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Abstract. The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of

terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed

carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and

other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon

allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations.5

Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement

Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon

values based on the bomb spike, ages, and transit times. We obtained model simulations in accordance to the available data,

but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce

the high parameter collinearity that we observed, and reduce model equifinality. Although the model simulations of C stocks10

in ecosystem compartments were similar, the different model structure resulted in very different predictions of age and transit

time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that

was 10-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment

of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not

exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest15

that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model

structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times

of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal

dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred

in and out of the compartments, but also on the stochastic nature of the process itself.20
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1 Introduction

The global carbon cycle is strongly controlled by the source/sink strength of terrestrial ecosystems. Vegetation in particular,

is one of the major controls of global C sources and sinks with respect to the atmosphere (Canadell et al., 2007); it has the

capacity to be either a strong C sink or a source, depending on the amount of C fixed by the canopy and the time that C takes

to transit through its components back to the atmosphere (Luo et al., 2003). Strong sinks therefore, not only fix carbon at a fast5

rate, but have also the capacity to store this carbon for long periods of time (Körner, 2017).

The C storage capacity of an ecosystem is determined by the collective behavior of vegetation compartments such as foliage,

wood, and roots, which may also act as C sources and sinks among each other (Xia et al., 2013; Luo et al., 2017). The capacity of

a vegetation compartment to oscillate between C source and sink has important implications for ecosystems in their response to

perturbations and environmental change, i.e their resilience. Carbon fixed during photosynthesis is transported from the leaves10

(sources) to other parts of the plant (sinks). One of these sinks is the labile or non-structural carbon (NSC) (Hartmann and

Trumbore, 2016; Trumbore et al., 2015; Martínez-Vilalta et al., 2016), which may turn into a C source during critical events,

such as the start of the growing season (after periods of limited photosynthesis) (Richardson et al., 2013), and the recovery

from disturbances such as drought (Hartmann et al., 2013), cold temperatures (Hoch and Körner, 2003), pollution (Grulke

et al., 2001), or nutrient stress (Ericsson et al., 1996). Despite the importance of the source-sink capacity of NSC reserves,15

many questions remain unsolved. For example, are NSCs completely depleted when needed, and replenished afterwards? Is

the C that has remained stored for many years still available for the plant? (Richardson et al., 2013).

It is indeed possible that the carbon stored in vegetation compartments, including NSCs, have been fixed at different times,

resulting in a mix of ages (Muhr et al., 2016). Studies across wood rings in temperate forest trees revealed that the mean age of

NSCs in stemwood can be up to several decades old (Richardson et al., 2013; Trumbore et al., 2015). Trumbore et al. (2015)20

explained these old ages with a simple model consisting of one NSC compartment with inward mixing of younger and older C.

Alternatively, Richardson et al. (2013) proposed a model with two separate storage compartments (NSC)-with old and young

C, respectively- that exchange material among each other. It is therefore uncertain how this mixing of NSCs of different ages

occurs: In the form of one single compartment in which all ages are mixed, or in different compartments with separate ages?

Previous studies have focused mostly on determining ages of NSCs using radiocarbon-derived mean residence times, but25

this approach has limitations. One limitation is the ambiguity in the term “mean residence time”, which has been defined in

different ways across studies; in some cases it implies the mean age of C in an ecosystem or ecosystem compartment and in

other cases it implies the time it takes C molecules to leave the system of compartments (Sierra et al., 2016). Another limitation

is the use of mean values instead of complete frequency or density distributions to assess the spread of C ages in vegetation

compartments.30

The study of C age distribution in vegetation requires challenging empirical methods, but can also be approached using

ecosystem C cycle models. However, not all of the models perform equally well because the assumptions behind their structures

may result in highly divergent predictions (Lacointe, 2000; Friedlingstein et al., 2006; Friend et al., 2014; Schiestl-Aalto et al.,

2015). The performance of such models has been diagnosed by comparing their predicted C storage capacity and residence
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times (Friend et al., 2014; Yizhao et al., 2015), but if the above mentioned ambiguities are resolved, ages of carbon in vegetation

and in respiration fluxes can serve as excellent additional diagnostics of ecosystem models, and can give important insights

about carbon metabolism in vegetation under stress conditions, such as in the case of drought stress.

