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Point-by-point responses to the reviewer’s comments (reviewer’s comments in blue and 

our reply in black) 

 

Anonymous Referee #1 

We appreciate the many thoughtful comments from the reviewer on our manuscript. 

Addressing all of the comments, we carefully revised the manuscript.  

To our knowledge, this is the first report to significantly quantify the Arctic CO2 sink, 

which is the major breakthrough that warrants publication in Biogeoscicences. Both 

reviewers’ comment is that the manuscript is technical and needs more scientific 

interpretation of the results. We added more comprehensive analyses and descriptions in 

the revised manuscript in terms of data handling (see response to comment #2), the 

improvement of pCO2 estimate (see response to comment #1), the methodology of the 

estimate (see response to comment #3), the robustness check of the result (see response 

to comment #3), the interannual variations in area-mean CO2 flux (see response to 

comment #4), and others. We also added the implication of the effect of Re, and the 

suggestions from our results (please see response to the reviewer #2). We are now 

confident that the revised manuscript has been much improved and hopefully acceptable 

for publication. Point-by-point responses to the reviewer’s comments are given below. 

 

General comments: The authors of this manuscript try to estimate the surface ocean 

partial pressure of CO2 (pCO2) distribution in the Arctic Ocean using their technique of 

Self-Organizing Map (SOM) and evaluated the air-sea CO2 flux. Basically, major 

theme of the manuscript is the improvement of the pCO2 estimate published by the 

authors (2016, Polar Science) in the same region by adding chlorophyll a concentration 

(Chl-a). I am wondering why the authors didn’t plan to adopt Chl-a concentration in the 

previous article since the Chl-a product had already existed before. Moreover, it seems 

to me that the scientific insights are not sufficient on the manuscript since the estimated 

annual net air-sea CO2 exchange in this study is quite same with that of Yasunaka et al 

(2016) and it only reduced the uncertainty. At this stage, therefore, I have not any 

confidence that the manuscript is suitable for publication in Biogeosciences. I suggest 

that more careful analyses and descriptions are needed at least before re-submission of 

the manuscript for review. 

In our first paper we did not include Chlorophyll a concentration (Chl-a) as the available 

products (e.g. NASA’s OceanColor dataset) have several shortcomings. For example, 

there were a lot of missing values and large uncertainties in the Arctic area because of 

sea ice, low angle of sunlight, and cloud cover. In addition standard Chl-a products are 
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also prone to error due to the co-occurrence of high colored dissolved organic matter 

(CDOM) and total suspended matter (TSM) concentrations in the Arctic shelf seas (e.g., 

Matuoka et al., 2007; Lewis et al., 2016). In this submission we now deal with this by 

carefully reviewing the algorithms for extracting Chl-a from satellite remote sensing 

reflectance (Rrs) with the aid of an expert for the satellite color image (Eko Siswanto as 

the second author). As a result, three algorithms were chosen for our analysis (Section 

3.1). We also carefully interpolated Chl-a so as to fit with the original data (Section 3.2). 

Finally, we carried out a thorough examination of the uncertainty of the obtained Chl-a 

values (Section 4.1). We believe that Chl-a data used in this study has much less 

uncertainty than standard Chl-a data for the following reasons: 1) we used local Arctic 

Chl-a algorithms; and 2) pixels with invalid Chl-a data due to high CDOM and TSM 

were discarded (before interpolation); thus 3) interpolation conducted here was only 

based on valid Chl-a data. Reducing uncertainty of input data (e.g., Chl-a in this study) 

is a prerequisite when dealing with quantitative analysis related to biogeochemical 

processes. We rephrased the abstract and the introduction to emphasize these points 

(line 35-37; line 95-103). 

We consider the reduction of the uncertainty to be a substantial improvement over 

earlier estimates. To our knowledge, this is the first report to significantly quantify the 

Arctic CO2 sink and that is the major breakthrough that warrants publication in 

Biogeoscicences. Reducing the uncertainty of this quantification is a key contribution to 

the larger work of constraining the global carbon budget (e.g., Le Quere et al., 2016). 

Because the Arctic is an important CO2 sink, quantifying its fluxes and minimizing the 

uncertainty is of great scientific value. We added these statements in the revised 

manuscript to clarify the added value of our study (line 617-620). We additionally note 

that the pCO2 data set used in the present study was significantly enhanced compared to 

that used in previous study. 

We will add more comprehensive analyses and descriptions in the revised manuscript 

according to, and based on, the reviewers’ comments in terms of data handling, the 

improvement of the pCO2 estimate, the methodology of the assessment, the robustness 

check of the result, the interannual variations in area-mean CO2 flux, and others (see 

below).  

 

Major comments: 1) Although the authors mentioned that the addition of Chl-a as a 

parameter in the SOM process enabled them to improve the estimate of pCO2 via better 

representation of its decline in spring (I think the authors mentioned about the lower 

panels of the figure 11), it seems that the pCO2 variation estimated with Chl-a in the 
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observed regions was similar to that without Chl-a especially from spring to fall (upper 

panels of the figure 11). I suggest the authors show further evidences that pCO2 

estimate with Chl-a improved the pCO2 variation in spring better (for example, monthly 

RMSD variations with Chl-a/without Chl-a, etc). 

We present the difference in bias and RMSD for pCO2 estimated with and without 

Chl-a; Figure A shows the time-evolution and Figure B shows the spatial distribution. 

pCO2 estimates in winter tend to be low and those in summer tend to be high, and the 

systematic biases and RMSDs are suppressed in the estimates with Chl-a in both 

seasons (Figure A). Biases and RMSDs are reduced in the Canada basin, the western 

Bering Sea, and the boundary region between the Norwegian Sea and the subpolar 

North Atlantic (Figure B). It means the strong east–west contrast in the Bering Sea and 

the contrast between the Canada Basin and the Chukchi Sea (see Figure 4) were better 

represented in the estimates with Chl-a. That is, including Chl-a when estimating pCO2 

yields not only better representation of the pCO2 decline in spring to summer season 

but also better representation of the contrast in time and in space. We added these 

results to the revised manuscript (line 577-596; Fig. S1; Fig. S2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A: (a) pCO2 bias (estimate – observation) averaged over the entire analysis area 

[μatm], for the estimates with Chl-a (green) and without Chl-a (black). Difference in (b) 

absolute bias and (c) RMSD for pCO2 estimated with and without Chl-a averaged over 

(b) 

[μatm] (a) 

(c) 
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the entire analysis area [μatm]. Negative value means improvement of the estimates in b 

and c. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B: Difference in (a) absolute bias and (b) RMSD for pCO2 estimated with and 

without Chl-a averaged over the whole analysis period [μatm]. Negative value means 

improvement of the estimates.  

 

2) I am not comfortable with the author’s data handlings. First, the combination data of 

“non-public” JAMSTEC pCO2 data with “public” SOCAT and LDEO data seems to be 

bit unfair since no one can’t get the same results even if they use the public datasets. To 

guarantee the fairness, the authors should mention that the JAMSTEC data used in this 

study would be submitted to SOCAT and/or LDEO database soon. Second, I could not 

understand why the authors executed the data selection described in Lines 220-225 

while the SOCAT and LDEO datasets had been already quality-controlled by 

researchers. I agree that the data selection may be needed for non-quality-controlled 

data such as nutrient recorded in the World Ocean Database, but I think it is 

unnecessary in pCO2. I am seriously concerned that the data selection in this work (and 

in previous work) might affect the apparent uncertainty in the pCO2 estimate and the 

evaluated RMSD was underestimated. Third, the authors used DIC data from the upper 

30 m if there were no samples from above 10 m. I think the use of the data close to 30 

m needs to be more careful treatment especially in summer, when the mixed layer depth 

is likely shallower than the sampling depth. I suggest that a comparison between 

observed pCO2 or calculated pCO2 from DIC samples shallower than 10 m and 

calculated pCO2 deeper than 10 m would be needed for examining the availability. 

(b)(a) 
[μatm] [μatm]
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JAMSTEC pCO2 data are publicly available through the JAMSTEC web site 

(http://www.godac.jamstec.go.jp/darwin/e). We have additionally encouraged the PIs of 

these data to submit them to the SOCAT and LDEO database.  

As the reviewer mentioned, pCO2 data in the SOCAT and LDEO database have been 

quality-controlled. These may well be realistic values, but are often extreme values 

reflecting the small spatial scale and/or short time scale variations that can be quite 

different from the large-scale variability of interest in this study. Therefore, to limit the 

possibility of biasing the results with small scale and short-term variability, we decided 

to conduct the additional quality control to exclude outliers not representative of the 

basin-wide distribution. We rephrased this description in the revised manuscript (line 

255-259; line 269-271). 

Above 10m depth there are 1795 data, in the 10-20m range there are 296, and in the 

20-30m range 75. We checked the difference between directly measured pCO2 and 

calculated pCO2 using the data at cruises where both underway pCO2 and bottle 

DIC/TA samples are available (10% of the bottle samples, i.e., 245 pairs). Measured and 

calculated pCO2 values are 289 ± 11 μatm and 299 ± 41 μatm, respectively. The mean 

values are slightly lower for measured pCO2 values than for calculated ones, but the 

difference is smaller than the standard deviation and the uncertainties of the calculation 

(the latter of which is 14 μatm; Lueker et al., 2000). The difference between measured 

and calculated pCO2 is not dependent on the depth where the TA/DIC samples were 

obtained – note that the observed pCO2 values are generally from 4–6m. Calculated 

pCO2 values above 10m are 288 ± 11 μatm and 298 ± 43 μatm, and those in the 10–

30m range are 294 ± 9 μatm and 302 ± 36μatm. We added these results to the revised 

manuscript (line 137-139; line 144-155). 

