1	Title: Soil nitrogen transformation responses to seasonal precipitation
2	changes are regulated by changes in functional microbial abundance
3	in a subtropical forest
4 5	Author: Jie Chen ^{1,2,3} [#] , Guoliang Xiao ^{1,2} [#] , Yakov Kuzyakov ^{3,4} , G. Darrel Jenerette ⁵ , Ying Ma ^{1,2} , Wei Liu ¹ , Zhengfeng Wang ¹ , Weijun Shen ^{1*}
6	¹ Center for Ecological and Environmental Sciences, South China Botanical Garden,
7	Chinese Academy of Sciences, 723 Xinke Rd. Tianhe District, Guangzhou 510650,
8	PR China
9	² University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan
10	District, Beijing 100049, PR China
11	³ Department of Soil Science of Temperate Ecosystems, University of Göttingen,
12	Büsgenweg 2, 37077 Göttingen, Germany
13	⁴ Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2,
14	37077 Göttingen, Germany
15	⁵ Department of Botany and Plant Sciences, Center for Conservation Biology,
16	University of California Riverside, Riverside, CA92521, USA
17	
18	[#] These authors contributed equally to this work.
19	
20	*Corresponding author: Dr. Weijun Shen

21 Abstract

More dry-season droughts and wet-season storms have been predicted in subtropical 22 23 areas. Since subtropical forest soils are significant sources of N₂O and NO₃⁻, it is important to understand the features and determinants of N transformation responses 24 to the predicted precipitation changes. A precipitation manipulation field experiment 25 was conducted in a subtropical forest to reduce dry-season precipitation and increase 26 wet-season precipitation, with annual precipitation unchanged. Net N mineralization, 27 net nitrification, N₂O emission, nitrifying (bacterial and archaeal *amoA*) and 28 29 denitrifying (nirK, nirS and nosZ) gene abundance, microbial biomass carbon (MBC), extractable organic carbon (EOC), NO₃⁻, NH₄⁺ and soil water content (SWC) were 30 monitored to characterize and explain soil N transformation responses. Dry-season 31 precipitation reduction decreased net nitrification and N mineralization rates by 13 -32 20%, while wet-season precipitation addition increased both rates by 50%. More than 33 20% of the total variation of net nitrification and N mineralization could be explained 34 35 by microbial abundance and SWC. Notably, archaeal amoA abundance showed the strongest correlation with net N transformation rates ($r \ge 0.35$), suggesting the critical 36 role of archaeal amoA abundance in determining N transformations. Increased net 37 nitrification in the wet season, together with large precipitation events, caused 38 substantial NO₃⁻ losses via leaching. However, N₂O emission decreased moderately in 39 both dry and wet seasons due to changes in nosZ gene abundance, MBC, net 40 41 nitrification and SWC (decreased by 10 - 21%). We conclude that reducing dryseason precipitation and increasing wet-season precipitation affect soil N 42

- 43 transformations through altering functional microbial abundance and MBC, which are
- 44 further affected by changes in EOC and NH_4^+ availabilities.
- 45 **Key-words:** Denitrification, functional genes, nitrification, nitrogen cycle,
- $46 \qquad \mbox{precipitation change, N_2O emission}$

47 **1 Introduction**

Precipitation changes caused by global climate change are predicted to be increasingly severe 48 49 over the coming century (IPCC, 2007; Seager et al., 2007). Future projected precipitation patterns vary spatially and temporally, and the complexity and unpredictability of 50 precipitation changes have exceeded other global changes such as elevated CO₂ and 51 52 temperature (Beier et al., 2012). In addition to the frequency and intensity of precipitation events, seasonal precipitation changes are of increasing severity in some regions of the world 53 (Easterling et al., 2000). For example, an analysis of 60 years of precipitation data showed 54 55 remarkable seasonal precipitation redistribution in subtropical China, with more frequent droughts in dry season and extreme rainfall events in wet season (Zhou et al., 2011). In 56 contrast to changes in total annual precipitation, redistribution of seasonal precipitation may 57 be more important in controlling ecosystem function in subtropical forests due to strong 58 contrasts between dry and wet seasons (Wang et al., 2009). Recent meta-analyses on 59 precipitation manipulation experiments pointed out the lack of data in the warm and humid 60 61 monsoon zones (Wu et al., 2011; Liu et al., 2016), and that more than 60% of all manipulative field experiments only focused on changes in annual precipitation amounts (Beier et al., 62 2012). The consequences of seasonal precipitation redistribution at ecosystem levels are still 63 under investigation. Field experiments simulating seasonal precipitation changes in 64 subtropical regions are urgently needed for better understanding of the ecosystem responses. 65 Changes in precipitation can strongly affect soil nitrogen (N) cycling and balance, thus 66 exerting a feedback on climate (Davidson et al., 2008; Wieder et al., 2011). For instance, 67 annual N₂O emission was decreased by a rainfall exclusion experiment in the moist tropical 68

69	forest, but recovered within the first year after rainfall exclusion was stopped Davidson et al.
70	(2008). In grasslands, the net N mineralization rate declined sharply in response to increased
71	rainfall, but increased during drought (Jamieson et al., 1998). Contrasting responses of N
72	transformation have also been obtained in temperate forests (Emmett et al., 2004; Chen et
73	al., 2011; Fuchslueger et al., 2014). However, limited information exists about the responses
74	of N cycle to seasonal precipitation changes in subtropical forests, which serve as important
75	sources of N ₂ O emission and inorganic N leaching (Fang et al., 2009; Isobe et al., 2012).
76	Seasonal precipitation changes may affect N transformations by disturbing the seasonal
77	dynamics of microbial activities, soil moisture, temperature, plant nutrient uptake, and
78	carbon (C) and N availabilities (Reichmann et al., 2013). Although the direct effects of soil
79	physicochemical properties and microbial communities on N transformations are well
80	documented, the dominant factors in determining N transformations under precipitation
81	changes are still debatable (Petersen et al., 2012; Auyeung et al., 2015).
82	Ammonium oxidation, the central and rate-limiting step in N cycling, is driven by
83	ammonia-oxidizing archaea (AOA) and bacteria (AOB), which are marked by the amoA
84	functional gene (van der Heijden et al., 2008). The release and consumption of N_2O by
85	denitrification are mainly driven by nitrite-reducing bacteria carrying the <i>nirK</i> and <i>nirS</i>
86	genes and nitrous oxide-reducing bacteria carrying the nosZ gene (Schimel and Bennett,
87	2004; Levy-Booth et al., 2014). Thus, changes in these functional microorganisms can shed
88	light on the underlying mechanisms of N transformation responses. The abundance,
89	composition and activity of these microbial functional groups largely depend on soil
90	moisture, temperature, O2 diffusion, and C and N availabilities - all of these factors are

91	strongly influenced by precipitation (Bell et al., 2014). For instance, previous research has
92	shown that reduced precipitation decreases soil moisture and increases aeration and O_2
93	diffusion, which stimulates the activity of nitrifiers (AOA/AOB) and nitrification (Stark and
94	Firestone, 1995; Zhalnina et al., 2012). In contrast, reduced precipitation could constrain
95	the activity of denitrifiers, and consequently reduced the N_2O/N_2 emissions (Stark and
96	Firestone, 1995; Zhalnina et al., 2012). Both denitrifiers and nitrifiers might be suppressed
97	by decreased moisture and available C during drought (Bárta et al., 2010; Zhalnina et al.,
98	2012). In addition, increased precipitation may raise the NH_4^+ : NO_3^- ratio, as NO_3^- is easily
99	leached (Reichmann et al., 2013). High NH_4^+ : NO_3^- ratios can consequently alter the
100	predominant microbial groups (Nautiyal and Dion, 2008). The potential for mixotrophic
101	growth and starvation tolerance of nitrifying communities (Levy-Booth et al., 2014)
102	suggests a broader ecological niche occupied by the nitrifying groups. Therefore, the
103	nitrifying and denitrifying microorganisms may respond differently to seasonal
104	precipitation changes, leading to non-synchronous changes in nitrification and
105	denitrification, and consequently different changes in soil NO_3^- , NH_4^+ contents and N_2O
106	emission. However, the extent to which microorganisms control N transformations remains
107	unclear because soil physicochemical properties can also affect N pools through erosion,
108	leaching, plant uptake and physiological changes in microorganisms, regardless of
109	microbial composition or abundance (Cregger et al., 2014; Auyeung et al., 2015). As a
110	result, the effects of soil physicochemical properties and microbial communities on N
111	transformation rates are difficult to differentiate, which makes it difficult to uncover the
112	underlying drivers.

