- 1 Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments
- 2
- 3 James B. Bell^{1,2,3}, William D. K. Reid⁴, David A. Pearce⁵, Adrian G. Glover², Christopher J. Sweeting⁴,
- 4 Jason Newton⁶, & Clare Woulds^{1*}

- 6 ¹School of Geography & Water@Leeds, University of Leeds, LS2 9JT, UK.
- ⁷ Life Sciences Dept., Natural History Museum, Cromwell Rd, London SW7 5BD, UK
- 8 ³Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, NR34 0HT, UK
- 9 ⁴Marine Sciences- School of Natural and Environmental Sciences, Ridley Building, Newcastle
- 10 University, NE1 7RU, UK
- ⁵Applied Sciences, Northumbria University, Newcastle, NE1 8ST, UK
- 12 6NERC Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride G75 0QF, UK

13

* E-mail: c.woulds@leeds.ac.uk

- 16 Keywords: Stable Isotopes; Trophic Niche; Sedimented; Hydrothermal; Southern Ocean;
- 17 Microbial; 16S; PLFA

18 Abstract

Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050 – 1647m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas and stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

Section 1. Introduction

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

34

Hydrothermal sediment (a.k.a. Sediment-hosted/ sedimented hydrothermal vents), the product of subsurface mixing between hydrothermal fluid and ambient seawater within the sediment, are physically more similar to background deep-sea habitats than they are to high temperature, hard substratum vents (Bemis et al. 2012, Bernardino et al. 2012). This means that, whilst they can host chemosynthetic obligate species, they can also be more easily colonised by nonspecialist fauna and potentially offer an important metabolic resource in the nutrient-limited deep-sea (Levin et al. 2009, Dowell et al. 2016). Hydrothermal sediments have also been suggested to act as evolutionary bridges between hard substratum vents and methane seeps (Kiel 2016). To utilise in situ production in hydrothermal sediments, fauna must overcome the environmental stress associated with high-temperature, acidic and toxic conditions (Levin et al. 2013, Gollner et al. 2015). The combination of elevated toxicity and in-situ organic matter (OM) production results in a different complement of ecological niches between hydrothermal and background conditions that elicits compositional changes along a productivity-toxicity gradient (Bernardino et al. 2012, Gollner et al. 2015, Bell et al. 2016b). Hydrothermal sediments offer different relative abundances of chemosynthetic and photosynthetic organic matter, depending upon supply of surface-derived primary productivity and levels of hydrothermal activity (Tarasov et al. 2005). In shallow environments (<200 m depth), where production of chemosynthetic and photosynthetic organic matter sources can co-occur, consumption may still favour photosynthetic OM over chemosynthetic OM as this does not require physiological adaptions to environmental toxicity (Kharlamenko et al. 1995, Tarasov et al. 2005, Sellanes et al. 2011). The limited data available concerning trophodynamics at deep-sea hydrothermal sediments, in the Arctic, indicate that diet composition can vary widely between species (Sweetman et al. 2013).

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Hydrothermal sediments host diverse microbial communities (Teske et al. 2002, Kallmeyer & Boetius 2004). Microbial communities are a vital intermediate between inorganic substrates and metazoan consumers, and thus their composition and isotopic signatures are of direct relevance to metazoan food webs. The heat flux associated with hydrothermal activity provides both benefits and constraints to microbial communities (Kallmeyer & Boetius 2004, Teske et al. 2014) as well as accelerating the degradation of organic matter, giving rise to a wide variety of compounds including hydrocarbons and organic acids (Martens 1990, Whiticar & Suess 1990, Dowell et al. 2016). Microbial aggregations are commonly visible on the sediment surface in hydrothermal sediments (Levin et al. 2009, Sweetman et al. 2013, Dowell et al. 2016) but microbial activity also occurs throughout the underlying sediment, occupying a wide range of geochemical and thermal niches (reviewed by Teske et al. 2014). Sedimented chemosynthetic ecosystems may present several sources of organic matter to consumers (Bernardino et al. 2012, Sweetman et al. 2013, Yamanaka et al. 2015) and the diverse microbial assemblages can support a variety of reaction pathways, including methane oxidation, sulphide oxidation, sulphate reduction and nitrogen fixation (Teske et al. 2002, Dekas et al. 2009, Jaeschke et al. 2014). Phospholipid fatty acid (PLFA) analysis can be used to describe recent microbial activity and δ¹³C signatures (Boschker & Middelburg 2002, Yamanaka & Sakata 2004, Colaço et al. 2007). Although it can be difficult to ascribe a PLFA to a specific microbial group or process, high relative abundances of certain PLFAs can be strongly indicative of chemoautotrophy (Yamanaka & Sakata 2004, Colaço et al. 2007), and can support an understanding of microbial ecosystem function in hydrothermal sediments (e.g. in western pacific vents, see Yamanaka & Sakata 2004). Macrofaunal assemblages in Bransfield hydrothermal sediments were strongly influenced by

hydrothermal activity (Bell et al. 2016b, Bell et al. 2017). Bacterial mats were widespread across

Hook Ridge, where variable levels of hydrothermal activity were detected (Aquilina et al. 2013). Populations of siboglinid polychaetes (*Sclerolinum contortum* and *Siboglinum* sp.) were found at Hook Ridge and non-hydrothermally active sites (Sahling et al. 2005, Georgieva et al. 2015, Bell et al. 2016b) and can harbour chemoautotrophic endosymbionts (Schmaljohann et al. 1990, Eichinger et al. 2013, Rodrigues et al. 2013).

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

84

85

86

87

88

Stable isotope analysis (SIA) is a powerful tool to assess spatial and temporal patterns in faunal feeding behaviour and has been used to study trophodynamics and resource partitioning in other hydrothermal sediments, predominately in the Pacific (Fry et al. 1991, Levin et al. 2009, Portail et al. 2016). Stable isotopic analyses provide inferential measures of different synthesis pathways and can elucidate a wide range of autotrophic or feeding behaviours. Carbon and sulphur isotopes are used to delineate food sources and nitrogen to estimate trophic position. The signature of source isotope ratios (δ^{13} C & δ^{34} S) is influenced by the isotopic ratio of the chemical substrate, and the fractionation associated with the metabolic process involved and thus, different fixation pathways can elicit different isotopic signatures, even when derived from a single source (e.g. DIC) (Fry et al. 1991). Possible δ^{13} C isotopic values of sources in the Bransfield Strait include: ~-40 % for thermogenic methane; ~-27 % for suspended particulate matter or \sim -15 ‰ for ice algae (Whiticar & Suess 1990, Mincks et al. 2008, Henley et al. 2012, Young et al. 2013). As an example, Siboglinum spp. can use a range of resources, including methane or dissolved organic matter (Southward et al. 1979, Schmaljohann et al. 1990, Thornhill et al. 2008, Rodrigues et al. 2013), making SIA an ideal way in which to examine resource utilisation in these settings (Levin et al. 2009, Soto 2009). We also apply the concept of an isotopic niche (Layman et al. 2007) whereby species or community trophic activity is inferred from the distribution of stable isotopic data in two or three dimensional isotope space.

Hypotheses

We used a combination of microbial diversity data based sequencing and compound specific isotopic analyses and bulk isotopic data from sediment, microbial, macro- and megafaunal samples to investigate resource utilisation, niche partitioning and trophic structure at hydrothermal and background sites in the Bransfield Strait to test the following hypotheses: 1) Chemosynthetic organic matter will be an important food source in hydrothermal sediments; 2) Siboglinid species subsist upon chemosynthetically-derived OM 3) Stable isotope signatures will reflect a-priori functional designations defined by faunal morphology and 4) Fauna will have distinct niches between hydrothermal sites and background areas.

Section 2. Materials and Methods

121 2.1. Sites and Sampling

Samples were collected; during RRS *James Cook* cruise JC55 in the austral summer of 2011 (Tyler et al. 2011), from three raised edifices along the basin axis (Hook Ridge, the Three Sisters and The Axe) and one off-axis site in the Bransfield Strait (1024 – 1311m depth; Fig. 1; Table 1). We visited two sites of variable hydrothermal activity (Hook Ridge 1 and 2) and three sites where hydrothermal activity was not detected (Three Sisters, the Axe and an Off-Axis site) (Aquilina et al. 2013). Of the two hydrothermal sites, Hook Ridge 2 had higher fluid advection rates and pore fluid temperature but lower concentrations of sulphide and methane (Dählmann et al. 2001, Aquilina et al. 2013, Aquilina et al. 2014).

Samples were collected with a Bowers & Connelly dampened megacorer (1024 – 1311 m depth) and a single Agassiz trawl at Hook Ridge (1647 m depth). With the exception of salps, all microbial and faunal samples presented here were from megacore deployments. For a detailed description of the megacore sampling programme and macrofaunal communities, see Bell et al. (2016b). Sampling consisted of 1 – 6 megacore deployments per site, with 2 – 5 cores pooled per deployment (Bell et al. 2016b). Cores were sliced into 0 – 5 cm and 5 – 10 cm partitions and macrofauna were retained on a 300µm sieve. Residues were preserved in either 80 % ethanol or 10 % buffered formalin initially and then stored in 80% ethanol after sorting (Bell et al. 2016b). Fauna were sorted to species/ morphospecies level (for annelid and bivalve taxa); family level (for peracarids) and higher levels for less abundant phyla (e.g. echiurans). Salps were collected using an Agassiz trawl and samples were immediately picked and frozen at -80 °C and subsequently freeze-dried.

2.2. Microbiology Sequencing

Samples of surface sediment (0 – 1 cm below seafloor (cmbsf)) were taken from megacores the two Hook Ridge sites and the off-axis site and frozen (-80°C). DNA was extracted from the sediment by Mr DNA (Shallowater, TX, USA) using an in-house standard 454 pipeline. The resultant sequences were trimmed and sorted using default methods in Geneious (v.9.1.5 with RDP v.2.8 and Krona v.2.0) and analysed in the Geneious '16 Biodiversity Tool' (https://16s.geneious.com/16s/help.html; (Wang et al. 2007, Ondov et al. 2011, Biomatters 2014).

2.3. Phospholipid Fatty Acids

Samples of 3 – 3.5 g of freeze-dried sediment from Hook Ridge 1 & 2, the off-vent site and the Three Sisters were analysed at the James Hutton Institute (Aberdeen, UK) following the procedure detailed in Main et al. (2015), summarised below. Samples were from the top 1 cm of sediment for all sites except Hook Ridge 2 where sediment was pooled from two core slices (0 – 2 cm), due to sample mass limitations. Lipids were extracted following a method adapted from Bligh (1959), using a single phase mixture of chloroform: methanol: citrate buffer (1:2:0.8 v-v:v). Lipids were fractionated using 6 ml ISOLUTE SI SPE columns, preconditioned with 5 ml chloroform. Freeze-dried material was taken up in 400 μ L of chloroform; vortex mixed twice and allowed to pass through the column. Columns were washed in chloroform and acetone (eluates discarded) and finally 10 ml of methanol. Eluates were collected, allowed to evaporate under a N2 atmosphere and frozen (-20 °C).

Fatty acids were derivitised with methanol and KOH to produce fatty acid methyl esters (FAMEs). Samples were taken up in 1 mL of 1:1 (v:v) mixture of methanol and toluene. 1 mL of 0.2 M KOH (in methanol) was added with a known quantity of an internal standard (C19 – nonadecanoic acid), vortex mixed and incubated at 37 °C for 15 min. After cooling to room temperature, 2 mL of isohexane:chloroform (4:1 v:v), 0.3 mL of 1 M acetic acid and 2 mL of deionized water was added to each vial. The solution was mixed and centrifuged and the organic phase transferred to a new vial and the remaining aqueous phase was mixed and centrifuged again to further extract the organic phase, which was combined with the previous. The organic phases were evaporated under a N2 atmosphere and frozen at -20 °C.