 

3) I found both the manuscript and the article of Yasunaka et al. (2016) adopted 

atmospheric xCO2 as one of the training parameters to reconstruct oceanic pCO2 trend. 

Since Yasunaka et al. (2016) seemed to adopt xCO2 to estimate pCO2 in the SOM 

process for the first time, I also read the article. Consequently, I was bit disappointed 

there was not any descriptions of effectivity and validation by adopting xCO2 and found 

only the sentence in the manuscript that “We believe that this (adopting xCO2) better 

represents the real variability and trends of pCO2w.”, which is not reasonable 

explanation. Moreover, based on my thoughts, SOM technique may be rather unsuitable 

to reconstruct pCO2 trend while other techniques such as feed-forward neural network 

are suitable for it. The reason is that each neuron in the SOM has only one pCO2 value. 

As the authors know, neurons are classified in accordance with the variations of 
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respective parameters (X, Y, SST, Salinity, Chl-a, SIC, xCO2 in this study) at the 

training process and most of them are labelled by the respective pCO2 values at the 

labeling process. For example, when the temporal pCO2 distribution is weighted toward 

later period like in this study, many of neurons tend to be labelled by the pCO2 values 

which were observed in the later period. In that case, though the estimated spatial-mean 

temporal pCO2 variations in the region where the observations had been made showed 

good agreement with measurements as shown in figures 4 and 5, it may be seen that the 

pCO2 value observed in the later period is likely assigned to the grid at the former 

period where the pCO2 measurements have not been made. To clear my doubts, I would 

suggest that the authors show the temporal variations for 18 years in the respective 

regions including the region where a few/no observations have not been made in the 

manuscript and discuss the trends. 

According to the inter-comparison study by Rodenbeck et al. (2015), the pCO2 trends 

estimated by feed-forward networks and by SOM agreed quite well. To represent the 

anthropogenic pCO2 increase, several previous studies have assumed a homogeneous 

and monotonic increase in the whole analysis area (Nakaoka et al. 2013; Zheng et al. 

2014). They subtracted the trend before the estimate and recombined it after the 

estimate. But a monotonic increase has not been assured. Actually, the spatial pattern of 

the pCO2 trend (see Figure Ca) is far from homogeneous. Instead of that, we included 

atmospheric xCO2 as a training parameter following Landschutzer et al. (2013, 2014). 

We added text about these points in the revised manuscript (line 285-293). 

As the reviewer mentioned, the pCO2 values observed in the latter period may be used 

for the pCO2 estimate in the former period. To validate our estimated pCO2 values for 

periods and regions without any observed data, we repeated the mapping experiments 

after systematically excluding some of the observed pCO2 data when labeling the 

neurons; four experiments were carried out, by excluding data (1) for 1997–2004, (2) 

for January to April, (3) from north of 80°N, and (4) from the Laptev Sea (90°E – 

150°E), where there are only a few pCO2 observations. We compared the pCO2 

estimates obtained in each experiment with the excluded observations and found that 

the pCO2 estimates reproduced the general features of the observed spatial distribution 

and temporal variation. They were also similar to the pCO2 estimates obtained by using 

all observations, although RMSDs between the estimates and the excluded observations 

are 1.8 times the RMSDs of the estimates based on all observations as mentioned in 

Section 4.2. It means that our estimated pCO2 would reproduce the general features 

both in space and time even when and where there are no observed data. We rephrased 

the relevant text in the revised manuscript (line 407-422). 
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According to the reviewer’s suggestion, we examined the correspondence between 

pCO2 trend and the year when the first observation was made in each grid point (Figure 

C). Spatial distribution of pCO2 trend did not correspond to the year when the first 

observation was made. We also checked the pCO2 interannual variation and the year of 

observed in the several regions. Here we show them in 73–77°N 175°E –175°W, 73–

77°N 160–150°W, and 73–77°N 135–125°W where the trend and the observed year are 

different separating only several degrees in longitude (Figure D). The pCO2 trends 

increase from west to east, while the observational data are from 2004 in the west, from 

1999 in the middle, and from 2011 in the east. It shows again the amplitudes of trend do 

not correspond the year when the first observation was conducted. We added these 

descriptions in the revised manuscript (line 562-568; Supplement).  

 

 

 

 

 

 

 

 

 

 

 

Figure C: (a) pCO2 trend. Darker hatched areas represent values in grids where trend 

values were less than the uncertainty. (b) Year when the first observation was retained. 
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Figure D: The pCO2 interannual variation and the year of observed in (a) 73–77°N 

175°E –175°W, (b) 73–77°N 160–150°W, and (c) 73–77°N 135–125°W. 

 

4) I am wondering why the authors didn’t examine the temporal variation of air-sea 

CO2 exchange and its relevant factors in the whole of the Arctic Ocean. I think those 

might make the manuscript more suggestive one to understand whether the oceanic 

CO2 uptake will increase or decrease in the region as global warming progresses, even 

if the estimated budget has large uncertainty.  

We agree the reviewer’s comment, and added a figure of the CO2 flux in several 

regions of the Arctic Ocean and some text explaining that in the revised manuscript 

(line 539-555; Fig. 11). Figure E shows interannual variation of CO2 flux and related 

variables in several regions. In the Greenland/Norwegian Sea, interannual variation of 

the CO2 flux negatively correlates with the wind speed (CO2 influx to the ocean is large 

when the wind is strong; correlation coefficient R = –0.41), while pCO2 and sea ice 

change is small. In the Barents Sea, interannual variation of CO2 flux negatively 

correlates with the sea ice concentration (R = –0.50), while correlation with wind speed 

is not significant and pCO2 change is small. In the Chukchi Sea, CO2 influx to ocean 

is decreasing with the increasing pCO2 (R = 0.87); high pCO2w (>500 μatm) has been 

sometimes observed in the Chukchi Sea after 2010 (Hauri et al. 2013). The interannual 

variability of the CO2 flux averaged over the Arctic Ocean is small because the 

increasing pCO2 seems to be compensated by the effect of sea ice retreat (R = –0.70). 
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Figure E: Time evolution of the air-sea CO2 flux and its driving factors in (a) the 

Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea and (d) the Arctic 

Ocean.  

 

Specific comments: Lines 99-103: While SOCAT publishes the data as fugacity of CO2 

(fCO2), LDEO opens the data as pCO2. Did the authors treat the fCO2 and pCO2 data 

as they are (without any correction)? 

We converted SOCAT fCO2 values to pCO2 values, and then combined these with the 

LDEO pCO2 values. This was clarified in the revised manuscript (line 116-123). 

 

Line 324: The description of figure 4c is presented after those of figures 5a and 5b. It 

would be better to fix this. 

We agree. We combined Figures 4 and 5 of the previous manuscript, and change the 

order (Figs. 4 and 5 of the revised manuscript). 

 

Line 382: The description of figure 7 is presented before those of figures 6c and 6d. It 

would be better to fix this. 

We agree. We extracted Figures 6c and 6d of the previous manuscript into a separate 

figure, and put them after Figure 7 (Fig. 8 of the revised manuscript). 

 

Line 387: The description of figure 6d is presented before that of figures 6c. It should 

fix it. 

The reviewer is right. We changed the order (Fig. 8 of the revised manuscript). 

 

Lines 483-484: Is there any plan to open the pCO2 data in the website? 

We plan to make public the pCO2 data and the interpolated Chl-a data by this study on 

the same website. We added the information to the revised manuscript (line 667-669).  

 

Minor comment: Line 256: Telzewski et al. should change to Telszewski et al. 

The reviewer is right. We corrected this (line 308). 

 

 

Anonymous Referee #2 

Reviewer comment: The authors present an improved version of the Yasunaka et al. 

(2016) estimate of the uptake of CO2 by the Arctic Ocean. The paper is very clearly 

written and the detail in quantifying uncertainty is impressive. The principal limitation 
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of the manuscript is that it is very technical, and will likely need to touch more closely 

and directly on broader scientific questions to be recommended for publication in 

Biogeosciences. In my opinion, this could be accomplished with minor revisions, 

consisting of adding to the Conclusions with a few paragraphs and emphasizing the 

broader implications and relevance for identifying key processes and/or optimization 

observing system design. 

We appreciate the positive evaluation and helpful comments from the reviewer. 

Referring to the comments, we carefully revised the manuscript. Both reviewers’ 

comment is that the manuscript is technical and needs more scientific interpretation of 

the results. We added descriptions in the revised manuscript about the improvement of 

our pCO2 estimate (see response to the first minor point), the interannual variations in 

area-mean CO2 flux (see response to the first main point), the effect of Re (see response 

to the second minor point), and the scientific implications of our results (see response to 

the first and second main points). We also added the analyses and descriptions about 

data handling, the improvement of pCO2 estimate by the Chl-a, the methodology of the 

assessment, and the robustness check of the result (please see response to the reviewer 

#1). Point-by-point responses to the reviewer’s comments are given below. 

 

Main Points: Although the authors have done a very good job of quantifying uncertainty 

in pCO2 and air-sea CO2 fluxes, the paper would benefit from commentary on the 

implications for optimization of the observing network. The other missing component 

of the study is a mechanistic interpretation of the main results, perhaps as part of the 

Conclusions. In the Introduction, there is a broad overview of the mechanisms that 

might impact trends in carbon fluxes over the Arctic, but it was surprising that these 

points did not get addressed in the Conclusions. 

There are still too few observations in the Kara Sea, the Laptev Sea, the East Siberian 

Sea and the Eurasian Basin to determine seasonal and interannual variations with great 

reliance there. To improve our understanding of the variability in air–sea CO2 fluxes in 

the Arctic, it is therefore of critical importance to obtain additional ocean CO2 

measurements to fill these data gaps, and that these measurements are made publically 

available. Data synthesis activities like SOCAT must be encouraged. We added these 

points to the revised manuscript (line 623-630). 