113	In order to investigate responses of N transformations to seasonal precipitation changes
114	and the main controlling factors, a precipitation manipulation experiment was conducted in
115	a subtropical forest in southern China, where the precipitation is predicted to increase in
116	wet seasons and decrease in dry seasons (Zhou et al., 2011). We simulated this seasonal
117	precipitation pattern for two years. Changes in soil physicochemical properties, net N
118	transformation rates, and nitrifying (bacterial and archaeal <i>amoA</i>) and denitrifying (<i>nirK</i> ,
119	nirS and nosZ) gene abundance were analyzed and integrated in a hypothetical path model
120	which assumed that the precipitation-induced changes in soil physicochemical properties
121	and microbial abundance could alter N transformation rates (Fig. 1). The path coefficients
122	and model fitness were analyzed by a structure equation model (SEM) (Petersen et al.,
123	2012; Delgado-Baquerizo et al., 2014). We hypothesized that (1) decreasing precipitation
124	in the dry season will reduce N transformation rates by decreasing SWC, C and N
125	availabilities, and microbial abundance, but (2) precipitation addition during the wet season
126	will have little impact on N transformation due to the originally sufficient SWC and
127	substrate supply; (3) the responses of N transformation rates to the precipitation change
128	will be associated with changes in functional gene abundance, because N transformation
129	processes are primarily catalyzed by specific enzymes coded by functional genes; (4)
130	microbial abundance is directly influenced by soil physicochemical properties, but
131	denitrifiers will be more strongly affected than nitrifiers, because the nitrifiers have the
132	potential for mixotrophic growth and are tolerant of low N and C substrate availabilities.

133 2 Materials and methods

134 **2.1 Site description**

135 The study site is located at the Heshan National Field Research Station of Forest

- Ecosystem, Chinese Academy of Sciences (112°54′E, 22°41′N), Heshan City,
- 137 Guangdong province, southern China. This area has a pronounced wet season (April
- to September) receiving 80% of the annual rainfall, and a dry season (October to
- 139 March) with only 20% of the annual rainfall (Wang et al., 2009). The soil is typical
- 140 laterite (or Oxisols based on the USDA soil taxonomy), developed from sandstone,
- 141 and is easily leached. This study was conducted in a 35-year old evergreen
- 142 broadleaved mixed species (*EBMS*) forest dominated by *Schima superba*
- 143 and *Michelia macclurei*. The vegetation inventory was conducted in the study forest
- by recording species name, diameter at breast height (DBH), tree height and density
- prior to the experiment. Generally, the forest consists about 30 woody species, with
- average tree height of 8 m, average diameter at breast eight (DBH) of 9.5 cm, stem

density of 1430 trees ha⁻¹, and basal area of $11.6 \text{ m}^2 \text{ ha}^{-1}$.

148 2.2 Experimental design

A replicated manipulative experiment of precipitation reduction in dry season and
precipitation addition in wet season was employed for two years from October 2012
to September 2014. Eight 12 m × 12 m experimental plots were randomly assigned to
4 replicates of each of the 2 treatment types: the seasonal precipitation change
manipulation (hereafter precip-change) and the trenched control (hereafter control).

154	Distance between the adjacent plots was at least 2 m. Prior to the experiment, the
155	stand characteristics between the precip-change and control plots were compared, and
156	no significant differences were detected. Generally, the four precip-change plots have
157	average tree height and DBH of 10.2 ± 5.0 m and 10.7 ± 6.3 , respectively, with
158	average crown width of 46 $\pm~11~m^2$ and total number of 64 tree individuals. The
159	average tree height, DBH, crown width and total tree number in the four control plots
160	are 7.7 \pm 3.5 m, 9.5 \pm 5.2 cm, 49 \pm 13 m² and 68, respectively. Around the perimeter
161	of each of the 8 plots, a 60-80 cm deep trench was excavated and 1 m height PVC
162	segregation board was imbedded to reduce the potential for lateral movement of soil
163	water from the surrounding areas into the plots. The precipitation reduction and
164	addition was realized by throughfall exclusion and water addition facilities,
165	respectively. Throughfall exclusion and water addition facilities were established in
166	the 4 precip-change plots, but not in the control. The facilities included supporting
167	structures, rainout shelters and water addition subsystems (Fig. S1). Within each of
168	the 4 precip-change plots, 16 galvanized steel pipes (2.5-3 m length \times 10 cm
169	diameter) were vertically fixed in concrete bases which were imbedded in soil for 60
170	cm depth, and were welded together with 8 horizontal stainless steel frames (12 m
171	length) at the top. Rainout sheets were fixed in two stainless steel frames and hanged
172	on the supporting system with steel hook rivets. There were about 8-12 rainout sheets
173	(with the width of 50-100 cm) within each precip-change plot depending on the
174	density of tree stems. The rainout sheets were made from polyethylene plastic with >
175	90% light transmission and installed at approximately 1.5 m height above the soil

176	surface. The total area of all the rainout sheets was 67% of the plot area (i.e., 144 m^2).
177	The sheets were opened to exclude throughfall during dry season (October 1 st to
178	March 31) but folded without throughfall exclusion during wet season (April 1 st to
179	September 30 th). Therefore, we reduced about 67% of the full incoming throughfall in
180	the dry season. The intercepted rainfall was routed into an iron gutter placed at the
181	lower slope of the plots, and then drained outside the plot with PVC pipes.
182	The water added into precip-change plots in the wet season was pumped from a
183	pond (about 800 m away from the experimental plots) and transported with PVC
184	pipes to the rubber sacs fixed on the supporting system, and then sprinkled out via 25
185	sprinklers distributed evenly in each plot. The pH was similar in the throughfall (6.42)
186	and pond water (6.19) but the nutrient (e.g. nitrogen and organic carbon) contents was
187	higher in throughfall than in the pond water (Zhao et al., 2017), which assures that we
188	did not enrich nutrients while adding water. The amount of water added into a precip-
189	change plot during the wet season was calculated as a product of the above-canopy
190	dry-season rainfall, the throughfall ratio, and the throughfall exclusion ratio (i.e.
191	0.67). The above-canopy rainfall was obtained from a standard meteorological station
192	(Davis, Vaisala, Finland) about 80 m away from the experimental site. The throughfall
193	ratio was 0.86 obtained from 8 rain gauges (TB4MM, Techno Solutions, Beijing,
194	China) installed about 80 cm above soil surface in the 8 plots. As a result, the intensity
195	of the dry season rainfall events was reduced and the frequency of large rainfall
196	events in wet season was increased, while the annually total quantity of the
197	throughfall was not changed. More specifically, the throughfall excluded was 220 mm

198	in the 2013 dry season (October 1 st 2012 to March 31 st 2013) and the same amount
199	water was added back into each precip-change plot with 4 large events (55 mm day ⁻¹)
200	in June through September 2013 (i.e., each event in one month) to mimic the
201	projected occurrence of more large rainfall events in wet season in the region (Zhou et
202	al., 2011). The throughfall exclusion was 170 mm in the 2014 dry season (October 1^{st}
203	2013 to March 31 st 2014) and the same amount water was added back into each
204	precip-change plot with 3 large events (57 mm day ⁻¹) in June through August 2014
205	(Fig. 2a).