Samples were taken up in isohexane to perform gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The quantity and δ^{13} C values of individual FAMEs were determined using a GC Trace Ultra with combustion column attached via a GC Combustion III to a Delta V Advantage isotope ratio mass spectrometer (Thermo Finnigan, Bremen). The δ^{13} CvPDB values (‰) of each FAME were calculated with respect to a reference gas of CO₂, traceable to IAEA reference material NBS 19 TS-Limestone. Measurement of the Indiana University reference material hexadecanoicacid methyl ester (certified δ^{13} CvPDB -30.74 ± 0.01‰) gave a value of 30.91 ± 0.31‰ (mean ± s. d., n = 51). Combined areas of all mass peaks (m/z 44, 45 and 46), following background correction, were collected for each FAME. These areas, relative to the internal C19:0 standard, were used to quantify the 34 most abundant FAMEs and related to the FAs from which they are derived (Thornton et al. 2011).

Bacterial biomass was calculated using transfer functions from the total mass of four PLFAs (i14:0, i15:0, a15:0 and i16:0), estimated at 14 % of total bacterial PLFA, which in turn is estimated at 5.6 % of total bacterial biomass (Boschker & Middelburg 2002).

195

2.4. Bulk Stable Isotopes

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

All bulk isotopic analyses were completed at the East Kilbride Node of the Natural Environment Research Council Life Sciences Mass Spectrometry Facility. Specimens with carbonate structures (e.g. bivalves) were physically decarbonated and all specimens were rinsed in de-ionised water (e.g. to remove soluble precipitates such as sulphates) and cleaned of attached sediment before drying. Specimens dried for at least 24 hours at 50°C and weighed (mg, correct to 3 d.p.) into tin capsules and stored in a desiccator whilst awaiting SIA. Samples were analysed by continuous flow isotope ratio mass spectrometer using a Vario-Pyro Cube elemental analyser (Elementar), coupled with a Delta Plus XP isotope ratio mass spectrometer (Thermo Electron). Each of the runs of CN and CNS isotope analyses used laboratory standards (Gelatine and two amino acidgelatine mixtures) as well as the international standard USGS40 (glutamic acid). CNS measurements used the internal standards (MSAG2: (Methanesulfonamide/ Gelatine and M1: Methionine) and the international silver sulphide standards IAEA-S1, S2 and S3. All sample runs included samples of freeze-dried, powdered Antimora rostrata (ANR), an external reference material used in other studies of chemosynthetic ecosystems (Reid et al. 2013, Bell et al. 2016a), used to monitor variation between runs and instruments (supplementary file 1). Instrument precision (S.D.) for each isotope measured from ANR was 0.42 ‰, 0.33 ‰ and 0.54 ‰ for carbon, nitrogen and sulphur respectively. The reference samples were generally consistent except in one of the CNS runs, which showed unusual $\delta^{15}N$ measurements (S1), so faunal $\delta^{15}N$ measurements from this run were excluded as a precaution. Stable isotope ratios are all reported in delta (δ) per mil (%) notation, relative to international standards: V-PDB (δ^{13} C); Air (δ^{15} N) and V-CDT (δ^{34} S). Machine error, relative to these standards ranged 0.01 – 0.23 for δ^{13} C, for 0.01 $-0.13 \, \delta^{15}$ N and 0.13 - 3.04 for δ^{34} S. One of the Sulphur standards (Ag₂S IAEA: S2) had a notable difference from the agreed measurements, suggesting either a compromised standard or poor instrument precision. This error was not observed in other standards, or the reference material used, but given the uncertainty here; only δ^{34} S differences greater than 3 ‰ are considered as being significant.

A combination of dual- (δ^{13} C & δ^{15} N, 319 samples) and tri-isotope (δ^{13} C, δ^{15} N & δ^{34} S, 83 samples) techniques was used to describe bulk isotopic signatures of 43 species of macrofauna (35 from non-hydrothermal sites, 19 from hydrothermal sites and 11 from both), 3 megafaunal taxa and sources of organic matter. Samples submitted for carbon and nitrogen (CN) analyses were pooled if necessary to achieve an optimal mass of 0.7 mg (\pm 0.5 mg). Where possible, individual specimens were kept separate in order to preserve variance structure within populations but in some cases, low sample mass meant individuals had to be pooled (from individuals found in replicate deployments). Optimal mass for tri-istope (CNS) measurements was 2.5 mg (\pm 0.5 mg) and, as with CN analyses, specimens were preferentially submitted as individual samples or pooled if necessary. Samples of freeze-dried sediment from each site were also submitted for CNS analyses (untreated for NS and acidified with 6M HCl for C). Acidification was carried out by repeated washing with acid and de-ionised water.

Specimens were not acidified. A pilot study, and subsequent results presented here, confirmed that the range in δ^{13} C measurements between acidified (0.1M and 1.0M HCl) was within the untreated population range, in both polychaetes and peracarids and that acidification did not notably or consistently reduce δ^{13} C standard deviation (Table 2). In the absence of a large or consistent treatment effect, the low sample mass, (particularly for CNS samples) was dedicated to increasing replication and preserving integrity of δ^{15} N & δ^{34} S measurements instead of separating carbon and nitrogen/ sulphur samples (Connolly & Schlacher 2013).

Formalin and ethanol preservation effects can both influence the isotopic signature of a sample (Fanelli et al. 2010, Rennie et al. 2012). Taxa that had several samples of each preservation method from a single site (to minimise intra-specific differences) were examined to determine the extent of isotopic shifts associated with preservation effects. Carbon and nitrogen isotopic differences between ethanol and formalin preserved samples ranged between 0.1 % – 1.4 % and 0.4 % – 2.0 % respectively. Differences across all samples were not significant (Paired ttest, δ^{13} C: t = 2.10, df = 3, p = 0.126 and δ^{15} N: t=1.14, df = 3, p = 0.337). Given the unpredictable response of isotopic signatures to preservation effects (which also cannot be extricated from within-site, intraspecific variation) it was not possible to correct isotopic data (Bell et al. 2016a). This contributed an unavoidable, but generally quite small, source of error in these measurements.

2.5. Statistical Analyses

All analyses were completed in the R statistical environment (R Core Team 2013). CN stable isotopic measurements were divided into those from hydrothermal or non-hydrothermal sites and averaged by taxa and used to construct a Euclidean distance matrix (Valls et al. 2014). A similarity profile routine (SIMPROF, 10 000 permutations, p = 0.05, Ward linkage) was applied to the distance matrix in the clustsig package (v1.0) (Clarke et al. 2008, Whitaker & Christmann 2013) to detect significant structure. The resulting cluster assignations were compared to a-priori feeding groups (Bell et al. 2016b) using a Spearman Correlation Test (with 9 999 Monte Carlo resamplings) using the coin package (v1.0-24) (Hothorn et al. 2015). Isotopic signatures of species sampled from both hydrothermal and non-hydrothermal sites were also compared

with a one-way ANOVA with Tukey's HSD pairwise comparisons (following a Shapiro-Wilk normality test).

Mean faunal measurements of $\delta^{13}C$ & $\delta^{15}N$ were used to calculate Layman metrics for each site (Layman et al. 2007), sample-size corrected standard elliptical area (SEAc) and Bayesian posterior draws (SEA.B, mean of 10^5 draws \pm 95 % credibility interval) in the SIAR package (v4.2) (Parnell et al. 2010, Jackson et al. 2011). Differences in SEA.B between sites were compared in mixSIAR. The value of p given is the proportion of ellipses from group A that were smaller in area than those from group B (e.g. if p = 0.02, then 2 % of posterior draws from group A were smaller than the group B mean) and is considered to be a semi-quantitative measure of difference in means (Jackson et al. 2011).

279 Section 3. Results

3.1. Differences in microbial composition along a hydrothermal gradient

A total of 28,767, 35,490 and 47,870 sequences were obtained from the off-axis site and the hydrothermal sites, Hook Ridge 1 and 2, respectively. Bacteria comprised almost the entirety of each sample, with archaea being detected only in the Hook Ridge 2 sample (< 0.1 % of sequences; Fig. 2). Hook Ridge 1 was qualitatively more similar to the off-axis site than Hook Ridge 2. Both Hook Ridge 1 (hydrothermal) and the off-vent site were dominated by proteobacteria (48 % and 61 % of reads respectively; Fig. 2), whereas flavobacteriia dominated Hook Ridge 2 (43 %, 7 – 12 % elsewhere) with proteobacteria accounting for a smaller percentage of sequences (36 %; Fig. 2). By sequence abundance, flavobacteriia were the most clearly disparate group between Hook Ridge 2 and the other sites. flavobacteriia were comprised of 73 genera at Hook Ridge 2, 60 genera at BOV and 63 genera at HR1, of which 54 genera were shared between all sites. Hook Ridge 2 had 15 unique flavobacteriial genera but these collectively accounted for just 0.9% of reads, indicating that compositional differences were mainly driven by relative abundance, rather than taxonomic richness.

The most abundant genus from each site was *Arenicella* at BOV and HR1 (7.1 and 5.2 % of reads respectively) and *Aestuariicola* at HR2 (6.9 % of reads) (Table 3). The four most abundant genera at both BOV and HR1 were *Arenicella* (γ-proteobacteria), *Methylohalomonas* (γ-proteobacteria), *Pasteuria* (bacilli) & *Blastopirellula* (planctomycetacia), though not in the same order, and accounted for 17.2% and 16.0 % of reads respectively. The four most abundant genera at HR2, accounting for 20.2 % of reads were *Aestuariicola*, *Lutimonas*, *Maritimimonas* & *Winogradskyella*

(favobacteriia). The genera Arenicella and Pasteuria were the most relatively abundant across all sites (2.2 % – 7.1 % and 1.7 % – 5.0 % of reads respectively; Table 3).

3.2. Microbial fatty acids

A total of 37 sedimentary FAs were identified across all sites, in individual abundances ranging between 0 % – 26.4 % of total FA (Table 4; Supplementary Fig 1). All lipid samples were dominated by saturated and mono-unsaturated fatty acids (SFAs and MUFAs), comprising 91 % – 94 % of FA abundance per site. The most abundant FAs at each site were 16:0 (15.7 % – 26.4 %), 16:1 ω 7c (11.5 % – 20.0 %) and 18:1 ω 7 (4.8 % – 16.9 %; Table 4). PLFA profiles from each of the non-hydrothermal sites sampled (Off-axis and the Three Sisters, 33 and 34 FAs respectively) were quite similar (Table 4) and shared all but one compound (16:1 ω 11c, present only at the non-hydrothermal Three Sisters site). Fewer FAs were enumerated from Hook Ridge 1 and 2 (31 and 23 respectively), including 3 FAs not observed at the non-hydrothermal sites (br17:0, 10-Me-17:0 & 10-Me-18:0), which accounted for 0.5 % – 1.2 % of the total at these sites. Polyunsaturated algal biomarkers (20:5 ω 3 and 22:6 ω 3) were only detected at the non-hydrothermal site (0.83 – 1.57 % of total FA abundance). Hook Ridge 2 had the lowest number of FAs and the lowest total FA biomass of any site, though this was due in part to the fact that this sample had to be pooled from the top 2 cm of sediment (top 1cm at other sites). Bacterial biomass was highest at Hook Ridge 1 and ranged 85 mg C m⁻² – 535 mg C m⁻² (Table 3).

PLFA carbon isotopic signatures ranged -56 ‰ to -20 ‰ at non-hydrothermal sites and -42 ‰ to -8 ‰ at hydrothermal sites (Table 4). Weighted average δ^{13} C values were quite similar between the non-hydrothermal sites and Hook Ridge 1 (-30.5 ‰ and -30.1 ‰ respectively), but were heavier at Hook Ridge 2 (-26.9 ‰; Table 4). Several of the FAs identified had a large range

in δ^{13} C between samples (including $16:1\omega11t$ δ^{13} C range = 17.2 ‰ or $19:1\omega8$ δ^{13} C range = 19.1 ‰), even between the non-hydrothermal sites (e.g. $18:2\omega6$, 9, $\Delta\delta^{13}$ C = 24.4; Table 4). Of the 37 FAs, 7 had a δ^{13} C range of > 10 ‰ but these were comparatively minor and individually accounted for 0 % – 4.9 % of total abundance. Average δ^{13} C range was 6.3 ‰ and a further 11 FAs had a δ^{13} C range of > 5 ‰, including some of the more abundant FAs, accounting for 36.8 ‰ – 46.6 % at each site. FAs with small δ^{13} C ranges (< 5 ‰) accounted for 44.6 % – 54.4 % of total abundance at each site.