The reviewer makes a good point, and we added a figure and additional description of 

the interannual variations in area-mean CO2 flux in the revised manuscript (line 

539-555; Fig. 11). In the Greenland/Norwegian Sea, interannual variation of the CO2 

flux negatively correlates with the wind speed (CO2 influx to the ocean is large when 
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the wind is strong), while pCO2 and sea ice change are small. In the Barents Sea, 

interannual variation of the CO2 flux negatively correlates with the sea ice 

concentration, while correlation with wind speed is not significant and pCO2 change is 

small. In the Chukchi Sea, CO2 influx to the ocean is decreasing with the increasing 

pCO2; high pCO2w (>500 μatm) has been observed in the Chukchi Sea after 2010 

(Hauri et al. 2013). Interannual variability of CO2 flux averaged over the entire Arctic 

Ocean is small because increasing pCO2 compensates for the sea ice retreat. 

 

Given the availability of forward ocean biogeochemistry models that include the Arctic, 

I believe that the burden on the authors to provide at the very least an account of why 

they do not consider an Observing System Simulation Experiment (OSSE) to assess the 

skill of their method. Presumably some of the models that participate in the Global 

Carbon Project are open-access, and could be sampled with the spatial/temporal 

coordinates of the SOCAT and other pertinent data products? If the authors have 

scientific reasons for not finding the process-representation of the current generation of 

models to be up to the task, what then are the critical scales and processes that would be 

critical to represent? 

We agree that the assessment of our estimate using numerical models or their outputs 

would likely be useful. Conversely, assessment of the numerical models using our 

estimate of Arctic carbon uptake is also an interesting topic since numerical models are 

poorly validated in the Arctic due to the limited observations of biogeochemistry. 

However, such experiments need thorough insight into the numerical models, which is 

beyond the scope of this study. We hope to perform such comparisons in future studies. 

Instead, in the present study, we assessed the accuracy of our estimate by systematically 

excluding some of the observed pCO2 data when labeling the neurons (section 4.2). We 

added the descriptions in the revised manuscript (line 662-666). 

 

Minor Points: It would be good if the authors could point out whether there are 

important methodological differences between their method and others in the literature 

that use neural-network-type approaches. 

This is a nice recommendation from the reviewer and we added a description of the 

major differences in the revised manuscript (line 294-297). Instead of the normalization 

of pCO2 to the reference year, we used atmospheric xCO2 as a training parameter. To 

avoid intricately intermingled estimates in space and time in regions and seasons with 

limited CO2 observations, we added geographical position to the set of training 

parameters: X = sin(latitude) × cos(longitude) and Y = sin(latitude) × sin(longitude). On 
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the other hand, we did not use mixed layer depth because of lack of reliable data in the 

Arctic.  

 

The Revelle factor was mentioned in the Introduction, and it would be very helpful to 

know if the authors believe that this will be an important factor over the Arctic when 

considering future climate change. It would be useful to discuss this as it pertains to the 

transient signal, and whether there is evidence that it is more important here than in 

other subpolar or circumpolar regions. 

Revelle factor (Re), (pCO2 / pCO2) / (DIC / DIC), is a measure of the amount of 

CO2 which a parcel of seawater can dissolve for a given increase in pCO2. Summer 

time Arctic surface waters (70–80°N) have high Re of about 18, whereas the summer 

Irminger Sea surface waters (~64°N) in the northern North Atlantic have about 12 and a 

global ocean mean is about 10 (Takahashi, personal communication). The high Re is a 

result of the reduced salinity, which is maintained by the strong vertical density 

gradients below the low salinity surface layer reducing vertical mixing of high salinity 

deep waters. Higher Re values indicate that a given mass of seawater can absorb less 

CO2 in response to increasing atmospheric CO2. This means that the Arctic surface 

waters have small absorbing capacity for atmospheric CO2 even though surface water 

pCO2 is low. 

Re will also be of importance for the changing Arctic as it is a function of temperature 

and salinity, both which are believed to change in the future. In specific, warmer 

temperature will lead to a decrease in Re (an increase in buffering capacity) while lower 

salinity will have the opposite effect and cause an increase Re. Given the future Arctic 

Ocean is warming and freshening, the net effect is unclear but would be small. In our 

current study, we used climatological-mean salinity for the pCO2 estimate because of 

lack of reliable year-to-year salinity data. That might be one of the improvement points 

for a future study.  

Other complicating effects, such as the increasing input into the Arctic Ocean of river 

water (of higher alkalinity than river input into most other oceans), are also interesting 

topics, but not in the scope of the present study. We added these points in the 

concluding section of the revised manuscript (line 631-637). 
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Abstract 

We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas 

north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in 

the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating 

chlorophyll-a concentration (Chl-a), sea surface temperature, sea surface salinity, sea ice 

concentration, atmospheric CO2 mixing ratio, and geographical position. We applied 

new algorithms for extracting Chl-a from satellite remote sensing reflectance with close 
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examination of uncertainty of the obtained Chl-a values. The overall relationship 

between pCO2w and Chl-a was negative, whereas the relationship varied among seasons 

and regions. The addition of Chl-a as a parameter in the SOM process enabled us to 

improve the estimate of pCO2w particularly via better representation of its decline in 

spring which resulted from biologically mediated pCO2w reduction. As a result of the 

inclusion of Chl-a, the uncertainty in the CO2 flux estimate was reduced, with a net 

annual Arctic Ocean CO2 uptake of 180 ± 130 TgC y–1. Seasonal to interannual 

variation of the CO2 influx was also figured out. 

 

1. Introduction 

The Arctic Ocean and its adjacent seas (Fig. 1) generally act as a sink for atmospheric 

CO2 because of the high solubility of CO2 in their low-temperature waters, combined 

with extensive primary production during the summer season (Bates and Mathis, 2009). 

The Arctic Ocean and its adjacent seas consist of complicated subregions that include 

continental shelves, central basins, and sea-ice-covered areas. Therefore, the surface 

partial pressure of CO2 (pCO2w) distribution is not only affected by ocean heat loss and 

gain, and biological production and respiration, but also by sea-ice formation and 

melting, river discharge, and shelf–basin interactions (cf. Bates and Mathis, 2009, and 
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references therein). However, CO2 measurements are sparse in this very heterogeneous 

area (Fig. 2), and hence the existing air–sea CO2 flux estimates in the Arctic are poorly 

constrained (Bates and Mathis, 2009; Schuster et al., 2013; Yasanuka et al., 2016). 

As global warming progresses, melting of sea ice will increase the area of open water 

and enhance the potential for atmospheric CO2 uptake (e.g., Bates et al., 2006; Gao et 

al., 2012). However, other processes could suppress CO2 uptake. For example, 

increasing seawater temperatures, declining buffer capacity due to the freshening of 

Arctic surface water by increased river runoff and melting of sea-ice, and increased 

vertical mixing supplying high-CO2 water to the surface will all result in a tendency for 

reduced uptake (Bates and Mathis, 2009; Cai et al., 2010; Chierici et al., 2011; Else et 

al., 2013; Bates et al. 2014; Fransson et al., 2017). The combined effect of all these 

processes on ocean CO2 uptake has not yet been clarified for the Arctic. 

 Yasunaka et al. (2016) prepared monthly maps of air–sea CO2 fluxes from 1997 to 

2013 for the Arctic north of 60° N by applying, for the first time, a self-organizing map 

(SOM) technique to map pCO2w in the Arctic Ocean. The advantage of the SOM 

technique is its ability to empirically determine relationships among variables without 

making any a priori assumptions (about what types of regression functions are 

applicable, and for which sub-regions the same regression function can be adopted, for 
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example). The SOM technique has been shown to reproduce the distribution of pCO2w 

from unevenly distributed observations better than multiple regression methods 

(Lefèvre et al., 2005; Telszewski et al., 2009). The uncertainty of the CO2 flux estimated 

by Yasunaka et al. (2016), however, was large (±3.4–4.6 mmol m–2 d–1), and the 

estimated CO2 uptake in the Arctic Ocean was smaller than the uncertainty (180 ± 210 

TgC y–1). One possible reason for the large uncertainties is that no direct proxies for the 

effect of biological processes on pCO2w were used in that study, leading to an 

underestimation of the seasonal amplitude of pCO2w. 

Remotely sensed chlorophyll-a concentrations (Chl-a) has been used in several 

pCO2w mapping efforts as a direct proxy for the effect of primary production. For 

example Chierici et al. (2009) produced pCO2w algorithms for the subpolar North 

Atlantic during the period from May to October and found that the inclusion of Chl-a 

improved the fit substantially. Measurements in several areas of the Arctic show that 

relationships between pCO2w and Chl-a occur also in this region. They correlate 

negatively (Gao et al., 2012; Ulfsbo et al., 2014), as expected from the drawdown of 

CO2 during photosynthesis, but exceptions do occur; in coastal regions the correlation is 

positive (Mucci et al., 2010). 

