</u>	assemblage but not lysate Control for remineralisation in non-		
Bac+lysate	_	100	10	90	<u>axenic Syn culture</u> Control for remineralisation by bacterial		
<u>200-190000</u>	-	100	10	20	assemblage		
Bac only	Ξ	<u>100</u>	Ξ	<u>100</u>	Control for remineralisation in bacterial		
Syn only	<u>10</u>	Ξ	Ξ	<u>190</u>	Control for Syn growth and	4-	Formatted: Line spacing: Multiple 1.15 li
					remineralisation		

Formatted: Font: Not Italic Formatted: Font: Not Italic

Table 2 Locations and environmental parameters for field sampling stations: Saanich Inlet (SI), 1

Fraser River Plume (FRP), Semiahoo Bay (SB), and Jericho Pier (JP). Environmental and biological conditions measured include temperature (Temp), salinity (Sal), nitrate (NO₃⁻), phosphate (PO₄²⁻), ammonium (NH₄⁺), and the dominant phytoplankton.

1 2 3 4

Station	Location	Date	Temp	Sal	NO ₃ -	PO_4^{2-}	$\mathrm{NH_{4}^{+}}$	Dominant
			(°C)		(µmol	(µmol	(µmol	phytoplankton
					<u>+</u> -	<u>+</u> -	<u>+</u> -	
					[±] μM)	±μM)	[±] μM)	
SI	48.592°N,	13 Sep	14	27.9	1.24	0.75	0.54	Mixed
	-123.505°W	2012						assemblage
FRP	49.072°N,	13 Sep	11	28.0	10.9	1.12	0.07	Phaeocystis,
	-123.402°W	2012						Skeletonema,
								Leptocylindrus
SB	49.013°N.	26	20.2	29	0.00	2.40	0.08	Cvanobacteria
	-123.037°W	Aug	-0		0.00	2	0.00	Unknown ciliate
		2013						
JP	49.277°N,	27	19.5	21	0.00	0.20	0.11	Diatoms (mixed
	-123.202°W	Aug						assemblage)
		2013						

Formatted Table

5

- Table 3 *Vibrio* sp. strain PWH3a dynamics during the creation of lysates by viral infection (Laboratory = experiments with cultured *Synechococcus* sp. strain DC2, SI = Saanich Inlet, FRP = Fraser River Plume, SB = Semiahoo Bay, JP = Jericho Pier). N was added at lower 3 4
- concentrations for stations SB and JP to approximate in situ N concentrations.

	Laboratory	SI and FRP	SB and JP	
<i>Vibrio <mark>sp. strain</mark> PWH3a abundance pre-virus (cell l⁻¹)</i>	3.96×10^{11}	7.87×10^{11}	7.89×10^{10}	
Vibrio sp. strain PWH3a abundance post-virus incubation (cell l ⁻¹)	1.12×10^{11}	9.43×10^{10}	$6.38 imes 10^{10}$	Formatted: Space After: 12 pt
Multiplicity of infection (MOI)	+	0.41	5	
Γotal N release (μ <u>mol l⁻¹</u> Μ)	721	1760	38.4	
N addition to experimental incubations (µ <u>mol 1</u> : M)	36.0	67.7	0.44	Formatted: Space After: 12 pt Formatted Table
<u>N addition to</u> experimental incubations (umol)	<u>7.21</u>	<u>33.8</u>	<u>0.31</u>	

Table 4 Uptake by the particulate fraction of ¹⁵N from <u>bacterial lysate bacterial lysate</u> from four field stations, and the same uptake normalised by initial chlorophyll *a* concentrations. Error measurements are standard error of triplicate incubations for SB, and range of duplicate

4 incubations for JP. SI and FRP are singleton measurements.

Total uptake of	Total uptake	Uptake of ¹⁵ N
¹⁵ N	of ¹⁵ N	normalised by
<u>(µmol)</u>	(µ <u>mol l⁻¹</u> ₩)	chlorophyll a
		(µmol µg ⁻¹)
<u>0.83</u>	1.67	0.27
<u>0.88</u>	1.76	0.70
0.42 ± 0.01	0.60 ± 0.02	0.70 ± 0.16
0.35 ± 0.04	0.50 ± 0.1	0.09 ± 0.00
	$\frac{\frac{15}{15}N}{(\mu mol)}$ $\frac{0.83}{0.88}$ $\frac{0.42 \pm 0.01}{0.35 \pm 0.04}$	$ \begin{array}{c c} \underline{\text{Total uptake of}} & \text{Total uptake} \\ \underline{1^5 N} & \text{of } {}^{15} N \\ (\underline{\mu \text{mol}}) & (\underline{\mu \text{mol}} 1^{-1} \underline{M}) \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \underline{0.83} & 1.67 \\ \underline{0.88} & 1.76 \\ \underline{0.42 \pm 0.01} & 0.60 \pm 0.02 \\ \underline{0.35 \pm 0.04} & 0.50 \pm 0.1 \\ \end{array} $

5

Formatted: Font: Not Italic

Formatted Table

5 strain PWH3a (Lys) and an environmental bacterial assemblage (Bac). Lys, while a component
 6 of some of the treatments, was not a treatment by itself (indicated by parentheses). The * is an

- 7 indication that DC2 is not axenic, and therefore contains some heterotrophic bacteria.
- 8

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Don't keep with next

Figure 1 Time series of (A) *Synechococcus* sp. strain DC2-abundance, (B) ammonium

concentration, and (C) bacterial abundance in the laboratory experiment. Error bars are standard error from triplicate incubations.

Formatted: Indent: Left: 3", First line: 0.5", Space Before: 12 pt Formatted: Font: 10.5 pt, Bold Formatted: Font: 10.5 pt, Bold

Figure 2 Time-course of ammonium concentrations and bacterial abundances in the field experiments. Solid and dashed lines indicate
 treatments with lysate addition (SW+lysate), or without (SW), respectively. Error bars are standard errors of triplicate incubations.

6 Asterisks indicate significant differences between treatments. Note that the scales are different among plots.

7.

I

8

9

2 3 4 Figure 3 Uptake of ¹⁵N normalised by initial chlorophyll a concentrations during the experiment by the >1 μ m and <1 μ m fractions in treatments with lysate addition for Saanich Inlet (SI), 5 Fraser River Plume (FRP), Semiahoo Bay (SB), and Jericho Pier (JP). Error bars are standard 6 7

error of triplicate incubations for SB, and range of duplicate incubations for JP. SI and FRP are singleton measurements.

Formatted: Caption

5 primary producers.