206 2.3 Soil sampling and analyses

Soil samples were collected at the beginning and end of January, March, May, August 207 and October from May 2012 to September 2014 for physicochemical properties, and 208 from January 2013 to September 2014 for microbial functional genes analyses. Soil 209 210 samples were collected from 0 to 10 cm depth with an auger (Φ 35 mm), sieved through a 2 mm mesh to remove litter and stones. One composite soil sample, 211 consisting of six subsamples randomly collected within each plot, was used for the 212 physicochemical (stored at 4 °C) and microbial (stored at -20 °C) analyses. All 213 samples were analyzed within two weeks. 214 Soil physicochemical properties were measured using the methods as described by 215 Liu et al. (1996). Briefly, soil water content (SWC) was obtained by drying fresh soils 216 in an oven at 105 °C for 24 h. Total nitrogen (TN) and total phosphorus (TP) were 217 determined using the H₂SO₄ digestion-indophenol blue colorimetry and H₂SO₄ 218

219	digestion-Mo-Sb colorimetry methods, respectively. NH_4^+ and NO_3^- contents were
220	determined from the 2 M KCl extraction liquid by using the indophenol blue
221	colorimetry and copperized cadmium reduction methods, respectively.
222	Soil extractable organic carbon (EOC) and microbial biomass carbon (MBC) were
223	measured immediately after the soil sampling using the fumigation extraction method
224	described as Vance, Brookes and Jenkinson (1987). In detail, a pair of fresh soil
225	subsamples (10 g) was placed into two glass breakers. One was fumigated in a
226	vacuum dryer with alcohol-free chloroform and NaOH solution for 24 h in dark, and
227	the other one was placed in dark for 24 h without fumigation. The two subsamples
228	were extracted with 0.5 M K_2SO_4 after fumigation, and the EOC concentration was
229	determined using a total organic C analysis instrument (TOC-VCSH, Shimadzu,
230	Japan). The difference of EOC concentration between the fumigated and un-
231	fumigated was multiplied by 0.45 to calculate MBC content.
232	Soil total DNA was extracted from 0.3 g fresh soil using the HiPure Soil DNA Mini
233	Kit (Magen, Guangzhou, China), quantified with a NanoDrop 2000
234	spectrophotometer (Thermo Fisher Scientific Inc., USA) and stored at -20 °C for
235	further analyses. The abundance of bacterial and archaeal ammonia-monooxygenase
236	gene (amoA), nitrite reductase genes (nirK and nirS) and nitrous oxide reductase gene
237	(nosZ) were quantified by using absolute Real-time PCR on an ABI 7500
238	thermocycler system with primers and thermal profiles presented in the
239	supplementary material (Table S1). The Real-time PCR reactions was performed on
240	96-well plates (Axygen, USA), with 20 μ l volume in each well including 12.5 μ l

241	SYBR Premix Ex Taq (TaKaRa Biotechnology, Japan), 1 µl of each primer (10 mmol
242	L ⁻¹), 2 μ l of DNA template (10 ng), 1 μ l Dimethyl sulfoxide and 4.5 μ l RNase free
243	Ultra-Pure water. The standards were constructed using the method described in
244	Henry et al. (2006) and Isobe et al. (2011). Briefly, the target functional gene PCR
245	products were obtained with the same primers used in real-time PCR and the
246	extracted soil DNA as template. The PCR products were cloned using the pMD20-T
247	vector (TaKaRa, Dalian Division), and then transformed into Escherichia coli JM109
248	strains. The recombinant Escherichia coli JM109 strains carrying the target functional
249	gene recombinant plasmids were inoculated into LB broth with ampicillin and
250	incubated at 37°C overnight. The plasmid DNA was then extracted using the Hipure
251	Plasmid Mini Kit (Magen, Guangzhou, China) and quantified on a NanoDrop 2000
252	spectrophotometer (Thermo Fisher Scientific Inc., USA). The DNA copy numbers of
253	the extracted plasmid DNA carrying the target functional gene was calculated from
254	the plasmid DNA size, concentration, and average base pair molecular weight, which
255	could stand for the copy numbers of the standard functional gene. Finally, the
256	standard curve was generated from a tenfold serial dilution (10^3 - 10^8 copies per µl) of
257	the plasmid DNA.

2.4 Measurement of N transformation rates

Net N mineralization and nitrification rates were measured through the *in situ* field
soil incubation using the resin-core method (Reichmann et al., 2013). Six paired soil
cores (0-10 cm) were randomly sampled within each plot at the beginning of January,

262	March, May, August and October from May 2012 to September 2014. One core of
263	each pair was sieved through a 2-mm sieve after removing litter and stones, and
264	stored at 4 °C for the initial pre-incubation measurements of SWC, NO_3^- and NH_4^+ .
265	The other core was incubated for one month in a PVC pipe that was open on both
266	sides and was oriented vertically with an ion exchange resin bag placed at the bottom
267	to collect inorganic N leached from the core. Soil cores and resin bags in the PVC
268	pipes were collected after the one-month incubation, and the soil was sieved and
269	stored at 4 °C for the final post-incubation measurements of SWC, NO_3^- and NH_4^+ .
270	The net N mineralization rate was calculated as the final NO_3^- and NH_4^+ content
271	minus the initial NO_3^- and NH_4^+ content, and the net nitrification rate was calculated
272	as the final NO_3^- content minus the initial NO_3^- content (Reichmann et al., 2013).
273	Concentrations of NO_3^- and NH_4^+ extracted from the resin were considered as the
274	leaching rates of NO_3^- and NH_4^+ per month.
275	Soil nitrous oxide (N ₂ O) effluxes s were measured twice per month, from October
276	2012 to September 2014, using static chamber and gas chromatography techniques.
277	The static chambers were made from white PVC materials and consisted of a
278	removable cover box (26 cm diameter \times 35 cm height) and a base (33 cm diameter \times
279	11 cm height). The bottom of the base was inserted into soil depth of 5 cm. Two
280	months before gas sampling, four static chambers were deployed randomly at each
281	plot to minimize effects of installation disturbance. The N2O samples were collected
282	between 09:00 and 11:00 a.m. local time. The static chamber was closed for 30
283	minutes, and gas samples (80 ml) were taken using 100 ml plastic syringes at the

284	initial closed time as well as every 10 minute thereafter during the closed period. At
285	the same time, values of atmospheric pressures and air temperatures inside static
286	chambers were measured for three times. N_2O concentrations were analyzed in the
287	laboratory by gas chromatography (Agilent 7890A, Agilent Technologies, USA)
288	equipped with an electron capture detector set at 300 °C and a stainless porapak-Q
289	column set at 70 °C $$ within 24 hours following gas sampling. The N_2O flux was
290	calculated by changes of N_2O concentrations inside static chamber during periods of
291	gas sampling, with the equation as follows:
292	$\mathbf{F} = \mathbf{\rho} \times \frac{V}{A} \times \frac{P}{P0} \times \frac{T0}{T} \times \frac{dC}{d_t}$
293	where F stands for the flux of N_2O (mg m $^{-2}$ hr $^{-1}),\rho$ stands for the density of N_2O
294	under standard condition (g L^{-1}), V stands for the effective volume of chamber (m ³), A
295	stands for the area of soil covered by chamber (m ²), P and T stand for the atmospheric
296	pressures (Pa) and absolute air temperature inside chamber (K) when gas sampling, P_0
297	and T_0 stand for the atmospheric pressures (Pa) and the absolute temperature (K)
298	under standard condition, and $\frac{dC}{dt}$ stands for changes of N ₂ O concentrations in the
299	chamber during gas sampling.