Several studies have demonstrated that Chl-a in the Arctic can be estimated from 
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satellite remote sensing reflectance (Rrs) (e.g. Arrigo and Dijken, 2004; Cota et al., 

2004). Perrette et al. (2011) showed that satellite-derived Chl-a successfully captured a 

phytoplankton bloom in the ice-edge region. Changes in the seasonal cycle from a 

single peak to a double peak of Chl-a have also been detected and are likely a 

consequence of the recent sea-ice loss in the Arctic (Ardyna et al., 2014). However, the 

available products (e.g. NASA’s OceanColor dataset) in the Arctic include large 

uncertainty and many missing values because of sea ice, low angle of sun-light and 

cloud cover, and are also prone to error due to the co-occurrence of large colored 

dissolved organic matter (CDOM) and total suspended matter (TSM) concentrations 

(e.g., Matuoka et al., 2007; Lewis et al., 2016). Here we deal with these issues by using 

several Chl-a algorithms optimised for the Arctic and others, and by excluding Chl-a 

data from grid cells potentially affected by CDOM and TSM. Calculated Chl-a values 

were then interpolated Chl-a so as to fit with the original data. Using these data, we 

examined the relationship between pCO2w and Chl-a in the Arctic Ocean and its 

adjacent seas, and computed monthly air–sea CO2 flux maps for regions north of 60° N 

using a SOM technique similar to that of Yasunaka et al. (2016), and with Chl-a added 

to the SOM process. 
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2. Data 

2.1. pCO2 w measurements 

We used fugacity of CO2 (fCO2w) observations from the Surface Ocean CO2 Atlas 

version 4 (SOCATv4; Bakker et al., 2016; http://www.socat.info/; 1,983,799 data points 

from >60° N), and pCO2w observations from the Global Surface pCO2 Database Version 

2014 (LDEOv2014; Takahashi et al., 2015; 

http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/; 302,150 data points from 

>60° N). In the LDEO database, pCO2w is based on measured CO2 mixing ratio in a 

parcel of air equilibrated with sea-water sample, and computed assuming CO2 as an 

ideal gas, whereas in the SOCAT, fCO2 is obtained considering the non-ideality from 

CO2-CO2 and CO2-H2O molecular interactions. Because of ambiguities in the CO2-H2O 

interaction corrections, the SOCAT fCO2w values are converted to pCO2w values (a 

correction of <1 %), and then combined them with the LDEO pCO2w values. When data 

points were duplicated in the SOCAT and LDEO datasets, the SOCAT version was used, 

except for the data obtained from onboard the USCGC Healy as these have been 

reanalyzed by Takahashi et al. (2015). Altogether 200,409 duplicates were removed. We 

also used shipboard pCO2w data obtained during cruises of the R/V Mirai of the Japan 

Agency for Marine-Earth Science and Technology (JAMSTEC) that have not yet been 
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included in SOCATv4 or LDEOv2014 (cruises MR09_03, MR10_05, MR12_E03, and 

MR13_06; available at http://www.godac.jamstec.go.jp/darwin/e; 95,725 data points 

from >60° N). In total, we used 2,181,265 pCO2w data points, 33 % more than used by 

Yasunaka et al. (2016). 

To further improve the data coverage, especially for the ice-covered regions, we also 

used 2166 pCO2w values calculated from dissolved inorganic carbon (DIC) and total 

alkalinity (TA) data extracted from the Global Ocean Data Analysis Project version 2 

(GLODAPv2; Key et al., 2015; Olsen et al., 2016; http://www.glodap.info). 90% of 

these data were obtained at cruises without underway pCO2w data. We extracted values 

of samples obtained from water depths shallower than 10 m, or the shallowest values 

from the upper 30 m of each cast if there were no values from above 10 m. There are 

1795 data points above 10 m depth, 296 in the 10–20 m range, and 75 in the 20–30 m 

range. This resulted in 94 % more calculated pCO2w values than used by Yasunaka et al. 

(2016), and altogether the number of directly measured and calculated data points used 

here is 33% more than used in Yasunaka et al. (2016). The CO2SYS program (Lewis 

and Wallace, 1998; van Heuven et al., 2009) was used for the calculation with the 

dissociation constants reported by Lueker et al. (2000) and Dickson (1990).  

We checked the difference between calculated pCO2w and measured pCO2w using the 
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data from cruises with both bottle DIC/TA samples and underway pCO2w available 

(10% of the bottle samples, i.e., 245 pairs). Mean value for the calculated pCO2w values 

from bottle DIC/TA samples from the upper 30 m was 299 ± 42 μatm, and that for the 

corresponding directly measured pCO2w values from underway observation generally at 

4–6m was 289 ± 11 μatm. The mean values are slightly higher for calculated pCO2w 

values than for measured ones, but the difference is smaller than the standard deviation 

and the uncertainties of the calculation (the latter of which is 14 μatm; see Section 4.2). 

The difference between calculated and measured pCO2w is not dependent on the depth 

where the TA/DIC samples were obtained. It was 10 ± 31 μatm for samples from above 

10 m, 7 ± 27 μatm for samples from 10–20 m, and 11 ± 47 μatm for samples from 20–

30 m.  

The availability of pCO2w data (measured and calculated) varies spatially and 

temporally (Fig. 2). Most of the available data are from the subpolar North Atlantic, the 

Greenland Sea, the Norwegian Sea, the Barents Sea, and the Chukchi Sea while much 

less data are available for the Kara Sea, the Laptev Sea, the East Siberian Sea, and the 

Eurasian Basin. The number of pCO2w data increased after 2005, but there are also a 

substantial number of data from before 2004. 
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2.2. Other data 

To calculate Chl-a, we used merged Rrs data from the SeaWiFS, MODIS-Aqua, MERIS, 

and VIIRS ocean color sensors processed and distributed by the GlobColour Project 

(Maritorena et al., 2010; http://hermes.acri.fr/index.php?class=archive). For 

compatibility with the spatio-temporal resolution of the gridded pCO2w data (see below 

Sect. 3.3), we selected monthly mean Rrs data with a spatial resolution of 1 (latitude) × 

1 (longitude). 

Sea surface temperature (SST) data were extracted from the National Oceanic and 

Atmospheric Administration (NOAA) Optimum Interpolation SST Version 2 (Reynolds 

et al., 2002; http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). These 

data are provided at a resolution of 1° × 1° × 1 month. Sea surface salinity (SSS) data 

were retrieved from the Polar Science Center Hydrographic Climatology version 3.0, 

which also has a resolution of 1° × 1°× 1 month (Steele et al., 2001; 

http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html). Sea ice 

concentration (SIC) data were obtained from the NOAA/National Snow and Ice Data 

Center Climate Data Record of Passive Microwave Sea Ice Concentration version 2, 

which has a resolution of 25 km × 25 km × 1 month (Meier et al., 2013; 

http://nsidc.org/data/G02202). These data were averaged into 1° × 1° × 1 month 
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grid-cells. Zonal mean data for the atmospheric CO2 mixing ratio (xCO2a) were 

retrieved from the NOAA Greenhouse Gas Marine Boundary Layer Reference data 

product (Conway et al., 1994; http://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html) and 

were interpolated into 1° × 1° × 1 month grid-cells. Both sea level pressure and 6-hourly 

10-m wind speeds data were obtained from the U.S. National Centers for Environmental 

Prediction–Department of Energy Reanalysis 2 (NCEP 2) (Kanamitsu et al., 2002; 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html). We also used 

the 6-hourly 10-m wind speeds from the U.S. National Centers for Atmospheric 

Prediction and the National Center for Atmospheric Research Reanalysis 1 (NCEP1) 

(Kalnay et al., 1996; 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) when the gas 

transfer velocity was optimized for NCEP2 wind (see Section 3.5 below). 

Surface nitrate measurements were extracted from GLODAPv2 (Key et al., 2015; 

Olsen et al., 2016) and the World Ocean Database 2013 (WOD; Boyer et al., 2013). 

When data points were duplicated in the GLODAPv2 and WOD datasets, the 

GLODAPv2 version was used as this has been subjected to more extensive quality 

control. 
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3. Methods 

3.1. Calculation of chlorophyll-a concentrations 

Chl-a was calculated from Rrs by using the Arctic algorithm developed by Cota et al. 

(2004). Several assessments have shown that this algorithm has a large uncertainty (e.g., 

Matsuoka et al., 2007; Lewis et al., 2016), and therefore the sensitivity of our results to 

this choice was evaluated by using two alternative algorithms for Chl-a: the standard 

algorithm of O’Reilly et al. (1998), and the coastal algorithm, of Tassan (1994). 

To ensure that we were working with Rrs data relatively unaffected by CDOM and 

TSM, the Chl-a data were masked following the method of Siswanto et al. (2013). 

Briefly, the Rrs spectral slope between 412 and 555 nm (Rrs555-412 slope; sr-1 nm-1) was 

plotted against logarithmically transformed Chl-a. Based on the scatter plot of 

log(Chl-a) and Rrs555-412 slope, we then defined a boundary line separating 

phytoplankton-dominated grid-cells (Rrs555-412 slope < boundary value) from potentially 

non-phytoplankton-dominated grid-cells (Rrs555-412 slope ≥ boundary value) by: 

 

Rrs555-412 slope = –0.000003{log(Chl-a)}2 + 0.00002{log(Chl-a)} + 0.00006. (1) 

 

Grid-cells were considered invalid and masked out if 1) Rrs555-412 slope ≥ boundary value, 
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or 2) Rrs at 555nm (Rrs555) > 0.01 sr–1 (or normalized water-leaving radiance > 2 mW 

cm–2 μm–1 sr–1; see Siswanto et al., 2011 and Moore et al., 2012). This criterion masked 

2% of all Chl-a data. 

The criteria described in the previous paragraph could mask out grid-cells having 

coccolithophore blooms, which are sometimes observed in the Arctic Ocean (e.g., 

Smyth et al., 2004), as they also have Rrs555 > 0.01 sr–1 (Moore et al., 2012). Unlike 

waters dominated by non-phytoplankton particles, whose Rrs spectral shape peaks at 

555 nm, the Rrs spectral shape of waters with coccolithophore blooms peaks at 490 or 

510 nm (see Iida et al., 2002; Moore et al., 2012). Therefore, grid-cells with Rrs spectral 

peaks at 490 or 510 nm (already classified using the criteria of Rrs at 490nm (Rrs490) > 

Rrs at 443nm (Rrs443) and Rrs at 510nm (Rrs510) > Rrs555) were considered as 

coccolithophore grid-cells, and were reintroduced. 8% of the masked Chl-a data were 

reintroduced by this criterion. 