1.1 Definitions: ages and transit times5

CO2 molecules are fixed continuously by photosynthesis during the growing season; so, C particles enter the vegetation (from

here on called “system”) at different times during the year. After fixation, the photosynthetic products transit through the

vegetation compartments until they eventually leave the system, either as CO2 back to the atmosphere or as litter and exudates

to the soil. This means, that at a given time (t) each particle in the system has a different age , which is the time that it has

remained within the system since its fixation from the atmosphere. The time that each particle spends transiting through the10

system, from arrival until exit, is called transit time (Bolin and Rodhe, 1973).

te: particle enters reservoir

t: now

Age: t-te

Input flux
Photoassimilates

Storage (slow) Foliage

Roots

WoodStorage (fast)

Output flux

Figure 1. Graphical representation of the concepts of age and transit time distributions in a vegetation model. Carbon particles are represented

here as clocks that measure the time they have been in the system. System age can be defined as the age of all particles in the system at a

given time, while transit time as the age of particles in the output flux. Adapted from Sierra et al. (2016)

At each time step, a particle may stay where it is given certain probability, or flow to the next compartment with a rate

or probability given by the transfer coefficients (also know as cycling rates). This means that the age of carbon in a system

results from stochastic and deterministic processes, which can be illustrated in Figure 1; given two organic molecules in a

compartment, one that has remained in the system for longer time than the other, they both have the same chance to either

leave the system, or move on to another compartment. Thus, if by chance older molecules remain for longer times, then the
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system’s age gets older. But the pace at which these molecules are transiting is moderated by the cycling rates. This is why

slow cycling compartments have older C.

Lets describe a system of well-mixed C (distributed in multiple compartments) with the system of ordinary differential5

equations

ẋ(t) = B×x(t)+β ·u,

x(0) = x0,
(1)

where ẋ(t) is how much the quantity of carbon in vegetation compartment x changes with respect to time, B is a matrix of

carbon transfer coefficients between the plant compartments, x(t) is a vector of states for vegetation (state variables), β is a

vector containing the partitioning coefficients of photosynthetic input, and u is a scalar that represents that input. This linear10

system does not include environmental variables, or any other variables that depend on time, thus, it is an autonomous linear

system with multiple interconnected compartments.

Given that each particle in the system has its own age and transit time, the age and transit time of the whole system can be

considered as random variables. Additionally, the age and transit time of particles in a system’s compartment is exponentially

distributed. Then, the age and transit time distributions of the entire system would be the sum of those exponential distributions,15

i.e. a phase-type distribution (PT) (Metzler and Sierra, 2017).

The calculation of how many C particles have a certain age, or the age density distribution of a system (fA(y)), is determined

by the probability of entering the system through a given compartment and the rates at which C is transferred from one

compartment to another until it leaves the system. Consistent with the symbols from the previous equation

fA(y) = zT · ey·B · x
∗

||x∗||
. (2)20

fA(y)) is a function of (i) how fast the carbon is leaving the system: the row vector of release rates, which is the column-wise

sum of the elements of the B matrix (zT =−1T B), (ii) the transition probability matrix (eyB), and (iii) the relative amount of

C stock at steady state with respect to the total ( x∗

||x∗|| ). Notice that we use here the symbol || · || to represent the vector norm,

which is the sum of all entries of the vector.

The mean age is given by the expected value (E[A])25

E[A] =
||B−1×x∗||
||x∗||

. (3)

Likewise, the transit time density distribution (fFTT (t)) is also a function of zT and the transition probability matrix (etB),

as well as the vector of input distributions (β).

fFTT (t) = zT · et·B ·β. (4)
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The mean transit time is defined as (E[FTT ]):5

E[FTT ] = ||B−1×β||= ||x
∗||
||u||

(5)

In this case, the definition of mean transit time coincides with the commonly used stock over flux approach (turnover time),

but note that the definitions presented here can only be applied to autonomous systems at steady state. For non-autonomous

systems, i.e. models in which inputs and process rates change over time, formulas for the estimation of mean age and transit

time can be found in Rasmussen et al. (2016).10

From these equations it is evident that age and transit time calculations mainly depend on the schemes of C partitioning (β)

and cycling (B) within a vegetation model. Therefore, if we want to understand processes such as the mixing of old and newly

fixed NSC using ecosystem models, it is critical to model proper carbon allocation (CA) strategies. Unfortunately, it is still

uncertain what assumptions and simplifications should be done: How many carbon compartments are necessary to describe

carbon cycling in vegetation? How are these compartments interconnected and how fast are they transferring C among each15

other? These are important questions that need to be addressed to improve our understanding of vegetation dynamics, and

predict consequences of environmental change on vegetation.

In this contribution, we address the question: how different C allocation schemes affect the ages and transit times of carbon

in vegetation models? In particular, we are interested in understanding whether different carbon allocation strategies would lead

to different patterns of mixing of ages for the NSC compartment. For this work, we implemented 3 carbon allocation schemes20

based on Richardson et al. (2013); the models have either no storage, 1 storage compartment, or 2 storage compartments

(fast and slow C cycling). Our approach is mostly theoretical, and we are mainly interested in introducing the concepts of

age and transit time distributions as useful model diagnostics as well as as an approach to explain mixes of C age in NSC

compartments. For this purpose, we used published measurements on ecosystem C compartments from the Harvard Forest

Environmental Measurement Site to find suitable parameter values for the different model structures. We also diagnosed the25

performance of these models using as metrics 1) C release fluxes (respiration and other carbon losses such as litterfall), 2) the

dynamics of radiocarbon (based on the bomb spike) for individual compartments, 3) the transit time distribution of the system,

and 4) the age distribution of C in the system and in each compartment.

