
Answer to Reviewer #1 
Thank you very much for your comments and support for the publication of our manuscript. 
Below we address one by one the comments made during this review. All answers are in blue 
font. 
 
Specific comments 
In my opinion, the comparison between observed and simulated methane emissions would 
however benefit from using an upscaling approach to avoid issues arising from the mismatch 
of scales. This was done for the chamber measurements, but it remains unclear how 
representative the flux tower footprint is of the entire grid cell. Comparing flux measurements 
from a single location to the entire grid cell is only meaningful if the grid cell is characterized 
by spatially homogeneous methane emissions. This is only rarely the case for such high-
latitude landscapes (e.g., Sachs et al., 2010; Parmentier et al., 2011; Helbig et al., 2017).  
 
We agree that the comparison between model methane fluxes and those from observations, 
specifically from eddy covariance, is a challenge. In our manuscript, we use a scaling factor 
for the chamber data by considering chamber measurements that were done under exclusively 
wet and under exclusively dry summer conditions. We then make use of the total fraction of 
inundated areas in the model grid cell (IF) modeled with the TOPMODEL approach to scale 
the total chamber fluxes. This scaling approach takes into consideration that the model 
methane fluxes represent the emissions from only the portion of the grid cell that is inundated, 
i.e. with water at or above the soils surface.  
In the case of the eddy covariance fluxes, following the concerns of the reviewer, we re-
evaluated our approach for this comparison. In the revised version of this manuscript we 
include now a thorough analysis of the footprint area of the eddy covariance fluxes as part of 
a new Appendix B on “Details on in-situ flux observations”. This appendix also includes 
details on the eddy covariance flux data uncertainty assessment and more detailed results on 
the chamber measurements, as requested below also by the reviewer. This appendix will be 
part of the revised manuscript and is attached at the end of this response. 
In this new appendix, we analyze the type of vegetation and its coverage in the footprint area 
of the EC tower, from remote sensing images as a metric to identify wet and dry areas. Areas 
with dominant cotton grasses, specifically Eriophorum angustifolium in our study area, are 
indicators of predominant wet soils, while tussocks, specifically Carex appendiculata in our 
study area, and shrubs are indicators of predominant dry soil conditions. It is important noting 
that C. appendiculata, can be also found in wet areas, but is predominant in dry areas. 
For the model, the vegetation distribution per grid cell is too coarse to consider this metric 
similar as that for the remote sensing data in the EC footprint area, however the total 
abundance of C3 grasses in the grid cell A is 33.3 % as given for the model (with the rest of 
the grid cell dominated by deciduous shrubs and extra tropical evergreen trees), but there is 
no discrimination between cotton grasses and tussocks. 
The footprint of the eddy covariance tower in the Chersky floodplain covers an approximate 
area of 400 m x 400 m, similar to that one depicted in Fig. 1 of Kittler et al. 2016 (cited in 
discussion ms) (see new Appendix B at the end of this response for footprint area for the EC 
tower used in this manuscript). The remote sensing analysis revealed that cotton grasses are 
present in about 26 % of the footprint area, which would translate into the same portion of the 
footprint area as fully wet zones during the “wet months”: after spring melt in June and until 
August when most annual precipitation in the region takes place, covering most of the 
growing season. As will be shown below in this response, CH4 fluxes measured by chambers 
(footprint of 60 cm x 60 cm) revealed that during the growing season in dry soil areas of the 
Chersky floodplain that are characterized by a water table below the surface, the emission of 
methane during the growing season is negligible with even some atm. CH4 uptake by soil (i.e. 
negative CH4 flux rates) (data shown in new Appendix B). Under this consideration, and as 
confirmed recently by Helbig et al., 2017, the majority of the CH4 fluxes measured by the EC 
tower would represent fluxes from fraction of wetland in the footprint area, i.e. 26 %.  
 



In case of the model grid cell where the location of the EC tower falls (grid cell A in Fig. 1 of 
the discussion ms), the IF for June-July-August during 2014 shows growing inundation 
values from 17.7 % to 19.9 % (for 10-day mean values for those three months) representing 
the percentage of total wet areas in the grid cell area. These values are slightly smaller than 
the 26 % wetness area in the EC footprint, and denote the area of the grid cell where the 
model methane emissions take place (i.e., no emissions in dry areas, in agreement to the 
chamber measurements).  
With this basis and to make a closer comparison between EC flux measurements and model 
data for the growing season months, we scaled linearly the 10-day mean EC methane fluxes 
to the IF from the model, and calculated the standard deviation of the 10-day mean. In the 
next figure, we show: TOP panel, the original 10-day mean EC methane flux measurements 
that would represent the emissions of a 26 % wet area between June and August 2014 (black 
line), the 10-day mean EC methane fluxes scaled to the 10-day mean IF from the model for 
the same period of time (red line) and 10-day mean model methane emissions for grid cell A, 
which imply emissions from the IF from the model (blue line). Error bars in all lines are one 
standard deviation of the 10-day mean flux values. The BOTTOM panel shows the 10-day 
mean IF from the model used to scale the EC fluxes (blue line), and the constant wetness 
percentage of the footprint area calculated from the vegetation coverage remote sensing 
images (i.e., 26 %). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We observe that the scaled EC methane fluxes decreased as a lower IF is considered within 
the footprint, and those new calculated fluxes become closer to those from the model, and in 
most cases the latter fall within the 10-day standard deviation of the EC fluxes. 
Unfortunately, it is not possible to obtain a temporal varying wetness area for the EC footprint 
all year, based on our approach of only considering the vegetation cover, thus wouldn’t be 
appropriate to scale all of the EC fluxes for 2014 and 2015 to the IF from the model without 
any reference for spring and winter wet footprint areas. However, from this analysis we learn 
that: 1) considering the vegetation cover as indicator of soil wetness, the EC footprint area 
holds a very similar area to that of the model grid cell through which the majority of the 
methane is emitted to the atmosphere and 2) the net offsets between methane flux model and 
EC data can largely be attributed to differences in wetness levels.  
Summarizing, we assume that for both the model grid cell and the eddy covariance footprint, 
methane emissions are not spatially homogeneous, but bound to the distribution of wet 
(inundated) areas. Accordingly, a meaningful agreement between model and observations can 
only be obtained if two factors are fulfilled: (i) the fraction of wet surfaces agrees between 
both data sets, and (ii) the flux rates from wet surfaces agree between both datasets. Through 
correcting the offsets in inundated fraction, we could demonstrate that the flux rates between 
model and eddy covariance observations agree very well, emphasizing the sound setup of the 



model algorithms and parameter settings. We will add the analysis presented here into the 
new Appendix B to complement the discussion on scaling fluxes for comparison between EC 
and model data. 
 
The authors should also address how representative the location of tower and chamber flux 
measurements is of the entire grid-cell. The authors estimate the fraction of inundated land for 
the grid-cell and demonstrate how this fraction is an important predictor for methane 
emissions. The same should apply for flux tower measurements where the fraction of 
wetlands is tightly coupled to the magnitude of methane emissions (see for example Helbig et 
al., 2017). How would the wetland fraction at the grid cell-scale compare to the same fraction 
at a smaller scale at the study sites? 
We approached this comment with the answer above. By evaluating the vegetation cover 
types within the footprint area of the EC tower, we identified the wet areas and assume that 
the methane fluxes measured with this tower represent the emissions from the wetlands 
within the footprint. Equivalent to the grid cell area, the inundated fractions determined with 
the TOPMODEL approach, represent the areas where methane is emitted at grid cell scale. 
Those are comparable and to show this, a scaling exercise for growing season methane 
emissions in 2014 was presented above. 
 