 

3.2. Chlorophyll-a interpolation 

Chl-a values are often missing because of cloud cover, low angle of sunlight, or sea ice. 

For the period and area analyzed here, data are missing for 86 % of the space and time 

grid-cells. Because pCO2w mapping requires a complete Chl-a field without missing 
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values, we interpolated the Chl-a data as follows; 1) Chl-a was set to 0.01 mg m–3 

(minimum value of Chl-a) in high-latitude regions in winter when there was no light 

(north of 80° N in December and January, and north of 88° N in November and 

February). 2) Whenever SIC was greater than 99 %, Chl-a was set to 0.01 mg m–3 (full 

ice coverage, thus minimum Chl-a). We chose the strict criterion of SIC > 99 % because 

weak but significant primary production has been found to occur under the sea ice in 

regions with SIC around 90 % (Gosselin et al., 1997; Ulfsbo et al., 2014; Assmy et al., 

2017). 3) The remaining grid-cells with missing data were filled, wherever possible, 

using the average of Chl-a in the surrounding grid-cells within ±1° latitude and ±1° 

longitude; this mainly compensated for missing Chl-a values due to cloud cover or 

grid-cells masked out as potentially affected by CDOM and TSM. 4) Parts of the 

remaining missing Chl-a values, mainly for the pre-satellite period of January–August 

1997, were set to the monthly climatological Chl-a values based on the 18-year monthly 

mean from 1997 to 2014. 5) The final remaining missing Chl-a data, mainly for the 

marginal sea-ice zone, were generated by linear interpolation using surrounding data. 

With each interpolation step the number of the grid-cells with missing data decreased; 

23 % of grid-cells without Chl-a data were filled by the first step, and the subsequent 

steps provided data for the remaining 12, 8, 5, and 52 %. 
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3.3. Gridding of pCO2 data 

In order to bring the individual pCO2w data to the same resolution as the other input data, 

they were gridded to 1° × 1° × 1 month grid-cells covering the years from 1997 to 2014. 

This was carried out using the same three-step procedure of Yasunaka et al. (2016) as 

this excludes values that deviate largely from the long-term mean in the area of each 

grid cell. In short, first, anomalous values were screened in the following manner. We 

calculated the long-term mean and its standard deviation for a window size of ±5° of 

latitude, ±30° of longitude, and ±2 months (regardless of the year) for each 1° × 1° × 1 

month grid-cell. We then eliminated the data in each grid-cell that differed by more than 

three standard deviations from this long-term mean. In the second step, we recalculated 

the long-term mean and its standard deviation using a smaller window size of ±2° of 

latitude, ±10° of longitude, and ±1 month (regardless of the year) for each 1° × 1° × 1 

month grid-cell, and eliminated data that differed from that long-term mean by more 

than three standard deviations. In the final step the mean value of the remaining data in 

each 1° × 1° × 1 month grid cell for each year from 1997 to 2014 was calculated. This 

procedure identified in total about 0.5 % of the data as extreme values. These may well 

be correct observations, but likely reflect small spatial scale and/or short time scale 
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variations that can are quite atypical of the large-scale variability of interest in this study. 

These excluded values were randomly distributed in time and space.  

Although some studies have used pCO2w normalized to a certain year, based on the 

assumption of a constant rate of increase for pCO2w (e.g., Takahashi et al., 2009), we 

used “non-normalized” pCO2w values from all years; therefore, in our analysis pCO2w 

can increase both non-linearly in time and non-uniformly in space.  

 

3.4. pCO2 estimation using a self-organizing map 

We estimated pCO2w by the SOM technique used by Yasunaka et al. (2016), but with 

Chl-a as an added training parameter to the SOM in addition to SST, SSS, SIC, xCO2a, 

and geographical position X (=sin[latitude] × cos[longitude]) and Y (=sin[latitude] × 

sin[longitude]). Chl-a, SST, SSS, and SIC are closely associated with processes causing 

variation in pCO2w, such as primary production, warming/cooling, mixing, and 

freshwater input, and represent spatio-temporal pCO2w variability at seasonal to 

interannual time-scales. Including the xCO2a enables the SOM to reflect the pCO2w 

time-trend in response to the atmospheric CO2 changes including large seasonal 

variation and continued anthropogenic emissions. In several previous studies the 

anthropogenic pCO2w increase has been assumed to be steady and homogeneous, and 
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subtracted from the original pCO2w data and added to the estimated pCO2w (Nakaoka et 

al. 2013; Zheng et al. 2014). However, the occurrence of steady and homogeneous 

pCO2w trends has not yet been demonstrated in the Arctic Ocean and using xCO2a as a 

training parameter in the SOM, similar to Landschutzer et al. (2013, 2014) is preferable. 

Finally, the inclusion of geographical position among the training parameters can 

prevent systematic spatial biases (Yasunaka et al., 2014). Compared to other efforts 

mapping pCO2w using the SOM technique such as those by Telszewski et al. (2009) and 

Nakaoka et al. (2013), we used xCO2a, and geographical position as training parameters 

while we did not use mixed layer depth because of lack of reliable data in the Arctic. 

Briefly, the SOM technique was implemented as follows: first, the approximately one 

million 1° × 1° × 1 month grid-cells in the analysis region and period were assigned to 

5000 groups, which are called “neurons”, of the SOM by using the training parameters. 

Then, each neuron was labeled, whenever possible, with the pCO2w value of the 

grid-cell where the Chl-a, SST, SSS, SIC, xCO2a, and X and Y values were most similar 

to those of the neuron. Finally, each grid-cell in the analysis region and period was 

assigned the pCO2w value of the neuron whose Chl-a, SST, SSS, SIC, xCO2a, and X and 

Y values were most similar to those of that grid-cell. If the most similar neuron was not 

labeled with a pCO2w value, then the pCO2w value of the neuron that was most similar 
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and labeled was used. That case often happened in periods and regions without any 

observed data. A detailed description of the procedure can be found in Telszewski et al. 

(2009) and Nakaoka et al. (2013). 

 

3.5. Calculation of air–sea CO2 fluxes 

We calculated monthly air–sea CO2 flux (F) values from the pCO2w values estimated in 

Sect. 3.4 by using the bulk formula: 

 

F = kL(pCO2w – pCO2a) ,   (2) 

 

where k is the gas transfer velocity and L is the solubility of CO2. The solubility of CO2 

(L) was calculated as a function of SST and SSS (Weiss, 1974). We converted the 

interpolated NOAA marine boundary layer xCO2a data (Sect. 2.2) to pCO2a by using 

monthly sea-level pressure data and the water-vapor saturation pressure calculated from 

monthly SST and SSS (Murray, 1967). 

The gas transfer velocity k was calculated by using the formula of Sweeney et al. 

(2007): 
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k = 0.19 (Sc/660)–0.5 <WNCEP2
2> ,     (3) 

 

where Sc is the Schmidt number of CO2 in seawater at a given SST, calculated 

according to Wanninkhof (2014), “< >” denotes the monthly mean, and <WNCEP2
2> is 

the monthly mean of the second moment of the NCEP2 6-hourly wind speed. The 

coefficient 0.19, which is the global average of 0.27<WNCEP1
2>/<WNCEP2

2>, is based on 

the one determined by Sweeney et al. (2007) but optimized for NCEP2 winds, following 

the same method as Schuster et al. (2013) and Wanninkhof et al. (2013). 

The suppression of gas exchange by sea ice was accounted for by correcting the air–

sea CO2 fluxes using the parameterization presented by Loose et al. (2009); the flux is 

proportional to (1-SIC)0.4. Following Bates et al. (2006), in the regions with SIC > 99 %, 

we used SIC = 99 % to allow for non-negligible rates of air–sea CO2 exchange through 

leads, fractures, and brine channels (Semiletov et al., 2004; Fransson et al., 2017). This 

parameterization reduces the flux in fully ice covered waters (SIC > 99%) by 84%. 

 

4. Uncertainty 

4.1. Uncertainty in chlorophyll-a concentration data 

Fig. 3 shows original and interpolated Chl-a for the year 2012 as an example. Overall, 
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the interpolated Chl-a data seems to fit well with the original data. Most interpolated 

Chl-a data have low concentrations because of high SIC and lack of sunlight. The 

average of the interpolated Chl-a values is 0.1 mg m–3, and less than 5% of the 

interpolated Chl-a values are >0.5 mg m–3 (cf. the average of the original Chl-a values is 

1.1 mg m–3, and 48% of the original Chl-a values are >0.5 mg m–3). The previous 

studies to estimate pCO2w in high-latitudes assumed missing Chl-a as constant values 

and ignored spatio-temporal variation of Chl-a (Landschutzer et al. 2013; Nakaoka et al. 

2013). However, original Chl-a values in the ice-edge region are not small as captured 

by Perrette et al. (2011), and those in the northernmost grids in winter, north of which 

the original Chl-a values are missing, is far south of polar night region, since they are 

missing not because of no sunlight but because of low-angles of sunlight (Fig. 3a). 

Therefore, we believe interpolation is better than lowest constant values. 

To validate our Chl-a interpolation, we repeated the interpolation after randomly 

eliminating 10 % of the satellite Chl-a values. We then used the eliminated original 

Chl-a data as independent data for the validation. Note that this comparison was done 

where there were the original Chl-a data, i.e. the high Chl-a region. The root mean 

square difference (RMSD) and correlation coefficient between the interpolated and the 

independent original Chl-a data are 0.90 mg m–3 and 0.80, respectively. It means the 
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interpolated Chl-a, maybe not quantitatively, but qualitatively reproduced the original 

Chl-a, and therefore is a meaningful parameter in the SOM process. Actually Chl-a data 

improved the pCO2w estimate, even though Chl-a values in many grid-cells were 

interpolated values (see Sec. 5.4). 