2 Methods

2.1 Model Implementation30

Each model was written as a set of ordinary differential equations (based on Equation 1) within the environment of the R

package SoilR (Sierra et al., 2012). All models met the requirements of equation 1; they are autonomous (their dynamics do

not depend on variables that change with time) linear systems with multiple interconnected compartments. The initial carbon

stocks, and some of the parameter values needed to solve those equations were obtained from the literature, from a deciduous-
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Compartments:
Cp: Photoassimilates
CStrF: Str. Foliage
Cw: Wood
Cr: Roots
Cs: Storage
Cs1: Storage (fast)
Cs2: Storage (slow)

Parameters:
Ra: Respiration
A(f,w,r,...): Partitioning
L(f,w,r): Release

Storage: 0                                    Storage: 1                                    Storage: 2

StrF
StrF StrF StrF

StrF StrF

StrF StrF StrF

Figure 2. Three carbon allocation strategies in vegetation models. These strategies differ in the number of storage compartments, Storage:

0, Storage: 1, and Storage: 2. Adapted from (Richardson et al., 2013). The parameters are the rates at which the carbon cycles into and out

of the compartments; thus, the fluxes are proportional to the C stocks and the rates. Notice that the foliage is divided into two compartments:

Photoassimilates and Structural Foliage.

evergreen model with similar carbon allocation schemes (Fox et al., 2009). Other parameter values were obtained from an5

optimization procedure (see below).

As means to assess whether the carbon allocation strategies had an impact on the mixing of C age in vegetation compart-

ments, we implemented three models whose carbon allocation strategies varied depending on the number of storage com-

partments (0, 1, or 2) (Figure 2), following the hypotheses proposed by Richardson et al. (2013). Given that we aimed at a

theoretical comparison of the above mentioned strategies, we eliminated other potential sources of variation that may act as10

confounding factors by assuming that all C transfers between the compartments depended on constant rates. We also assumed

that there was a constant photosynthetic input -gross primary production (GPP): u-of 1400 gCm−2year−1 (Urbanski et al.,

2007). Environmental variability, which operate mostly on an hourly-daily time scales, was not not considered here because

we ran the models at an annual time scale; i.e., without diurnal cycles or phenology.

Fixed photosynthetic input enters the system through the Photoassimilates compartment, and part of the carbon is released15

back to the atmosphere at each time step, in a flux proportional to the size of Photoassimilates and the constant rate Ra (Figure

2). In the model without storage compartment, the C stored in the Photoassimilates is partitioned into Structural foliage (from

here on: Str. Foliage), Wood (including branches and coarse roots) and Fine roots (from here on: Roots), with the constant

rates Af , Aw, and Ar; part of the C stored in these three compartments also leaves the system with constant rates Lf , Lw, and

Lr, which comprise all the carbon released through respiration and other losses (e.g. litterfall). For the models with storage,20

the C is transferred from the Photoassimilates to the fast cycling storage, from which it is then partitioned to the rest of

the compartments. In addition to the fast cycling storage, the model with 2 storage compartments also has a slow cycling

compartment.

2.2 Optimization procedures

To obtain results that can be related to a particular ecosystem, we performed a parameter estimation procedure using published

measurements of two ecosystem C compartments from the Harvard Forest Environmental Measurement Site (see links 1, 2,

and 3, and the raw LAI) . Harvard Forest is a regenerating temperate forest located in Petersham, Massachusetts (42.54°N,

6
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72.18°W, 340 m asl). Among the tree species that are found in this 65- to 85-year-old mixed deciduous forest are: red oak, red5

maple, white and red pine, yellow and white birch, beech, ash, sugar maple and hemlock (Wofsy et al., 1993).

We calculated C stocks in wood and foliage from the above mentioned aboveground biomass, LAI and LMA, using al-

lometric equations. Although in previous studies performed at the same site the use of woody biomass increment and LAI

reduced the uncertainties in the predictions of net C sequestration and foliage dynamics, respectively (Keenan et al., 2013),

and the wood stock observations have been used to successfully constrain fine root mass simulations (Smallman et al., 2017),10

we obtained unrealistic simulations of C stocks in storage and roots because these pools were not well constrained. Thus, we

estimated C stocks of roots based on the assumption that shoot:root ratio = 1:5, and we also used published ratios to calculate

NSC from Wood carbon (p. 5 Richardson et al., 2010).