The authors report “comparable” (line 30) methane emissions when comparing model and 
measurements. The analysis could be much stronger if the authors give a quantitative measure 
for the performance (e.g, Root Mean Square Error or any other suitable metric). 
As suggested by the reviewer, we include now in the revised ms the relative RMSE 
calculation in percentage (e.g. RMSE / mean(CH4_obs) * 100) between model and flux 
measurements from Eddy Covariance (for 2014 and 2015) and chambers (only for the 
available three months in 2014). We calculated this error on a monthly basis, using the daily 
resolution fluxes. Results are shown in the table and figure below.    
 

Month Rel. RMSE  (%) 
(model – EC) 2014 

Rel. RMSE  (%) 
(model – chambers) 2014 

Rel. RMSE (%) 
(model – EC) 2015 

Jan - -   99.3 
Feb - -    91.9 
Mar - -    92.4 
Apr 76.1 -    60.7 
May   106.9 -   103.6 
Jun    26.9   47.8    17.1 
Jul    33.0    14.2    24.7 
Aug    36.7    10.5    18.3 
Sep    16.2 -    26.6 
Oct    24.1 -    36.6 
Nov    60.5 - - 
Dec    91.4 - - 

 
 
 
 
 
 
 
 
 
 
 
 



The relative RMSE results show the relative variation between the model and the 
observations. A larger variation is observed in the first five and last month of the year (winter 
and spring) between model and measured EC fluxes, while the lowest variations are observed 
during the growing season and autumn (June to October). The summer variation is larger in 
2014 between model and EC data and lowest in July and August between the model and 
chamber measurements in 2014. This information will be included in the revised MS to 
quantitatively support the evaluation of the model results. 
 
The authors state that the aim of the work is to “improve our understanding”. However, in my 
opinion, the manuscript mainly focuses on improvements in methane modeling and an 
evaluation of the performance of a revised methane model. The authors may consider 
reframing their research objectives and focus results and discussion on the specific research 
questions. 
The reviewer is correct that the stated aim is not reflecting the bottom line of our manuscript. 
Following this suggestion, we reframed the aim to be clearer and now it reads: “The aim of 
this work is to analyze the performance of an improved process-based methane model, 
designed for Arctic tundra and wetlands underlain by permafrost, when applied to a regional 
domain in Northeast Siberia. Our intention is to evaluate the potential of a refined process-
based methane model as a proof of concept, for its application to a larger than site level 
scales. For this, year-round CH4 emissions are modeled and differentiated among distinct 
pathways: plant-mediated, ebullition, and diffusion.” We also focus the discussion towards 
this aim in the revised ms.  
 
Large areas in northern Siberia are covered by polygonal tundra. The distinct 
microtopography of these landscapes has important implications for surface hydrology and 
thus also surface inundation (see Cresto-Aleina et al., 2013; Helbig et al., 2013; Liljedahl et 
al., 2016). I was wondering if such polygonal tundra covers a significant proportion of the 
study area?  
And if yes, what would be the consequences of distinct microtopography on the performance 
of the TOPMODEL and on the simulated methane emissions. Using a mean water table for 
methane modelling in such heterogeneous landscapes can lead to significant underestimation 
of methane emissions (Cresto-Aleina et al., 2016). 
The reviewer is right that a good portion of the Siberian tundra is characterized as polygonal 
tundra. However, our area of study does not contain these particular micro-topographic 
structures since it is mostly located in a floodplain that naturally becomes inundated at the 
end of the melt season (spring). Towards summer, most of the water recedes to streams and to 
the Kolyma River and nearby tributaries only to lead to a typical wetland landscape. Still, 
some polygonal structures are present, but they are not a dominant feature of the landscape 
within our model domain, as opposed to e.g. the Lena River delta. Therefore, the application 
of TOPMODEL in the Chersky floodplain is suitable and there is no need to consider 
polygonal structures. 
 
With the TOPMODEL approach, the authors can distinguish between inundated and non-
inundated land. However, many peatlands are characterized by a water table just below the 
peat surface and are thus not inundated. Nevertheless, they can emit large amounts of 
methane, which would be neglected in the current modeling approach.  
We are aware of the limitations on the use of TOPMODEL in those particular cases where the 
water table is located below the surface and those were discussed briefly in the discussion 
manuscript. The study of Kwon et al. (2016) (cited in the discussion ms) reported the flux 
chamber measurements in the same Chersky floodplain site subject to our study. The authors 
reported CH4 fluxes measured in plots where the water table was 10 cm below the surface and 
found negligible contribution of CH4 from these soils. Specifically, areas with water table 5 
cm below the surface showed net CH4 emissions but flux rates were not as high as in areas 
with standing water (see figure below). Also, as shown in the new Appendix B attached at the 
end of this response, chamber flux measurements of CH4 in dry soils with water tables ca. 10 



cm below the surface show none or negligible methane emissions to the atmosphere in this 
area of study. Taking into account these findings, in our model configuration the fact that no 
methane emissions take place in dry soils, would not pose a constraint to the total modeled 
methane fluxes per grid cell in this area of study, however, the role of methane oxidation 
could be better evaluated.  
 

 
 
The figure above shows results of CH4 chamber fluxes (mg CH4 m-2 s-1) measured from June 
to August (numbers at the top of the figure indicate the month of the year: 6 is June, 7 is July 
and 8 is August) in 2014 for the dry and wet plots and their corresponding water table (in x-
axis). “Dry” plots have mostly water tables at or below the surface during July and August 
with mostly uptake of CH4 from the atmosphere (on average 3 mg CH4 m-2 d-1), whereas the 
wet plots characterized by water tables located above the surface, showed average emissions 
of 332 mg CH4 m-2 d-1 over the same period of time.  
Despite this agreement, we are aware that the low CH4 uptake in dry areas might not apply to 
other tundra areas, e.g. in Zona et al., (2016) in the Alaskan tundra the highest fall and winter 
CH4 fluxes were observed in upland tundra sites characterized by having a water table below 
the surface during summer. In future studies, our model scheme should also be tested in other 
areas such the Alaskan tundra to assess and improve further the model configuration 
especially in the TOPMODEL scheme.	  
 
At the same time, lakes (i.e., inundated land) may be characterized by lower methane 
emissions than these peatlands due to a lack of fresh organic carbon input. What are the 
implications of this for the modeling performance? The authors may consider discussing this 
shortcoming. 
This is an interesting idea and we agree with the reviewer that a comparison of lake and 
peatland model results would be an ideal evaluation of our methane scheme using extreme 
cases of water table depth. However, we do not see the possibility to perform such study, as 
explained below. 
In our model configuration, the production of methane is considered to take place in mineral 
soils and does not include peatlands as definition: the layer of soil with > 30 cm of organic 
rich material (peat) accumulation. A mask containing the distribution of peatlands should be 
needed to introduce this feature. In addition, as carbon decomposition slows down in 
permanently anoxic areas of the soil column, the prescribed mask of peatlands should contain 
added soil C in order to describe deep peat layers characterized by a slow decomposition 
timescale. These steps are currently been taken for the global context with the JSBACH 
model and are still pending work for high horizontal-resolution domains such as the regional 
one presented in this work.  
The scheme to model wetland areas using the TOPMODEL approach considers the 
topographic profile, which is provided as a prescribed compound topographic index in the 
model domain, and methane emissions take place in areas where the water table is located at 
or above the soil surface. In this context, the model does not explicitly simulate the location 



of “lakes” (inland open water bodies) but rather a dynamic change in the horizontal 
distribution and accumulation of water at or above the surface, which in turn may consider 
implicitly inland water bodies at different scales: lakes, wetlands, ponds, etc. With this model, 
it is not possible to discriminate at this coarse resolution, the type of water bodies, but rather 
it provides an average portion of the grid cell area where inundation can take place, and only 
the methane production and ultimately emissions, are linked to the carbon content and 
environmental conditions of the soil. If by definition there is no consideration of peatlands in 
our model, in the end all goes down to the available organic carbon in the soil for the 
production of methane. As requested by the reviewer, we will discuss this shortcoming in the 
revised manuscript. 
 