3.3. Description of bulk isotopic signatures

Most faunal isotopic signatures were within a comparatively narrow range (δ^{13} C: -30 ‰ to -20 ‰, δ^{15} N: 5 ‰ to 15 ‰ and δ^{34} S: 10 ‰ to 20 ‰) and more depleted isotopic signatures were usually attributable to siboglinid species (Fig. 3). *Siboglinum* sp. (found at all non-hydrothermal sites) had mean δ^{13} C and δ^{15} N values of -41.4 ‰ and -8.9 ‰ respectively and *Sclerolinum contortum* (predominately from Hook Ridge 1 but found at both hydrothermal sites) had values of -20.5 ‰ and -5.3‰ respectively. Some non-endosymbiont bearing taxa (e.g. macrofaunal neotanaids from the off-axis site and megafaunal ophiuroids at Hook Ridge 2) also had notably depleted δ^{15} N signatures (means -3.6‰ to 2.6 ‰ respectively; Fig. 3).

Isotopic signatures of sediment organic matter were similar between hydrothermal and non-hydrothermal sites for δ^{13} C and δ^{15} N but δ^{34} S was significantly greater at non-hydrothermal sites (p < 0.05, Table 5; Fig. 4). Variability was higher in hydrothermal sediments for all isotopic signatures. Faunal isotopic signatures for δ^{13} C and δ^{34} S ranged much more widely than sediment signatures and indicate that sediment organics were a mixture of two or more sources of organic matter. A few macrofaunal species had relatively heavy δ^{13} C signatures that exceeded -20 ‰

that suggested either a heavy source of carbon or marine carbonate in residual exoskeletal tissue, particularly for peracarids (\sim 0 ‰). Samples of pelagic salps from Hook Ridge had mean values for δ^{13} C of -27.4 ‰ (± 0.9) and δ^{34} S of 21.5 ‰ (± 0.8).

3.4. Comparing macrofaunal morphology and stable isotopic signatures

Isotopic data (mean of each species for each of δ^{13} C, δ^{15} N and δ^{34} S) were used to construct a Euclidean distance matrix and the resultant hierarchy was compared to classifications based upon morphology. Species were assigned to one of four clusters (SIMPROF, p = 0.05; Supplementary Figure 3). No significant correlation between a-priori (based on morphology) and a-posteriori cluster assignations (based on isotopic data) was detected (Spearman Correlation Test: Z = -1.34; N = 43; p = 0.18). Clusters were mainly discriminated based on δ^{15} N values and peracarids were the only taxa to be represented in all of the clusters, indicating relatively high trophic diversity.

Several taxa found at both hydrothermal and non-hydrothermal sites were assigned to different clusters between sites. A total of eleven taxa were sampled from both hydrothermal and non-hydrothermal regions, of which four were assigned to different clusters at hydrothermal and non-hydrothermal sites. Neotanaids (Peracarida: Tanaidacea) had the greatest Euclidean distance between hydrothermal/ non-hydrothermal samples (11.36), demonstrating clear differences in dietary composition (Fig. 5). All other species were separated by much smaller distances between regions (range: 0.24 to 2.69). Raw δ^{13} C and δ^{15} N values were also compared between hydrothermal and non-hydrothermal samples for each species (one-way ANOVA with Tukey HSD pairwise comparisons). Analysis of the raw data indicated that δ^{13} C signatures were

different for neotanaids only and $\delta^{15}N$ were different for neotanaids and an oligochaete species (Limnodriloides sp.) (ANOVA, p < 0.01, Fig. 5).

3.5.Community-level trophic metrics

All site niches overlapped (mean = 50 %, range = 30 – 82 %) and the positions of ellipse centroids were broadly similar for all sites (Table 6; Fig 6). Hydrothermal site ellipse areas were similar but significantly smaller than non-hydrothermal ellipses (SEA.B, n = 10^5 , p = < 0.05). There were no significant differences in ellipse area between any of the non-hydrothermal sites. Ranges in carbon sources (dCr) were higher for non-hydrothermal sites (Table 6) indicating a greater trophic diversity in background conditions. Nitrogen range (dNr, Table 6) was similar between hydrothermal and non-hydrothermal sites suggesting a similar number of trophic levels within each assemblage. All site ellipses had broadly similar eccentricity (degree of extension along long axis), ranging 0.85 – 0.97 (Table 6), however theta (angle of long axis) differed between hydrothermal and non-hydrothermal sites (-1.43 to 1.55 at Hook Ridge, 0.67 to 0.86 at non-hydrothermal sites). Range in nitrogen sources was more influential at hydrothermal sites as *Sclerolinum contortum*, which had very low δ^{15} N signatures but similar δ^{13} C values, when compared with non-endosymbiont bearing taxa from the same sites. The strongly depleted δ^{13} C measurements of *Siboglinum* sp. meant that ellipse theta was skewed more towards horizontal (closer to zero) for non-hydrothermal sites.

Section 4. Discussion

4.1. Microbial signatures of hydrothermal activity

Fatty acid profiles at the non-hydrothermal off-axis and three sisters sites indicated similar bacterial biomass. Bacterial biomass varied much more widely at Hook Ridge (Table 4). The Hook Ridge 2 sample is not directly comparable since it was sampled from sediment 0-2 cmbsf (rather than 0-1 cmbsf, owing to sample mass availability). Organic carbon content, hydrogen sulphide flux and taxonomic diversity were all lower at this site and may support suggestion of a lower overall bacterial biomass (Aquilina et al. 2013, Bell et al. 2016b). The very high bacterial biomass at Hook Ridge 1 suggests a potentially very active bacterial community, comparable to other hydrothermal sediments (Yamanaka & Sakata 2004) but $\delta^{13}C_{org}$ was qualitatively similar to non-hydrothermal sites, implying that chemosynthetic activity was not the dominant source of organic carbon, or that the isotopic signatures of the basal carbon source (e.g. DIC) and the fractionation associated with FA synthesis resulted in similar $\delta^{13}C$ signatures.

A small number of the more abundant fatty acids had notable differences in relative abundance between hydrothermal and background sites (Table 4). For example, $16:1\omega$ 7, which has been linked to sulphur cycling pathways (Colaço et al. 2007) comprised 14.0% - 15.2% of abundance at non-hydrothermal sites and 20.0% - 23.5% at hydrothermal sites. However, $18:1\omega$ 7, also a suggested PLFA linked to thio-oxidation (McCaffrey et al. 1989, Colaço et al. 2007) occurred in lower abundance at hydrothermal sites (4.8% - 11.1%) than non-hydrothermal sites (15.9% - 16.9%), and was also abundant in deeper areas of the Antarctic shelf (Würzberg et al. 2011). Heavier carbon isotopic signatures (>-15%) are generally associated with rTCA cycle carbon fixation (Hayes 2001, Hugler & Sievert 2011, Reid et al. 2013), suggesting that this pathway may

have been active at the hydrothermal sites, albeit at probably quite low rates. Conversely, many of the lightest δ^{13} C signatures (e.g. 19:1 ω 8, -56.6 %0, off-axis site) were associated with the nonhydrothermal sites, although it should be noted that $19:1\omega8$ has not been definitively linked to a particular bacterial process (Koranda et al. 2013, Dong et al. 2015). Lower FA carbon isotope signatures with small ranges (e.g. -60 % to -50 %) could also be indicative of methane cycling, but most FAs at all sites had δ^{13} C of > -40 %. These results further suggest that chemosynthetic activity was relatively limited and support a rejection of hypothesis one, since, although there were differences between sites in PLFAs that are potentially indicative of chemosynthetic activity, these were not necessarily consistent between different PLFAs. The metabolic provenance of several of the more abundant PLFAs is also still uncertain. A number of fatty acids have been linked, though not exclusively, to chemoautotrophy, such as 10-Me-16:0 (Desulfobacter or Desulfocurvus, sulphate reducers) and 18:1ω7 (Yamanaka & Sakata 2004, Colaço et al. 2007, Klouche et al. 2009, Boschker et al. 2014) and their presence may be consistent with the hydrothermal signature of the sediment microbial community. There were notable proportions of compounds normally associated with sulphate-reducing bacteria (Kohring et al. 1994, Boschker et al. 2014). These included iC15:0, aiC15:0, 1C17:0 and aiC17:0, which together constituted $\sim 8-12$ % of the FA suite. In addition, C16:1 ω 5c was relatively abundant (Supplementary figure 1), and minor amounts of 10MeC16:0, C17:1ω8c, and cycloC17:0 were present. These have also been used as indicators of sulphate-reducing bacteria, and sometimes of particular groups (e.g. Guezennec & Fiala-Medioni 1996, Boschker et al. 2014). These compounds indicate the presence of sulphate-reducing bacteria, although perhaps not as the dominant group. Although the FA suite was indicative of active sulphur cycling activity, it remains difficult to be conclusive about the origin of most FAs even those which have been regularly observed in chemosynthetic contexts (e.g. $18:1\omega7$) may still be abundant elsewhere (Würzberg et al. 2011).

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

Together C16:1 ω 7c and C18:1 ω 7 accounted for ~25-35% of the total FA suite and, although they can be more generally associated with gram-negative eubacteria, have frequently been linked to sulphur oxidising bacteria in sediment samples (Pond et al. 1998, Yamanaka & Sakata 2004, Boschker et al. 2014). Their dominance of the suite in the Bransfield Strait is similar to sediments from a vent in the Barbados Trench, where together C16:1 ω 7 and C18:1 ω 7 contributed up to 50% of FAs (Guezennec & Fiala-Medioni 1996).

Long chain fatty acids (>C22) indicative of land plants (e.g. Yamanaka & Sakata 2004) and typical indicators of marine phytoplankton production (e.g. $C20:3\omega 5$ and $C22:6\omega 3$) were very minor constituents, never accounting for more than 3% of total PLFA mass and only detected at the non-hydrothermal sites; Off-Vent and Middle Sister. While their low abundance is at least partially accounted for by rapid degradation during sinking through the water column (Veuger et al. 2012), it also suggests that sedimentary FAs were predominantly of bacterial origin, whether that be due to bacterial reworking of photosynthetic organic matter, or in situ production.

Chemotrophic bacterial sequences, such as *Blastopirellula* (Schlesner 2015) or *Rhodopirellula* (Bondoso et al. 2014) were found at all sites in relatively high abundance, suggesting widespread and active chemosynthesis, though the lack of a particularly dominant bacterial group associated with chemosynthetic activity suggested that the supply of chemosynthetic OM was likely relatively limited. It remains difficult however to determine which FAs these bacterial lineages may be have been synthesising.

Some FAs also had marked differences in $\delta^{13}C$ signatures, even where there was strong compositional similarity between sites (i.e. the non-hydrothermal sites). This suggested that either there were differences in the isotopic values of inorganic or organic matter sources or different bacterial metabolic pathways were active. Between the non-hydrothermal sites, these included PUFAs and MUFAs (poly- and mono-unsaturated fatty acids) such as $18:2\omega6$, $9~(\Delta\delta^{13}C$ 24.4~%) and $19:1\omega8~(\Delta\delta^{13}C~19.1~\%$). Differences in PLFA $\delta^{13}C$ between the hydrothermal sites also ranged widely, with the largest differences being associated with PLFAs such as $16:1\omega11t$ $(\Delta\delta^{13}C~17.2~\%)$ and $10-Me-16:0~(\Delta\delta^{13}C~11.0~\%)$. However, it should be stressed that all PLFAs with larger $\delta^{13}C$ differences between sites were comparatively rare and never individually exceeded 5% of total abundance. Microbial signatures, whilst supporting the suggestion of chemosynthetic activity, are not indicative of chemosynthetic OM being the dominant source of organic matter to food webs at any site (hypothesis one). It is not possible to assess from PLFA data the relative importance of chemoautotrophic and photosynthetic OM sources, since PLFAs degrade quickly and therefore surface FA abundances are inevitably underestimated in deep water samples.