We were also interested in observing the uncertainty of the model simulations (see section below), so we performed a

Bayesian optimization, which gave us alternative parameter sets after exploring the parameter space. This optimization proce-15

dure was started using the result of a classical optimization method using the R package FME (Soetaert and Petzoldt, 2010).

Taking into account that data uncertainties have a direct influence on the fit of the outcome of the parameter estimation (Richard-

son et al., 2010), we accounted for the uncertainty in the data using the standard deviation of the measurements in the cost

functions.

As means to evaluate whether the parameters could be estimated from the given data sets, i.e. parameter identifiability, we20

performed a local sensitivity analysis and estimated the collinearity of the parameter sets with the package FME. The obtained

collinearity index γ expresses the degree at which pairs of parameters are linearly related. Values of γ > 20 indicate high

collinearity among parameters and poor identifiability of the model given the available data (Soetaert and Petzoldt, 2010).

Given the high correlation between some of the parameters, we decided to run all model simulations using the parameter set

that was most frequently chosen by the Bayesian optimization method. We then calculated C stocks, release fluxes, radiocarbon25

values based on the bomb spike, ages, and transit times, using functions implemented in SoilR. The functions that calculate

age and transit time distributions are based on the formulas proposed by Metzler and Sierra (2017).

2.3 Uncertainty analysis

In order to explore model predictions that could result from different parameter sets that were possible and likely, we extracted

a random sample of 1000 posterior parameter sets from the Bayesian optimization that used Markov chain Monte Carlo. We

ran the models with the unique sets, and calculated the weighted mean and standard deviation of the C stocks, the released C

from each compartment, and the system’s mean age and transit time. The weights corresponded to the number of times that

each parameter set was repeated in the sample.

Code and data availability. All of the simulations and figures for this work can be reproduced using the code and data provided in the5

supplementary material.
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3 Results

3.1 Simulations of carbon stocks

The C stocks simulations obtained from the three models were within the uncertainty range of the available data (Figures 3 and

4). The simulations of Wood and Foliage C (Photoassimilates + Structural) stocks were in accordance with the stocks estimated10

from the aboveground biomass inventory data and the LAI, respectively.
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Figure 3. Carbon stocks estimated for each model, comparing the observed data and the model predictions of C stocks in Wood (A) and

Foliage (B). The C stocks of foliage from the models Storage: 0 and 1 have overlaps.

All of these predictions were obtained using the parameter set that was most frequently chosen by the Bayesian optimization

method (Table 1). This table also shows two quantiles of the distribution of each parameter value after exploring the parameter

space.

Interestingly, some of the parameters were strongly correlated among each other. For the three model structures and the15

available empirical data, the number of parameters that can be simultaneously estimated with a collinearity index < 20 was

3 for the model without storage, and 5 for the other models. The correlations can be seen in the pairwise plots of sensitivity

functions (Figures A1-A3). Table A1 summarizes the number of parameter correlations that we observed under the diagonal of

the pairwise plots of sensitivity functions. For this reason, the results presented here need to be interpreted within the context

of predicted uncertainties.

3.2 Influence of carbon allocation strategies on ecosystem level C cycling

To assess the impact of different carbon allocation strategies on the ecosystem C cycling, we used the following metrics: 1) C5

release fluxes, 2) dynamics of radiocarbon for individual compartments, 3) transit time distribution of C through the system,
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Figure 4. Carbon stocks estimated for each compartment and their uncertainties. Carbon in the (A) Foliage (Photoassimilates + Structural),

(B) Wood, (C) Roots, and (D) Storage compartments.

and 4) age distribution of C in the system and in each compartment. The calculations required for these metrics were performed

using the parameter set that was most frequently chosen by the Bayesian optimization method for each model, unless otherwise

noted.

3.2.1 Fluxes of C released from the compartments

The three models predicted different mean fluxes of C released from each compartment at steady state (Figure 5). The only

exception was the Roots, which had large uncertainties and overlaps among the flux distributions of the three models. This

means that certain combinations of model structures with parameter sets result in similar predictions of Root C release fluxes.

9



Table 1. Parameter values obtained from the optimization procedures [year−1].