To evaluate our choice of Chl-a algorithm (i.e. the Arctic algorithm of Cota et al., 

2004), we compared its calculated Chl-a values with those determined by using the 

standard algorithm of O’Reilly et al. (1998) and the coastal algorithm of Tassan (1994). 

RMDS and correlation coefficient (r) between the original (i.e. non-interpolated) Chl-a 

values are about 0.8 mg m–3 and 0.9, respectively (Table 1). For all the Chl-a values 

including the interpolated data, they are about 0.4 mg m–3 and 0.9. The lower RMSD in 

this case results from the fact that most of the interpolated Chl-a values have low 

concentrations. This result means the Chl-a from the different algorisms, maybe not 

quantitatively, but qualitatively consistent with each other. Since not absolute Chl-a 

values but relative values affect the pCO2w estimates in the SOM technique, the large 

RMSD among the Chl-a does not result in the significant difference of the pCO2w 

estimates. Actually, the pCO2w and CO2 fluxes determined using Chl-a from any of 

these algorithms as input to the SOM are consistent within their uncertainties (see Sects. 

4.2 and 4.3 below). RMSDs between the observed and estimated pCO2w are smallest in 
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pCO2w estimate using Chl-a from the Arctic algorism, but the differences are quite small 

(<1%). 

 

4.2. Uncertainty of pCO2w mapping 

Fig. 4 compares observed and estimated pCO2w (note that the spatial change visible in 

Figs. 4a and 4b include differences generated by different seasonal coverage of data in 

the various regions). Both observed and estimated pCO2w tend to be higher in the 

subpolar North Atlantic, the Laptev Sea, and the Canada Basin, and lower in the 

Greenland Sea and the Barents Sea. However, the east–west contrast in the Bering Sea 

and the contrast between the Canada Basin and the Chukchi Sea are weaker in our 

estimates than in the observations, and mean bias and RMSD are relatively large in 

those areas (Figs. 4c and 4d). The temporal changes in the observed and estimated 

pCO2w are in phase (Fig. 5a), although the variability of the estimated values is 

somewhat suppressed compared to that of the observed data (Note that the temporal 

change depicted in Fig. 5a also includes changes incurred by time variations in data 

coverage). The mean bias and RMSD fluctuate seasonally but are at a constant level 

over the years (Fig. 5b). 

The correlation coefficient between estimated and observed pCO2w is 0.82, and the 
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RMSD is 30 μatm, which is 9 % of the average and 58 % of the standard deviation of 

the observed pCO2w values. This is a performance level categorized as “good” by 

Maréchal (2004). The differences between the estimated and observed values stem not 

only from the estimation error but also from the error of the gridded observed data. The 

uncertainty of the pCO2w measurements is 2–5 μatm (Bakker et al., 2014), the 

uncertainty of the pCO2w values calculated from dissolved inorganic carbon and total 

alkalinity, whose uncertainties are within 4 μmol kg–1 and 6 μmol kg–1, respectively 

(Olsen et al., 2016), can be up to 14 μatm (Lueker et al., 2000), and the sampling error 

of the gridded pCO2w observation data was determined from the standard errors of 

monthly observed pCO2w in the 1° × 1° grid-cells, to 7 μatm (Yasunaka et al., 2016). 

To validate our estimated pCO2w values for periods and regions without any observed 

data, we repeated the mapping experiments after systematically excluding some of the 

observed pCO2w data when labeling the neurons; four experiments were carried out, by 

excluding data (1) from 1997–2004, (2) from January to April, (3) from north of 80°N, 

and (4) from the Laptev Sea (90°E – 150°E), where there are only a few pCO2w 

observations. We compared the pCO2w estimates obtained in each experiment with the 

excluded observations and found that the pCO2w estimates reproduced the general 

features of the excluded data, both spatially and temporally (not shown here). They 
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were also similar to the pCO2w estimates obtained by using all observations, although 

the RMSDs between the estimates and the excluded observations are 54 μatm on 

average, which is 1.8 times the RMSDs of the estimates based on all observations. It 

means that our estimated pCO2w reproduce the general features both in space and time 

even when and where there are no observed data, although the uncertainty in pCO2w 

might be as large as 54 μatm in regions and periods without data. We used this 

uncertainty for pCO2w estimates made by using the pCO2w values of a less similar 

neuron. 

 

4.3. Uncertainty of CO2 flux estimates 

Signorini and McClain (2009) estimated the uncertainty of the CO2 flux resulting from 

uncertainties in the gas exchange parameterization to be 36 %, and that resulting from 

uncertainties in the wind data to be 11 %. The uncertainty for SIC is 5 % (Cavalieri et 

al., 1984; Gloersen et al., 1993; Peng et al., 2013). The standard error of the sea-ice 

effect on gas exchange was estimated to about 30 % by Loose et al. (2009). The 

uncertainty of pCO2a is about 0.5 μatm 

(http://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html), and that of pCO2w was 30 μatm 

(Sect. 4.2); therefore, we estimated the uncertainty of ∆pCO2 (=pCO2w − pCO2a) to be 
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34 % (average ∆pCO2 in the analysis domain and period was −89 μatm). The overall 

uncertainty of the estimated CO2 fluxes is thus 59 % ([0.362 + 0.112 + 0.052 + 0.32 + 

0.342]1/2) in sea-ice covered regions and 51 % ([0.362 + 0.112 + 0.342]1/2) in ice-free 

regions. For estimates using the pCO2w values of a less similar neuron, whose 

uncertainty in pCO2w is 54 μatm and the uncertainty of the ∆pCO2 estimates can be as 

high as 61 %, the uncertainty is 78 % ([0.362 + 0.112 + 0.052 + 0.32 + 0.612]1/2) in 

sea-ice covered regions, and 72 % ([0.362 + 0.112 + 0.612]1/2) in ice-free regions. The 

average of the estimated CO2 flux in the analysis domain and period is 4.8 mmol m–2 d–

1; hence the uncertainty of the CO2 flux estimate corresponds to 2.8 mmol m–2 d–1 in 

sea-ice covered regions and 2.4 mmol m–2 d–1 in ice-free regions. For estimates using 

the pCO2w values of a less similar neuron, the uncertainty corresponds to 3.7 mmol m–2 

d–1 in the sea-ice covered region and 3.5 mmol m–2 d–1 in ice-free regions. 

 

5. Results and discussion 

5.1. Relationship between pCO2 and chlorophyll-a 

Fig. 6 compares the observed pCO2w and the original non-interpolated Chl-a in spring 

(March–May) and summer (July–September). In spring, when much of the Arctic Ocean 

is ice-covered, Chl-a is high in the Barents Sea and the Bering Strait (>1 mg m–3). In 
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summer, when the ice cover is less extensive, Chl-a is high in the Chukchi Sea, the Kara 

Sea, the Laptev Sea, and the East Siberian Sea (>1 mg m–3) and especially high in the 

coastal regions of the two latter (>2 mg m–3). pCO2w is high in the Norwegian Sea in 

spring, and in the Kara Sea, the Laptev Sea and the Canada Basin during summer (>300 

μatm). On the other hand, it is lower in the Chukchi Sea, Bering Strait area and the 

sea-ice edge region of the Eurasian Basin in summer (<300 μatm). The overall 

correlation between pCO2w and Chl-a is negative where Chl-a ≤ 1 mg m–3 (70% of all 

the data; correlation coefficient r = –0.36, P < 0.01), but there is no significant 

relationship where Chl-a > 1 mg m–3 (Fig. 7). A similar situation was identified in the 

subpolar North Atlantic by Olsen et al. (2008). It means that primary production 

generally draws down the pCO2w, but high Chl-a are not necessarily associated with the 

low pCO2w probably because high Chl-a usually appears in the coastal regions (Fig. 6b; 

see below). 

To determine the spatial variability of the relationship between pCO2w and Chl-a, we 

calculated the correlation coefficients between pCO2w and Chl-a in a window of ±5° of 

latitude, and ±30° of longitude for each monthly 1° × 1° grid-cell (Fig. 8a). The 

correlations between pCO2w and Chl-a are negative in the Greenland/Norwegian Seas 

and over the Canada Basin. In the Greenland/Norwegian Seas, the correlation between 



39 
 

pCO2w and Chl-a is strongly negative (r < –0.4) in spring and weakly negative (–0.4 < r 

< 0) in summer. Chl-a there is higher in summer than in spring (Fig. 6b), whereas 

nutrient concentrations are high in spring and low in summer (Fig. 8b). Taken together, 

this suggest that primary production draws down the pCO2w in spring, whereas in 

summer the primary production mostly depends on regenerated nutrients (Harrison and 

Cota, 1991) and the net CO2 consumption is small, as also reported for the subpolar 

North Atlantic (Olsen et al., 2008). Therefore the correlation between pCO2w and Chl-a 

becomes less negative. In the eastern Barents Sea, the Kara Sea and the East Siberian 

Sea, and the Bering Strait, the correlations are positive because of water with high 

pCO2w and Chl-a in the coastal region subjected to river discharge (Murata, 2006; 

Semiletov et al., 2007; Anderson et al., 2009; Manizza et al., 2011). In the Chukchi Sea, 

the relationship is weak (–0.2 < r < 0.2), probably because the relationship is on smaller 

spatial and temporal scales than those represented by the window size used here, as 

shown by Mucci et al. (2010). The occurrence of calcifying plankton blooms in this 

region, likely also weakens the correlation since the calcification increases pCO2w 

(Shutler et al., 2013; Fransson et al., 2017). 