4.2. Siboglinids

Both species of infaunal siboglinid (*Sclerolinum contortum* from Hook Ridge and *Siboglinum* sp. from the non-hydrothermal sites) appeared to subsist upon chemosynthetically derived organic matter, as evidenced by their morphology, and also by their strongly 15 N-depleted isotopic signatures (see values with δ^{15} N of < -2 $\%_0$ in Fig. 3). Low δ^{15} N signatures have also been observed in other siboglinids in a range of hydrothermal settings, such as *Riftia pachyptila* at the East Pacific Rise hard substratum vents (Rau 1981). Diazotrophy has been detected previously in hydrothermal vents and cold seeps, typified by low δ^{15} N values (e.g. Rau, 1981; Desai et al.,

2013; Wu et al., 2014; (Yamanaka et al. 2015). Diazotrophy in various reducing settings has been found associated with anaerobic oxidation of methane (Dekas et al., 2009), methanotrophy (Mehta & Baross 2006) and (in a non-marine cave) sulphate reduction (Desai et al. 2013). The latter is also consistent with the low δ^{34} S signatures of both siboglinid species (Fig. 4), but gene expression analysis and/or isotopic tracing would be required to confirm this suggestion. Alternately, low δ^{15} N signatures may be explained by uptake of ammonium produced through dissimilatory nitrate reduction (Naraoka et al. 2008, Liao et al. 2014, Bennett et al. 2015), or strong isotopic fractionation during utilization of ammonia (Naraoka et al. 2008, Liao et al. 2014, Bennett et al. 2015). Bulk faunal isotopic signatures are inadequate to determine which of these chemosynthesis-related mechanisms is responsible for *Siboglinum* δ^{15} N values, which would require analysis of the functional genes in the *Siboglinum* endosymbionts.

 $\delta^{15}N$ values for both siboglinids ($\delta^{15}N$ Sclerolinum = -5.3 ‰ ± 1.0, Siboglinum = -8.9 ‰ ± 0.8) indicated reliance upon locally fixed N₂ (Rau 1981, Dekas et al. 2009, Dekas et al. 2014, Wu et al. 2014, Yamanaka et al. 2015), rather than utilisation of sediment organic nitrogen ($\delta^{15}N$ = 5.7 ‰ ± 0.7). These values were also in contrast to the rest of the non-chemosynthetic obligate species, which generally had much heavier $\delta^{15}N$ values. This supports hypothesis two, that the siboglinid species were subsisting upon chemosynthetic OM, most likely supplied by their endosymbionts.

Carbon isotopic signatures in chemosynthetic primary production depend upon the mode of fixation and the initial 13 C of the inorganic substrate. *Sclerolinum contortum* δ^{13} C (-20.5 ‰ ± 1.0 ‰) was depleted in δ^{13} C relative to Southern Ocean DIC by around 10 ‰ (Henley et al. 2012, Young et al. 2013), giving it a signal within the fractionation range of the reverse tricarboxyclic acid cycle (Yorisue et al. 2012) but the concentration and isotopic composition of DIC can undergo considerable alteration in hydrothermal sediments (Walker et al. 2008). Therefore,

without measurements of δ^{13} C in pore fluid DIC, it was not possible to determine which fixation pathway(s) were being used by *S. contortum* endosymbionts.

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

522

523

Sulphur isotopic signatures in *S. contortum* were very low, and quite variable ($-26.7 \% \pm 3.5 \%$). Sclerolinum endosymbionts may have been utilising sulphide either from hydrothermal fluid, microbial sulphate reduction or re-dissolved from hydrothermal precipitates. Mineral sulphide was present at Hook Ridge that ranged between -28.1 % to +5.1 % (Petersen et al. 2004), consistent with the relatively high δ^{34} S variability in *S. contortum*. Alternatively, sulphide supplied as a result of microbial sulphate reduction (Canfield 2001) may have been the primary source of organic sulphur, similar to that of solemyid bivalves in reducing sediments (mean δ^{34} S of -30 ‰ to -20 ‰; Vetter and Fry (1998) and in cold seep settings (Yamanaka et al. 2015). Sulphate reduction can also be associated with anaerobic oxidation of methane (Whiticar & Suess 1990, Canfield 2001, Dowell et al. 2016), suggesting that methanotrophic pathways could also have been important at Hook Ridge. (e.g. abundance of *Methylohalomonas*, 2.1 % – 4.3 % of sequences at all sites; Table 3). Although endosymbiont composition data were not available for the Southern Ocean population, Sclerolinum contortum is also known from hydrocarbon seeps in the Gulf of Mexico (Eichinger et al. 2013, Eichinger et al. 2014, Georgieva et al. 2015) and the Håkon Mosby mud volcano in the Arctic ocean, where S. contortum δ^{13} C ranged between -48.3 % to -34.9 % (Gebruk et al. 2003) demonstrating that this species can occupy several reducing environments and use a range of chemosynthetic fixation pathways, including sulphide oxidation and methanotrophy (Eichinger et al. 2014, Georgieva et al. 2015).

543

544

545

546

Siboglinum sp. δ^{13} C values (mean -41.4 ‰, range -45.7 ‰ to -38.1 ‰, n = 8) corresponded very closely to published values of thermogenic methane (-43 ‰ to -38 ‰) from the Bransfield Strait (Whiticar & Suess 1990), strongly suggesting that methanotrophy was the dominant carbon

source for this species. Biogenic methane, although present in the Bransfield Strait, typically has much lower δ^{13} C values (Whiticar 1999, Yamanaka et al. 2015), indicating a hydrothermal/thermogenic source of methane in the Bransfield Strait (Whiticar & Suess 1990). Sulphur isotopic signatures were also very low in *Siboglinum* sp. (δ^{34} S -22.9 ‰, one sample from 15 pooled individuals from the off-axis site), the lowest measurement of δ^{34} S reported for this genus (Schmaljohann & Flügel 1987, Rodrigues et al. 2013). Methanotrophy in *Siboglinum* spp. has been previously documented at seeps in the NE Pacific (Bernardino & Smith 2010) and Norwegian margin (δ^{13} C = -78.3 ‰ to -62.2 ‰) (Schmaljohann et al. 1990) and in Atlantic mud volcanoes (δ^{13} C range -49.8 ‰ to -33.0 ‰) (Rodrigues et al. 2013). Rodrigues et al. (2013) also reported a greater range in δ^{15} N than observed in the Bransfield siboglinids (δ^{15} N -1.3 ‰ to 12.2 ‰ and -10.2 ‰ to -7.6 ‰ respectively). This suggests that, in comparison to *Siboglinum* spp. in Atlantic Mud volcanoes, which seemed to be using a mixture of organic matter sources (Rodrigues et al. 2013), the Bransfield specimens relied much more heavily upon a single OM source, suggesting considerable trophic plasticity in this genus worldwide.

Off-vent methanotrophy, using thermogenic methane, potentially illustrates an indirect dependence upon hydrothermalism (Whiticar & Suess 1990). Sediment methane production is thought to be accelerated by the heat flux associated with mixing of hydrothermal fluid in sediment (Whiticar & Suess 1990) and sediment and *Siboglinum* isotopic data suggest that the footprint of hydrothermal influence may be much larger than previously recognised, giving rise to transitional environments (Bell et al. 2016a, Levin et al. 2016). Clear contribution of methanederived carbon to consumer diets was limited predominately to neotanaids, consistent with the relatively small population sizes (64 ind. m²– 159 ind. m²) of *Siboglinum* sp. observed in the Bransfield Strait (Bell et al. 2016b).

4.3. Organic Matter Sources

Pelagic salps, collected from an Agassiz trawl at Hook Ridge (1647m), were presumed to most closely represent a diet of entirely surface-derived material and were more depleted in 13 C and more enriched in 34 S than were sediments (Salp δ^{13} C = -27.4 ‰ & δ^{34} S = 20.1; Hook Ridge sediment δ^{13} C = -26.2 ‰ & δ^{34} S = 14.3) Salp carbon isotopic signatures were also lighter than the majority of macrofauna or sedimentary organic carbon, both at Hook Ridge and the non-hydrothermal sites (Fig. 3) and similar to other suspension feeding fauna in the Bransfield Strait (Elias-Piera et al. 2013).

Fauna with more depleted δ^{34} S/ more enriched δ^{13} C values were likely to have derived at least a small amount of their diet from chemosynthetic sources (potentially indirectly through non-selective consumption of detrital OM), both at hydrothermal and background regions (Bell et al. 2017). Carbon and sulphur isotopic measurements indicated mixed sources for most consumers between chemosynthetic OM and surface-derived photosynthetic OM. The low content of algal biomarkers (particularly at the hydrothermal sites) suggests that phytodetritus was probably quite degraded and thus challenging to detect using short-lived fatty acids. However, the Bransfield Strait can be subject to substantial export production and it is probable that surface production contributes much more to seafloor OM than is evident from the fatty acid composition. Non-hydrothermal sediments were more enriched in 34 S than hydrothermal sediments, an offset that probably resulted from greater availability of lighter sulphur sources such as sulphide oxidation at Hook Ridge, even if surface-derived OM remained the dominant source of organic matter at the hydrothermal sites (Bell et al. 2017).

Samples of bacterial mat could not be collected during JC55 (Tyler et al. 2011) and without these endmember measurements, it was not possible to quantitatively model resource partitioning in the Bransfield Strait using isotope mixing models (Phillips et al. 2014). Bacterial mats from hightemperature vents in the Southern Ocean had δ^{34} S values of 0.8 % (Reid et al. 2013) and at sedimented areas of the Loki's Castle hydrothermal vents in the Arctic Ocean has δ^{34} S values of -4.9 % (Bulk sediment; Jaeschke et al. 2014). Therefore it is probable that low faunal δ^{34} S values represent a contribution of chemosynthetic OM (from either siboglinid tissue or free-living bacteria). Inorganic sulphur can also be a source to consumers when sulphide is utilised by free living bacteria (δ^{34} S ranged -7.3 % to 5.4 %; Erickson et al. (2009)) and, although we could not analyse the δ^{34} S of fluid sulphide, sulphide crusts have been found at Hook Ridge and may provide a proxy for typical isotopic composition (δ^{34} S -28.1 ‰ to 5.1 ‰; Petersen et al. (2004)). There were several species (e.g. Tubificid oligochaetes) that had moderately depleted δ^{34} S signatures, such as Limnodriloides sp. (δ^{34} S 7.6 % at hydrothermal sites, -1.2 % at nonhydrothermal sites, Fig. 4) further supporting the hypothesis of different trophic positions between hydrothermal / non-hydrothermal regions (hypothesis two). This provides evidence of coupled anaerobic oxidation of methane/ sulphate reduction but overall, the contribution of δ^{34} S-depleted bacterial production did not seem widespread (further rejecting hypothesis four). Without samples of all OM sources we cannot quantitatively assert that faunal utilisation of chemosynthetic OM was low in the Bransfield Strait. Although isotopic data were consistent with several OM sources, it seemed unlikely that chemosynthetic OM was a dominant source of OM to the vast majority of taxa. The apparently limited consumption of chemosynthetic OM

suggested that either it was not widely available (e.g. patchy or low density of endosymbiont-

bearing fauna (Bell et al. 2016b)), or that the ecological stress associated with feeding in areas

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

of in situ production was a significant deterrent to many species (Bernardino et al. 2012, Levin et al. 2013).