Model Parameter Final Best1 Best2 Median q25 q75

Storage: 0 Ra 0.28 0.7 0.7 0.6 0.52 0.66

Af 0.48 0.5 0.5 0.4 0.33 0.46

Ar 0.44 0.5 0.5 0.39 0.31 0.45

Aw 0.49 0.5 0.5 0.41 0.33 0.46

Lf 23.32 35.35 35.35 19.82 12.65 27.72

Lr 3.03 2.71 2.71 2.67 2.23 3.09

Lw 0.04 0.02 0.02 0.02 0.02 0.03

Storage: 1 Ra 0.67 0.5 0.33 0.45 0.34 0.56

Af 0.27 0.19 0.4 0.36 0.24 0.44

Ar 0.12 0.4 0.32 0.25 0.18 0.32

Aw 0.25 0.38 0.24 0.38 0.31 0.44

Lf 10.43 18.25 28.93 16.12 8.87 24.97

Lr 1.63 3.27 3.39 2.73 2.03 3.2

Lw 0.03 0.03 0.02 0.04 0.03 0.05

As 1.07 2.02 2.23 2.29 1.92 2.89

Storage: 2 Ra 0.65 0.64 0.52 0.58 0.5 0.65

Af 0.36 0.3 0.5 0.43 0.38 0.47

Ar 0.26 0.47 0.48 0.4 0.33 0.45

Aw 0.24 0.49 0.47 0.34 0.27 0.4

Lf 12.88 35.63 27.44 16.48 10.28 26.96

Lr 2.47 2.19 3.15 2.96 2.52 3.3

Lw 0.02 0.01 0.03 0.02 0.02 0.03

As 1.92 1.99 1.96 1.75 1.5 2.13

As12 0 0.15 0.02 0.01 0.01 0.02

As21 0.02 0.01 0.03 0.04 0.03 0.07

Final: Parameter set that was most frequently chosen by the Bayesian optimization method and was used

for all of the simulations, unless otherwise noted.

Best1: Parameter set obtained from the classical optimization procedure.

Best2 and the remaining columns were the result of the Bayesian optimization.

However, for the compartments related to the foliage the differences were larger. Thus, regardless of the parameter sets, the5

differences in model structure lead to the prediction of different C release fluxes at steady state.
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Figure 5. C release fluxes from the compartments at steady state, with uncertainty ranges obtained from the set of posterior parameters

obtained by Bayesian optimization.

3.2.2 Radiocarbon content in each compartment

The simulated radiocarbon content of fast cycling compartments (e.g. Photoassimilates, Str. Foliage, Storage (fast), and Roots)

had a stronger resemblance to the atmospheric ∆14C values than the slower cycling compartments (Figure 6). However, for

the Str. Foliage of the models with storage there was a time lag of about 3 years with respect to the peak that corresponds to10

the ‘bomb-spike’. Furthermore, the accumulation of radiocarbon in slow cycling compartments such as Wood and the Storage

(slow), was characterized by a slow incorporation of radiocarbon that resulted in large ∆14C values of the last part of the curve.

Differences in radiocarbon values for the different compartments hint to different levels of mixing of carbon fixed at different

times. For the fast cycling compartments such as the Photoassimilates, the degree of mixing is relatively low because most of

the radiocarbon reflects the values in the atmosphere. For other compartments that cycle at slower rates, the mix of recent and15

old radiocarbon results in important divergences from the atmosphere. Mixing of carbon of different ages can be further studied

with ages and transit times distributions.

3.2.3 Age and transit time distributions

The age and transit time distributions were calculated assuming that the system was in steady state. These distributions had a

wide range, expanding from 0 to several decades old carbon, and their shape varied according to the model structure (Figure5

7). The ascending order of the models according to their mean age, from young to old, was: Storage: 0, Storage: 1, Storage:
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Figure 6. Radiocarbon simulations for the three model structures. The black curve corresponds to the ∆14C in the atmosphere, and the other

colors depict the vegetation compartments.

2. As expected, the model with the oldest ages (Storage: 2) had the longest transit time. These trends were partially observed

when we analyzed the uncertainties in mean age and mean transit times (Figure 7 (C) and (D)), but the uncertainties for the

model without storage were large. The large uncertainties regarding the mean ages and transit times of the model Storage: 0

might have resulted from the high correlation between its parameters.10

At the compartment level, the above mentioned age-dependent ranking of the models only holds true for Wood (Figure 8),

which was the compartment with the closest resemblance to the overall system age densities because it comprised most of the

mass in the system. The inclusion of two storage compartments in Storage: 2 resulted in a relatively ‘flat’ distribution; with

a long tail that leads to a mean age 10-20 years older than the other two models, but with a peak at very young ages. This

contrasts with the other models, which peaked at around the same time, but had steeper declines with age.

The only compartment that had an age maximum at 0 years was the Photoassimilates. Hence, this compartment had a unique5

distribution curve reflecting the fact that all new carbon (age = 0 years) enters the models only through this compartment.