300 2.5 Statistical analyses

Two-way repeated-measures analysis of variance (ANOVA) with sampling time as the repeated factor was used to examine the effects of precip-change and sampling time on all measured parameters. Pillai's trace from multivariate test was used for withinsubjects test when the assumption of multisample sphericity was not met. Independent

305	samples <i>t</i> tests were used to detect the difference of each variable between precip-
306	change and control at each sampling time. All the parameters were explored for
307	normality (Kolmogorov-Smirnov test) and homogeneity of variances (Levène test)
308	prior to the analyses, and log-transformed If necessary. All statistical analyses
309	described above were performed using SPSS v.16.0 (SPSS Inc., Chicago, IL, USA).
310	Structural equation modeling (SEM) is often used to detect complex relationships
311	between one or more dependent or independent variables by using a series of
312	statistical methods. The complex relationships among the target variables are
313	expressed as paths in a hypothetical model, and finally tested by a series of statistical
314	methods, such as univariate and multivariate regressions, ANOVA and factor analysis
315	(Bagozzi and Yi, 2012). In this study, we used SEM to test the hypothetical causal
316	relationships among soil physicochemical properties, microbial abundance and N
317	transformation rates in the conceptual model (Fig. 1), and the SEM was performed
318	with AMOS 21.0 (SPSS Inc., Chicago, IL, USA). How the effects of soil
319	physicochemical properties and microbial abundance determine the responses of N
320	transformation rates were evaluated. In order to explicitly illustrate the pathways of
321	soil physicochemical properties and microbial abundance involved in each N
322	transformation process, three individual models were constructed corresponding to the
323	conceptual model to explain the responses of (a) net nitrification, (b) net N
324	mineralization and (c) N_2O emission rates. The hypothetical relationships among
325	variables in the models are constructed based on the results of correlation analyses
326	(Fig. S2). We used three models since it would be easier to discover the controlling

327	factors than using one complex model that implicates all the measured processes
328	(Delgado-Baquerizo et al., 2014). In these models, the precip-change treatments are
329	categorical exogenous variables with two levels: 0 representing control and 1
330	representing seasonal precipitation changes (Delgado-Baquerizo et al., 2014).
331	Abundance of both <i>nirK</i> and <i>nirS</i> genes were evidenced correlated with nitrification
332	or N mineralization rates (Levy-Booth et al., 2014). Therefore, <i>nirK</i> and <i>nirS</i>
333	abundance were added as one (<i>nirK+nirS</i>) endogenous factors in model. Net
334	nitrification rate was included in model (b) as an endogenous factor because it may
335	influence N_2O emission through altering the production of NO_3^- as the substrate for
336	N ₂ O production. Prior to the SEM analyses, normal distribution of all the involved
337	variables were examined, and genes abundance were log-transformed. Goodness of
338	model fits was evaluated by chi-square test ($p > 0.05$), comparative fit index (CFI >
339	0.95), and root square mean errors of approximation (RMSEA < 0.05) (Hu and
340	Bentler, 1998; Schermelleh-Engel et al., 2003). Pathways without significant effects
341	were not shown ($p > 0.05$) in the final models.

342 **3 Results**

343 3.1 Responses of soil physicochemical properties, N transformation 344 rates and microbial abundance to precipitation changes

Before the precipitation manipulation from May to September in 2012, average net N
transformation (i.e. N nitrification, mineralization and leaching) rates, N (NO₃⁻, NH₄⁺,
TN) and organic C (MBC, EOC, TOC) contents as well as soil temperature were similar

among all plots (Table S2). In the two dry seasons with precipitation reduction, SWC 348 decreased by 16 % in 2013 and by 21 % in 2014 (p < 0.01, Table S3 and Fig. 2d). 349 Similarly, NO₃⁻ concentration decreased by 35 % and 24 % in 2013 and 2014, 350 respectively (p < 0.01, Table S3 and Fig. 2i). Opposite patterns were observed for NH₄⁺ 351 concentration, which increased with the precipitation reduction (Fig. 21). In the wet 352 seasons with precipitation addition, SWC, NO₃⁻ concentration, EOC and MBC 353 remained lower in the precip-change plots than in the control plots in both years (Table 354 S3 and Fig. 2d, f, h and j). After the experiment, soil pH in the precip-change plots was 355 356 3.82 ± 0.02 in dry seasons and 3.78 ± 0.07 in wet seasons. In the control plots, it was 4.06 ± 0.05 in dry and 3.86 ± 0.1 in wet seasons. It has no significant changes when 357 compared with the pH values before experiment, with 4.01 ± 0.04 and 4.05 ± 0.08 in 358 359 dry and wet seasons of the precip-change plots, and 4.23 ± 0.01 and 4.11 ± 0.07 in dry and wet seasons of the control plots. 360

Precipitation reduction strongly decreased the average dry-season net nitrification 361 rate by 13 % in 2013 and by 20 % in 2014, and decreased net N mineralization rate by 362 16 % in 2013 and by 18 % in 2014 (p < 0.1, Table S4 and Fig. 3b and d). The NO₃⁻ 363 leaching also declined with precipitation reduction, especially in 2014 with a marked 364 decrease by 22 % (p < 0.001, Table S4 and Fig. 3e and f). Contrastingly, the rates of 365 three N transformation processes increased by 50% with precipitation addition in the 366 2013 wet season whereas changed little in the 2014 wet season (Fig. 3b, d and f). 367 Throughout the two years, moderate decreases were detected in N₂O emission either 368 during dry-season precipitation reduction (35%) or during wet-season precipitation 369

addition (15%) (Table S4 and Fig. 3j).

371	No amplification of bacterial <i>amoA</i> gene was detected in soil neither from the
372	precip-change plots nor from the control plots, which was mainly because soil AOB
373	community abundance in the studied forest was under the detect limitation caused by
374	low soil pH (4.08 \pm 0.05) (Isobe et al., 2012). The average seasonal archaeal <i>amoA</i>
375	gene was $6.5 \times 10^6 \pm 1.9 \times 10^6$ copies g ⁻¹ dry soil, and varied significantly according
376	seasonal precipitation changes. With precipitation reduction, the archaeal amoA gene
377	abundance changed little in the 2013 dry season but decreased by 70% in the 2014 dry
378	season (Fig. 4a and b). The abundance of three denitrifying genes (<i>nirK</i> , <i>nirS</i> and
379	<i>nosZ</i>) increased with precipitation reduction by 30-80% in the 2013 dry season ($p < p$
380	0.05, Table S5 and Fig. 4d, f and h). In both seasons of 2014, neither dry-season
381	precipitation reduction nor wet-season precipitation addition had significant impacts
382	on the abundance of the three denitrifying genes (Table S5 and Fig. 4c, d, e, f, g and
383	h).