4.4. A-priori vs. a-posteriori trophic groups

Classifications based upon morphology did not prove to be an accurate predictor of isotopic data, suggesting that faunal behaviour is potentially more important in determining dietary composition than morphology (e.g. having/ lacking jaws). Peracarid species that possessed structures adapted to a motile, carnivorous lifestyle were assigned to a carnivore/ scavenger guild (Bell et al. 2016b) and were distributed throughout the food web both at hydrothermal sites and background regions, indicating more diverse feeding strategies than expected. Taxa presumed to be deposit feeders (largely annelids) also had a large range of δ^{15} N values. This may reflect the consumption of detritus from both 'fresh' and more recycled/ refractory OM sources as observed in other non-hydrothermal sedimented deep-sea habitats (Iken et al. 2001, Reid et al. 2012) or reflect variability in trophic discrimination related to diet quality (Adams & Sterner 2000). A range of foraminifera have now been shown to utilise denitrification which results in them having heavier δ^{15} N values (Pina-Ochoa et al. 2010, Jeffreys et al. 2015). The result is high δ^{15} N values at the hydrothermal sites, suggesting that they fed upon more recycled organic matter, possibly owing to greater microbial activity at hydrothermal sites.

Several taxa (e.g. ophiuroids at Hook Ridge) had low $\delta^{15}N$ values, relative to sediment OM, suggesting preferential consumption of chemosynthetic OM (Rau 1981, Dekas et al. 2014). In these taxa, it is likely that the widespread, but patchy bacterial mats or *Sclerolinum* populations at Hook Ridge (Aquilina et al. 2013) were an important source of organic matter. Fauna from the

non-hydrothermal sites with low $\delta^{15}N$ (e.g. neotanaids) were likely subsisting in part upon siboglinid tissue (*Siboglinum* sp.). There were no video transects over the off-axis site but footage of the Three Sisters, which was similar in macrofaunal composition (Bell et al. 2016b), did not reveal bacterial mats (Aquilina et al. 2013), hence it is unlikely that these were an important resource at non-hydrothermal sites.

It is clear that some fauna can exhibit a degree of trophic plasticity, depending upon habitat (supporting hypothesis four). This is consistent with other hydrothermal sediments where several taxa (e.g. *Prionospio* sp. – Polychaeta: Spionidae) had different isotopic signatures, depending upon their environment (Levin et al. 2009), demonstrating differential patterns in resource utilisation. Alternatively, there could have been different $\delta^{15}N$ baselines between sites, though if these differences were significant, we argue that it likely that more species would have had significant differences in tissue $\delta^{15}N$. Conversely, samples of *Aurospio foodbancsia* at both hydrothermal and non-hydrothermal sites had broadly similar $\delta^{15}N$ values to that of the west Antarctic Peninsula; 8.1 % and 7.9 % respectively, albeit with a higher variability (Mincks et al. 2008). $\delta^{13}C$ values of *Aurospio* were also broadly similar, implying that this species occupied a detritivorous trophic niche, irrespective of environmental conditions.

4.5. Impact of hydrothermal activity on community trophodynamics

Standard ellipse area was lower at Hook Ridge than elsewhere (Table 6), analogous to trends in macrofaunal diversity and abundance in the Bransfield Strait (Bell et al. 2016b) and changes in SEA.B along a gradient of methane flux at vent and seep ecosystems in the Guaymas Basin (Portail et al. 2016). This demonstrates that at community level, ellipse area can be associated with other macrofaunal assemblage characteristics. Concurrent decline in niche area and alpha

diversity is consistent with the concept that species have finely partitioned niches and greater total niche area permits higher biodiversity (McClain & Schlacher 2015). This relationship may also suggest that the influence of disturbance gradients created by hydrothermalism can result in an impoverished community (McClain & Schlacher 2015, Bell et al. 2016b). Productivity-diversity relationships, whereby higher productivity sustains higher diversity, have also been suggested for deep-sea ecosystems (McClain & Schlacher 2015, Woolley et al. 2016) this is not supported by the Bransfield Strait sites (Bell et al. 2017). We suggest that, in the Bransfield Strait, the environmental toxicity in hydrothermal sediments (from differences in temperature and porewater chemistry) causes a concomitant decline in both trophic and species diversity (Bell et al. 2016b), in spite of the potential for increased localised production (Bell et al. 2017). However, we acknowledge that, owing to the high small-scale habitat heterogeneity apparent from video imagery over the hydrothermally influenced area, that it is likely that the contribution of chemosynthetic organic matter varies widely over 10s of metres at Hook Ridge.

Community-based trophic metrics (Layman et al. 2007) indicated that, although measures of dispersion within sites were relatively similar between hydrothermal sites and background areas (Table 6), trophic diversity, particularly in terms of range of carbon sources (dCr) and total hull area (TA) were higher at background sites, owing to the more depleted carbon and nitrogen signatures of *Siboglinum* spp.. It is still unclear whether the assemblage isotopic niche really corresponds to its actualised trophic niche and, although the niche space was smaller at the hydrothermal sites, the potential for different trophic strategies was still potentially greater (Bell et al. 2017).

Section 5. Conclusions

In this study, we demonstrate the influence of sediment-hosted hydrothermal activity upon trophodynamics and microbial populations. Low activity hydrothermal microbiota were more similar to the non-hydrothermal site than to high activity populations, illustrating the effect of ecological gradients upon deep-sea microbial diversity. Despite widespread bacterial mats, and populations of hydrothermal-endemic macrofauna, utilisation of chemosynthetic OM amongst non-specialist macro- and megafauna seemed relatively low, with a concomitant decline in trophic diversity with increasing hydrothermal activity. Morphology was also not indicative of trophic relationships, demonstrating the effects of differential resource availability and behaviour. We suggest that, because these sedimented hydrothermal sites are insufficiently active to host large populations of vent-endemic megafauna, the transfer of chemosynthetic organic matter into the metazoan food web is likely to be more limited than in other similar environments.

6. Acknowledgements

JBB was funded by a NERC PhD Studentship (NE/L501542/1). This work was funded by the NERC ChEsSo consortium (Chemosynthetically-driven Ecosystems South of the Polar Front, NERC Grant NE/DOI249X/I). Elemental analyses were funded by the NERC Life Sciences Mass Spectrometry Facility (Proposal no. EK234-13/14). We thank Barry Thornton and the James Hutton Laboratory, Aberdeen for processing the PLFA samples. We also thank Will Goodall-Copestake for assistance in processing the 16S sequence data. We are grateful to the Master and Crew of RRS *James Cook* cruise 055 for technical support and the Cruise Principal Scientific Officer Professor Paul Tyler.

717 7. Ethics Statement

In accordance with the Antarctic Act (1994) and the Antarctic Regulations (1995), necessary permits (S5-4/2010) were acquired from the South Georgia and South Sandwich Islands Government.

8. Author contributions

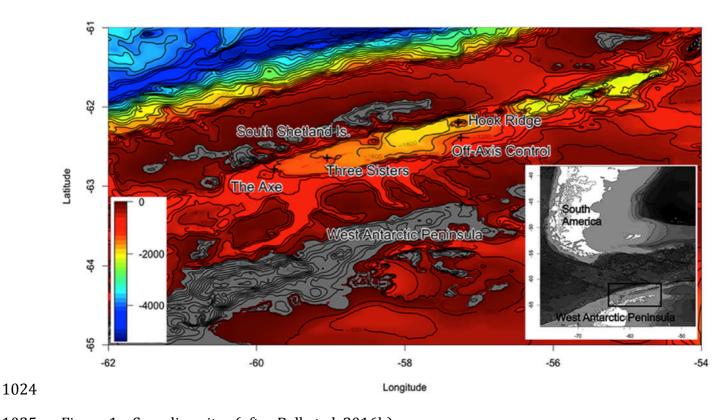
Conceived and designed the sampling programme: WDKR, DAP, AGG, CJS & CW. Sample laboratory preparation and isotopic analyses: JBB, JN & CJS. Microbial sequencing: DAP. Statistical analyses: JBB. Produced figures: JBB. Wrote the paper: JBB, CW & WDKR, with contributions and comments from all other authors.

- 731 Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level ¹⁵N enrichment. Limnology & Oceanography 45:601-607
- Aquilina A, Connelly DP, Copley JT, Green DR, Hawkes JA, Hepburn L, Huvenne VA, Marsh L, Mills RA, Tyler PA (2013) Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica). Plos One 8:e54686
 - Aquilina A, Homoky WB, Hawkes JA, Lyons TW, Mills RA (2014) Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica. Geochimica et Cosmochimica Acta 137:64-80
 - Bell JB, Aquilina A, Woulds C, Glover AG, Little CTS, Reid WDK, Hepburn LE, Newton J, Mills RA (2016a) Geochemistry, faunal composition and trophic structure at an area of weak methane seepage on the southwest South Georgia margin. Royal Society Open Science 3
 - Bell JB, Woulds C, Brown LE, Little CTS, Sweeting CJ, Reid WDK, Glover AG (2016b) Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica. Frontiers in Marine Science 3:32
 - Bell JB, Woulds C, van Oevelen D (2017) Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling. Scientific reports 7
 - Bemis K, Lowell R, Farough A (2012) Diffuse Flow On and Around Hydrothermal Vents at Mid-Ocean Ridges. Oceanography 25:182-191
 - Bennett SA, Dover CV, Breier JA, Coleman M (2015) Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise). Deep Sea Research Part I: Oceanographic Research Papers 104:122-133
 - Bernardino AF, Levin LA, Thurber AR, Smith CR (2012) Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls. Plos ONE 7:e33515
 - Bernardino AF, Smith CR (2010) Community structure of infaunal macrobenthos around vestimentiferan thickets at the San Clemente cold seep, NE Pacific. Marine Ecology-an Evolutionary Perspective 31:608-621
 - Biomatters (2014) Geneious.
 - Bligh EG (1959) A rapid method of total lipid extration and purification. Canadian Journal of Biochemistry and Phsiology 37:911-917
 - Bondoso J, Albuquerque L, Lobo-da-Cunha A, da Costa MS, Harder J, Lage OM (2014) Rhodopirellula lusitana sp. nov. and Rhodopirellula rubra sp. nov., isolated from the surface of macroalgae. Syst Appl Microbiol 37:157-164
 - Boschker HT, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40:85-95
 - Boschker HT, Vasquez-Cardenas D, Bolhuis H, Moerdijk-Poortvliet TW, Moodley L (2014) Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments. PLoS One 9:e101443
 - Canfield DE (2001) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica Et Cosmochimica Acta 65:1117-1124
- Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community
 analyses: similarity profiles and biota-environment linkage. Journal of Experimental
 Marine Biology and Ecology 366:56-69