These results show that pCO2w relates Chl-a, but the relationships are different 

depending on the region and the season. It is difficult to represent such a complex 



40 
 

relationship using simple equations (e.g. multiple regression methods) because it needs 

a priori assumptions of regression functions and of dividing the basin into sub-regions. 

But the SOM technique can empirically induce the relationships without any of the a 

priori assumptions, and therefore is suitable to represent such a complex relationship. 

 

5.2. Spatiotemporal CO2 flux variability 

The 18-year annual mean CO2 flux distribution shows that all areas of the Arctic 

Ocean and its adjacent seas were net CO2 sinks over the time period that we 

investigated (Fig. 9). The annual CO2 influx to the ocean was strong in the 

Greenland/Norwegian Seas (9 ± 3 mmol m–2 d–1; 18-year annual mean ± uncertainty 

averaged over the area shown in Fig. 1), the Barents Sea (10 ± 3 mmol m–2 d–1), and the 

Chukchi Sea (5 ± 3 mmol m–2 d–1). In contrast, influx was weak and not statistically 

significantly different from zero in the Eurasian Basin, the Canada Basin, the Laptev 

Sea and the East Siberian Sea. Our annual CO2 flux estimates are consistent with those 

reported by Yasunaka et al. (2016) and other previous studies (Bates and Mathis, 2009, 

and references therein). 

The estimated 18-year average CO2 influx to the Arctic Ocean was 5 ± 3 mmol m–2 d–

1, equivalent to an uptake of 180 ± 130 TgC y–1 for the ocean area north of 65° N, 
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excluding the Greenland/Norwegian Seas and Baffin Bay (10.7 × 106 km2; see Fig. 1). 

This accounts for 12% of the net global CO2 uptake by the ocean of 1.5 Gt C yr-1 

(Gruber et al., 2009; Wanninkhof et al., 2013; Landschützer et al., 2014). It is within the 

range of other estimates (81–199 TgC y–1; Bates and Mathis, 2009), but close to the 

upper bound. That is partly because the parameterization of the suppression effect by 

sea ice used in this study. Using another parameterization which represents the SIC 

effect linearly (Takahashi et al. 2009; Butterworth and Miller 2016), CO2 uptake of the 

Arctic Ocean was estimated to be 130 ± 110 TgC y–1. 

Fig. 10 shows the seasonal variation of the air-sea CO2 fluxes and its controlling 

factors (pCO2, wind speed and SIC; solubility is not shown as the impacts of its 

variations are relatively small in this context) in the Greenland/Norwegian Seas, the 

Barents Sea, the Chukchi Sea and the Arctic Ocean. In all of these regions the influxes 

are strongest in October, when the winds strengthen with the approach of winter and the 

pCO2w and/or SIC are still as low as in the summer. In the Greenland/Norwegian Seas 

and the Barents Sea the CO2 influx shows a secondary maximum in February because 

the strongest winds occur in that month, while in the Chukchi Sea and Arctic Ocean, the 

winds are also strong but the flux is suppressed by the extensive sea-ice cover. All of 

these regions are undersaturated with pCO2w (i.e. negative pCO2) throughout all 
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seasons. The undersaturation is strongest in the Arctic Ocean, as this has the most 

extensive sea ice cover limiting the fluxes from the atmosphere and the strongest 

stratification, limiting the mixing of CO2 rich subsurface waters into the surface ocean. 

The undersaturation typically shows a maximum (i.e. pCO2 is minimum) in late spring 

to early summer (May–June) when the spring bloom occur (Pabi et al. 2008), but not in 

the Arctic Ocean. Here the undersaturation reaches its minimum (pCO2 is the smallest) 

in late summer (August–September) at the time of minimum sea ice cover, since the 

seasonal decrease of pCO2 in summer is larger in the air than in the sea. Overall, in the 

Greenland/Norwegian Seas and the Barents Sea the seasonal variations of the CO2 flux 

is opposite to that expected from the seasonal pCO2 variations because it is the wind 

speed that governs most of the seasonal flux variations. In the Chukchi Sea, on the other 

hand, the CO2 influx is strongest in summer, a consequence of the minimum sea-ice 

cover and strongest pCO2 undersaturation. In the Arctic Ocean it is the SIC and wind 

speed that drive the seasonal flux variations. Seasonal variations of CO2 flux are 

consistent with those of the previous studies (Yasunaka et al. 2016, and references 

therein), whereas those of pCO2w become realistic (see Section 5.3 below). 

Fig. 11 shows interannual variation of CO2 flux and its driving factors in these four 

regions. The interannual variations of CO2 flux andpCO2 are generally smaller than 
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the seasonal variations, and are often smaller than their respective uncertainty. In the 

Greenland/Norwegian Sea, interannual variation of the CO2 flux negatively correlates 

with the wind speed (CO2 influx to the ocean is large when the wind is strong; r = –

0.41), while interannual variation of pCO2 and sea ice change is small. In the Barents 

Sea, the interannual variation of CO2 flux correlates with pCO2 positively (r = 0.71) 

and with SIC negatively (r = –0.50), while the correlation with wind speed is not 

significant. Although low SIC enhance the air-sea CO2 exchange due to increase of the 

area of open water, it also associates with high SST and therefore high pCO2w there. In 

the Chukchi Sea, CO2 influx to ocean is decreasing with the increasing of pCO2 (r = 

0.87). High pCO2w (>500 μatm) via storm-induced deep mixing events has been 

sometimes observed in the Chukchi Sea after 2010 (Hauri et al. 2013; Taro Takahashi, 

personal communication). Interannual variability of the CO2 flux averaged over the 

Arctic Ocean is small because the increasing pCO2 is compensated by the effect of sea 

ice retreat (r = –0.70). Thus, the combined effect of sea-ice retreat and pCO2w increase 

on CO2 flux varied among regions.  

The CO2 influx has been increasing in the Greenland Sea and northern Barents Sea, 

and decreasing in the Chukchi Sea and southern Barents Sea (Fig. 12). The CO2 flux 

trend corresponds well with the ∆pCO2 trend, which in turn corresponds well with the 
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SST trend. The increasing CO2 influx in the northern Barents Sea also corresponds with 

the sea-ice retreat. These results are similar to that for the previous estimates without 

using Chl-a (see Fig. 10 in Yasunaka et al., 2016). It shows again that the combined 

effect of sea-ice retreat and pCO2w increase to the CO2 flux is regionally different. In the 

SOM process, the pCO2w values observed in the latter period might be used for the 

pCO2w estimate in the former period where the pCO2w measurements have not been 

made, and therefore the trend in CO2 influx might be affected by the spatio-temporal 

distribution of the measurements. To confirm this is not the case, we checked that the 

spatial distribution of the pCO2w trend did not correspond to the year when the first 

observation was conducted (see supplement). 

 

5.3. Impact of incorporating chlorophyll-a data in the SOM 

To determine the impact of including Chl-a data in the SOM process, the analyses were 

repeated without Chl-a data. The RMSD of the resulting estimated pCO2w values is 33 

μatm, which is 3 μatm larger than the uncertainty of the estimates generated by 

including Chl-a in the SOM. Chl-a data thus improved the pCO2w estimate (namely, a 

10 % reduction of RMSD), even though 40 % of the Chl-a data labeled with pCO2w 

observations were interpolated Chl-a values.  
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Figs. S1 and S2 present the difference in bias and RMSD for pCO2w estimated with 

and without Chl-a; Fig. S1 shows the time-evolution and Fig. S2 shows the spatial 

distribution. Both approaches typically underestimate pCO2w in winter and overestimate 

the summertime values, but these systematic biases are reduced when Chl-a are 

included in the SOM (Fig. S1). Biases and RMSDs are reduced in the Canada basin, the 

western Bering Sea, and the boundary region between the Norwegian Sea and the 

subpolar North Atlantic (Fig. S2). As a result the strong east–west contrast in the Bering 

Sea and the contrast between the Canada Basin and the Chukchi Sea (see Fig. 4) are 

better represented when Chl-a is included. Taken together, inclusion of Chl-a when 

estimating pCO2w yields not only better representation of the pCO2w decline in spring 

and summer but also improves the representation of the spatio-temporal pCO2w 

distribution. Technically, these improvements come from the fact that Chl-a as a training 

parameter can separate high Chl-a region/time and low Chl-a region/time into different 

neurons, which contaminated in the same neurons trained without Chl-a. For example, 

since Chl-a is high in spring but SST and SIC are still in the similar levels with winter, 

the grid-cells in spring and winter would be classified into the separate neurons when 

Chl-a is included as a training parameter, but in the same neuron when Chl-a is not 

included. As a result, without Chl-a, the estimated pCO2w in spring tends to be similar to 
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the pCO2w in winter, and the pCO2w in winter tends to be similar to that in spring. And 

therefore the contrast between winter and spring is weakened without Chl-a.  

The seasonal cycles of pCO2w estimates derived with the inclusion of Chl-a have a 

larger amplitude than the uncertainties, whereas the uncertainties are larger than the 

seasonal amplitude when pCO2w is derived without Chl-a (upper panels of Fig. 13). The 

difference is caused by the fact that the seasonal cycle of pCO2w in each region 

reproduces the observed cycle better when Chl-a was included (lower panels of Fig. 13). 

Note that the much larger seasonal amplitude in the lower panels is an artefact generated 

by the seasonal bias in sampling locations; in winter most measurements are obtained at 

low latitudes where pCO2w is typically higher than at high latitudes.  

Compared to the CO2 influx estimates by Yasunaka et al. (2016), the winter CO2 

influx in the Greenland/Norwegian Seas estimated including Chl-a is about 3 mmol m–2 

d–1 less than that calculated without using Chl-a (Fig. 14), but this difference is smaller 

than the uncertainties. The CO2 fluxes in the other area are quite similar with each 

estimate, while their uncertainties are smaller in the present estimates.  