12



(A) (B)

0.00

0.05

0.10

0 10 20 30 40 50

Age [years]

A
ge

 d
en

si
ty

Mean
Median

Storage: 0
Storage: 1
Storage: 2

0.0

0.2

0.4

0.6

0 5 10 15

Time [years]

Tr
an

si
t t

im
e 

de
ns

ity

Mean
Median

Storage: 0
Storage: 1
Storage: 2

(C) (D)

Storage: 0 Storage: 1 Storage: 2

20
40

60
80

10
0

M
ea

n 
ag

e

Storage: 0 Storage: 1 Storage: 2

6
8

10
12

14
16

18
20

M
ea

n 
tr

an
si

t t
im

e

Figure 7. System ages and transit times. (A) Age and transit (B) time density distributions calculated for each of model structure using the

best parameter set from the optimization; the dashed and dotted lines mark the mean and median ages, respectively. (C) Spread of mean ages

(left) and mean transit times (D) obtained from all posterior parameter sets from the Bayesian optimization.

Although the other fast cycling compartments (Str. Foliage and Roots) had peaks after 0 years, their C age was distributed

towards young ages, with mean ages between 1 and 3 years. This spread in the C age of Str. Foliage for the models with storage

may suggest either that the cycling rate of this compartment was relatively slow or that it received C from compartments with

older carbon.

The age densities of the storage compartments, just as the ones for Foliage, Wood, and Roots, consisted of curves with peaks

at young ages and long tails (Figure 9). In the case of the fast cycling compartments, the mean age of the models Storage: 15

and Storage: 2 was 1.71 and 2.14 years, respectively, but the long tail indicates that it is also probable to find 5-year-old C in
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Figure 8. Age densities simulated for the compartments: (A) Photoassimilates, (B) Str. Foliage, (C) Wood and (D) Roots. Each model

structure is depicted in a different color. Dashed lines correspond to mean ages.

this compartment. The mean age of the slow cycling compartment was 45 years, but the mixing of ages is also observed in the

density curve, in which the age of C ranged from 0 to more than 150 years.

4 Discussion

Our simulation results showed that C cycling in ecosystems can be largely influenced by different carbon allocation strategies,5

which may result in diverging carbon cycling predictions for specific simulations. However, not all of the different prediction

14



(A) (B)

2.14

1.71

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

Age [years]

A
ge

 d
en

si
ty

Storage: 1
Storage: 2

Mean

Fast cycling storage

45.07

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200

Age [years]

A
ge

 d
en

si
ty

Storage: 2

Mean

Slow cycling storage
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Storage: 2. (B) Slow cycling storage of the only model with 2 storage compartments.

metrics were impacted with the same strength by the assumed number of compartments and values of cycling rates, so results

here need to be interpreted within the context of predicted uncertainties.

4.1 Diagnosing model performance with C release fluxes, and age and transit time distributions

The simulated ecosystem properties that were more strongly impacted by the assumptions behind model structure were: the10

fluxes of C released from each compartment, and the ages and transit time distributions of carbon in the system and in each

compartment. This sensitivity to different carbon allocation strategies makes them good candidates for diagnosing model

performance.

Given that the C release fluxes from Photoassimilates, Str. Foliage, and Wood were highly sensitive to the three model

structures, empirical measurements of these compartments could be used as constraints during the parameter estimation pro-15

cedure. The radiocarbon accumulation was less sensitive, but can be useful to diagnose the models’ performance according to

the cycling speed of their compartments. As an example, we could identify the short delay of the ∆14C signature of the Str.

Foliage compartment with respect to the current year’s atmosphere, in the models with storage (Figure 6). This means that this

compartment had a slightly slower C cycling than what is expected for a deciduous forest (Trumbore et al., 2002, 2015). This

delay in radiocarbon accumulation was also observed as shifts to older ages in the age distributions (Figure 8), with a resolution

of months. In general, radiocarbon measurements can also help to constrain model parameters with respect to how fast or slow

different compartments cycle C (Trumbore et al., 2016), but with less resolution than the age and transit time distributions.

Overall, the age and transit distributions were the best candidates to diagnose model performance and potentially constrain

parameter estimations, because they were the most sensible to differences in model structure and parameter values. So, what5

had the highest impact on these distributions, the differences in cycling rates or the inclusion of storage compartments? It
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seems like these two characteristics had direct and indirect effects on the predictions of the above mentioned distributions,

respectively.

On the one hand, as we initially inferred from the equations 2-5, the calculation of age and transit time distributions depends

on the C partitioning schemes (β) and the transfer -cycling- rates between plant compartments (B). Therefore, different pa-10

rameter values that compose the vector β and matrix B directly result in the different calculations of ages and transit times.

This was tested by running the three models using the same parameter set; although they still differed in the number of storage

compartments, the differences between the age and transit time distributions in the whole system and in the compartments was

minimal (Figures A6, A7, and A8). These similarities were also observed for the radiocarbon accumulation (Figure A5). The

only exceptions to the above were the fast cycling compartments of the model Storage: 0, which were faster than in the other15

two models.