In the current manuscript, the authors “decreased or increased [the parameters] by a fixed 
value” (line 343). Could the authors use a Monte-Carlo approach instead to assess the 
parameter sensitivity?  
The purpose of the parameter permutation is to know, to which parameter the model is most 
sensitive, as this identifies which parameter need to be better constrained to reduce model 
uncertainty. The purpose of a Monte-Carlo approach is the identification of the uncertainty of 
a model given a known probability distribution function of parameter values for a 
combination of parameters. MC approaches are not primarily designed to identify model 
sensitivities to specific parameters, even though some approaches such as LHS allow 
interpreting MC approaches in terms of model sensitivities; however only at very high 
computational costs. One-at-a-time schemes (OAT) as the one applied here directly target the 
model sensitivity, are computational cost efficient, and are deemed fully sufficient for the 
purpose (Saltelli et al. 2000). The identification of compensating effects between parameters 
or non-linear effects, which would require an MC approach area, is beyond the scope of this 
paper. We therefore consider an MC approach to assessing model sensitivity as unnecessary.  
 
The authors mention “reported values in the literature”. Could they specifically discuss/show 
the observational constraints on the individual parameters? 
We thank the reviewer for this comment. We improved the description of our selection of 
parameters for the sensitivity study in the revised ms. The selected parameters are those that 
are prescribed in the model and are considered uncertain. Specifically, the selected values for 
φ (snow porosity) and fCH4anox (fraction of anoxic decomposed carbon that becomes 
methane) were those kept within ranges of values previously discussed in the published 
literature, whereas for the other four selected parameters (see below) we chose a range of 
values around the defined values for the control simulation. 
Thus, the selected parameters are characterized by at least one of the two criteria: 1) it is a 
parameter with large uncertainty because it is not provided in current published literature or 
its values are still controversial as reported in published literature, and 2) it is possible to test 
a range of values based on reported values in literature. The last criterion is only true for two 
of the selected parameters (φ and fCH4anox) as mentioned above. As given in the discussion 
ms, the six selected parameters for our sensitivity studies are: 
In the TOPMODEL scheme:  

1) χmin_cti, minimum compound topographic index threshold value. This parameter 
fulfills criterion 1 since it is a model parameter that is exclusively part of the 
TOPMODEL scheme, therefore there is no literature reference and rather is a given 
value that has to be adjusted.  

In the plant-mediated transport scheme: 
2) dr, root diameter. This is a highly uncertain value in literature with only few reported 

values. Few studies have reported the diameter of vascular plants in boreal 
ecosystems. In Wania et al., 2010 (cited in discussion ms and after Schimmel, 1995) 
the authors report a diameter for Eriphorum angustifolium of 3.95 mm, while for 
Carex aquatilis a value of 3.8 mm. Chapin and Slack (1979) reported a diameter for 
Eriophorum vaginatum of 0.8 mm, while Wang et al., 2016 reported a value of 1 mm 
for the same species. For our model set up, we use a value of 2 mm in the control run 



considering an average value between those reported in the literature. For the 
sensitivity study, we selected higher root diameters experiments: 5 and 8 mm. 

3) Rfr, principal fraction of the pore-free soil volume occupied by roots. This is also a 
highly uncertain value that is not reported in literature; therefore, we assume in our 
control experiment a fraction of 40 % (i.e., in a certain volume of soil, 40 % is 
occupied by plants roots). For the sensitivity studies, we decreased and increased this 
reference value by 50 % of the control value, i.e., 20 % and 60 % respectively.  

In the diffusion of gas through snow: 
4) hsnow, snow depth threshold. The studies of Pirk et al., (2016) and Smagin and 

Shnyrev (2015) (both cited in the discussion ms) measured CH4 emissions through 
snowpacks under different conditions. These studies evidence the transport of gas 
through snow layers as thick as 1.4 m. However, regarding the thinner snowpack the 
authors only show results from layers 10 cm thin. For our purpose, the lower limit of 
snow thickness is simply a model metric that allows us to differentiate between 
emissions in the presence or absence of snow. We selected thinner snow layers to test 
the model response, and the changes on this threshold thus mainly determine the 
timing of the emissions, which ultimately influences the magnitude of the total 
emissions through snow by allowing an earlier or later release of gas trapped in the 
soil.  

5) φ, snow porosity. This parameter has been previously reported in literature and is 
derived from snow density measurements, which ultimately controls the amount of 
gas that can be diffused through the snow layer. This was discussed in the ms. Based 
on observations, Pirk et al., (2016) measured methane emissions through snow with 
densities that ranged between ca. 250 kg m-3  (at the surface of the snowpack) to 420 
kg m-3 (at about 80 cm depth of the 1.4 m snowpack). According to our model results, 
the snow depths in the model domain did not exceed 30 cm during the peak of the 
snow accumulation (shown in Figure S4c of the discussion ms), thus is unlikely to 
find dense snowpacks. We chose a maximum density of 330 kg m-3 that corresponds 
to a porosity of 0.64 as our control value and tested for the sensitivity experiments 
less dense snowpacks with increasing porosities of 0.71 (for a density of 263 kg m-3 
characteristic of aged snow) and 0.86 (for a density of 128 kg m-3 for fresh snow). 

In the overall methane module: 
6) fCH4anox or the fraction of anoxic decomposed carbon that becomes methane. This 

is a highly uncertain parameter in literature with some reported values in literature. In 
the discussion ms, we thoroughly discussed it (Lines 882 to 914), therefore we refrain 
to include here this discussion. However, we summarize by arguing that despite there 
are some values reported in literature, these are still uncertain and in our sensitivity 
tests we chose those values that have been reported and are characteristic of specific 
field conditions.  

In the revised ms, we will improve the description of the selected parameters, especially those 
that are obtained from observational constraints.  
 
Line 406-408: Why do the authors only show one adjacent cell? What is the justification to 
compare a neighboring grid cell to the ground-based observations? To demonstrate the spatial 
heterogeneity the authors could consider using more than just two grid cells. 
Thank you for this suggestion. Our intention to show a neighboring grid cell was to 
demonstrate the spatial heterogeneity in the model results. Showing other grid cells in the 
model domain indeed can complement this. We believe that the maps showing spatial 
variability in flux rates provide already a good overview on the overall spatial variability. 
This larger scale variability is a superposition of many environmental factors, the most 
important of these being inundation fraction and coverage fraction of C3 grasses. The closer 
analysis for these two cells that the reviewer refers to was mainly performed to emphasize 
that even moderate variations in these factors (and others, such as e.g. soil depth) can lead to 
systematic differences in simulated fluxes. As we see it, extending this kind of analysis also 
to other cells would not add to this message, but rather confuse the reader by providing too 



much information. We suggest, however, to extend the discussion related to the spatial 
heterogeneity in the modeled methane emissions by showing results of mean total methane 
fluxes in the eight grid cells surrounding grid cell A. 

 
 
The figure on the left 
shows the time series 
of the total CH4 fluxes 
at daily resolution for 
the eight grid cells 
surrounding grid cell 
A (shown in black). 
One of those 
surrounding grid cells 
is grid cell B (red 
line).  
 