384 3.2 Paths determining N transformation rates and functional 385 microbial abundance

Although the annual precipitation amount was kept constant, the redistribution of seasonal precipitation imposed an overall negative impact on SWC and $NO_3^$ concentration (Fig. 5). SWC affected net nitrification and N mineralization through a direct negative path and N₂O emission through a direct positive path (Fig. 5). Net N mineralization, nitrification and N₂O emission rates were also affected by the functional

391	genes abundance and MBC paths. Since bacterial <i>amoA</i> gene was not detected, we only
392	use the archaeal <i>amoA</i> abundance as the dominant nitrifying microbial abundance in
393	the SEM analyses. Specifically, the archaeal <i>amoA</i> gene abundance and MBC had direct
394	positive impacts on net N mineralization and nitrification rates, whereas the nosZ gene
395	abundance had a direct negative impact on N ₂ O emission (Fig. 5). As a result, 21% and
396	22% of the net N mineralization and nitrification variability are explained, respectively
397	(see the r^2 in Fig. 5a and b). Among the direct influential factors, archaeal <i>amoA</i>
398	abundance showed the strongest correlations either with net N mineralization or with
399	net nitrification rates. Soil N2O emission was mostly affected by positive effects of net
400	nitrification rate and SWC, followed by negative effects of <i>nosZ</i> abundance and MBC,
401	and as much as 42% of the total variation could be explained (see the r^2 in Fig. 5c).
402	Precip-change-induced changes in SWC had no direct impacts on functional genes
403	abundance. Instead, the functional genes abundance was indirectly affected by the
404	precip-change-induced alterations in NO_3^- , NH_4^+ concentrations and EOC (Fig. 5).
405	Specifically, NO_3^- and NH_4^+ had direct positive effects on archaeal <i>amoA</i> abundance
406	whereas EOC had a direct negative effect on $nirK + nirS$ abundance. Both NH ₄ ⁺ and
407	EOC concentration had direct positive impacts on the nosZ abundance (Fig. 5c).
408	Changes in MBC were directly positively influenced by SWC and EOC.

4 Discussion

4.1 Drivers of N transformation processes

411 Consistent with our hypotheses, seasonal precipitation redistribution induced

significant changes in net N mineralization and nitrification rates by altering SWC, 412 MBC and archaeal amoA gene abundance. N2O emission was decreased by both 413 precipitation enhancement (wet season) and precipitation reduction (dry season), which 414 indicated that soil N loss by N₂O emission in subtropical forests would be alleviated by 415 the predicted seasonal precipitation changes. In contrast, increased NO₃⁻ leaching 416 during precipitation addition in the wet seasons led to significant losses from the soil 417 NO₃⁻ pool. During the two-year experiment, SWC was always lower in precip-change 418 plots than in control plots, despite the precipitation addition in the wet seasons (Fig. 2c 419 and d). One reason is the higher transpiration loss resulting from relatively bigger trees 420 in the precip-change plots (tree height: 10.2 ± 5.0 m, DBH: 10.7 ± 6.3 cm) than that in 421 the control plots (tree height: 7.7 ± 3.5 m, DBH: 9.5 ± 5.2 cm). There were no 422 423 significant differences in these stand characteristics, but the bigger trees in precipchange plots might have greater transpiration rates and therefore caused more soil water 424 loss in the summer wet season (Gao et al., 2017). Another reason might be the large 425 amount of precipitation added (55 mm per event). Large precipitation events may result 426 in flood-irrigation that can break the soil pores or reduce pore number, leading to soil 427 structural decline (Barber et al., 2001). These changes in soil structure may affect soil 428 water content, as soil water retention capacity is related to pore size and pore 429 distribution (Loll and Moldrup, 2000). 430

Initially, we hypothesized that decreased precipitation in the dry season would suppress N transformation, and precipitation addition during the wet season would have little impact on N transformation processes because the soils are water-saturated and

substrate sufficient. In agreement with the first hypothesis, net nitrification and N 434 mineralization rates decreased sharply with the reduction of throughfall in the dry 435 season (Fig. 3a, b, c and d). However, contrary to the second hypothesis, nitrification 436 and N mineralization rates increased markedly with precipitation supplementation in 437 the wet seasons (Fig. 3 a, b, c and d). These results can be explained by the interactions 438 between microbial abundance, soil moisture and substrate availability (Fig. 5a, b and 439 S3). Specifically, soil EOC of the dry season was less in the precip-change plots than 440 in the control plots (Fig. 2e and f), probably attributable to reduced C input due to lower 441 442 root production and exudation after drying (Kuzyakov and Domanski, 2000; Borken and Matzner, 2009). The reduced supply of soil C substrate (i.e., EOC) could have 443 restricted the growth of soil microorganisms (e.g. MBC and AOA), resulting in 444 445 decreased net nitrification and mineralization rates (Fig. 5a and b). Although increased NH4⁺ concentrations with reduced precipitation could provide more N substrate for 446 nitrifiers, the negative effects of decreased SWC and EOC may have outweighed the 447 positive effects of increased NH_4^+ . Instead, the accumulated NH_4^+ after dry season 448 precipitation reduction might have had a positive legacy effect on soil microbial activity 449 in the wet season, leading to increased N transformations. In addition, SWC differences 450 are also known to directly affect N transformations by stimulating physiological 451 changes in microbial activity, regardless of microbial abundance and composition 452 (Auyeung et al., 2015). The increased N transformation rates (Fig. 3b, d) in response to 453 decreased SWC, MBC (Fig. 2d, h) and archaeal amoA gene abundance (Fig. 4a) with 454 precipitation addition might be such a case (also see Fig. S2). A 10% lower SWC in the 455

precip-change plots in natural humid wet season might create better redox conditions 456 for microbial nitrification, as excessive soil moisture could reduce soil oxygen 457 concentration. According to Borken & Matzner (2009), the increases of soil microbial 458 activity by rewetting usually occurred due to an increased pulse in organic substrate 459 availability as well as reconstituting mineralization of SOM. Substantial decreases in 460 MBC and archaeal amoA gene abundance in our study indicated that some 461 microorganisms may die from starvation or competition caused by limited substrate 462 concentrations, and consequently release MBC and microbial biomass nitrogen (MBN). 463 These available substrates released by dead microorganisms could be reused by the 464 surviving microorganisms, which could support the increased energy demand of 465 accelerated microbial processes (Borken and Matzner, 2009). 466

467 We also hypothesized that N transformation processes are associated with functional microbial abundance. As expected, net N mineralization and nitrification rates showed 468 stronger relationships with archaeal amoA abundance than with MBC or other soil 469 properties (Fig. 5a and b). However, MBC and denitrifying gene abundance had similar 470 effects on N₂O emission. Our results also showed that only nosZ gene abundance 471 exerted a pronounced effect on N₂O emission (Fig. 5c), probably by reducing N₂O 472 consumption (Henderson et al., 2010; Levy-Booth et al., 2014). No significant 473 correlation between N₂O emission and nirK + nirS gene abundance was detected, in 474 contrast to previous studies (Levy-Booth et al., 2014; Gao et al., 2016). The N₂O 475 emission-related denitrification can also be performed by nitrifiers and fungi in soils 476 with high aeration and limited substrate availability (Levy-Booth et al., 2014). The 477

experimental seasonal precipitation strongly decreased SWC and EOC content (Fig. 1), 478 leading to higher aeration while lowering substrate availability. These changes in soil 479 480 physicochemical properties could enhance the role of nitrifier and fungi denitrification in controlling N₂O emission. In addition, SWC and nitrification rate also directly 481 affected N₂O emission by altering substrate availability and consequently microbial 482 activity, despite high microbial abundance (Fig. 5c). Although functional microbial 483 abundance showed the most significant correlations with N transformation rates and 484 could explain more than 20% of their variation, a large proportion of the variation 485 486 remained unexplained (Fig. 5). This unexplained variation is mainly attributed to the changes in other functional microbial genes involved in the nitrogen cycle, such as 487 *narG* and *napA* responsible for NO_3^- reduction, and *nifH* responsible for N fixation 488 489 (Widmer et al., 1999; Tavares et al., 2006). Moreover, gene abundance based on DNA may not fully reflect gene expression. 490