The inclusion of Chl-a data also reduced the uncertainty of the estimated annual 

air-sea CO2 flux integrated over the entire Arctic Ocean. Compared to the flux estimate 

determined by Yasunaka et al. (2016) of 180 ± 210 TgC y–1, the CO2 uptake in the 
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Arctic Ocean estimated here is significant within its uncertainty (180 ± 130 TgC y–1). 

This improvement is the result of 1) the inclusion of Chl-a data in the SOM process 

(which reduced the uncertainty by 23 %); 2) the separate uncertainty estimates for 

ice-free and ice-covered regions (8 %); and 3) the addition of new observational pCO2w 

data (7 %). Reducing the uncertainty of this quantification is a key contribution to the 

larger work of constraining the global carbon budget (e.g., Le Quere et al., 2016). 

Because the Arctic is an important CO2 sink, quantifying its fluxes and minimizing the 

uncertainty is of great scientific value. 

 

5.4. Toward further reduction of the uncertainty 

  The addition of new observational data from SOCATv4 and GLODAPv2 reduced the 

overall uncertainty in the mapped pCO2w: a 33 % increase in the number of observations 

induced a 7 % reduction in the uncertainty. However, there are still few observations in 

the Kara Sea, the Laptev Sea, the East Siberian Sea and the Eurasian Basin (Fig. 2). To 

improve our understanding of the variability in air–sea CO2 fluxes in the Arctic, it is of 

critical importance to obtain additional ocean CO2 measurements to fill these data gaps, 

and that these measurements are made publically available. Data synthesis activities like 

SOCAT must be encouraged. 
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In the present study, we discussed the combined effect of sea-ice retreat and pCO2w 

change on the air-sea CO2 flux. There are other factors that will induce the change of 

CO2 flux. For example, warmer temperature will lead to an increasing buffering 

capacity while lower salinity will have the opposite effect and cause a decrease in 

buffering capacity. In our current study, we used climatological-mean salinity for the 

pCO2w estimate because of lack of reliable year-to-year salinity data. That might be one 

of the improvements for a future study. 

 

6. Conclusions 

By applying an SOM technique with the inclusion of Chl-a data to estimate pCO2w, we 

produced monthly maps of air–sea CO2 fluxes from 1997 to 2014 for the Arctic Ocean 

and its adjacent seas north of 60° N. Negative correlation between pCO2w and Chl-a 

meant that Chl-a is valuable parameter to represent primary production. Since the 

relationship varied among seasons and regions, the SOM technique is better suited for 

the mapping than a multiple linear regression approach. Adding Chl-a to the SOM 

process improved representation of the seasonal cycle of pCO2w, and therefore reduced 

the uncertainty of the CO2 flux estimates. 

In the Greenland/Norwegian Seas and the Barents Sea the CO2 influx was large in 
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autumn and winter because of the strong wind. In the Chukchi Sea, on the other hand, 

the CO2 influx was strong in summer and autumn, as a consequence of the low SIC and 

strong pCO2w undersaturation. Although interannual variation of the CO2 influx was 

smaller than the seasonal variation, the CO2 influx has been increasing in the Greenland 

Sea and northern Barents Sea, and decreasing in the Chukchi Sea and southern Barents 

Sea. 

A major goal of the carbon-cycle research community in recent years has been to 

reduce the uncertainty in estimates of carbon reservoirs and fluxes. Our results 

contribute to this in that CO2 uptake in the Arctic Ocean is demonstrated with high 

significance. The resulting estimate of the annual Arctic Ocean CO2 uptake of 180 TgC 

y–1 is significant with an uncertainty of ± 130 TgC y–1. This is a substantial 

improvement over earlier estimates, and is due mainly to the incorporation of Chl-a 

data.  

  Assessment of the numerical models using our estimate of Arctic carbon uptake is 

also an interesting topic since numerical models are poorly validated in the Arctic due to 

the limited observations of biogeochemistry (Popova et al., 2012). However, such 

experiments need thorough insight into the numerical models, which is beyond the 

scope of this study. We hope to perform such comparisons in future studies. 
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The monthly CO2 flux, pCO2w, and interpolated Chl-a data presented in this paper 

will be available at the JAMSTEC website 

(http://www.jamstec.go.jp/res/ress/yasunaka/co2flux_v2). 
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Figure 1: Map of the Arctic Ocean and its adjacent seas. Gray contour lines show the 

1000, 2000, 3000, and 4000 m isobaths. Blue lines show the 17-year annual mean 

position of the ice edge (SIC = 15 %). Area for the mapping is north of 60° N (heavy 

black circle). Sectors selected for regional analysis are the Arctic Ocean (dashed 

magenta line), the Greenland/Norwegian Seas (green 1), the Barents Sea (green 2), and 

the Chukchi Sea (green 3). 

Arctic Ocean 

Barents Sea
Greenland

/Norwegian
Sea

Chukchi
Sea



71 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) The number of ocean surface CO2 data in the grid boxes (1° × 1°) used in 

this study. Data are from SOCATv4, LDEOv2014, GLODAPv2, and collected by R/V 

Mirai of JAMSTEC between 1997 and 2014. (b) Monthly number of CO2 data in the 

analysis area (north of 60° N) from 1997 to 2014.   
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Figure 3: (a) Original and (b) interpolated Chl-a [mg m-3] in July 2012 (upper panels), 

and along 75°N in 2012 (lower panels). Black lines denote SIC of 50% and 90%. Gray 

areas in (a) indicate missing Chl-a data.  
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Figure 4: (a) Observed pCO2w averaged over the whole analysis period [μatm]. (b) 

Estimated pCO2w averaged over the grid boxes in which observed pCO2w values were 

available [μatm]. (c) Bias (estimate–observation) and (d) root-mean-square-difference 

between observed and estimated pCO2w averaged over the whole analysis period 

[μatm].   



74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a) Monthly time series of observed pCO2w averaged over the entire analysis 

area (black), and estimated pCO2w averaged over the grid boxes in which observed 

pCO2w values were available (green) [μatm]. (b) Bias (estimate–observation; black) and 

root-mean-square-difference (green) between observed and estimated pCO2w averaged 

over the entire analysis area [μatm]. 
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Figure 6: (a) Observed pCO2w [μatm], and (b) non-interpolated Chl-a [mg m-3] in 

March–May (left), and July–September (right) from 1997 to 2014.   
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Figure 7: Observed pCO2w [μatm] vs. satellite Chl-a [mg m-3] in the Arctic Ocean and 

its adjacent seas (north of 60° N) from 1997 to 2014. Colors indicate the number of data 

pairs in a 0.1 mg m-3 × 5 μatm bin when Chl-a ≤ 5 mg m–3, or in a 1 mg m–3 × 5 μatm 

bin when Chl-a > 5 mg m–3.   
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Figure 8: (a) Spatial correlation (correlation coefficient, r) between pCO2w and Chl-a in 

a window size of ±1 month, ±5° of latitude, and ±30° of longitude in March–May (left), 

and July–September (right). Darker hatched areas represent values in grids where 

correlations are insignificant (P > 0.05). (b) Surface nitrate concentration [μmol l-1] in 

March–May (left), and July–September (right) from 1997 to 2014. 
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Figure 9: Eighteen-year annual means of CO2 flux [mmol m–2 day–1] (negative values 

indicate flux into the ocean). Darker hatched areas represent show values in grids where 

fluxes were smaller than the uncertainty, estimated as described in the text. 
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Figure 10: Eighteen-year monthly mean CO2 flux [mmol m–2 day–1] (black), ∆pCO2 

[μatm] (red), wind speed [m sec–1] (green), and SIC [%] (blue), averaged over (a) the 

Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic 

Ocean. Error bars indicate the uncertainty. 
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Figure 11: Area-mean interannual variations of CO2 flux [mmol m–2 day–1] (black), 

∆pCO2 [μatm] (red), wind speed [m sec–1] (green), and SIC [%] (blue) in (a) the 

Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic 

Ocean. Error bars indicate the uncertainty. 
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Figure 12: Trends in (a) CO2 flux [mmol m–2 

day–1 decade–1], (b) ∆pCO2 [μatm decade–1], 

and (c) SIC [% decade–1]. Darker hatched 

areas represent values in grids where trend 

values were less than the uncertainty, 

estimated as described in the text. 
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Figure 13: Eighteen-year averaged pCO2w seasonal variations [μatm] in (a) the 

Greenland/Norwegian Seas, (b) the Barents Sea, and (c) the Chukchi Sea. Black lines 

with triangles show estimates without Chl-a; magenta lines with open circles show 

estimates with Chl-a; green lines with closed circles show observed values. The upper 

panels show pCO2w averaged for all grid cells with each region, and the lower panels 

show pCO2w averaged over the grid boxes in which observed pCO2w values were 

available. Error bars show the uncertainty, estimated as described in the text. 
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Figure 14: Eighteen-year monthly mean CO2 flux [mmol m–2 day–1] averaged over (a) 

the Greenland/Norwegian Seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the 

Arctic Ocean. Black lines with triangles show estimates without Chl-a by Yasunaka et al. 

(2016); magenta lines with open circles show estimates with Chl-a. Error bars show the 

uncertainty, estimated as described in the text. 
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Table 1: RMSD [mg m–3] and correlation (r) between Chl-a values 

 standard algorithm coastal algorithm 

RMSD r RMSD r 

Chl-a from Arctic algorithm 0.80 0.90 0.81 0.87 

Interpolated Chl-a from Arctic algorithm 0.37 0.92 0.48 0.86 

 

 