 

In the tables below, the mean±std. of the total methane fluxes during summer (June, July 
and August) from grid cell A (given as values in black at the center cell of each table), 
and the surrounding eight grid cells for 2014 (left table) and 2015 (right table). Left 
side grid cell from the center cell, corresponds to the values for grid cell B (values in 
red). 
 
         June, July and August in 2014             June, July and August in 2015 
25.4 ± -7.1 56.0 ±-12.1 23.7± -3.7  25.2±-8.3 56.9±-14.7 24.9±-4.8 
72.8±-15.9 48.6±-5.5 27.8±-4.0  75.5±-18.3 50.1±-7.3 28.2±-4.8 
57.2±-6.8 57.9±-6.9 33.4±-4.7  59.2±-8.7 59.5±-10.4 34.3±-5.7 

 
In line 464-465, the authors mention the “parameter adjustment”, but do not elaborate how 
exactly the parameter for the TOPMODEL was adjusted. Did the authors use an objective 
(cost) function to optimize this parameter? 
There was no optimization of these parameters based on a cost function. The parameter 
adjustment for the TOPMODEL was also done in the same fashion as for the sensitivity 
studies: by varying each of the parameters of the TOPMODEL and analyzing the response by 
comparing the output to the chosen remote sensing data. This model parameter adjustment 
can only be done in this way within the current model structure. A more sophisticated 
optimization of parameters falls into a model data assimilation type, which is not 
implemented in this model configuration and goes beyond the scope of this work. 
 
The authors demonstrate in their sensitivity analysis that the threshold TOPMODEL 
parameter and “allocation-of-decomposition-to-CH4” are the most important parameters 
determining the magnitude of simulated methane emissions. In my opinion, the authors 
should strengthen these results throughout the manuscript. It appears as if their results 
indicate that methane emissions mainly depend on methane production dynamics (i.e., 
fCH4anox) and on inundation as “on-off” switch of methane emissions. 
The threshold TOPMODEL parameter and the allocation of C decomposition to methane are 
the parameters that, under the current model configuration, settings and for the selected 
groups of parameters for sensitivity tests, the most influential to the simulated methane 
emissions. This test was aimed to identify which of the most selected uncertain parameters 
have the highest influence to the results and with that, identify where the model is more 
sensitive and where it needs further improvements and evaluations, i.e. especially in those 
processes where the most influential parameters play a role in the model as in this case in the 
hydrology and carbon decomposition.  
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The methane emissions in our process-based model, not only depend on the methane that is 
produced based on the available carbon decomposed in the soil, but also depend on the 
available volumetric soil pore space, moisture, soil temperature and ice content in the soil as 
driving processes. Indeed, once methane is available in the soil to be emitted to the 
atmosphere, the inundated areas simulated with the TOPMODEL approach, determine the 
magnitude of the emissions. Our discussion regarding the sensitivity studies is based solely on 
the parameters chosen for the sensitivity experiments, and those are the threshold parameters 
in TOPMODEL and the fraction of available carbon to be decomposed into methane. We will 
improve this discussion to emphasize this result in this section.  
 
Transport pathways and methane oxidation appear to be less important (merely changing the 
timing of emissions). Are these modelling results supported by observations in the field? The 
authors may consider discussing this in more detail. 
The methane transport pathways are the result of the process-based methane calculations in 
the model according to, among others, the changes methane and oxygen concentrations in the 
soil and in the soil pore space that varies in relation to the freezing and thawing soil cycles, 
influencing directly the methane concentration in the soil. 
The timing of the emissions is linked to the changes mostly in the soil physical state and 
speed of transport processes by their definition, e.g. diffusion of gas in air is faster than in 
water, resistance to molecular gas diffusion through the exodermis of plants, all in a process-
based design. The model still lacks of a proper hydrology representation that allows 
inundation without having to set the soil moisture to saturated conditions, and that overall has 
an impact in the e.g. diffusion and oxidation of the methane. In the parts of the grid cell that 
are not water saturated because inundation cannot take place, the methane processes are not 
taken into account. Thus, the still not well-represented methane processes are not less 
important, but are only part of the limitations of the current model configuration and these 
results hint to the next steps to improve the model. 
As presented in the discussion manuscript, some field studies have conducted experiments to 
measure independently the different pathways of methane emissions into the atmosphere. 
Through isotopic quantification of δ13C, Knoblauch et al., 2016 (cited in discussion ms) 
measured the amount of methane emitted through plants; Kwon et al., 2016 using chambers in 
the Chersky floodplain, also measured the gas emitted through plants. These studies were 
discussed in the discussion manuscript, and we demonstrated that, in agreement to field 
studies, the most dominant methane transport pathway from the total annual emissions (ca. 70 
– 90 %), is through vascular plants when they are present. In the case of ebullition, this is a 
more difficult process to measure in field studies, because of its episodic nature. Despite some 
studies have attempted to measure methane emitted exclusively through ebullition (Tokida et 
al., 2007; Jammet et al., 2015 both cited in discussion ms), for models it is difficult to 
evaluate this process against observations.  
In the case of methane oxidation, in our model configuration the oxygen content is explicitly 
taken into account, enabling two process-based oxidation processes: bulk soil methane 
oxidation and rhizospheric methane oxidation. After methane is produced in the soil (from 
available decomposed carbon), the bulk soil methane oxidation can take place considering the 
available oxygen in the soil pore spaces. The other oxidation pathway considers the available 
oxygen in plants. Only part of the oxygen in the soil is available for methane oxidation, and 
this discrimination relates to the amount of carbon dioxide produced during heterotrophic 
respiration, which has a maximum value of 40 % of the total oxygen content in the soil. An 
additional 10 % of the available oxygen is assumed to be unavailable because it is used in 
other processes (e.g. respiration by microbes). This leads to only 50 % of the total oxygen in 
the soil to be available for CH4 oxidation. The methane processes in the model (oxidation and 
emission) take place in the inundated area, and this also restricts the magnitude of the 
oxidation. The daily methane oxidation rates for the two oxidation pathways for grid cells A 
and B in 2014 are shown in the figure below. 



 
 

The bulk soil CH4 oxidation accounts for about 1 % of the total methane production during 
the growing season for grid cell A and B, and an even smaller percentage (average 0.6 % for 
grid cell A and B during summer) for the rhizospheric CH4 oxidation. These leads to most of 
the methane that is produced to be emitted to the atmosphere through the different transport 
pathways. Past observational and laboratory studies have estimated the methane oxidation in 
boreal and tundra soils. Whalen and Reeburgh (2000) showed that about 55 % of the CH4 
diffusing from the saturated boreal soils, were oxidized while reaching the surface. Through 
bottle incubations, Knoblauch et al. (2016) measured the volumetric CH4 oxidation potential 
of soil and moss samples collected from ponds of the Lena Delta. The fraction of produced 
CH4 that is oxidized before it is emitted was then calculated following three different 
approaches. Their results show a mean fraction of produced CH4 that was oxidized between 
61 to 78 % estimated from a stable isotope approach, while slightly different values were 
found in samples from pond areas without vascular plants: up to 90 % of the CH4 that was 
produced, was completely oxidized following a potential methanogenesis approach, and 
between 63 % to 94 % calculated from diffusive CH4 fluxes into the bottom water. 
Berestovskaya et al. (2005), measured CH4 oxidation rates of different soil samples from the 
Russian Arctic tundra and found that generally the rates of methane oxidation exceeded those 
to the rates of methane production especially at temperatures of 5 degC. For this to happen, 
methane-oxidizing bacteria rapidly consumes the methane released from the freshly thawed 
tundra soils and the methane already deposited in the unfrozen soil, and this takes place even 
before methanogens produce new methane.  
Based on these scarce observations in boreal soils, the oxidation processes in our model are 
still robust and need to be revisited in order to improve the contribution of the methane 
oxidation processes into the total methane emissions. We will discuss this in more detail in 
the revised ms. 
It is important noting that the process-based model presented in this manuscript explicitly 
considers physical drivers such as soil moisture, inundated area, soil temperature and 
substrate availability for methane production and emissions, and is potentially one of the few 
models that include explicitly methane oxidation processes. However, despite our efforts of 
improving the process-based representation, intrinsic model shortcomings are still present, 
and those are related to setting a fixed criterion in the soil moisture to allow the accumulation 
of water above the surface, which leads to a loss in the connection to the soil temperature. 
This has been clearly stated in our manuscript. As such, a one-to-one comparison between the 
model results and observations can be hardly expected. Still, we demonstrated advances in the 
process-model based approach which lead to methane emissions results that are comparable 
in temporal variation in magnitude to those measured on site.  
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Line 61-62: Perhaps the authors could mention another important permafrost thaw effect on 
methane emissions here: increasing surface wetness due to surface subsidence of ice-rich soils 
(see for example Christensen et al., 2004; Johnston et al., 2014, Helbig et al., 2017). 
OK, we will mention this process in the revised manuscript. Thanks for this suggestion. 
 