491 **4.2** Determinants of nitrifying and denitrifying gene abundance

The responses of both nitrifying and denitrifying genes were mainly related to the changes in substrate concentrations. SEM analysis showed that both *amoA* and *nosZ* gene abundance was positively affected by EOC and NH_4^+ concentration, suggesting substrate constraints for these two functional microbial groups. This disagreed with previous studies that reported that the *AOA* community had greater potential for mixotrophic growth and better low-substrate tolerance than its counterpart *AOB* (Erguder et al., 2009; Shen et al., 2012). However, these previous results were mainly

499	due to greater competitiveness of AOA than AOB, as these studies mainly focused on
500	the comparison of effects of substrate availability on AOA and AOB communities.
501	Both <i>nosZ</i> and <i>amoA</i> gene abundance increased with EOC and NH_4^+ concentration
502	(Fig. 5), which indicated that the AOA community could be constrained by C and N
503	substrates when competing with other microbes that have different functions.
504	Otherwise, the existing AOA species that have the potential for mixotrophic growth
505	and starvation tolerance would not dominate in the studied subtropical forest, as the
506	soil is rich in SOM (Zhou et al., 2006; Chen et al., 2015). Therefore, the AOA
507	community in the studied soil could be strongly influenced by changes in soil C and N
508	availability.
509	The abundance of <i>nirK</i> and <i>nirS</i> genes was positively controlled by soil NH_4^+
510	concentration and negatively controlled by EOC content (Fig. 5). This confirmed that
511	higher NH4 ⁺ content could favor more abundant microorganisms containing <i>nirK</i> or
512	<i>nirS</i> genes (Yi et al., 2015), because higher NH_4^+ concentration could supply
513	sufficient NO_3^- as the direct substrate or provide optimum pH values for growth of the
514	denitrifying microorganisms. The negative effect of EOC on <i>nirK</i> and <i>nirS</i> gene
515	abundance was inconsistent with previous reports that denitrifiers are primarily
516	heterotrophic (Bárta et al., 2010). One reason is that high EOC concentrations can
517	constrain the growth of microorganisms carrying <i>nirK</i> and <i>nirS</i> genes through effects
518	on other factors, such as pH and C:N ratio (Henderson et al., 2010; Levy-Booth et al.,
519	2014). Generally, the abundance of both nitrifying and denitrifying genes changed
520	with precipitation redistribution, and the direction and magnitude of the changes

depended mainly on soil N and C substrate availabilities. 521

Conclusion 5 522

Soil net nitrification and N mineralization rates responded significantly to seasonal 523 precipitation redistribution. More than 20% of the variation could be explained by the 524 effects of microbial abundance, SWC, and soil C and N substrates. AOA community 525 abundance was the main factor in regulating these two N transformation processes. 526 N₂O emission during the two-year experiment decreased moderately, and as much as 527 42% of the total variation in N₂O emission was attributed to the combined effects of 528 SWC, nitrification rate, MBC and nosZ gene abundance. The accumulation of NH4⁺ 529 due to dry-season precipitation reduction may stimulate nitrification in the wet season, 530 and consequently accelerate N loss by NO3⁻ leaching. Therefore, the predicted long-531 532 term seasonal precipitation changes in subtropical forests may result in profound changes to different N pools and fluxes, including reduced N2O emission and 533 enhanced NO₃⁻ leaching. These, in turn, could exert a feedback to climate and 534 environmental changes. Meanwhile, changes in functional microbial abundance 535 induced by soil EOC and NH4⁺ substrate availabilities will determine the extent and 536 direction of soil N transformation changes. 537

Author contribution 538

541

Jie Chen and Guoliang Xiao carried out the experiment, analyzed the data and wrote 539 the draft manuscript. Weijun Shen conceived the study. All authors contributed to 540 manuscript writing and revision.

542 Acknowledgements

- 543 We thank Mr. Y. Lin, Z. Chen, M. Li and S. Fu for their help in the field; Mrs. C.
- Long and X. Zhou for their help with laboratory assays; Mr. K. Mason-Jones for his
- help with the English revision. Three anonymous referees provided constructive
- 546 comments that improved the manuscript. Financial support came from the Natural
- 547 Science Foundation of China (31130011, 31425005 and 31290222) and the Natural
- 548 Science Foundation of Guangdong Province, China (S2012020011084).

549 Competing interests

550 The authors declare that they have no conflict of interest.

Reference

552	Auyeung, D.S.N., Martiny, J.B.H., and Dukes, J.S.: Nitrification kinetics and
553	ammonia-oxidizing community respond to warming and altered precipitation,
554	Ecosphere, 6, art83, doi:10.1890/es14-00481.1, 2015.
555	Bagozzi R.P., and Yi, Y.: Specification, evaluation, and interpretation of structural
556	equation models, J. of the Acad. Mark. Sci., 40, 8-34, doi: 10.1007/s11747-
557	011-0278-x, 2012.
558	Barber, S.A., Katupitiya, A., and Hickey, M.: Effects of long-term subsurface drip
559	irrigation on soil structure, Proceedings of the 10th Australian Agronomy
560	Conference, Hobart 2001.
561	Bárta, J., Melichová, T., Vaněk, D., Picek, T., and Šantrůčková, H.: Effect of pH and
562	dissolved organic matter on the abundance of nirK and nirS denitrifiers in
563	spruce forest soil, Biogeochemistry, 101, 123-132, doi:10.1007/s10533-010-
564	9430-9, 2010.
565	Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B., Korner, C., de
566	Boeck, H.J., Christensen, J.H., Leuzinger, S., Janssens, I.A., and Hansen, K.:
567	Precipitation manipulation experiments - challenges and recommendations for
568	the future, Ecol. Lett., 15, 899-911, doi:10.1111/j.1461-0248.2012.01793.x,
569	2012.
570	Bell, C.W., Tissue, D.T., Loik, M.E., Wallenstein, M.D., Acosta - Martinez, V.,
571	Erickson, R.A., and Zak, J.C.: Soil microbial and nutrient responses to 7 years
572	of seasonally altered precipitation in a Chihuahuan Desert grassland, Glob.