On the other hand, model structure had an indirect effect on the predictions of age and transit time, most likely because

the addition of storage compartments impacted the outcome of the parameter estimation and these different parameter values

then lead to different age and transit time predictions. An illustration of this is the fit of the models to the data (Figure A4):

Running the three models with the parameter set that gave the best fit for the model with 2 storage compartments hampered20

the fit of the model with no storage compartments to the woody C measurements. Thus, although the system had an external C

input that could never be depleted because it was assumed to be a constant flux, the parameter estimation accounted for extra

compartments by modifying the cycling rates to optimize the fit of the models to the data.

As expected, systems with ages distributed towards older values also have older transit time distributions. In fact, their

correlation can be confirmed by observing the formulas once again. The calculation of these two properties depends on the25

matrix of transfer coefficients (B), but there are other factors driving these two distributions. The additional factor driving

the mean age calculation is the relative amount of C stock at steady state; whereas the mean transit times depend on the C

partitioning schemes (β) (Metzler and Sierra, 2017). So, the mean transit time calculation is only limited by the rates of C

transfer, while the mean age of C in the system also depends on its mass. This is why the mean age of C in vegetation is

determined by the age of the compartment where the majority of the mass is stored, which in this case is Wood. We further30

explored this relation in the scatter plot in (Figure A9), where the distribution of the points below the 1:1 line indicate that the

three models have mean ages greater than their mean transit times. This means that they have big masses of old carbon, but

they also have highly dynamic compartments through which carbon transits very fast.

We also diagnosed the model performance by comparing the predicted ages for the storage compartments (Figure 9) with

the mean age of NSC measured in previous empirical studies (Richardson et al., 2013). The mean age of NSCs from red maple35

cores obtained at Harvard forest, was 7.2 ± 7.7 yr; for the fast cycling storage compartments of the models Storage: 1 and

Storage: 2, it was 1.71 and 2.14 yr respectively, and 45 yr for the slow cycling storage. Clearly, the mean ages of fast storage

compartments are smaller than the mean value calculated empirically, but given the uncertainty of the measurements, they are

still within the observed range. Furthermore, the density distributions of these storage compartments show that even though

they are well-mixed, their C do not have the same age. Thus, it is also likely to find C between 0-5 yr and 0-150 yr in the5

fast and slow cycling storage compartments, respectively. This resonates with the fact that although stemwood NSC is highly
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dynamic on seasonal time-scales, it can also be surprisingly old (Richardson et al., 2013). Then, the two hypothesis regarding

C mixing -inward mixing of younger and older C in one compartment (Trumbore et al., 2015), and 2 compartments (young and

old) that mix (Richardson et al., 2013)- converge in the concept of age distributions because C is simultaneously been fixed

and removed from the compartments at different times, a process that results in C age distributions. We can think about these10

dynamics in the context of a stochastic process. The total amount of C that enters and leaves each compartment is fixed and

given by the deterministic model, but the time that each C particle stays in a compartment varies stochastically within them. So,

the age distribution of C particles in each compartment is a mix of new and old carbon, with distribution functions emerging

from the deterministic model (equation 2).

Another important observation regarding the mean age predictions is the fact that these calculations were performed under15

the assumption that the system, in this case the forest, was in steady state. Since the C stocks in Harvard forest continue

growing, the calculated mean ages and transit times should be interpreted as predictions of the mean age that the carbon may

have in this forest once it is in steady state. Based on this, the time that this forest will take to reach the steady state is highly

divergent among the three models. As an example, the model with two storage compartments would predict 20 yr more of

growth to reach a steady-state close to that of the model with no compartments.20

In case of systems that are driven by environmental variables and result in time dependencies of inputs (GPP) and process

rates, the mean ages and transit time distributions would also change over time. To calculate the means of these time-dependent

distributions one would need to know the complete history of inputs and cycling rates for the duration of the simulation

(Rasmussen et al., 2016), information that is not available for Harvard forest. Nonetheless, we can predict that if there were

external factors influencing the simulations, there would be a different prediction of mean ages and transit times at each time25

step, but the model structure (C allocation scheme in particular) would play a major role determining the shape of these

distributions .