Line 94-100: Wintertime methane emissions have also been reported by Helbig et al. (2017) 
for a boreal peat landscape in northwestern Canada, where they found winter emissions to 
contribute about 25 % to the annual budget. 
Thank you for adding this citation that we overlooked because by the time our manuscript 
was submitted, this paper was still not published, but now it will be added. 
 
Line 121: Could the authors discuss here the most important “shortcomings in the 
parameterization” of the state-of-the-art methane models? 
The biggest limitations for modeling methane emissions in boreal regions are related to the 
complex network of processes with highly variable influences that are difficult to disentangle 
with temporally and spatially scarce field measurements. The available published literature is 
also scarce and focused only on fine scale site-level studies or at very coarse global scale. 
Several models that attempt to simulate methane emissions from soils are rather coarse and 
not well documented or evaluated, which leads the process-based principle remaining rather 
incomplete. These shortcomings are well documented in the cited paper of Xu et al., 2016. 
According to the methane models intercomparison exercise WETCHIMP (Bohn et al., 2015; 
cited in the discussion manuscript) the authors conclude that process-based methane models 
are limited by the following factors: availability of a valid and highly resolved wetland map, 
account for methane emissions and uptake in dry non-wetland areas, limited soil thermal 
physics that do not contain freeze and thaw processes, lack of a snow scheme and 
consequently, gas transport in the presence of snow cover, lack of peat soils.  
From our work presented in this manuscript and our model development efforts in this topic, 
we have taken into account some of this shortcomings and improved our model tool, however 
still limitations exist. We still conclude that in boreal regions influenced by permafrost, 
process-based modeling for methane emissions is challenged by the lack of the observational 
measurements that can contribute e.g. to understand better the dynamics of soil moisture and 
temperature, wetlands distribution, as well as the distribution and temporal variation of roots 
in vascular plants. Additionally, the land surface models that serve as framework have 
intrinsic limitations in their design, e.g. in the case of JSBACH, the hydrology scheme does 
not allow the accumulation or horizontal redistribution of water and other tools such as 
TOPMODEL had to be implemented. Still after the inclusion of the TOPMODEL approach, 
the final methane emissions are restricted exclusively to the areas where standing water takes 
place, leaving out the dry areas to come into play, and TOPMODEL does not feedback the 
soil thermal physics. Finally, the carbon decomposition scheme in our JSBACH model 
version is only dependent on 15-day mean of air temperature and precipitation, which leads to 
an absence of permafrost carbon in this model version.  
This piece of discussion will be completed in the revised ms to clarify better out statement of 
L121.  
 
Line 133: Perhaps the work by Cresto-Aleina et al. (2013, 2016) on microtopography effects 
on surface water and methane emission dynamics could be mentioned here too. 
OK, we will add this citation and process as suggested. 
 
Line 500-501: Only mineral soils are considered for the methane modelling? How common 
are organic soil in the study area? I would assume that at least top-soils in the floodplain 
would be organic-rich. How would “considering” organic soils change the results? 
The lacking representation of organic soils is a shortcoming JSBACH has in common with 
many other land surface models. The authors are only aware of two peatland-enabled versions 
of the LPJ (Lund-Potsdam-Jena) model in the published literature. In addition, a small 
number of further modelling studies have been published, where organic layers were 



considered, though mainly for their thermal properties (e.g. Ekici et al., 2014, cited in 
discussion ms). This lacking representation is mainly due to the difficulties of coupling sub-
gridscale hydrology and carbon cycle in a holistic way. The reviewer is right that organic 
soils are common in the study area. From measurements in the Chersky floodplain reported in 
Kwon et al., 2016, the soil layer has a top organic peat layer about 15-25 cm thick on top of 
alluvial material composed of silty clay. In the model configuration, only mineral soils are 
considered and indeed the organic carbon pools might be depressed in contrast to the organic 
carbon in a peat layer. This was discussed earlier above in this response.  
 
Line 577-579: The authors may consider supporting this statement with information on 
the exact magnitude of interannual variability. 
We calculated the magnitude of the interannual variability of the fluxes from eddy covariance 
and the model by comparing the standard deviation of the monthly values from 2014 to those 
in 2015. We summarize these results in the figure below. 
 

 
 
The statement in the discussion ms is now supported by showing that largest interannual 
variability in the model grid cell A takes place in May and July with 7.9 and 5.5 mg CH4 m-2 
d-1 when compared the standard deviations from the monthly fluxes between 2014 and 2015, 
while for grid cell B, the largest variability between the two years took place in June and July 
(10.9 and 5.6 mg CH4 m-2 d-1, respectively). Still, the largest interannual variability was 
observed in June for the Eddy covariance data with 12.6 mg CH4 m-2 d-1 difference in their 
monthly standard deviation between both years. 
For practical reasons, we will complete the lines mentioned by the reviewer with the 
quantities obtained, and we will not show the figure as well. 
 