573	Change Biol., 20, 1657-1673, doi:10.1111/gcb.12418, 2014.
574	Borken, W., and Matzner, E.: Reappraisal of drying and wetting effects on C and N
575	mineralization and fluxes in soils, Glob. Change Biol., 15, 808-824,
576	doi:10.1111/j.1365-2486.2008.01681.x, 2009.
577	Chen, J., Zhang, H., Liu, W., Lian, J.Y., Ye, W.H., and Shen, W.J.: Spatial distribution
578	patterns of ammonia-oxidizing archaea abundance in subtropical forests at
579	early and late successional stages, Sci. Rep., 5, doi:Artn
580	1658710.1038/Srep16587, 2015.
581	Chen, Y.T., Bogner, C., Borken, W., Stange, C.F., and Matzner, E.: Minor response of
582	gross N turnover and N leaching to drying, rewetting and irrigation in the
583	topsoil of a Norway spruce forest, Eur. J. Soil Sci., 62, 709-717,
584	doi:10.1111/j.1365-2389.2011.01388.x, 2011.
585	Cregger, M.A., McDowell, N.G., Pangle, R.E., Pockman, W.T., and Classen, A.T.:
586	The impact of precipitation change on nitrogen cycling in a semi-arid
587	ecosystem, Funct. Ecol., 28, 1534-1544, doi:10.1111/1365-2435.12282, 2014.
588	Davidson, E.A., Nepstad, D.C., Ishida, F.Y., and Brando, P.M.: Effects of an
589	experimental drought and recovery on soil emissions of carbon dioxide,
590	methane, nitrous oxide, and nitric oxide in a moist tropical forest, Glob.
591	Change Biol., 14, 2582-2590, doi:10.1111/j.1365-2486.2008.01694.x, 2008.
592	Delgado-Baquerizo, M., Maestre, F.T., Escolar, C., Gallardo, A., Ochoa, V., Gozalo,
593	B., Prado-Comesaña, A., and Wardle, D.: Direct and indirect impacts of
594	climate change on microbial and biocrust communities alter the resistance of

595	the N cycle in a semiarid grassland, J. Ecol., 102, 1592-1605,
596	doi:10.1111/1365-2745.12303, 2014.
597	Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., and Mearns,
598	L.O.: Climate extremes: observations, modeling, and impacts, Science, 289,
599	2068-2074, 2000.
600	Emmett, B.A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H.L., Williams, D.,
601	Penuelas, J., Schmidt, I., and Sowerby, A.: The response of soil processes to
602	climate change: Results from manipulation studies of shrublands across an
603	environmental gradient, Ecosystems, 7, 625-637, doi:10.1007/s10021-004-
604	0220-x, 2004.
605	Erguder, T.H., Boon, N., Wittebolle, L., Marzorati, M., and Verstraete, W.:
606	Environmental factors shaping the ecological niches of ammonia-oxidizing
607	archaea, FEMS Microbiol. Rev., 33, 855-869, doi:10.1111/j.1574-
608	6976.2009.00179.x, 2009.
609	Fang, Y., Gundersen, P., Mo, J., and Zhu, W.: Nitrogen leaching in response to
610	increased nitrogen inputs in subtropical monsoon forests in southern China,
611	Forest Ecol. Manag., 257, 332-342, doi:10.1016/j.foreco.2008.09.004, 2009.
612	Fuchslueger, L., Kastl, E.M., Bauer, F., Kienzl, S., Hasibeder, R., Ladreiter-Knauss,
613	T., Schmitt, M., Bahn, M., Schloter, M., Richter, A., and Szukics, U.: Effects
614	of drought on nitrogen turnover and abundances of ammonia-oxidizers in
615	mountain grassland, Biogeosciences, 11, 6003-6015, doi:10.5194/bg-11-6003-
616	2014, 2014.

617	Gao, J.M., Xie, Y.X., Jin, H.Y., Liu, Y., Bai, X.Y., Ma, D.Y., Zhu, Y.J., Wang, C.Y.,
618	and Guo, T.C. : Nitrous Oxide Emission and Denitrifier Abundance in Two
619	Agricultural Soils Amended with Crop Residues and Urea in the North China
620	Plain, PLoS ONE, 11, e0154773, doi:10.1371/journal. pone.0154773, 2016.
621	Gao, J.G., Zhao, P., Shen, W.J., Rao, X.Q., and Hu, Y.T.: Physiological homeostasis
622	and morphological palsticity of two tree species subjected to precipitation
623	seasonal distribution changes, Perspectives in Plant Ecology, Evolution and
624	Systematics, 25, 1-19, doi:10.1016/j.ppees.2017.01.002, 2017.
625	Henderson, S.L., Dandie, C.E., Patten, C.L., Zebarth, B.J., Burton, D.L., Trevors, J.T.,
626	and Goyer, C.: Changes in denitrifier abundance, denitrification gene mRNA
627	levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms
628	amended with glucose and plant residues, Appl. Environ. Microbiol., 76, 2155-
629	2164, doi:10.1128/AEM.02993-09, 2010.
630	Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L: Quantitative detection of the
631	nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances
632	of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol.,
633	72, 5181-5189, doi:10.1128/AEM.00231-06, 2006.
634	Hu, L-t., and Bentler, P.M.: Fit Indices in Covariance Structure Modeling: Sensitivity
635	to Underparameterized Model Misspecification, Psychological Methods, 3,
636	424-453, 1998.
637	Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: the
638	physical science basis- summary for policy makers, Contribution of Working

639	Group I to the Fourth Assessment Report of the Intergovernmental Panel on
640	Climate Change, 2007.
641	Isobe, K., Koba, K., Suwa, Y., Ikutani, J., Fang, Y.T., Yoh, M., Mo, J.M., Otsuka, S.,
642	and Senoo, K.: High abundance of ammonia-oxidizing archaea in acidified
643	subtropical forest soils in southern China after long-term N deposition, Fems
644	Microbiol. Ecol., 80, 193-203, doi:10.1111/j.1574-6941.2011.01294.x, 2012.
645	Jamieson, N., Barraclough, D., Unkovich, M., and Monaghan, R.: Soil N dynamics in
646	a natural calcareous grassland under a changing climate, Biol. Fertil. Soils, 27,
647	267-273, doi:10.1007/s003740050432, 1998.
648	Kuzyakov, Y., and Domanski, G.: Carbon input by plants into the soil. Review, J.
649	Plant Nutr. Soil Sc., 163, 421-431, doi:10.1002/1522-
650	2624(200008)163:4<421::Aid-Jpln421>3.0.Co;2-R, 2000.
651	Levy-Booth, D.J., Prescott, C.E., and Grayston, S.J.: Microbial functional genes
652	involved in nitrogen fixation, nitrification and denitrification in forest
653	ecosystems, Soil Biol. Biochem., 75, 11-25, doi:
654	10.1016/j.soilbio.2014.03.021, 2014.
655	Liu, G.S., Jiang, N.H., Zhang, L.D., and liu, Z.L.: Soil Physical and Chemical
656	Analysis and Description of Soil Profiles, China Standards Press, Beijing,
657	1996.
658	Liu, L.L., Wang, X., Lajeunesse, M.J., Miao, G.F., Piao, S.L., Wan, S.Q., Wu, Y.X.,
659	Wang, Z.H., Yang, S., Li, P., and Deng, M.F.: A cross-biome synthesis of soil
660	respiration and its determinants under simulated precipitation changes, Glob.

661	Change Biol., 22, 1394-1405, doi:10.1111/gcb.13156, 2016.
662	Loll, P., and Moldrup, P.: Soil characterization and polluted soil assessment, Aalborg
663	University, 2000.
664	Nautiyal, C.S., and Dion, P. (Eds.): Molecular Mechanisms of Plant and Microbe
665	Coexistence, Soil Biology, vol 15, Springer Berlin Heidelberg.
666	doi:10.1007/978-3-540-75575-3, 2008.
667	Petersen, D.G., Blazewicz, S.J., Firestone, M., Herman, D.J., Turetsky, M., and
668	Waldrop, M.: Abundance of microbial genes associated with nitrogen cycling
669	as indices of biogeochemical process rates across a vegetation gradient in
670	Alaska, Environ. Microbiol., 14, 993-1008, doi:10.1111/j.1462-
671	2920.2011.02679.x, 2012.
672	Reichmann, L.G., Sala, O.E., and Peters, D.P.C.: Water controls on nitrogen
673	transformations and stocks in an arid ecosystem, Ecosphere, 4, doi:Unsp
674	1110.1890/Es12-00263.1, 2013.
675	Schermelleh-Engel, K., Moosbrugger, H., and Müller, H.: Evaluating the Fit of
676	Structural Equation Models: Tests of Significance and Descriptive Goodness-
677	of-Fit Measures, MPR-online, 8, 23-74, 2003.
678	Schimel, J.P., and Bennett, J.: Nitrogen mineralization: Challenges of a changing
679	paradigm, Ecology, 85, 591-602, doi:10.1890/03-8002, 2004.
680	Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.P., Harnik, N.,
681	Leetmaa, A., and Lau, N.C.: Model projections of an imminent transition to a
682	more arid climate in southwestern North America, Science, 316, 1181-1184,

3 2007.