- Colaço A, Desbruyères D, Guezennec J (2007) Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Marine Ecology 28:15-24
 - Connolly RM, Schlacher TA (2013) Sample acidification significantly alters stable isotope ratios of sulfur in aquatic plants and animals. Marine Ecology Progress Series 493:1-8
 - Dählmann A, Wallman K, Sahling H, Sarthou G, Bohrmann G, Petersen S, Chin CS, Klinkhammer GP (2001) Hot vents in an ice-cold ocean: Indications for phase separation at the southernmost area of hydrothermal activity, Bransfield Strait, Antarctica. Earth and Planetary Science Letters 193:381-394
 - Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ (2014) Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol 16:3012-3029
 - Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methaneconsuming microbial consortia. Science 326:422-426
 - Desai MS, Assig K, Dattagupta S (2013) Nitrogen fixation in distinct microbial niches within a chemoautotrophy-driven cave ecosystem. Isme Journal 7:2411-2423
 - Dong L-J, Sun Z-K, Gao Y, He W-M (2015) Two-year interactions between invasive Solidago canadensis and soil decrease its subsequent growth and competitive ability. Journal of Plant Ecology:rtv003
 - Dowell F, Cardman Z, Dasarathy S, Kellerman M, Lipp JS, Ruff SE, Biddle JF, McKay L, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A (2016) Microbial communities in methane- and short chain alkane- rich hydrothermal sediments of Guaymas Basin. Frontiers in microbiology
 - Eichinger I, Hourdez S, Bright M (2013) Morphology, microanatomy and sequence data of *Sclerolinum contortum* (Siboglindae, Annelida) of the Gulf of Mexico. Organisms Diversity & Evolution 13:311-329
 - Eichinger I, Schmitz-Esser S, Schmid M, Fisher CR, Bright M (2014) Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps. Environ Microbiol Rep 6:364-372
 - Elias-Piera F, Rossi S, Gili JM, Orejas C (2013) Trophic ecology of seven Antarctic gorgonian species. Marine Ecology Progress Series 477:93-106
 - Erickson KL, Macko SA, Van Dover CL (2009) Evidence for a chemotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep Sea Research Part II: Topical Studies in Oceanography 56:1577-1585
 - Fanelli E, Cartes JE, Enric J, Papiol V, Rumolo P, Sprovieri M (2010) Effects of preservation on the δ 13C and δ 15N values of deep sea macrofauna. Journal of Experimental Marine Biology and Ecology 395:93-97
 - Fry B, Jannasch HW, Molyneaux SJ, Wirsen CO, Muramoto JA, King S (1991) Stable Isotope Studies of the Carbon Nitrogen and Sulfur Cycles in the Black Sea and the Cariaco Trench. Deep-Sea Research Part A Oceanographic Research Papers 38:S1003-S1020
 - Gebruk A, Krylova E, Lein A, Vinogradov G, Anderson E, Pimenov N, Cherkashev G, Crane K (2003) Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia: North Atlantic Marine Science 88:394-403
 - Georgieva M, Wiklund H, Bell JB, Eilersten MH, Mills RA, Little CTS, Glover AG (2015) A chemosynthetic weed: the tubeworm *Sclerolinum contortum* is a bipolar, cosmopolitan species. BMC Evolutionary Biology 15:280
- Gollner S, Govenar B, Fisher CR, Bright M (2015) Size matters at deep-sea hydrothermal vents:
 different diversity and habitat fidelity patterns of meio- and macrofauna. Marine Ecology
 Progress Series 520:57-66

- Guezennec J, Fiala-Medioni A (1996) Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis. Microbiology Ecology 19:83-93
- Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Reviews in Mineralogy & Geochemistry 43:225-277
 - Henley SF, Annett AL, Ganeshram RS, Carson DS, Weston K, Crosta X, Tait A, Dougans J, Fallick AE, Clarke A (2012) Factors influencing the stable carbon isotopic composition of suspended and sinking organic matter in the coastal Antarctic sea ice environment. Biogeosciences 9:1137-1157
 - Hothorn T, van de Wiel MA, Zeilis A (2015) Package 'Coin': Conditional Inference Procedures in a Permutation Test Framework. cranr-projectorg
 - Hugler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual review of marine science 3:261-289
 - Iken K, Brey T, Wand U, Voight J, Junghans P (2001) Trophic relationships in the benthic community at Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography 50:383-405
 - Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER Stable Isotope Bayesian Ellipses in R. The Journal of animal ecology 80:595-602
 - Jaeschke A, Eickmann B, Lang SQ, Bernasconi SM, Strauss H, Fruh-Green GL (2014) Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge. Extremophiles 18:545-560
 - Jeffreys RM, Fisher EH, Gooday AJ, Larkin KE, Billett DSM, Wolff GA (2015) The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes. Biogeosciences 12:1781-1797
 - Kallmeyer J, Boetius A (2004) Effects of Temperature and Pressure on Sulfate Reduction and Anaerobic Oxidation of Methane in Hydrothermal Sediments of Guaymas Basin. Applied and environmental microbiology 70:1231-1233
 - Kharlamenko VI, Zhukova NV, Khotimchenko SV, Svetashev VI, Kamenev GM (1995) Fatty-acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich island, Kurile Islands). Marine Ecology Progress Series 120:231-241
 - Kiel S (2016) A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proceedings of the Royal Society B: Biological Sciences 283
 - Klinkhammer GP, Chin CS, Keller RA, Dahlmann A, Sahling H, Sarthou G, Petersen S, Smith F (2001) Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth and Planetary Science Letters 193:395-407
 - Klouche N, Basso O, Lascourréges J-F, Cavol J-L, Thomas P, Fauque G, Fardeau M-L, Magot M (2009) Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. International Journal of Systematic and Evolutionary Microbiology 30:3100-3104
 - Kohring L, Ringelberg D, Devereuk R, Stahl DA, Mittelman MW, White DC (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimiltory sulfate-reducing bacteria. Fems Microbiology Letters 119:303-308
- Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Rickhter A (2013) Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. In: Dieckmann U (ed). International Institute for Applied Systems Analysis, Laxenburg, Austria

- Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can Stable Isotope Ratios Provide For Community-Wide Measures of Trophic Structure? Ecology 88:42-48
- Levin LA, Baco AR, Bowden D, Colaço A, Cordes E, Cunha MR, Demopoulos A, Gobin J, Grupe B, Le J, Metaxas A, Netburn A, Rouse GW, Thurber AR, Tunnicliffe V, Van Dover C, Vanreusel A, Watling L (2016) Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence. Frontiers in Marine Science 3:72
 - Levin LA, Mendoza GF, Konotchick T, Lee R (2009) Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Research Part II: Topical Studies in Oceanography 56:1632-1648
 - Levin LA, Ziebis W, Mendoza GF, Bertics VJ, Washington T, Gonzalez J, Thurber AR, Ebbed B, Lee RW (2013) Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps. Deep-Sea Research Part II-Topical Studies in Oceanography 92:214-233
 - Liao L, Wankel SD, Wu M, Cavanaugh CM, Girguis PR (2014) Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Mol Ecol 23:1544-1557
 - Main CE, Ruhl HA, Jones DOB, Yool A, Thornton B, Mayor DJ (2015) Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition. Deep Sea Research Part I: Oceanographic Research Papers 100:79-87
 - Martens CS (1990) Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Applied Geochemistry 5:71-76
 - McCaffrey MA, Farrington JW, Repeta DJ (1989) Geo-chemical implications of the lipid composition of *Thioploca* spp. from the Peru upwelling region 15°S. Organic Geochemistry 14
 - McClain CR, Schlacher TA (2015) On some hypotheses of diversity of animal life at great depths on the sea floor. Marine Ecology:12288
 - Mehta MP, Baross JA (2006) Nitrogen Fixation at 92°C by a Hydrothermal Vent Archaeon. Science 314:1783-1786
 - Mincks SL, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by δ 13C and δ 15N analysis. Deep Sea Research Part II: Topical Studies in Oceanography 55:2502-2514
 - Naraoka H, Naito T, Yamanaka T, Tsunogai U, Fujikura K (2008) A multi-isotope study of deepsea mussels at three different hydrothermal vent sites in the northwestern Pacific. Chemical Geology 255:25-32
 - Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 30:385
 - Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672
 - Petersen S, Herzig PM, Schwarz-Schampera U, Hannington MD, Jonasson IR (2004) Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica. Mineralium Deposita 39:358-379
 - Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014)
 Best practices for use of stable isotope mixing models in food-web studies. Canadian
 Journal of Zoology 92:823-835
- Pina-Ochoa E, Koho KA, Geslin E, Risgaard-Petersen N (2010) Survival and life strategy of the
 foraminiferan *Globobulimina turgida* though nitrate storage and denitrification. Marine
 Ecology Progress Series 417:39-49
- Pond DW, Bell MV, Dixon DR, Fallick AE, Segonzac M, Sargent JR (1998) Stable-Carbon-Isotope
 Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic


- 920 and Thiotrophic Bacterial Endosymbionts. Applied and environmental microbiology 921 64:370-375
- Portail M, Olu K, Dubois SF, Escobar-Briones E, Gelinas Y, Menot L, Sarrazin J (2016) Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps. PLoS One 11:e0162263
 - R Core Team (2013) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.
 - Rau GH (1981) Low ¹⁵N/¹⁴N in hydrothermal vent animals: ecological implications. Nature 289:484-485
 - Reid WDK, Sweeting CJ, Wigham BD, Zwirglmaier K, Hawkes JA, McGill RAR, Linse K, Polunin NVC (2013) Spatial Differences in East Scotia Ridge Hydrothermal Vent Food Webs: Influences of Chemistry, Microbiology and Predation on Trophodynamics. Plos One 8
 - Reid WDK, Wigham BD, McGill RAR, Polunin NVC (2012) Elucidating trophic pathways in benthic deep-sea assemblages of the Mid-Atlantic Ridge north and south of the Charlie-Gibbs Fracture Zone. Marine Ecology Progress Series 463:89-103
 - Rennie MD, Ozersky T, Evans DO (2012) Effects of formalin preservation on invertebrate stable isotope values over decadal time scales. Canadian Journal of Zoology 90:1320-1327
 - Rodrigues CF, Hilário A, Cunha MR (2013) Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): distribution, life styles and nutritional patterns. Biogeosciences 10:2569-2581
 - Sahling H, Wallman K, Dählmann A, Schmaljohann R, Petersen S (2005) The physicochemical habitat of *Sclerolinum sp.* at Hook Ridge hydrothermal vent, Bransfield Strait, Antarctica. Limnology & Oceanography 50:598-606
 - Schlesner H (2015) Blastopirellula. Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd
 - Schmaljohann R, Faber E, Whiticar MJ, Dando PR (1990) Co-existence of methane- and sulphurbased endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Marine Ecology Progress Series 61:11-124
 - Schmaljohann R, Flügel HJ (1987) Methane-oxidizing bacteria in Pogonophora. Sarsia 72:91-98 Sellanes J, Zapata-Hernández G, Pantoja S, Jessen GL (2011) Chemosynthetic trophic support for the benthic community at an intertidal cold seep site at Mocha Island off central Chile. Estuarine, Coastal and Shelf Science 95:431-439
 - Soto LA (2009) Stable carbon and nitrogen isotopic signatures of fauna associated with the deepsea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Research Part II: Topical Studies in Oceanography 56:1675-1682
 - Southward A, J., Southward EC, Brattegard T, Bakke T (1979) Further Experiments on the value of Dissolved Organic Matter as Food for *Siboglinum fjiordicum* (Pogonophora). Journal of Marine Biological Asociation of the United Kingdom 59:133-148
 - Sweetman AK, Levin LA, Rapp HT, Schander C (2013) Faunal trophic structure at hydrothermal vents on the southern Mohn's Ridge, Arctic Ocean. Marine Ecology Progress Series 473:115
 - Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology 224:5-39
 - Teske A, Callaghan AV, LaRowe DE (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Frontiers in microbiology 5:362
- Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities. Applied and environmental microbiology 68:1994-2007