Line 589-592: What is the uncertainty in the eddy covariance flux measurements? 
Could the authors quantify uncertainties due to random errors, gap-filling, u*-threshold, and 
footprint heterogeneity? An uncertainty quantification of eddy covariance fluxes would 
further strengthen the model-observation comparison. 
The uncertainty analysis for the eddy-covariance flux data consists of random and systematic 
errors and is assessed based on well-established concepts (Aubinet et al., 2012).  
Random errors linked to the turbulent sampling error and instrument error are given as 
standard output of the flux processing software TK3 (Mauder and Foken, 2015) for each 30 
min flux value. Footprint uncertainties are not quantified, since there are no major transitions 
in biome types within the core areas of the flux footprints. Random errors are combined and 
considered as independent variables.  
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Systematic errors can occur due to unmet assumptions and methodological challenges, 
instrument calibration and data processing. Instruments are calibrated in regular intervals, and 
in comparison to a second eddy-covariance tower close by (~ 600 m) no systematic offset in 
the frequency distributions of wind speed, sonic temperature, and methane mixing ratios 
between towers was observed. The standardized software TK3 (Mauder and Foken, 2015) 
contains all the required processing steps for the flux data processing, as well as conversions 
and corrections, and yielded good agreement in a recent comparison with EddyPro (Fratini 
and Mauder, 2014). The post-processing quality control and flagging system scheme was 
based on stationarity and a well-developed turbulence scheme proposed by Foken and 
Wichura (1996) followed by additional tests applied to flag implausible data points in the 
resulting flux time series. Data coverage of methane fluxes was 86 % during the growing 
season and 67 % during the winter (Kittler et al., 2017). 
The gap-filling method is based on a moving window that is centered in the gap and a 10-day 
window length, i.e. 5 days before and 5 days after the gap. The uncertainties were quantified 
as standard deviation for the corresponding window, similar to the gap-filling uncertainties 
for the CO2 flux via the MDS routine (Reichstein et al., 2005).  
No u*-threshold was applied to the flux dataset, since we determined the stationarity of the 
signal and integral turbulence characteristics also for nighttime conditions. This information 
facilitates identifying datasets with regular turbulent exchange also during stable 
stratification, therefore producing fewer gaps compared to a bulk exclusion of data during 
stable nighttime stratification through the u*-filter method. Random errors decrease with 
averaging and were calculated according to Rannik et al. (2016). 
Averaged over both years (2014 and 2015) the CH4 flux uncertainty based on 30 min data is 
5.1±8.8 nmol m-2 s-1 (7±12.1 mg CH4 m-2 d-1). This result is not considering gap-filling 
techniques to the quality-checked signal (bulk uncertainty). The mean value considering also 
gap-filling is: 7.4±8.3 nmol m-2 s-1 (10.2±11.5 mg CH4 m-2 d-1). 
For a fen ecosystem, it has been reported an uncertainty of 4.7±3.8 nmol m−2 s−1. This result 
considers quality-checked data without applying a gap-filling technique (Jammet et al., 2017).  
After considering monthly averaging of the gap-filling and with a quality checked signal, the 
uncertainties of the CH4 fluxes measured from EC for 2014 and 2015 are reduced to 
0.35±0.22 mg CH4 m-2 d-1. Monthly uncertainty values will be included in Figure 5 for the 
revised ms as error bars of the mean monthly values. The updated figure is presented below. 
Details on data uncertainty assessment as outlined above, will be provided in a new Appendix 
B on “Details on in-situ flux observations”. References cited in this section are listed at the 
end of this response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Line 691-711: I am not sure how this section contributes to the research questions of this 
manuscript? Perhaps the authors could mention differences in environmental characteristics 
of grid-cell A and B briefly in the manuscript and move figure 9 to the supplementary 
material? 
We will shorten this section and instead merge it with the discussion of methane fluxes, in 
this way we could move figure 9 to the supplementary material. This suggestion certainly will 
make the manuscript more focused on the main aim. Thanks for this suggestion. 
 
Line 808-810: The impact of cooler early summer temperatures on soil warming and methane 
emissions has been demonstrated recently using multi-year methane observations in a boreal 
peat landscape (see Helbig et al., in press). The authors may consider discussing their 
modelling results in relation to these observations. 
We thank the reviewer for making us aware of this new publication. We will add it in the 
revised ms and cite it accordingly. Helbig et al., 2017 shows that between years 2013 and 
2016, during May of each year the one in 2014 was colder compared to the other years. This 
finding was based on a meteorological record of an area in northwestern Canada. As a result 
of temperature shifts, soil temperatures varied and influenced the year-to-year methane 
fluxes, specially variations in spring soil temperature were influential. The findings of Helbig 
et al. are in good agreement with our model observations regarding the interannual variability 
in air and soil temperature and their influence in methane emissions. We will complete our 
model results with this nice comparison. 
 
Line 847-851: The authors may consider starting the discussion mentioning the parameters 
that actually made a difference and not with the parameters that did not change the results. It 
should be highlighted what process/parameter matters in the model. 
Thank you for this suggestion. We will re-structure the discussion based on this suggestion. 
 
 
Line 991-992: Few studies have shown that non-inundated upland areas may take up methane 
(e.g., Flessa et al., 2008). As far as I understand, such uptake is not considered in the current 
work. How could uptake in the drier areas of the model domain change simulation results? 
There are large areas in the model domain that appear to be characterized by upland 
landscapes and thus potential methane uptake (see Fig. 1). 
Indeed atmospheric CH4 uptake should not be neglected when considering a regional CH4 
budget, especially when the majority of areas are predominantly aerobic. With plot-based 
observations in dry areas of the Chersky floodplain, the CH4 emissions where negative, 
indicating uptake (average of -3 mg CH4 m-2 d-1 during summer of 2014) and this value was 
considerably smaller compared to that of the CH4 emissions measured in wet plots (on 
average 332 mg CH4 m-2 d-1 in summer 2014) (see response above for figure of results). 
Based on this result and the consideration of an inundated fraction of 20 % during summer in 
the model grid cell A (Fig. 9d in discussion manuscript), about 66.4 mg CH4 m-2 d-1 (in wet 
plots: 332 mg CH4 m-2 d-1 * 0.2 = 66.4 mg CH4 m-2 d-1) are emitted and 2.4 mg CH4 m-2 d-1 are 
loss by uptake (oxidized) (given by the dry plots results: -3 mg CH4 m-2 d-1 * 0.8 = -2.4 mg 
CH4 m-2 d-1 equivalent to 8.7 % of the total methane emissions), leading to the net CH4 
emission of 64 mg CH4 m-2 d-1 according to chamber measurements. The mean CH4 emission 
in grid cell A during June-July-August 2014 (Fig. 5a of discussion manuscript) is 48.6 mg 
CH4 m-2 d-1 in the inundated areas. The mean methane soil and plant oxidation for the same 
period of time, given by the model for grid cell A, is 0.63 mg CH4 m-2 d-1 (0.3 % of the total 
emission) which is low compared to the uptake estimation for the chamber measurements in 
dry areas. However, these are only representing oxidation processes in saturated soils, which 
are not predominant in contrast to dry soils. As mentioned before, by not considering non-
inundated areas in the modeling of methane processes, the methane uptake is ultimately 
underestimated because the conditions for methane oxidation are limited. The model can be 
further improved in the CH4 oxidation scheme, but this can only be possible after a thorough 
observation of CH4 uptake rates and their controlling factors in this area, and also as the 



hydrology scheme is also improved. More on the methane oxidation in the model is discussed 
in this response and will be also emphasized in the revised ms. 
 
Line 1134-1141: The authors may consider not to introduce a new concept (e.g., anaerobic 
microsites) at the very end of the conclusions. I would recommend to only refer here to what 
has been shown in the manuscript so far. 
OK, we will improve this section in the revised manuscript. 
 
Line 1252-1255: What would happen if the model would run with the old order of processes? 
Shouldn’t this be part of the uncertainty analysis? 
The old order of processes was presented in the paper by Kaiser et al., 2017; there, it was 
shown that the order of processes was selected based on the velocity that they physically can 
exhibit, with ebullition first and the slowest transport at last which was plant mediated 
transport due to the resistance of the plants exodermis. Observational evidences however, as 
discussed here and in the manuscript, show that in the presence of vascular plants, wetland 
annual methane emissions are mainly from the transport of gas through plants. Due to the 
structure of the model, it is not possible to run parallel processes and instead, a sequential 
flow of processes has to be computed. For this reason, the solution to improve the individual 
share of the transport processes was to re-arrange the processes by expected priority. We do 
not think this should be part of the sensitivity studies for this manuscript since this is a purely 
computational design and not due to the inherent processes in the model. 
 