- Shen, J.P., Zhang, L.M., Di, H.J., and He, J.Z.: A review of ammonia-oxidizing
- bacteria and archaea in Chinese soils, Front. Microbiol., 3, doi:Artn
- 686 29610.3389/Fmicb.2012.00296, 2012.
- Stark, J.M., and Firestone, M.K.: Mechanisms for Soil-Moisture Effects on Activity of
 Nitrifying Bacteria, Appl. Environ. Microb., 61, 218-221, 1995.
- Tavares, P., Pereira, A.S., Moura, J.J.G., and Moura, I.: Metalloenzymes of the

denitrification pathway. J. Inorg. Biochem., 1000, 2087-2100, doi:

- 691 10.1016/j.jinorgbio.2006.09.003, 2006.
- van der Heijden, M.G.A., Bardgett, R.D., and van Straalen, N.M.: The unseen
- 693 majority: soil microbes as drivers of plant diversity and productivity in
- 694 terrestrial ecosystems, Ecol. Lett., 11, 296-310, doi:10.1111/j.1461-
- 695 0248.2007.01139.x, 2008.
- Vance, E.D., Brookes, P.C., and Jenkinson, D.S.: An Extraction Method for Measuring
- 697 Soil Microbial Biomass-C, Soil Biol. Biochem., 19, 703-707, doi:
- 69810.1016/0038-0717(87)90052-6, 1987.
- Wang, J., Ren, H., Yang, L., and Duan, W.J.: Establishment and early growth of
- introduced indigenous tree species in typical plantations and shrubland in
- 701 South China, For. Ecol. Manage., 258, 1293-1300,
- doi:10.1016/j.foreco.2009.06.022, 2009.
- Widmer, F., Shaffer, B.T., Porteous, L.A., and Seidler, R.J.: Analysis of *nifH* gene
- pool complexity in soil and litter at a Douglas fir forest site in the Oregon

705	cascade mountain range, Appl. Environ. Microbiol., 65, 374-380, 1999.
706	Wieder, W.R., Cleveland, C.C., and Townsend, A.R.: Throughfall exclusion and leaf
707	litter addition drive higher rates of soil nitrous oxide emissions from a lowland
708	wet tropical forest, Glob. Change Biol., 17, 3195-3207, doi:10.1111/j.1365-
709	2486.2011.02426.x, 2011.
710	Wu, Z.T., Dijkstra, P., Koch, G.W., Penuelas, J., and Hungate, B.A.: Responses of
711	terrestrial ecosystems to temperature and precipitation change: a meta-analysis
712	of experimental manipulation, Glob. Change Biol., 17, 927-942,
713	doi:10.1111/j.1365-2486.2010.02302.x, 2011.
714	Yi, N., Gao, Y., Zhang, Z., Wang, Y., Liu, X., Zhang, L., and Yan, S.: Response of
715	Spatial Patterns of Denitrifying Bacteria Communities to Water Properties in
716	the Stream Inlets at Dianchi Lake, China, International Journal of Genomics,
717	2015, 1-11, doi:10.1155/2015/572121, 2015.
718	Zhalnina, K., de Quadros, P.D., Camargo, F.A., and Triplett, E.W.: Drivers of archaeal
719	ammonia-oxidizing communities in soil, Front. Microbiol., 3, 210,
720	doi:10.3389/fmicb.2012.00210, 2012.
721	Zhao, Q., Jian, S., Nunan, N., Maestre, F. T., Tedersoo, L., He, J., Wei, H., Tan, X.,
722	and Shen, W.: Altered precipitation seasonality impacts the dominant fungal
723	but rare bcterial taxa in subtropical forest soils. Biol. Fertil. Soils, 53, 231-245,
724	doi: 10.1007/s00374-016-1171-z, 2017.
725	Zhou, G., Liu, S., Li, Z., Zhang, D., Tang, X., Zhou, C., Yan, J., and Mo, J.: Old-
726	growth forests can accumulate carbon in soils, Science, 314, 1417,

doi:10.1126/science.1130168, 2006.

- 728 Zhou, G.Y., Wei, X.H., Wu, Y.P., Liu, S.G., Huang, Y.H., Yan, J.H., Zhang, D.Q.,
- 729 Zhang, Q.M., Liu, J.X., Meng, Z., Wang, C.L., Chu, G.W., Liu, S.Z., Tang,
- 730 X.L., and Liu, X.D.: Quantifying the hydrological responses to climate change
- in an intact forested small watershed in Southern China, Glob. Change Biol.,
- 732 17, 3736-3746, doi:10.1111/j.1365-2486.2011.02499.x, 2011.

733 **Figure captions**

Fig. 1. A conceptual model illustrating the effects of physiochemical properties and 734 functional microorganisms on N transformation rates. Soil water content (SWC), 735 ammonium (NH_4^+) , nitrate (NO_3^-) and extractable organic carbon (EOC) 736 concentrations were included in the group of soil physiochemical property. Microbial 737 biomass carbon (MBC), nitrifying (amoA) and denitrifying (nirK, nirS and nosZ) gene 738 abundance were included in the microbial attributes group. The solid lines with 739 arrows indicate the direction of the effect. 740 Fig. 2. Seasonal dynamics of precipitation and soil physiochemical properties in 741 control and precipitation change (precip-change) plots over the course of experiment. 742 Points and bars with standard error (n = 4) show mean values at each sampling time 743 and in dry (DS) and wet (WS) seasons. Grey shades indicate the periods of 744 precipitation reduction. The significance levels are presented as: *p < 0.05. 745 746 Fig. 3. Nitrogen transformation rates measured in control and precipitation change (precip-change) plots over the course of experiment. Points and bars with standard 747 748 error (n = 4) show mean values at each sampling time and in dry (DS) and wet (WS) 749 seasons. Grey shades indicate the periods of precipitation reduction. The significance levels are presented as: *p < 0.05. 750

Fig. 4. Copy numbers of archaeal *amoA*, *nirK*, *nirS* and *nosZ* gene per gram dry soil measured in control and precipitation change (precip-change) plots over the course of experiment. Points and bars with standard error (n = 4) show mean values at each

754	sampling time and in dry (DS) and wet (WS) seasons. Grey shades indicate the
755	periods of precipitation reduction. The significance levels are presented as: $*p < 0.05$.
756	Fig. 5. Path diagrams demonstrating the effects of soil physicochemical properties
757	and functional genes abundance on net nitrification, N mineralization and N_2O efflux
758	rates in response to precipitation change (precip-change) during two years. Numbers
759	adjacent to arrows are path coefficients, which indicate the relationships between the
760	two variables on both sides of the arrows. Solid and dash lines represent positive and
761	negative paths, respectively. The r^2 above or below each response variable in the
762	model denotes the proportion of variance which could be explained. Size of the lines
763	indicate significant levels of path coefficients.