It is also noteworthy that what we assume to be a compartment, e.g. Wood, does not necessarily meet the well mixed

assumption, so its particles may not have the same probability to leave the compartment at all times. Richardson et al. (2015)

found a low concentration of old NSC in old rings of stemwood, and a high concentration of old NSC in coarse roots and30

fine roots of pine. Additionally, they found young and old C in roots. These dynamics were interpreted as poor C mixing and

reserves that cycle on different timescales (Richardson et al., 2015), but they may also obey to physiological constraints. For

example, the parenchyma in heartwood is thought to be dead, so NSC trapped in there may no longer be accessible to the

plant (Richardson et al., 2015). So, to study the physiological significance of these findings with models, we might have to

include such details regarding tree physiology. The important point we want to emphasize however, is that mixing of carbon in

different vegetation compartments results in C age distributions that have been little studied previously. Our results are a first

attempt to obtain these distributions using a number of assumptions, but in the future other analysis with more complex models

and explicit formulas for time-dependent age distributions would help to obtain better predictions of ages and transit times as

affected by specific physiological processes.5

Although there are still knowledge gaps regarding plant physiology, and current C-dating methods only measure mean age

of C rather than age distributions (Richardson et al., 2013), we expect our results to motivate future work, particularly in
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the use of isotope tracers and their time evolution to approximate age distributions. Biosphere models can be enhanced with

structural adjustments and the uncertainties in the parameter values can be reduced by constraining them with age and transit

time distributions. These improved models could then be used to test hypotheses regarding physiological questions, and assess10

the sustainability of current terrestrial C sinks, given changes in environmental forcing.

4.2 Model equifinality (identifiability)

Model equifinality (Medlyn et al., 2005) was evident from the fact that despite having different number of compartments

and values of cycling rates, all of the three models had similar simulations of C stocks (Figures 3 and 4). Along with model

equifinality, we obtained a high collinearity between some parameters, implying that they are non-identifiable, i.e., they cannot15

be uniquely estimated from the given data sets (Soetaert and Petzoldt, 2010). Thus, for these particular models, the time-course

measurements from only 2 out of 4-6 vegetation compartments is not sufficient to estimate the values of 7-10 parameters.

Model equifinality as well as the impossibility to uniquely identify certain parameters (parameter non-identifiability) is ex-

pressed as high correlations between the parameter sets. Positive parameter correlations, may indicate practical non-identifiability,

where the insufficiency or poor quality of data is not a good constrain for the parameters. In addition, a negative parameter corre-20

lation can be a symptom of structural non-identifiability, which is the result of a redundant parameterization (Raue et al., 2009;

Timmer, 2011; Raue et al., 2012; Cressie et al., 2009). Thus, the three models had practical and structural non-identifiabilities,

which means that they need to be constrained with more and better data, and they need to be restructured in order to avoid

compensation of fluxes into and out of the compartments.

Since this study was limited by the availability of relevant empirical data, the parameter values that we used are only one of25

many possible outcomes of parameter estimations using the same data sets. Therefore, it is possible that none of these models

accurately depict the C cycle in the Harvard Forest. However, these problems experienced with parameter non-identifiability

are not an isolated case; the process of finding unknown rates of C sequestration by fitting biosphere models to empirical

data (Luo et al., 2003) is often hampered by parameter non-identifiability (Schaber and Klipp, 2011). This is a real problem

because parameters such as those that correspond to carbon turnover explain most of the variation in the response of terrestrial30

vegetation to future climate and CO2 (Friend et al., 2014) and are highly important in determining C age and transit times.

5 Conclusions

We obtained age and transit times distributions of carbon for simple vegetation models with contrasting carbon allocation

schemes. Our results show that mixing of carbon in different vegetation compartments results in C age distributions not ex-

plored before in previous studies. The shape of these distributions depends largely on model structure, and in particular on how

carbon allocation is represented in models.

Models with none or one storage compartment may fail to explain the mixing of ages found in different vegetation compart-5

ments, but they are more parsimonious than the model with 2 storage compartments. Nonetheless, parameter collinearity and
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Table A1. Number of positive and negative correlations between parameters. Only R2 values <−0.1 and > 0.1 were assumed to account

for correlations.

Model Positive correlations Negative correlations Possible combinations

Storage: 0 5 12 21

Storage: 1 4 10 28

Storage: 2 16 16 45

model equifinality were persistent problems that might be solved if more constraints are added, since the time series of C in

foliage and wood are not enough to parameterize a full vegetation model.

Although all models predicted similar C stocks in vegetation compartments, the inclusion of a carbon storage compartment

resulted in very different predictions of age, transit time distributions, C release, and isotopic composition. Thus C ages and

transit times, which can be indirectly measured using isotope tracers, can be used to improve biosphere models via examination5

of their structure and estimation of parameter values, which then can be used to assess the strength of C sources or sinks from

vegetation.

Finally, it is advantageous to consider age and transit times as distributions, rather than only mean values; with their distri-

butions we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation, which not only depends

on the rate at which C flows into and out of the compartments, but also on the stochastic nature of the process itself.
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Figure A8. Age densities simulated for the models with storage compartments; the models were run using the same parameter set. (A) Fast

cycling compartment of models Storage: 1 and Storage: 2. (B) Slow cycling storage of the only model with 2 storage compartments.
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Figure A9. Scatter plot of mean age Vs. mean transit times in log scale. The three models have distributions below the 1:1 line.
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