Fig. 1: Why did the authors use such a large study area, if ground-based observations were 
only available for a very small fraction of the model domain? How can the model 
performance be evaluated for the other non-floodplain grid cells that appear to be 
characterized by different landscape characteristics? 
We agree with the reviewer that a smaller study area could have been shown, especially for 
the area near the grid cell where ground-based observations take place.  
Plot level model simulation have been performed in the past, particularly with a similar 
version of the model presented in this manuscript for a site in Samoylov (Kaiser et al., 2017). 
Model development for methane emissions has not only focused on the improvement in the 
mechanisms represented in the model for the production and transport of methane, but also in 
the scaling with the intention of understanding better the contribution of CH4 processes over 
larger spatial scales. Regional scales still pose a challenge but certainly models need to be 
aimed to be applied to larger scares rather than only plot level. After a plot level application, 
we improved the description of some processes in the model and aim to test it in a rather 
larger, but still, regional spatial scale.  
Thus, the intention of selecting a larger regional domain is two-fold: 1) to test and apply the 
process-based methane model in a larger than site-level domain and 2) to identify the 
heterogeneity in the methane processes linked to different soil and vegetation conditions, this 
is important since sub-grid soil heterogeneity is still not represented in the model, and is also 
particularly relevant for large-scale inundation evaluation. 
We agree with the reviewer that no observational data is available to evaluate more than one 
model grid cell, and indeed one should be careful with the interpretation of the non-floodplain 
areas of the model domain, however, our contribution here is also aimed to be used for even 
larger domains and for future predictions, so testing such model already in larger scale and 
been showing its computational capability and overall realistic performance is a step forward 
towards that aim. As more observational efforts will be done in the future, in other areas near 
the Kolyma region and Chersky floodplain for our own practical purposes, the model will be 
able to be evaluated for those other areas. Also, an intercomparison between JSBACH results 
and atmospheric inverse modeling at the regional scale is in preparation. Until then, we still 
believe in the value of our scientific contribution to evidence the applicability of a refined 
process-based methane model. 
 
 



Fig. 6: Why do the authors compare the mean grid-cell soil temperature profile to measured 
wet and dry soil temperature profiles? Physical soil properties differ drastically between wet 
and dry soils and consequently strongly determine soil temperature dynamics (see end of 
discussion). Wouldn’t it be therefore necessary to at least model soil temperature dynamics of 
the inundated and non-inundated land surface separately? 
We present these data in Fig. 6 to show the existing model physical state that was used for the 
calculation of methane emissions in the model. We agree with the reviewer that ideally, the 
model should be able to produce results separately for the dry and for the wet soil areas. 
However and unfortunately, this is not possible with the current model configuration and this 
is due to the basic model structure of JSBACH. Each model grid cell is subdivided into tiles 
that only serve to describe different vegetation types, however the soil properties remain the 
same for the entire grid cell and average soil state variables are considered. Thus, the soil 
temperature dynamics actually represent the entire grid cell and these are independent of the 
TOPMODEL interactions, i.e. inundated and non-inundated areas. This is obviously a 
shortcoming in this version which was presented in the discussion ms and which is true for 
many other land surface models. In order to represent sub-grid heterogeneity of soil properties 
the model configuration would need to be completely restructured which we hope can be 
done in the near future with the new developments of the JSABCH 4.0. 
 
 
Fig. 7: Methane emissions increase considerably in the model at sub-zero soil temperatures. 
In contrast, measured methane emissions appear to be quite insensitive to soil temperature 
below 0_C. The authors mention this mismatch in lines 655-659. Perhaps the authors can 
discuss this mismatch between temperature-emission responses in more detail. How is it 
possible that such cold simulated soil temperatures result in emissions of > 30 mg CH4 m-2 
day-1? 
We agree with the reviewer that wintertime processes are still not well captured with our 
current model configuration. This goes down basically to the soil moisture that had to be 
artificially modified to allow the accumulation of water at the soil surface according to the 
topographic profile. The results presented in Fig. 7 show that, the high model methane 
emissions mentioned by the reviewer, take place mostly during October and May (grey circles 
and triangles for grid cells A and B, respectively) and this reflect the gradual transition of the 
emissions as the soil starts to freeze towards December and also as it starts to melt before 
summer. Comparing with the observations, this result seems implausible, however, we think 
is not also impossible to happen. In the work of Zona et al. (2016), the authors demonstrated 
the emissions of methane during the zero curtain period. In their Figure 3, panel B, high 
methane emissions take place still at subzero temperatures (on average 7.8 mg CH4 m-2 d-1 at -
5 degC) between September and December in 2014, while in panel A, the methane fluxes 
behave more similarly to our observations in the Chersky floodplain (barely changing < 0 
degC). Still the magnitude of the observed emissions is not as large as what we observe with 
JSBACH and here the model parameters and schemes might play the role. The zero curtain 
period presented in Zona et al. reflects the release of CH4 still in autumn, due to the 
production of CH4 in sub-soil warm layers. To investigate if the results of our model reflect 
somehow this process as well, still other schemes in the model must be revisited and 
improved such as: Q10 and water impact in carbon decomposition, and processes such as soil 
freezing under moisture limitation and thermal soil response.  
 
Fig. 8: Here, an uncertainty estimate for the measured cumulative methane emissions would 
help interpreting the comparison between simulated and measured fluxes.  
In order to include uncertainty estimates to the cumulative methane emissions presented in 
Fig. 8, we calculated the monthly cumulative fluxes in panel e and added the error bars as 
standard deviation of the monthly cumulative fluxes. Despite our discussion regarding the 
total cumulative fluxes when comparing the eddy covariance record to the model grid cells 
results, we observe that the uncertainty in the monthly fluxes is larger in all of the data sets 
during October 2014 and generally decreases toward April 2015. The uncertainty ranges are 



also generally larger in the eddy covariance data and this is due to the high intrinsic signal 
daily variability.  
We updated this figure in the revised ms and discussed the uncertainty values. The new figure 
is: 

 
 
 
Fig. 11: I am not sure how this figure contributes to the research questions. The seasonality of 
different methane emission pathways is already shown in Fig. 10. How does a representation 
of the spatial distribution of the methane emissions add to the manuscript? 
We still think that showing the total model domain methane emissions from the different 
pathways evidence the skill of the model for its regional application. In Fig. 10, only grid 
cells A and B are shown. Furthermore, by following the suggestion of the reviewer of moving 
Fig. 10 to supplementary material, we still would like to keep Fig. 11 as part of the main ms. 
Technical comments 
Line 149: Remove “done”. 
OK 
Line 150: Remove “are”. 
OK 
Line 196: Please define what “hospitable and inhospitable” land means in this context. 
We have completed this paragraph by adding the following lines: “A prescribed fraction of 
each grid cell is used to discriminate between land hospitable and inhospitable to vegetation. 
In JSBACH, each grid cell has a designated fraction where vegetation cover types across tiles 
can be assigned, hence is the fraction hospitable to vegetation. The remaining fraction of the 
grid cell is then associated to a land cover type that represents areas where vegetation does 
not grow, such as rocky surfaces and deserts; hence it is considered inhospitable to vegetation 
(Reick et al., 2013). 
 
Line 534: What do the authors mean with “visually”? They state in the previous sentence that 
differences are not statistically significant. 
We refer here to the time shift in the mean methane emissions signal when the sensitivity 
experiments are compared. However, indeed the statistical analysis showed that there is no 
significant difference between the results of the sensitivity tests for the individual and total 
emissions. We rephrased this sentence to avoid confusion, it now reads: “A time shift is seen 
however, in the CH4 emissions from mid-October until mid-November (Fig. 3, column 4 of 
row e), with the larger emissions through snow taking place earlier if hsnow is thinner.  
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Nevertheless, this temporal shift in the CH4 emissions through the snow is not observed in the 
total CH4 emissions.” 
 