- Thornhill DJ, Wiley AA, Campbell AL, Bartol FF, Teske A, Halanych KM (2008) Endosymbionts of Siboglinum fjordicum and the Phylogeny of Bacterial Endosymbionts in Siboglinidae (Annelida). Biological Bulletin 214:135-144
- Thornton B, Zhang Z, Mayes RW, Högberg MN, Midwood AJ (2011) Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? Rapid Communications in Mass Spectrometry 25:2433-2438
 - Tyler PA, Connelly DP, Copley JT, Linse K, Mills RA, Pearce DA, Aquilina A, Cole C, Glover AG, Green DR, Hawkes JA, Hepburn L, Herrera S, Marsh L, Reid WD, Roterman CN, Sweeting CJ, Tate A, Woulds C, Zwirglmaier K (2011) RRS *James Cook* cruise JC55: Chemosynthetic Ecosystems of the Southern Ocean. BODC Cruise Report
 - Valls M, Olivar MP, Fernández de Puelles ML, Molí B, Bernal A, Sweeting CJ (2014) Trophic structure of mesopelagic fishes in the western Mediterranean based on stable isotopes of carbon and nitrogen. Journal of Marine Systems 138:160-170
 - Vetter RD, Fry B (1998) Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Marine Biology 132:453-460
 - Veuger B, van Oevelen D, Middelburg JJ (2012) Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment. Geochimica Et Cosmochimica Acta 83
 - Walker BD, McCarthy MD, Fisher AT, Guilderson TP (2008) Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge. Marine Chemistry 108:123-136
 - Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Asssignment of rRNA sequences into the New Bacterial Taxonomy. Applied Environmental Microbiology 73:5261-5267
 - Whitaker D, Christmann M (2013) Package 'clustsig'. cranr-projectorg
 - Whiticar MJ (1999) Carbon and Hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161:291-314
 - Whiticar MJ, Suess E (1990) Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Applied Geochemistry 5:135-147
 - Woolley SNC, Tittensor DP, Dunstan PK, Guillera-Arroita G, Lahoz-Monfort JJ, Wintle BA, Worm B, O'Hara TD (2016) Deep-sea diversity patterns are shaped by energy availability. Nature
 - Wu Y, Cao Y, Wang C, Wu M, Aharon O, Xu X (2014) Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge. Acta Oceanologica Sinica 33:94-104
 - Würzberg L, Peters J, Schüller M, Brandt A (2011) Diet insights of deep-sea polychaetes derived from fatty acids analyses. Deep Sea Research Part II 58:153-162
 - Yamanaka T, Sakata S (2004) Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Organic Geochemistry 35:573-582
 - Yamanaka T, Shimamura S, Nagashio H, Yamagami S, Onishi Y, Hyodo A, Mampuku M, Mizota C (2015) A Compilation of the Stable Isotopic Compositions of Carbon, Nitrogen, and Sulfur in Soft Body Parts of Animals Collected from Deep-Sea Hydrothermal Vent and Methane Seep Fields: Variations in Energy Source and Importance of Subsurface Microbial Processes in the Sediment-Hosted Systems. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor Biosphere Linked to Hydrothermal Systems. SpringerOpen, Tokyo
- Yorisue T, Inoue K, Miyake H, Kojima S (2012) Trophic structure of hydrothermal vent communities at Myojin Knoll and Nikko Seamount in the northwestern Pacific: Implications for photosynthesis-derived food supply. Plankton and Benthos Research 7:35-40

1017 1018 1019 1020	Young JN, Bruggeman J, Rickaby REM, Erez J, Conte M (2013) Evidence for changes in carbon isotopic fractionation by phytoplankton between 1960 and 2010. Global Biogeochemical Cycles 27:505-515
1021	

1022 10. Figure captions

1023

1025 Figure 1 – Sampling sites (after Bell et al. 2016b)

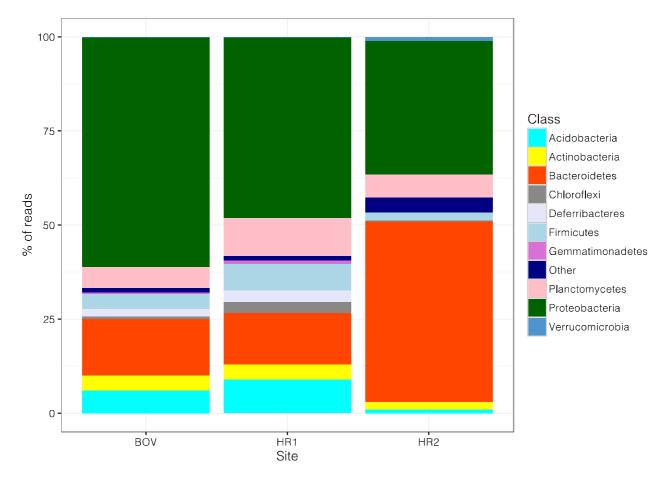


Figure 2 – Microbial composition (classes) at the off-vent/ off-axis site (BOV) and the two Hook Ridge sites (HR1 and HR2). Archaea excluded from figure as they only accounted for $0.008\,\%$ of reads at HR2 and were not found elsewhere.

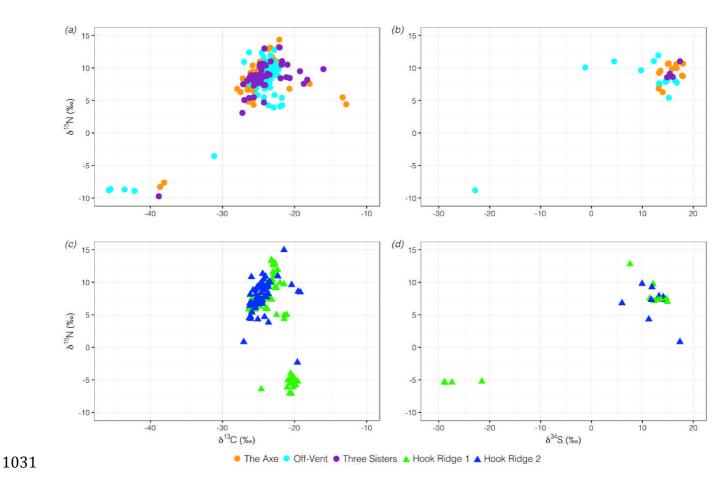


Figure 3 – Carbon-Nitrogen and Sulphur-Nitrogen biplots for bulk isotopic signatures of benthos, separated into non-hydrothermal (top) and hydrothermal sites (bottom). Excepting one value from the off-vent site (for a peracarid species), all values with $\delta^{15}N$ of < 0 were siboglinid species (*Sclerolinum contortum* from the hydrothermal sites and *Siboglinum* spp. from the non-hydrothermal sites).

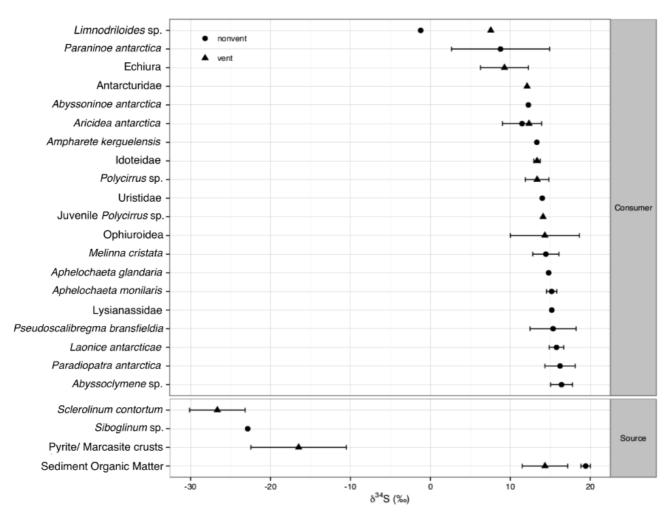


Figure 4 – Plot of $\delta^{34}S$ measurements by discriminated by species and habitat (hydrothermally active vents & sediments/ non-hydrothermally active sediments ± 1 s.d.). Data for $\delta^{34}S$ in crusts from Petersen et al. (2004)

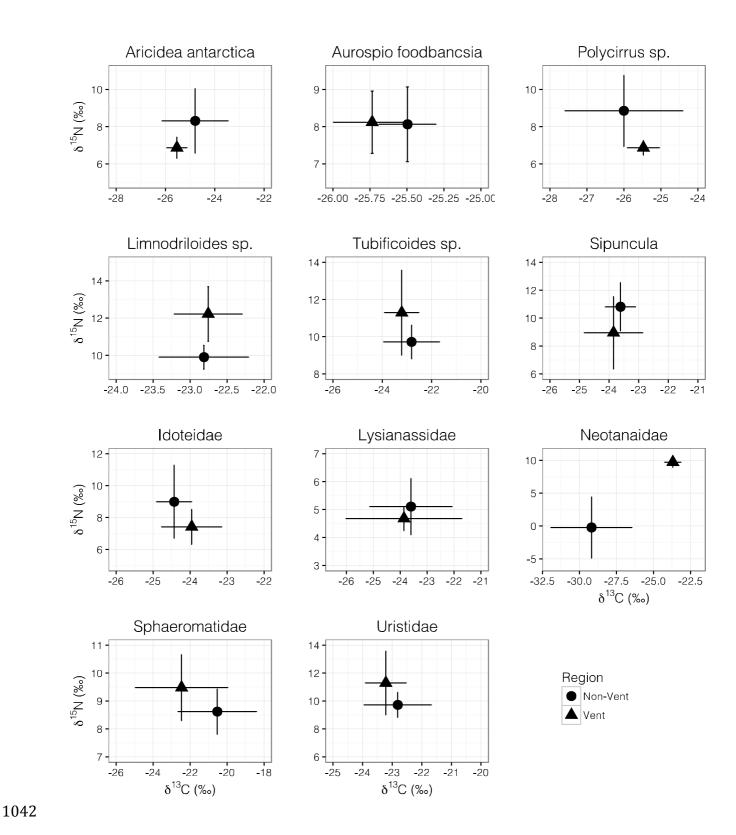


Figure 5– Biplot of CN isotopic data from species sampled both at hydrothermal sitess and non-hydrothermal background regions. Mean ± standard deviation, X-Y scales vary

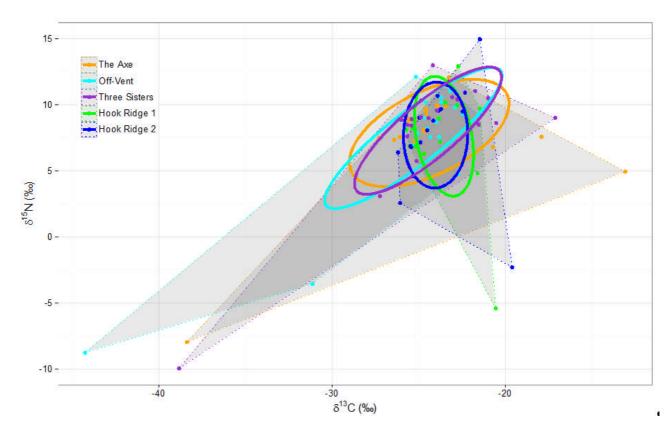


Figure 6 – Faunal isotopic signatures (mean per species), grouped by site with total area (shaded area marked by dotted lines) and sample-size corrected standard elliptical area (solid lines)

1052 11. Tables

Site	Depth	Hydrothermally active?	References
	(m)		
The Axe (AXE)	1024	No	(Dählmann et al. 2001,
Off-Vent (BOV)	1150	No	Klinkhammer et al. 2001, Sahling
Three Sisters (TS)	1311	No	et al. 2005, Aquilina et al. 2013,
Hook Ridge 1 (HR1)	1174	Low activity (9 cm yr ⁻¹)	Aquilina et al. 2014, Bell et al.
Hook Ridge 2 (HR2)	1054	High Activity (34 cm yr ⁻¹)	2016b)

1053

Table 1 – Site descriptions and associated references

Isotope	Species	Idoteidae	Polycirrus	Aphelochaeta	Phyllodocida
			sp.	glandaria	sp.
	Treatment	0.1M HCl	0.1M HCl	0.1M HCl	1.0M HCl
δ ¹³ C	Difference in mean	1.6	0.2	0.4	0.9
(‰)	σ untreated	0.7	0.3	0.2	0.5
	σ treated	0.7	0.3	0.2	0.2
	Population range	2.9	3.0	2.7	-
δ^{15} N	Difference in mean	0.9	0.2	0.1	0.9
(‰)	σ untreated	0.2	0.3	0.2	0.4
	σ treated	1.0	0.2	0.2	0.3
	Population range	3.4	4.6	5.8	-
δ ³⁴ S	Difference in mean	-	-	0.4	1.1
(‰)	σ untreated	-	-	0.4	0.8
	σ treated	-	-	0.7	1.4
	Population range	-	-	2.3	-

Table 2 – Differences in isotopic values and standard deviation (σ) of ethanol preserved fauna sampled during JC55 in response to acid treatment, compared with population ranges of untreated samples. Phyllodocida sp. was a single large specimen, used only as part of preliminary experiments. Data rounded to 1 d.p. to account for measurement error.