Fig. 3: Please clarify what the inset figures show. 
Thank you for pointing this out. Now we added the following sentence to the caption: “The 
inset figures in some of the panels are zooms to periods of time where larger difference 
between signals is depicted.“ 
 
References cited in this response that are not included in the original discussion 
manuscript: 
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Appendix B: Details on in-situ flux observation program 

Eddy-covariance flux data uncertainty assessment 

Following well-established procedures in literature (Aubinet et al., 2012), our 
uncertainty analysis for the eddy-covariance flux data has been split up into random 
and systematic errors. The major sources for random errors, associated with the 
turbulent sampling and instrument issues, have been quantified for each 30 min flux 
value through the flux processing software TK3 (Mauder and Foken, 2015). Errors 
related to footprint uncertainties were not quantified, since there are no major 
transitions in biome types within the core areas of the flux footprints.  

Systematic errors can be introduced by unmet theoretical assumptions and 
methodological challenges, as well as by instrument calibration and data processing 
issues. In the context of the Chersky observations, instruments were maintained and 
calibrated in regular intervals, therefore minimizing this potential error component. 
Moreover, data intercomparisons with a second eddy-covariance tower close by (~ 
600 m) yielded no systematic offset in the frequency distributions of wind speed, 
sonic temperature, and methane mixing ratios between towers. Regarding flux data 
processing, the TK3 software package contains all the required processing steps, 
conversions and corrections for the flux data processing, and yielded good agreement 
in a recent comparison with EddyPro (Fratini and Mauder, 2014). To avoid 
methodological issues that may bias flux data results, we employed a rigid post-
processing quality control and flagging system scheme, with the well-established 
analyses for stationarity and well-developed turbulence originally proposed by Foken 
and Wichura (1996) at its core, supplemented by additional tests (absolute range and 
spikes) to flag implausible data points in the resulting flux time series. Based on the 
quality assessment and control tools outlined above, we excluded systematic errors 
from the uncertainty quantification of flux data that were assigned a high to medium 
data quality (QF 1-6 based on the scheme proposed by Foken et al., 2005; 2012) and 
subsequently used for assessing long-term CH4 flux budgets.  
No u*-threshold was applied to the flux dataset, since we determined stationarity of 
the signal and integral turbulence characteristics also for nighttime conditions. This 
information facilitates identifying datasets with regular turbulent exchange also 
during stable stratification, therefore producing fewer gaps compared to a bulk 
exclusion of data during stable nighttime stratification through the u*-filter method. 
After filtering out low-quality fluxes, the data coverage of methane fluxes was 86 % 
during the growing season and 67 % during the winter from the original full 30 min 
flux data set (Kittler et al., 2017). To produce a continuous flux record for 
quantification of long-term CH4 budgets, we filled the remaining gaps by averaging 
existing flux data within a moving window of 10-day length centered on the gap. 
Uncertainties for gap-filled values were quantified as standard deviation within the 
corresponding window, similar to the definition of gapfilling uncertainties for the CO2 
flux via the well-established marginal distribution sampling routine by Reichstein et 
al. (2005).  



To produce aggregated uncertainty values for longer time periods, we applied the 
procedures suggested by Rannik et al. (2016). All random errors were combined by 
considering them as independent variables, and normally decrease with the length of 
the averaging period. Averaged over both data years used within the context of this 
study (2014 and 2015), the CH4 flux uncertainty based on the 30 min data is 7.4±8.3 
nmol m-2 s-1, a result comparable to 4.7±3.8 nmol m-2 s-1 reported for a fen ecosystem 
by Jammet et al. (2017).  

Source weight function of the eddy-covariance flux data 

We conducted a source weight analysis, also called footprint analysis, to determine 
the fractional contribution of different land cover types within the field of view of the 
eddy-covariance flux tower. Source weight functions for each 30min flux 
measurement were computed based on the Lagrangian Stochastic footprint model by 
Rannik et al. (2003). Footprints were accumulated, analyzed and interpreted using an 
approach presented by Göckede et al. (2006; 2008). We projected these footprints 
onto a WorldView2 land cover map at 2 m horizontal resolution (see also Figure A1). 
In the context of the presented study, we aggregated the original 22 land cover classes 
into 9 classes to concentrate on the dominant elements of the vegetation community 
structure (see also Table A1).  
 

 

 

 

 

 

 

Figure A1: Accumulated source weight 
function for the control tower within the 
Chersky study site, based on data from the 
growing season (mid June – mid September) 
in 2014. Solid white isolines indicate the 80, 60, 
40, and 20% levels, while the dashed line gives 
the 10% level. Background colors give 
aggregated land cover classes based on 
WorldView2 data. 

 
Since the tower is situated on a slightly elevated patch of tundra, tussocks and shrubs 
featuring various levels of wetness (red and orange colors in Fig. A1) dominate the 
immediate surroundings. Even though inundated parts of the study area, in this case 
identified by the prevalence of the cotton grass Eriophorum angustifolium (blue-ish 
colors in Fig. A1), are dominating the area encircled by the 10% isoline that is used 
here to mark the boundary of the cumulative footprint area, they are mostly present in 
the outer reaches, therefore combining just about 26% of the total flux signal sampled 
by the eddy system. Another 31% is contributed by wet to moist tussock tundra with 
some shrubs. Overall coverage fractions within the major wetness categories (see also 
Table A1) remain approximately constant between tower footprint and two larger 
regions covered by the same WorldView dataset, indicating that this composition of 
wetness levels is typical for the Kolyma floodplain ecosystems analyzed within the 
context of this study. 
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Table A1: Fractional coverage of aggregated WorldView land cover classes within the control 
tower footprint of the Chersky study site. Background color coding was used to categorize the 
classes into wetness levels. The rightmost two columns give fractional coverage of these classes 
within the area immediately surrounding the towers (1.2 x 1.2 km) and within the entire 
WorldView scene analyzed (5 x 5 km). 

 
 

Flux chamber observations 
The Chersky study site features two transects of 10 permanently installed PVC collars 
for flux chamber measurements. With distances of approximately 25 m between 
individual microsites, both transects cover a distance of ~225 m within the drained 
and control sections, of this permafrost site. Site locations were selected quasi-
randomly to reflect the dominant microsite characteristics (e.g. vegetation 
composition, wetness level) found at each of the target locations. With a chamber 
footprint of 60 cm x 60 cm, this technique allowed studying microsites with rather 
homogeneous environmental conditions, as compared to the eddy-covariance fluxes 
with often heterogeneous footprint areas. Details on the chamber program, overall 
methane flux rates observed, and functional relationships with e.g. soil temperature, 
vegetation and wetness levels, are provided by Kwon et al. (2016; 2017). 

 
 

 

 

 

 

 

 

Figure A2: Daily methane flux rates 
aggregated from flux chamber 
measurements within the growing season 
of 2014. Measurements are separated into 
drained (1 wet microsite, 9 dry microsites) 
and control (8 wet microsites, 2 dry 
microsites) transects.  

Land	cover	class category
tower	

footprint 1.2x1.2km		 5x5km
water open	water 0.001 0.035 0.134
cotton	grass,	wet	continuously 0.111 0.043 0.053
cotton	grass,	partially	dry 0.067 0.153 0.147
cotton	grass	with	tussocks 0.081 0.063 0.038
tussocks	with	some	shrubs wet	to	moist 0.312 0.418 0.280
tussocks	with	higher	shrubs 0.388 0.165 0.182
higher	shrubs,	with	tussocks 0.031 0.097 0.115
trees 0.001 0.006 0.017
undefined 0.008 0.020 0.035

wetland

moist	to	dry



 
Figure A2 displays average flux rates for wet and dry microsites observed within the 
drained and control transects during sampling campaigns in summer 2014. These flux 
chamber results clearly demonstrate that methane release rates were virtually zero in 
the absence of standing water. At some of the dry microsites (results not shown), even 
negative CH4 flux rates were observed, indicating the oxidation of methane under 
highly aerobic conditions within these predominantly wet tussock tundra ecosystems 
in Northeastern Siberia. 
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