Genera	Class	Off-	Hook Ridge	Hook
		Vent %	1 %	Ridge 2 %
Aestuariicola	Flavobacteria	1.37	0.53	6.89
Arenicella	Gammaproteobacteria	7.14	5.17	2.24
Blastopireulla	Planctomycetacia	2.50	3.01	1.92
Denitrovibiro	Deferribacteres	1.72	2.54	0.27
Geothermobacter	Deltaproteobacteria	2.40	1.90	0.52
Lutimonas	Flavobacteria	0.45	0.42	4.87
Maritimimonas	Flavobacteria	1.10	0.15	4.32
Methylohalomonas	Gammaproteobacteria	4.29	2.78	2.08
Pasteuria	Bacilli	3.30	5.02	1.67
Tenacibaculum	Flavobacteria	0.26	0.04	3.36
Winogradskyella	Flavobacteria	0.99	0.90	4.09

Table 3 – Most dominant bacterial genera (covering the top 5 at each site), with percent of total sequenced reads.

	Bra	nsfield Of	ff-Vent	7	Three Sist	ers
	nM g-		δ ¹³ C	nM g-		δ13C
PLFA	1	%	(‰)	1	%	(‰)
i14:0	0.03	0.12	-22.0	0.02	0.09	-28.0
14:0	0.80	3.04	-31.2	0.83	3.43	-30.9
i15:0	0.76	2.89	-28.6	0.76	3.13	-28.1
a15:0	1.06	4.03	-28.4	1.06	4.39	-27.7
15:0	0.30	1.13	-29.3	0.19	0.77	-29.8
i16:1	0.11	0.44	-31.4	0.02	0.10	-20.3

16:1w11c	0.00	0.00	n.d.	0.06	0.24	-23.1
i16:0	0.34	1.30	-28.5	0.30	1.24	-27.8
16:1w11t	0.78	2.98	-24.4	0.66	2.75	-25.0
16:1w7c	3.98	15.19	-28.9	3.37	13.95	-28.1
16:1w5c	1.12	4.27	-34.1	0.96	3.99	-34.0
16:0	4.29	16.37	-31.1	3.80	15.73	-30.0
br17:0	0.00	0.00	n.d.	0.00	0.00	n.d.
10-Me-16:0	0.46	1.77	-28.5	0.45	1.87	-29.1
i17:0	0.08	0.32	-33.2	0.20	0.84	-29.8
a17:0	0.25	0.97	-31.9	0.21	0.87	-31.3
12-Me-16:0	0.25	0.94	-32.9	0.21	0.86	-31.6
17:1w8c	0.13	0.50	-34.1	0.11	0.44	-31.3
17:0cy	0.33	1.26	-36.2	0.27	1.10	-32.8
17:0	0.15	0.56	-40.0	0.08	0.33	-50.4
10-Me-17:0	0.00	0.00	n.d.	0.00	0.00	n.d.
18:3w6,8,13	0.67	2.55	-34.6	0.69	2.87	-33.8
18:2w6,9	0.12	0.46	-27.8	0.09	0.36	-52.2
18:1w9	1.13	4.30	-30.0	1.33	5.50	-29.9
18:1w7	4.42	16.85	-29.0	3.84	15.91	-29.1
18:1w(10 or 11)	2.33	8.88	-30.1	2.26	9.36	-29.9
18:0	0.66	2.50	-30.6	0.54	2.22	-30.6
19:1w6	0.03	0.12	-23.5	0.03	0.12	-30.1
10-Me-18:0	0.00	0.00	n.d.	0.00	0.00	n.d.
19:1w8	0.11	0.42	-56.6	0.17	0.69	-37.5
19:0cy	0.20	0.77	-35.6	0.20	0.83	-34.8
20:4(n-6)	0.14	0.55	-40.0	0.20	0.83	-34.1
20:5(n-3)	0.41	1.57	-38.0	0.30	1.23	-39.3
20:1(n-9)	0.42	1.60	-31.5	0.41	1.71	-33.7
22:6(n-3)	0.22	0.83	-34.1	0.43	1.77	-30.0
22:1(n-9)	0.10	0.39	-31.3	0.10	0.41	-29.9
24:1(n-9)	0.03	0.12	-28.7	0.02	0.07	-29.7
Total	26.23			24.15		
Average	0.71		-30.5	0.65		-30.1
		mg C	δ ¹³ C		mg C	δ ¹³ C
D		m ⁻²	(%)		m ⁻²	(%)
Bacterial Biomass		134.50	-26.8		197.12	-26.4

Hook Ridge 1			Н	ook Ridge	e 2	Range
		δ ¹³ C			δ ¹³ C	δ ¹³ C
PLFA	nM g ⁻¹	(‰)	nM g ⁻¹	%	(‰)	

						(‰)
i14:0	0.03	-15.7	0.10	0.80	-28.8	-13.1
14:0	0.80	-32.7	0.80	6.40	-29.6	-3.1
i15:0	0.76	-29.7	0.40	3.20	-28.1	-1.7
a15:0	1.06	-29.1	0.90	7.20	-28.9	-1.4
15:0	0.30	-29.0	0.30	2.40	-28.3	-1.5
i16:1	0.11	-27.6	0.00	0.00	n.d.	-11.1
16:1ω11c	0.00	-17.4	0.00	0.00	n.d.	-5.7
i16:0	0.34	-29.4	0.20	1.60	-28.8	-1.6
16:1ω11t	0.78	-25.8	0.30	2.40	-8.7	-17.2
16:1ω7c	3.98	-29.2	2.50	20.00	-22.9	-6.3
16:1ω5c	1.12	-31.2	0.30	2.40	-24.3	-9.7
16:0	4.29	-31.8	3.30	26.40	-29.3	-2.5
br17:0	0.00	-22.9	0.00	0.00	-15.8	-7.2
10-Me-						
16:0	0.46	-30.3	0.20	1.60	-41.3	-12.8
i17:0	0.08	n.d.	0.00	0.00	n.d.	-3.4
a17:0	0.25	-29.0	0.20	1.60	-28.6	-3.4
12-Me-	0.05	20.6	0.40	0.00	20.0	
16:0	0.25	-28.6	0.10	0.80	-28.2	-4.7
17:1ω8c	0.13	-27.1	0.10	0.80	-27.2	-6.9
17:0cy	0.33	-32.3	0.20	1.60	-27.7	-8.5
17:0	0.15	-40.0	0.20	1.60	-30.8	-19.6
10-Me- 17:0	0.00	-35.0	0.00	0.00	n d	0.00
18:3ω6,8,	0.00	-33.0	0.00	0.00	n.d.	0.00
13	0.67	-31.2	0.50	4.00	-29.0	-5.6
18:2ω6,9	0.12	-30.0	0.30	2.40	-26.7	-25.5
18:1ω9	1.13	-29.6	0.40	3.20	-25.6	-4.4
18:1w7	4.42	-29.9	0.60	4.80	-24.7	-5.1
18:1ω(10		27.7	0.00	1100		5.1
or 11)	2.33	-31.9	0.00	1.60	n.d.	-2.0
18:0	0.66	-29.4	0.30	0.00	-29.9	-1.2
19:1ω6	0.03	-26.2	0.00	2.40	n.d.	-6.6
10-Me-						
18:0	0.00	-25.4	0.00	0.00	n.d.	0.0
19:1ω8	0.11	-41.2	0.00	0.00	n.d.	-19.1
19:0cy	0.20	-30.5	0.10	0.00	-28.7	-6.9
20:4(n-6)	0.14	n.d.	0.00	0.80	n.d.	-5.9
20:5(n-3)	0.41	n.d.	0.00	0.00	n.d.	-1.3
20:1(n-9)	0.42	n.d.	0.00	0.00	n.d.	-2.2
22:6(n-3)	0.22	n.d.	0.00	0.00	n.d.	-4.2
22:1(n-9)	0.10	n.d.	0.00	0.00	n.d.	-1.4
24:1(n-9)	0.03	n.d.	0.00	0.00	n.d.	-1.0

Total	26.23		12.30			
Average	0.71	-30.3	0.33		-26.9	
		δ ¹³ C		mg C m ⁻²	δ13 C	
	mg C m ⁻²	(‰)		m ⁻²	(‰)	
Bacterial						
Biomass	534.55	-26.6		85.45	-23.1	

Table 4 – PLFA profiles from freeze-dried sediment (nM per g dry sediment). PLFA names relate to standard notation (i = iso; a = anti-iso; first number = number of carbon atoms in chain; ω = double bond; Me = methyl group). N.P. = Not present in sample. Total PLFA δ^{13} C measurements weighted by concentration Bulk bacterial δ^{13} C estimated from average conversion factor of 3.7 % (Boschker & Middelburg 2002). No data = n.d. Range measurements may be subject to rounding error. N. B. Table split to conform to submission portal requirements.

Isotope	Hydrothermal	Non-Hydrothermal	Different? (T-Test, df = 3)
	sites ‰ (± S.D.)	sites ‰ (± S.D.)	
δ ¹³ C	-26.2 (± 0.4)	-25.8 (± 0.3)	No
δ^{15} N	5.7 (± 0.7)	5.0 (± 0.3)	No
δ ³⁴ S	14.3 (± 2.9)	19.4 (± 0.6)	Yes (T = 3.49, p < 0.05)

Table 5 – Mean isotopic signatures of sediment organic matter.

	Ellipse				Neares Neighb Distan	our			
Site	SEAc (%o²)	SEA.B (‰²)	Cred. (95% ± ‰²)	TA (‰²)	Θ	Е	CD	Mean	S.D.
The Axe	49.3	45.0	19.9	161.6	0.67	0.85	3.59	1.76	4.17
Off-Vent	39.8	36.5	16.8	139.1	0.81	0.97	4.34	2.13	3.88
Three Sisters	35.5	32.6	14.7	110.2	0.86	0.95	3.85	1.93	3.78
Hook Ridge 1	23.1	20.7	11.2	42.6	-1.43	0.94	3.30	1.64	2.60
Hook Ridge 2	23.4	21.1	10.7	61.8	1.55	0.89	3.17	1.52	2.03
Mean									
Non- Hydrotherm al	41.5	38.0	17.2	137.0	0.78	0.92	3.93	1.94	3.94
Hydrotherm ally active	23.2	20.9	11.0	52.2	0.10	0.91	3.23	1.58	2.31

		Centroid						
Site	δ ¹³ C	$\delta^{15}N$	δ ³⁴ S	dNr	dCr			
Site	(‰)	(‰)	(‰)	(‰)	(‰)			
The Axe	-24.4	7.9		20.0	25.3			
Off-Vent	-25.3	7.5	8.1	20.9	22.7			

Three Sisters	-24.5	8.0		22.9	21.7
Hook Ridge 1	-23.5	7.6	5.4	18.3	5.2
Hook Ridge 2	-24.0	7.7		17.3	6.6
Mean					
Non-					
Hydrotherm	-24.7	7.8		21.3	23.2
ally active					
any active					
Hydrotherm	-23.8	7.7		17.8	5.9

Table 6 – Ellipse Area & Layman Metrics of benthos by site. SEAc = Sample-sized corrected standard elliptical area; SEA.B = Bayesian estimate of standard elliptical area; TA = Total hull area; E = Eccentricity; dNr = Nitrogen range; dCr = Carbon range; dSr = Sulphur range; CD = Centroid distance. Note: dSR reported only for Hook Ridge 1 and the off-vent site since δ^{34} S values of siboglinids were only measured from these sites; hence dSr at other sites would be a considerable underestimate. As δ^{34} S values were comparatively under-representative, these values were not used in calculation of any other metric. Data rounded to 1 d.p. N. B. Table split to conform to submission portal requirements.

Supplementary Information

Supplementary Figure 1 – PLFA Abundances by site.

1096	Supplementary Figure 2 – nMDS plot of PLFA composition, with reference to PLFA suites from
1097	the Goban Spur (NE Atlantic) (Main et al. 2015) and Loki's Castle hydrothermal sediments
1098	(Jaeschke et al. 2014).
1099	
1100	Supplementary Figure 3 – Cluster dendrogram (Euclidean distance) for averaged CN isotopic
1101	signatures for species from vent and non-vent areas.
1102	
1103	Supplementary File 1 – Bulk isotopic data.
1104	Supplementary File 2 – PLFA data.